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Abstract: In the classical expected utility framework, a problem of optimal insurance design
with a premium constraint is equivalent to a problem of optimal insurance design with a
minimum expected retention constraint. When the insurer has ambiguous beliefs represented
by a non-additive probability measure, as in Schmeidler, this equivalence no longer holds.
Recently, Amarante, Ghossoub and Phelps examined the problem of optimal insurance design with
a premium constraint when the insurer has ambiguous beliefs. In particular, they showed that when
the insurer is ambiguity-seeking, with a concave distortion of the insured’s probability measure,
then the optimal indemnity schedule is a state-contingent deductible schedule, in which the
deductible depends on the state of the world only through the insurer’s distortion function. In this
paper, we examine the problem of optimal insurance design with a minimum expected retention
constraint, in the case where the insurer is ambiguity-seeking. We obtain the aforementioned result
of Amarante, Ghossoub and Phelps and the classical result of Arrow as special cases.

Keywords: optimal insurance; deductible; minimum retention; ambiguity; Choquet integral;
probability distortion
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1. Introduction

In the classical problem of optimal insurance design, it is well known since the work of Arrow [1]
that when the insured is a risk-averse expected utility (EU) maximizer and the insurer is a risk-neutral
EU maximizer, the indemnity schedule that maximizes the insured’s expected utility of terminal
wealth subject to a premium constraint is a deductible indemnity of the form Y˚ “ max

´

0, X ´ d
¯

,
where X is the loss random variable and d ě 0 is a given constant deductible.

For a given indemnity schedule Y, the premium constraint is a constraint of the form:

Π ě p1` ρq

ż

YdP

where Π ě 0 is the premium paid and ρ ě 0 is a loading factor. It requires that the premium received
by the insurer is enough to cover the expected indemnity payments loaded up for expenses and
profits. By letting R0 “

ş

XdP´ Π
1`ρ , the premium constraint can be written as:

ż

pX´Yq dP ě R0 (1)
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The quantity X ´ Y is a random variable that represents the portion of the loss that is actually
suffered (or retained) by the insured after the insurance indemnification payment, and it is called the
retention random variable. The constraint given in Equation (1) is often referred to as a minimum
expected retention constraint. It requires that the indemnity schedule Y be such that the associated
retention random variable has a minimum pre-specified expectation under the insurer’s beliefs.
Since a premium constraint and a minimum expected retention constraint are equivalent in the
classical EU case, the optimal indemnity schedule with a minimum expected retention constraint
is then also a deductible indemnity schedule, with a constant positive deductible level.

Both the premium constraint and the minimum expected retention constraint are a simple
restatement of the risk-neutral EU-maximizing insurer’s participation constraint. The insurer and
the insured share the same probabilistic beliefs about the realizations of the loss random variable,
and hence, Arrow’s [1] classical result is a pure risk-sharing result. The applicability of this result
is limited, nonetheless. Indeed, the classical theory of optimal insurance design due to Arrow is
based on the classical theory of choice under uncertainty [2–4], which follows the Bayesian paradigm,
whereby the uncertainty that a decision maker faces in a given decision problem is described by a
probability measure over a space of contingencies or states of the world. In other words, the economic
agent has a clear probabilistic assessment of the underlying uncertainty that he faces.

However, the seminal work of Knight [5] suggested that there might be situations where the
information available to a decision maker is too coarse for him or her to be able to formulate an
additive probability measure over the list of contingencies. These occurrences are typically referred
to as situations of decision under Knightian uncertainty, or ambiguity. Yet, this did not penetrate the
mainstream theory of choice until Ellsberg’s [6] famous thought experiments, which can be seen as
an indication of people’s aversion to unknown unknowns, or vagueness in beliefs about likelihoods.
There is now a substantial body of empirical evidence for the pervasiveness of ambiguity in situations
of choice under uncertainty, and we refer to Camerer [7] for a still timely review.

Largely motivated by the Ellsberg paradox, modern decision theory has developed several
models of decision under ambiguity that rationalize behaviours, such as the ones depicted by
Ellsberg [6]. For example, in Schmeidler [8], ambiguity is represented by a non-additive subjective
“probability” measure, called a capacity, and preferences are aggregated using an integral defined
with respect to capacities: the Choquet integral (we review capacities and Choquet integration in
Section 3.1 and in Appendix A). Schmeidler’s [8] seminal work and his model of decision under
ambiguity, which came to be known as Choquet expected utility (CEU), can be seen as the starting
point of decision theoretic investigations of models of choice under ambiguity.

After Schmeidler’s work, many axiomatic models of decision under ambiguity were introduced.
In Gilboa and Schmeidler [9], ambiguity is described by a collection of additive priors (a set
of probability measures), and preferences are aggregated using the minimum value of the usual
(Lebesgue) integral over this collection. Ghirardato, Maccheroni and Marinacci [10] propose a general
model of decision under ambiguity that includes that of [9]. Amarante [11] introduces a model of
decision under ambiguity that includes the aforementioned ones. We refer to the recent survey of
Gilboa and Marinacci [12] for more on this topic, including other models of decision under ambiguity
and applications of these models to several problems in economic theory.

In particular, Amarante [11] shows that most models of decision under ambiguity can be
represented as models were the objects of choice are evaluated by a Choquet integral with respect
to some capacity. That is, Choquet integration is a wide enough aggregation concept for preferences
that it can encompass most models of decision under ambiguity and, in particular, the most popular
ones. As a result, we focus in this paper on Choquet integration as an aggregation concept for
decision-making under ambiguity, and we consider the CEU model of Schmeidler [8] as a model
of decision-making under ambiguity.
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1.1. Ambiguity in Optimal Insurance Design

Empirical evidence suggests that ambiguity, rather than risk, is prevalent in insurance pricing
and underwriting and that often, insurers tend to exhibit more ambiguity than the insured individuals
(e.g., [13]). Motivated by these findings, Amarante, Ghossoub and Phelps (AGP) [14] re-examined the
classical insurance demand problem of Arrow [1] in a setting where the insurer has ambiguous beliefs
(in the sense of Schmeidler [8]) about the realizations of the insurable loss, whereas the insured is an
EU maximizer. Specifically, they examined the problem of a risk-averse EU-maximizing insured who
wishes to choose the indemnity schedule that maximizes his or her expected utility of terminal wealth,
subject to a premium constraint based on the insurer’s ambiguous beliefs and that takes the form:

Π
1` ρ

ě ´

ż

´Ydν ě 0 (2)

where integration is in the sense of Choquet (Section 3.1 and Appendix A). This premium constraint
is a restatement of the insurer’s participation constraint. In particular, AGP [14] showed that when
the insurer is ambiguity-seeking, with a concave distortion of the insured’s probability measure, then
the optimal indemnity schedule is a state-contingent deductible schedule, in which the deductible
depends on the state of the world only through the insurer’s distortion function. Arrow’s result then
obtains as a special case when the insurer does not distort probabilities.

Because of the properties of the Choquet integral, the premium constraint in Equation (2) cannot
be re-written as a minimum expected retention constraint. Therefore, in the case where the insurer
is a Choquet-expected utility maximizer as in Schmeidler [8], a problem of insurance design given a
premium constraint is not equivalent to a problem of insurance design given a minimum expected
retention constraint, where the expectation is in the sense of Choquet, that is it is an ambiguous
(or non-additive) expectation.

1.2. Related Literature

There is a growing literature devoted to the study of ambiguity in insurance design and,
more broadly, in situations of contracting or risk sharing. For example, Alary et al. [15] examine
a problem of optimal insurance design in which the insured is ambiguity-averse in the sense of
Klibanoff, Marinacci and Mukerji [16]. The authors assume that, conditional on a non-zero loss
occurring, the loss severity distribution is not ambiguous; however, the probability that a loss occurs
is ambiguous. The authors then show that, in this situation, the optimal indemnity is a straight
deductible. Gollier [17] also examines a problem of optimal insurance design in which the insured is
ambiguity-averse in the sense of Klibanoff, Marinacci and Mukerji [16], and he shows that the optimal
indemnity schedule contains a disappearing deductible when the insured’s collection of (additive)
priors can be ordered according to the monotone-likelihood ratio property.

Jeleva [18] considers an insurance model in which the insured behaves according to Schmeidler’s
CEU model. She assumes that the optimal insurance contract is of the co-insurance type and
then looks for the optimal co-insurance factor. Young [19] and Bernard et al. [20] examine a
problem of optimal insurance design in which the insured is a rank-dependent expected utility
maximizer [21,22]. Doherty and Eeckhoudt [23] study the optimal level of deductible under Yaari’s
dual theory [22]. Karni [24] considers an insurance model in which the preferences of the insured can
accommodate ambiguous beliefs, but they satisfy certain differentiability criteria. He shows that a
deductible indemnity schedule is optimal in that case. Machina [25] considers a similar setting where
the preferences of the insured have a non-EU representation that satisfies certain differentiability
criteria, and he examines the optimal level of co-insurance and the optimal level of deductible.
Schlesinger [26] examines the optimal co-insurance level in a situation where the preferences of
the insured are not necessarily EU preferences, but they are risk-averse in the sense of disliking
mean-preserving increases in risk.
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The papers mentioned above all assume that the ambiguity is on the side of the insured.
Motivated by empirical evidence suggesting that insurers tend to exhibit more ambiguity than the
insured individuals (e.g., [13]), AGP [14] study the problem of optimal insurance design in a setting
where the insurer has ambiguous beliefs about the realizations of the insurable loss (and behaves
according to Schmeidler’s CEU model), whereas the insured does not.

Carlier et al. [27] examine ambiguity on both sides: the insurer’s and the insured’s.
Specifically, they consider the case in which both parties’ beliefs are epsilon-contaminations of a given
prior, and they show that the optimal indemnity contains a deductible for high values of the loss.
Anwar and Zheng [28] also examine ambiguity on both sides, but they consider a model with only
two states of the world: a no-loss state and a loss state. As such, this is of limited scope, since the
shape of an optimal indemnity schedule cannot be determined in a two-state world.

Carlier and Dana [29–31] and Chateauneuf et al. [32] examine more general problems of risk
sharing and contracting that are relevant to the insurance problem considered here. However, they do
not give a full analytical characterization of the optimal risk sharing rule, which is one of the main
goals of the present paper in the context of an insurance design problem.

Finally, we would like to mention the recent work of Balbas et al. [33] who consider ambiguity on
the side of both the insurer and the insured1. The authors assume that both parties behave according
to the maxmin expected utility (MEU) model of Gilboa and Schmeidler [9], that is their ambiguity
is described by a collection of additive priors (a set of probability measures), and preferences are
aggregated using the minimum value of the usual (Lebesgue) integral over this collection of priors.
The authors do not consider the retention random variable as a decision variable, but rather its
sensitivity (i.e., mathematical derivative) with respect to total claims. This is meant to prevent some
potential moral hazard issues. The authors then show that the optimal indemnity schedule is often
such that the sensitivity of the retention random variable to the total claims saturates the problem’s
constraints (a bang-bang solution).

1.3. This Paper’s Contribution

This paper is meant to supplement the literature and provide a framework for scholars or
practitioners who are used to considering retention as a decision variable, but would like to examine
the effect of ambiguity. Specifically, we examine the problem of optimal insurance design for a
given minimum expected retention level, when the insurer is ambiguity-seeking in the sense of
Schmeidler [8]. We focus on the case of an ambiguity-seeking rather than an ambiguity-averse insurer,
since recent work suggests that situations of ambiguity-seeking are empirically relevant (e.g., [34–36]).
We examine two cases:

(1) We first examine the problem of insurance design when the insurer’s beliefs are a concave
distortion of a probability measure that differs from the insurer’s probability measure. We show
that there is an event A to which the insurer assigns full probability and on which the optimal
indemnity schedule is a state-contingent deductible schedule, with a state-contingent deductible
that is a function of the insurer’s distortion function and of a likelihood ratio between the two
parties’ beliefs. On the complement of the event A, the optimal indemnity is full insurance.
However, the insurer assigns zero probability to the complement of A.

(2) As a special case of the above, we examine the problem of insurance design when the insurer’s
beliefs are a concave distortion of the insured’s probability measure. We show that in this
case, the result of AGP [14] mentioned above still holds: the optimal indemnity schedule is a
state-contingent deductible schedule, in which the deductible depends on the state of the world
only through the insurer’s distortion function. Arrow’s result then obtains as a special case
when the insurer does not distort probabilities.

1 We thank one of the reviewers for bringing this to our attention.
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1.4. Outline

The rest of this paper is organized as follows. In Section 2, we review the classical optimal
insurance design problem. In Section 3, we examine the problem of optimal insurance design given
a minimum expected retention constraint, in the case of an insurer who is ambiguity-seeking in the
sense of Schmeidler [8]. Proofs and related analysis are given in the Appendices.

2. Optimal Insurance: The Classical Case

2.1. Setup and Preliminaries

Consider a collection S of states of the world, and endow S with a σ-algebra F of events.
Let B pFq denote the linear space of all bounded, R-valued and F -measurable functions on pS,Fq.
Let B` pFq denote the collection of all R`-valued elements of B pFq. Any f P B pFq is bounded,
and we define its sup norm by } f }sup :“ supt| f psq| : s P Su ă `8.

In the classical problem of optimal insurance design given a premium constraint, a risk-averse
EU-maximizing individual with initial wealth W0 ą 0 faces an insurable random loss, against which
he or she seeks insurance. This random loss is represented by a bounded, nonnegative random
variable X on the state space. That is, the random loss is a given element of B` pFq with closed
range X pSq “ r0, Ms, where M :“ }X}sup ă `8.

Denote by Σ the σ-algebra σtXu of subsets of S generated by X. Then, for any Y P B pΣq, there
exists a Borel-measurable map I : RÑ R, such that Y “ I ˝X ([37], Theorem 4.41). Let B` pΣq denote
the collection of nonnegative elements of B pΣq, and let P be a probability measure on pS, Σq. We will
make the following assumption all throughout.

Assumption 1. The random loss X is a continuous random variable2 on the probability space
pS, Σ, Pq. That is, the Borel probability measure P ˝ X´1 is nonatomic3.

The individual seeking an insurance coverage against this random loss X has the possibility of
purchasing an insurance indemnity schedule Y “ I pXq, which pays the amount I pX psqq ě 0, in the
state of the world s P S. That is, Y P B` pΣq, and we can hence identify B` pΣqwith the collection of all
possible indemnity schedules. The price of this insurance indemnity schedule is called the insurance
premium, and it is denoted by Π ě 0. The premium is determined by the insurer, based on the
insurer’s beliefs about the realizations of X (and hence, of Y).

2.2. The Insurance Design Problem

In the classical insurance model of Arrow [1], both the insurer and the insured are EU
maximizers, having the same non-ambiguous beliefs about the realizations of X. The insurer is
assumed to be a risk-neutral EU maximizer, with a linear utility function v, which we assume to be
the identity function. This is without loss of generality, as utility functions are defined up to a positive
linear transformation. The insured is risk-averse, having a concave increasing utility function u.

After purchasing an indemnity schedule Y “ I ˝ X, the insured’s wealth is the random variable
W defined by W psq “ W0 ´Π´ X psq `Y psq, in each state of the world s P S. The insured’s problem
is that of choosing an indemnity schedule that maximizes his or her expected utility of wealth,

2 This is a standard assumption, and it holds in many instances, such as when it is assumed that a probability density
function for X exists.

3 A finite nonnegative measure η on a measurable space pΩ,Aq is said to be nonatomic if for any A P A with η pAq ą 0,
there is some B P A, such that B Ĺ A and 0 ă η pBq ă η pAq.
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for a given premium Π. Specifically, the insured’s problem is that of choosing Y in B` pΣq so as
to maximize:

ż

u pW0 ´Π´ X`Yq dP

subject to the classical constraint that the indemnity function is nonnegative and does not exceed the
loss, that is 0 ď Y ď X, and subject to a premium constraint of the form:

Π ě p1` ρq

ż

YdP (3)

where ρ ě 0 is a given loading factor.
Arrow’s [1] classical result states that in this case, the optimal insurance indemnity schedule is a

deductible insurance schedule:

Theorem 1 (Arrow). The optimal indemnity schedule is a deductible schedule given by:

Y˚ “ max
´

0, X´ d
¯

where d ě 0 is a constant, such that
ş

Y˚dP “ Π
1`ρ .

2.3. Premium Constraint vs. Minimal Expected Retention Constraint

In this classical framework, it is easy to see how the premium constraint given in Equation (3) is
equivalent to a constraint for the form:

ż

pX´Yq dP ě R0 (4)

for R0 “
ş

XdP´ Π
1`ρ . For a given indemnity schedule Y P B` pΣq, the random variable

R “ X´Y

is the amount of loss that is retained by the insured individual and is called the retention random
variable. The constraint given in Equation (4) is called a minimum retention constraint.

Therefore, the classical problem of demand for insurance is equivalent to the following problem
of optimal insurance design with a minimal expected retention:

For a given R0 ě 0

sup
YPBpΣq

ż

u pW0 ´Π´ X`Yq dP (5)

s.t. 0 ď Y ď X,
ż

pX´Yq dP ě R0

By the monotonicity of u, if R0 “ 0, then full insurance is optimal, that is Y˚ “ X is an optimal
solution for Problem (5). When R0 ą 0, Theorem 1 implies that the optimal solution is a deductible
indemnity schedule with a constant, positive deductible.

One should note the equivalence between a premium constraint and a minimum expected
retention constraint holds only under the expected value premium principle, i.e., under Expected Utility
Theory. Insurance pricing, risk measurement and premium principles under non-Expected Utility
models or models of Ambiguity have been recently examined in the literature (see, e.g. Pichler [38]
and Ghossoub [39]). Under such non-linear premium principles, the equivalence between a premium
constraint and a minimum retention constraint does not hold.
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3. The Case of an Ambiguity-Seeking Insurer

3.1. Preliminaries: Capacities, Choquet Integration and the CEU Model

Definition 1. A (normalized) capacity on a measurable space pS, Σq is a set function υ : Σ Ñ r0, 1s,
such that:

(1) υ p∅q “ 0;
(2) υ pSq “ 1; and,
(3) υ is monotone: for any A, B P Σ, A Ď B ñ υ pAq ď υ pBq.

The capacity υ is said to be:

• supermodular (or convex) if υ pAY Bq ` υ pAX Bq ě υ pAq ` υ pBq, for all A, B P Σ; and,
• submodular (or concave) if υ pAY Bq ` υ pAX Bq ď υ pAq ` υ pBq, for all A, B P Σ.

For instance, if pS, Σ, Pq is a probability space and T : r0, 1s Ñ r0, 1s is an increasing function,
such that Tp0q “ 0 and Tp1q “ 1, then the set function υ :“ T ˝ P is a capacity on pS, Σq, called
a distorted probability measure. The function T is usually called a probability distortion. If, moreover,
the distortion function T is convex (respectively concave), then the capacity υ “ T ˝P is supermodular
(respectively submodular) ([40] Ex. 2.1).

Definition 2. Let υ1 be a supermodular capacity and υ2 a submodular capacity on pS, Σq.

• The core of υ1, denoted by core pυ1q, is the collection of all probability measures Q on pS, Σq, such
that Q pAq ě υ pAq ,@A P Σ.

• The anti-core of υ2, denoted by acore pυ2q, is the collection of all probability measures Q on pS, Σq,
such that Q pAq ď υ pAq ,@A P Σ.

Both core pυ1q and acore pυ2q are weak˚-compact and convex collections of probability measures
on the space pS, Σq.

Definition 3. Let υ be a capacity on pS, Σq. The Choquet integral of Y P B pΣq with respect to υ is
defined by:

ż

Y dυ :“
ż `8

0
υ pts P S : Y psq ě tuq dt`

ż 0

´8

rυ pts P S : Y psq ě tuq ´ 1s dt

where the integrals are taken in the sense of Riemann.

The Choquet integral with respect to a (countably additive) measure is the usual a Lebesgue
integral with respect to that measure ([41] p. 59). By a classical result of Schmeidler [42], we can
represent Choquet integrals with respect to a supermodular (respectively submodular) capacity as a
lower (respectively upper) envelope of Lebesgue integrals:

Proposition 1 (Schmeidler [42]). Let υ be a capacity on pS, Σq, and let Y P B pΣq:

• If υ is supermodular, then
ş

Y dυ “ min
!

ş

YdP : P P core pυ1q
)

;

• If υ is submodular, then
ş

Y dυ “ max
!

ş

YdP : P P acore pυ2q
)

.

Definition 4. Two functions Y1, Y2 P B pΣq are said to be comonotonic if:
”

Y1 psq ´Y1
`

s1
˘

ı”

Y2 psq ´Y2
`

s1
˘

ı

ě 0, for all s, s1 P S
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For instance, any Y P B pΣq is comonotonic with any c P R. Moreover, if Y1, Y2 P B pΣq and if Y2

is of the form Y2 “ I ˝ Y1, for some Borel-measurable function I, then Y2 is comonotonic with Y1 if
and only if the function I is nondecreasing. Appendix A provides some additional information about
capacities and Choquet integration.

In the CEU model of Schmeidler [8], the ambiguous beliefs of a decision maker are represented
by a non-additive probability measure (a capacity) on the state space, and preferences are aggregated
using the concept of Choquet integration.

The decision maker’s preferences over alternatives induce a unique non-additive probability
measure υ over the sate space and a utility function u, such that an alternative Y is evaluated by
ş

u pYq dυ, where integration is in the sense of Choquet. Moreover, in the CEU model, ambiguity
aversion is equivalent to the convexity of the capacity, and ambiguity loving is equivalent to the
concavity of the capacity.

3.2. The Insurance Design Problem

Here, we assume that the insurer has ambiguous beliefs about the realizations of the loss random
variable X. His or her ambiguous beliefs are represented by a non-additive probability measure (a
capacity) on the state space, as in the CEU model of Schmeidler [8].

In this case, an indemnity schedule Y will be deemed acceptable by the insurer if the associated
retention R “ X ´ Y yields a non-additive expectation of at least R0 ą 0 under the insurer’s
ambiguous beliefs. In other words, the minimum retention constraint in this context is given by:

ż

pX´Yq dυ ě R0 (6)

where integration is in the sense of Choquet. It is important to note that since the Choquet integral
is not additive in general and only positively homogeneous (Proposition A1), the constraint given
in Equation (6) cannot be written as a premium constraint of the form

ş

Ydυ ď Π
1`ρ for some ρ ą 0.

This is a fundamental point of departure from the classical case.
Recently, AGP [14] studied the problem of optimal insurance design given a premium constraint,

when the insurer has ambiguous beliefs in the sense of the CEU model of Schmeidler [8].
Specifically, they study the problem:

sup
YPBpΣq

ż

u pW0 ´Π´ X`Yq dP (7)

s.t. 0 ď Y ď X,

´

ż

´Y dυ ď
Π

1` ρ

The constraint ´
ş

´Y dυ ď Π
1`ρ is a restatement of the insurer’s participation constraint:

ż

´

Wins
0 `Π´ p1` ρqY

¯

dυ ě Wins
0

where Wins
0 is the insurer’s initial wealth.

Here, for a given R0 ě 0, the insured’s problem is the following:

sup
YPBpΣq

ż

u pW0 ´Π´ X`Yq dP (8)

s.t. 0 ď Y ď X,
ż

pX´Yq dυ ě R0
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As mentioned above, due to the properties of the Choquet integral, problems Equations (7)
and (8) are not equivalent.

Assumption 2. The insured’s utility function u satisfies the following properties:

(1) u p0q “ 0;
(2) u is strictly increasing and strictly concave;
(3) u is continuously differentiable.
(4) The first derivative satisfies u1 p0q “ `8 and lim

xÑ`8
u1 pxq “ 0.

Thus, in particular, we assume that the insured is risk-averse. We also make the assumption that
the insured is well diversified, so that the particular exposure to X is sufficiently small, with respect
to the total wealth of the insured:

Assumption 3. X ď W0 ´Π, P-a.s. That is, P

˜

!

s P S : X psq ą W0 ´Π
)

¸

“ 0.

In this paper, we consider the case of an insurer who is an ambiguity-seeking insurer in the
sense of Schmeidler [8]. That is, the capacity υ is submodular (concave; Definition 1). Specifically, we
consider the case where the insurer’s capacity υ is of the form υ “ T ˝Q, for some probability measure
Q ‰ P on pS, Σq and some function T : r0, 1s Ñ r0, 1s, which is increasing, concave and continuous
with T p0q “ 0 and T p1q “ 1. Then, T ˝Q is a submodular capacity on pS, Σq.

Assumption 4. We assume that υ “ T ˝Q, where:

(1) Q is a probability measure on pS, Σq, such that Q ˝ X´1 is nonatomic;
(2) T : r0, 1s Ñ r0, 1s is increasing, concave and twice differentiable; and
(3) Tp0q “ 0 and Tp1q “ 1.

Henceforth, we examine the following problem, for a given R0 ě 0:

sup
YPBpΣq

ż

u pW0 ´Π´ X`Yq dP (9)

s.t. 0 ď Y ď X,
ż

pX´Yq dT ˝Q ě R0

3.3. A Characterization of the Optimal Indemnity Schedule

For each Z P B`pΣq, let FZ ptq “ Q
`

ts P S : Z psq ď tu
˘

, denote the distribution function of Z with
respect to the probability measure Q, and let F´1

Z ptq be the left-continuous inverse of the distribution
function FZ (that is, the quantile function of Z), defined by:

F´1
Z ptq “ inf

!

z P R` : FZ pzq ě t
)

, @t P r0, 1s (10)

Definition 5. Denote by AQuant the collection of all quantile functions f of the form F´1, where F is
the distribution function of some Z P B` pΣq, such that 0 ď Z ď X.

That is, AQuant is the collection of all quantile functions f that satisfy the following properties:

(1) f pzq ď F´1
X pzq, for each 0 ă z ă 1;

(2) f pzq ě 0, for each 0 ă z ă 1.
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Denoting by Quant “
!

f : p0, 1q Ñ R
ˇ

ˇ

ˇ
f is nondecreasing and left-continuous

)

the collection of
all quantile functions, we can then write AQuant as follows:

AQuant “
!

f P Quant : 0 ď f pzq ď F´1
X pzq , for each 0 ă z ă 1

)

(11)

By Lebesgue’s decomposition theorem ([37], Th. 10.61) there exists a unique pair pPac, Psq of
(nonnegative) finite measures on pS, Σq, such that:

• P “ Pac ` Ps;

• Pac ăă Q (Pac is absolutely continuous with respect to Q); and,

• Ps K Q (Ps and Q are mutually singular).

That is, for all B P Σ, Pac pBq “ 0, whenever Q pBq “ 0. Moreover, there exists
some A P Σ, such that Q pSzAq “ Ps pAq “ 0, which then implies that Pac pSzAq “ 0
and Q pAq “ 1. Note also that for all Z P B pΣq,

ş

Z dP “
ş

A Z dPac `
ş

SzA Z dPs.
Furthermore, by the Radon–Nikodým Theorem ([43], Th. 4.2.2), there exists a Q-a.s. unique
Σ-measurable and Q-integrable function h : S Ñ r0,`8q, such that Pac pCq “

ş

C h dQ, for
all C P Σ. Hence, for all Z P B pΣq,

ş

Z dP “
ş

A Zh dQ `
ş

SzA Z dPs. Furthermore,
since Pac pSzAq “ 0, it follows that

ş

SzA Z dPs “
ş

SzA Z dP. Thus, for all Z P B pΣq,
ş

Z dP “
ş

A Zh dQ`
ş

SzA Z dP.
Moreover, since h : S Ñ r0,`8q is Σ-measurable and Q-integrable, there exists a

Borel-measurable and Q ˝ X´1-integrable map φ : X pSq Ñ r0,`8q, such that h “ dPac{dQ “ φ ˝ X.
We will also make the following assumption, which can be interpreted as a kind of monotone
likelihood ratio property.

Assumption 5. The Σ-measurable function h “ φ ˝ X “ dPac{dQ is comonotonic with X, i.e., φ

is nondecreasing.

Since Q ˝ X´1 is nonatomic (by Assumption 4), it follows that FX pXq has a uniform distribution
over p0, 1q ([44], Lemma A.21), that is Q

`

ts P S : FX pXq psq ď tu
˘

“ t for each t P p0, 1q.
Letting U :“ FX pXq, it follows that U is a random variable on the probability space pS, Σ, Qq with
a uniform distribution on p0, 1q. Consider the following quantile problem:

sup
f

ż

u
`

W0 ´Π´ f pUq
˘

φ
´

F´1
X pUq

¯

dQ (12)

s.t. f P AQuant,
ż

T1 p1´Uq f pUq dQ “ R0

The following theorem characterizes the solution of the insured’s problem (Problem (9)) in terms
of the solution of the relatively easier quantile problem given in Problem (12), provided the previous
assumptions hold. The proof is given in Appendix C.
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Theorem 2. Under the previous assumptions, if f ˚ is optimal for Problem (12), then the function:

Y˚ “
`

X´ f ˚ pUq
˘

1A ` X1SzA

is optimal for Problem (9).

In particular, Y˚ “ X ´ f ˚ pUq , Q-a.s. That is, the set E of states of the world s, such
that Y˚ psq ‰

´

X ´ f ˚ pUq
¯

psq, has probability zero under the probability measure Q (and hence,
υ pEq “ T ˝Q pEq “ 0). The optimal indemnity schedule will be seen by the insurer to be almost surely
equal to the function X´ f ˚ pUq.

Another immediate implication of Theorem 2 is that the collection of states of the world in which
the optimal indemnity schedule is a full insurance rule is a set of states to which the insurer assigns
a zero likelihood. On the set of all other states of the world, the optimal indemnity schedule deviates
from the full insurance rule by the function f ˚ pUq.

Under the following two assumptions, it is possible to fully characterize the shape of an optimal
insurance contract. This is done in Corollary 1.

Assumption 6. The Σ-measurable function h “ φ ˝ X “ dPac{dQ is such that φ is left-continuous.

Assumption 7. the function t ÞÑ T1p1´tq

φ
´

F´1
X ptq

¯ , defined on t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u, is nondecreasing.

Assumption 7 is also a monotone likelihood ratio type assumption. Similar assumptions
have been used in Jin and Zhou [45] in their study of portfolio choice under prospect theory,
in He and Zhou [46] in their study of a portfolio choice problem under Yaari’s [22] dual theory of
choice, in Jin and Zhou [47] in their study of greed and leverage within a portfolio choice problem
under prospect theory and in Carlier and Dana [48] in their study of the demand for contingent
claims under rank-dependent expected utility [21]. Furthermore, note that when both the insured
and the insurer are Bayesian decision makers, that is when the insurer does not distort probabilities,
then Assumption 7 and Assumption 5 are equivalent4.

When the previous assumptions hold, we can give an explicit characterization of an optimal
indemnity schedule, as follows.

Corollary 1 (The Shape of an Optimal Indemnity Schedule). Under the previous assumptions,
the function Y˚ defined below is an optimal solution for Problem (9):

Y˚ “ min
”

X, max
´

0, X´ d pT, φq
¯ı

1A ` X1SzA

where:

d pT, φq “ W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

4 Indeed, suppose that T ptq “ t, the identity function. Then, T1 “ 1, and so, T1p1´tq

φ
´

F´1
X ptq

¯ “ 1
φ
´

F´1
X ptq

¯ . Moreover, the function

t ÞÑ F´1
X ptq is nondecreasing, since F´1

X is a quantile function. Therefore, the function t ÞÑ T1p1´tq

φ
´

F´1
X ptq

¯ is nondecreasing if

and only if the function φ is nonincreasing.
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U is a random variable on the probability space pS, Σ, Qq with a uniform distribution on p0, 1q, and λ˚ ď 0 is
chosen, so that:

ż

T1 p1´Uqmax

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff

dQ “ R0

The proof of Corollary 1 is given in Appendix D. Note that if Assumption 5 holds,
then Assumption 6 is a weak assumption5.

3.4. A Special Case

Finally, we consider the special case where Q “ P, in which the insurer’s submodular capacity
υ is a concave distortion of the insured’s probability measure P of the form υ “ T ˝ P. In this case,
the insured’s problem becomes:

sup
YPBpΣq

ż

u pW0 ´Π´ X`Yq dP (13)

s.t. 0 ď Y ď X,
ż

pX´Yq dT ˝ P ě R0

where the distortion function T : r0, 1s Ñ r0, 1s is increasing, concave, twice differentiable and satisfies
Tp0q “ 0 and Tp1q “ 1.

Since P “ Q, we have:

• P “ Pac “ Q;
• h “ φ ˝ X “ dPac{dQ is the constant function equal to one. Hence, Assumptions 5 and 6 trivially hold;
• A “ S, and hence, SzA “ ∅;
• U “ FX pXq is a random variable on the probability space pS, Σ, Pq with a uniform distribution

on p0, 1q.

Since, moreover, the random variable V “ 1´U is also a random variable on the probability
space pS, Σ, Pqwith a uniform distribution on p0, 1q, Corollary 1 then becomes:

Corollary 2. If Assumptions 2, 3 and 7 hold and if P ˝ X´1 is nonatomic, then the function Y˚ defined below
is an optimal solution for Problem (13):

Y˚ “ min
”

X, max
´

0, X´ d pTq
¯ı

where:
d pTq “ W0 ´Π´

`

u1
˘´1 `

λ˚T1 pVq
˘

V is a random variable on the probability space pS, Σ, Pq with a uniform distribution on p0, 1q, and λ˚ ě 0 is
chosen, so that:

ż

T1 pVqmax

«

0, min

#

X, W0 ´Π´
`

u1
˘´1 `

λ˚T1 pVq
˘

+ff

dP “ R0

5 Any monotone function is Borel-measurable and, hence, “almost continuous”, in view of Lusin’s Theorem ([49]
Theorem 7.5.2). Furthermore, any monotone function is almost surely continuous for the Lebesgue measure.
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Corollary 2 states that when the insurer’s ambiguous beliefs are a concave distortion of the
insured’s non-ambiguous beliefs, then an indemnity schedule that solves the optimal insurance
design problem given a minimum retention constraint is a state-contingent deductible schedule, with a
state-contingent deductible given by:

d pTq “ W0 ´Π´
`

u1
˘´1 `

λ˚T1 pVq
˘

for an appropriately-chosen λ˚ ě 0. This is an identical result to Theorem 5.4 of AGP [14],
which states that when the insurer’s ambiguous beliefs are a concave distortion of the insured’s
non-ambiguous beliefs, then an indemnity schedule that solves the optimal insurance design
problem given a premium constraint is a state-contingent deductible schedule, with a state-contingent
deductible given by:

d pTq “ W0 ´Π´
`

u1
˘´1 `

λ˚T1 pVq
˘

for an appropriately-chosen λ˚ ě 0.
Hence, when the insurer’s ambiguous beliefs are a concave distortion of the insured’s

non-ambiguous beliefs, a problem of optimal insurance design with a minimum retention constraint is
equivalent to a problem of optimal insurance design with a premium constraint. The optimal indemnity
schedule is given by a state-contingent deductible schedule6, in which the state-contingent deductible
d pTq depends on the state of the world only through the insurer’s distortion function T. Clearly, when
the insurer does not distort probabilities, so that the function T is the identity function, one recovers
Arrow’s result as a special case.
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Appendix A. More on Capacities and Choquet Integration

Definition A1. A capacity υ on pS, Σq is continuous from above (respectively below) if for any
sequence tAnuně1 Ď Σ, such that An`1 Ď An (respectively An`1 Ě An) for each n, it holds that:

lim
nÑ`8

υ pAnq “ υ

˜

`8
č

n“1

An

¸ ˜

respectively lim
nÑ`8

υ pAnq “ υ

˜

`8
ď

n“1

An

¸¸

A capacity that is continuous both from above and below is said to be continuous.

For instance, if υ is a distorted probability measure of the form T ˝ P where T is a continuous
function, then υ is a continuous capacity.

The Choquet integral with respect to a (countably additive) measure is the usual Lebesgue
integral with respect to that measure ([41] p. 59). Unlike the Lebesgue integral, the Choquet
integral is not an additive operator on B pΣq. However, the Choquet integral is additive over
comonotonic functions.

Proposition A1. Let υ be a capacity on pS, Σq.

(1) If φ1, φ2 P B pΣq, then in general,
ş

pφ1 ` φ2q dυ ‰
ş

φ1 dυ`
ş

φ2 dυ.

6 Note that this variable deductible is anti-comonotonic with the loss X, since T is concave, u is increasing and concave
(and hence, pu1q´1 is decreasing by the inverse function theorem ([50] pp. 221–223)), X “ F´1

X pVq, P ´ a.s., and FX is a
nondecreasing function. However, the indemnity schedule is comonotonic with X.
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(2) If φ1, φ2 P B pΣq are comonotonic, then
ş

pφ1 ` φ2q dυ “
ş

φ1 dυ`
ş

φ2 dυ.
(3) If φ1, φ2 P B pΣq are such that φ1 ď φ2, then

ş

φ1 dυ ď
ş

φ2 dυ.
(4) For all φ P B pΣq and all c ě 0, then

ş

cφ dυ “ c
ş

φ dυ.
(5) If υ is submodular, then for any φ1, φ2 P B pΣq,

ş

pφ1 ` φ2q dυ ď
ş

φ1 dυ`
ş

φ2 dυ.

Appendix B. Rearrangements and Supermodularity

Here, the idea of an equimeasurable rearrangement of a random variable with respect to another
random variable is discussed. All proofs, additional results and references to the literature may be
found in Ghossoub [51,52].

Appendix B.1. The Nondecreasing Rearrangement

Consider the setting of Section 2.1, and let ζ be the probability law of X defined by
ζ pBq :“ P ˝ X´1 pBq “ P

´!

s P S : X psq P B
)¯

for any Borel subset B of R.

Definition A2. For any Borel-measurable map I : r0, Ms Ñ R, define the distribution function of I as
the map ζ I : RÑ r0, 1s defined by:

ζ I ptq :“ ζ
´!

x P r0, Ms : I pxq ď t
)¯

(A1)

Then, ζ I is a nondecreasing right-continuous function.

Definition A3. Let I : r0, Ms Ñ r0, Ms be any Borel-measurable map, and define the function rI :
r0, Ms Ñ R by:

rI ptq :“ inf
!

z P R`
ˇ

ˇ

ˇ
ζ I pzq ě ζ

`

r0, ts
˘

)

(A2)

The following proposition gives some useful properties of the map rI defined above.

Proposition A2. Let I : r0, Ms Ñ r0, Ms be any Borel-measurable map, and let rI : r0, Ms Ñ R be defined as
in Equation (A2). Then, the following hold:

(1) rI is left-continuous, nondecreasing and Borel-measurable;
(2) rI p0q “ 0 and rI pMq ď M. Therefore, rI pr0, Msq Ď r0, Ms;
(3) If I1, I2 : r0, Ms Ñ r0, Ms are such that I1 ď I2, ζ-a.s., then rI1 ď rI2;
(4) rI is ζ-equimeasurable with I, in the sense that for any Borel set B,

ζ
´!

t P r0, Ms : I ptq P B
)¯

“ ζ
´!

t P r0, Ms : rI ptq P B
)¯

(A3)

(5) If I : r0, Ms Ñ R` is another nondecreasing, Borel-measurable map, which is ζ-equimeasurable with I,
then I “ rI, ζ-a.s.

rI is called the nondecreasing ζ-rearrangement of I. Now, define Y :“ I ˝X and rY :“ rI ˝X. Then:

(1) Y, rY P B` pΣq, since I and rI are Borel-measurable mappings of r0, Ms into itself;
(2) rY is a nondecreasing function of X:

”

X psq ď X
`

s1
˘

ı

ñ

”

rY psq ď rY
`

s1
˘

ı

, for all s, s1 P S; and

(3) Y and rY have the same distribution under P (i.e., they are P-equimeasurable):
P
´!

s P S : Y psq ď α
)¯

“ P
´!

s P S : rY psq ď α
)¯

, for any α P r0, Ms.

Call rY a nondecreasing P-rearrangement of Y with respect to X and denote it by rYP. Then, rYP
is P-a.s. unique. Note also that if Y1 and Y2 are P-equimeasurable; and for any Borel-measurable
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function ψ, ψ pY1q is P-integrable if and only if ψ pY2q is P-integrable, in which case, we have
ş

ψ pY1q dP “
ş

ψ pY2q dP.

Lemma A1. Fix Y P B` pΣq, and let rYP denote the nondecreasing P-rearrangement of Y with respect to X.
If 0 ď Y ď X, P-a.s., then 0 ď rYP ď X.

Appendix B.2. Supermodularity

Definition A4. A function L : R2 Ñ R is supermodular if for any x1, x2, y1, y2 P R with x1 ď x2 and
y1 ď y2, one has:

L px2, y2q ` L px1, y1q ě L px1, y2q ` L px2, y1q (A4)

A function L : R2 Ñ R is called strictly supermodular if for any x1, x2, y1, y2 P R with x1 ă x2 and
y1 ă y2, one has:

L px2, y2q ` L px1, y1q ą L px1, y2q ` L px2, y1q (A5)

Lemma A2. A function L : R2 Ñ R is supermodular (respectively strictly
supermodular) if and only if the function η pyq :“ L px` h, yq ´ L px, yq is
nondecreasing (respectively increasing) on R, for any x P R and h ě 0
(respectively h ą 0).

Example A1. If g : RÑ R is concave and a P R, then the function L1 : R2 Ñ R defined by L1 px, yq “
g pa´ x` yq is supermodular. If, moreover, g is strictly concave, then L1 is strictly supermodular.

Lemma A3 (Hardy–Littlewood). Fix Y P B` pΣq, and let rYP denote the nondecreasing P-rearrangement of
Y with respect to X. If L is supermodular, then (assuming integrability) we have:

ż

L
´

X, Y
¯

dP ď
ż

L
´

X, rYP

¯

dP

Moreover, if L is strictly supermodular, then equality holds if and only if Y “ rYP, P-a.s.

Appendix C. Proof of Theorem 2

Denote by FSB the feasibility set for Problem (9):

FSB “

#

Y P B pΣq : 0 ď Y ď X and
ż

pX´Yq dυ ě R0

+

(A6)

Let F“SB be defined as:

F“SB “

#

Y P B pΣq : 0 ď Y ď X and
ż

pX´Yq dυ “ R0

+

(A7)

To rule out trivial situations, we will make the following assumption:

Assumption A1. F“SB ‰ ∅.

Assumption A1 then implies that FSB ‰ ∅. By monotonicity of the Choquet integral,
the non-emptiness of FSB implies that:

ż

Xdυ ě R0
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Appendix C.1. “Splitting”

Recall that by Lebesgue’s decomposition theorem ([37], Th. 10.61) there exists a unique pair
pPac, Psq of (nonnegative) finite measures on pS, Σq, such that P “ Pac ` Ps, Pac ăă Q and Ps K Q. That
is, for all B P Σ with Q pBq “ 0, we have Pac pBq “ 0, and there is some A P Σ, such that Q pSzAq “
Ps pAq “ 0. It then also follows that Pac pSzAq “ 0 and Q pAq “ 1. In the following, the Σ-measurable
set A on which Q is concentrated is assumed to be fixed all throughout. Consider now the following
two problems:

For a given β ěR0,

sup
YPBpΣq

ż

A
u
`

W0 ´Π´ X`Y
˘

dP (A8)

s.t. 0 ď Y ď X,
ż

pX´Yq dT ˝Q “ β

and:

sup
YPBpΣq

ż

SzA
u
`

W0 ´Π´ X`Y
˘

dP (A9)

s.t. 0 ď Y1SzA ď X1SzA,
ż

SzA
pX´Yq dT ˝Q “ 0

Remark A1. Since the function u is continuous (Assumption 2), it is bounded on any closed and
bounded subset of R. Therefore, since the range of X is closed and bounded, the supremum of each
of the above two problems is finite when their feasibility sets are non-empty. Now, the function X is
feasible for Problem (A9), and so, Problem (A9) has a non-empty feasibility set.

Definition A5. For a given β ě R0, let ΘA,β be the feasibility set of Problem (A8) with parameter β.
That is,

ΘA,β :“

#

Y P B` pΣq : 0 ď Y ď X,
ż

pX´Yq dT ˝Q “ β

+

Denote by Γ the collection of all β for which the feasibility set ΘA,β is non-empty:

Definition A6. Let Γ :“
!

β ě R0 : ΘA,β ‰ ∅
)

.

Lemma A4. Γ ‰ ∅.

Proof. By Assumption A1, R0 P Γ.

Lemma A5. X is optimal for Problem (A9).

Proof. The feasibility of X for Problem (A9) is clear. To show optimality, let Y be any feasible solution
for Problem (A9). Then, for each s P SzA, Y psq ď X psq. Therefore, since u is increasing, we have
u
`

W0 ´Π´ X psq `Y psq
˘

ď u
`

W0 ´Π´ X psq ` X psq
˘

“ u
`

W0 ´Π
˘

, for each s P SzA. Thus,

ż

SzA
u
`

W0 ´Π´ X`Y
˘

dP ď
ż

SzA
u
`

W0 ´Π´ X` X
˘

dP “ u
`

W0 ´Π
˘

P pSzAq
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Remark A2. Since Q pSzAq “ 0 and T p0q “ 0, it follows that T ˝Q pSzAq “ 0, and so,
ş

1SzA dT ˝Q “

T ˝Q pSzAq “ 0, by Proposition A1. Therefore, for any Z P B` pΣq, it follows from the monotonicity
and positive homogeneity of the Choquet integral (Proposition A1) that:

0 ď
ż

SzA
Z dT ˝Q “

ż

Z1SzA dT ˝Q ď

ż

}Z}s1SzA dT ˝Q “ }Z}s
ż

1SzA dT ˝Q “ 0

and so,
ş

SzA Z dT ˝Q “ 0. Consequently, it follows from Proposition A1 that for any Z P B` pΣq,

ż

Z dT ˝Q ď

ż

Z1A dT ˝Q “

ż

A
Z dT ˝Q

Now, consider the following problem:

sup
βPΓ

#

F˚A pβq : F˚A pβq is the supremum of Problem (A8), for a fixed β P Γ

+

(A10)

Lemma A6. If β˚ is optimal for Problem (A10) and if Y˚1 is optimal for Problem (A8) with parameter β˚,
then Y˚ :“ Y˚1 1A ` X1SzA is optimal for Problem (9).

Proof. By the feasibility of Y˚1 for Problem (A8) with parameter β˚, we have 0 ď Y˚1 ď X and
ş `

X´Y˚1
˘

dT ˝ P “ β˚. Therefore, 0 ď Y˚ ď X, and:

ż

pX´Y˚q dT ˝Q “

ż

”

pX´Y˚1 q 1A ` pX´ Xq 1SzA

ı

dT ˝Q

“

ż

A
pX´Y˚1 q dT ˝Q ě

ż

pX´Y˚1 q dT ˝Q “ β˚ ě R0

where the inequality
ş

A
`

X´Y˚1
˘

dT ˝Q ě
ş `

X´Y˚1
˘

dT ˝Q follows from the same argument as in
Remark A2. Hence, Y˚ is feasible for Problem (9). To show the optimality of Y˚ for Problem (9), let Y
be any other feasible function for Problem (9), and define α by α “

ş `

X´Y
˘

dT ˝Q. Then, α ě R0,
and so, Y is feasible for Problem (A8) with parameter α; and α is feasible for Problem (A10). Hence:

F˚A pαq ě
ż

A
u
`

W0 ´Π´ X`Y
˘

dP

Now, since β˚ is optimal for Problem (A10), it follows that F˚A pβ
˚q ě F˚A pαq. Moreover, Y is

feasible for Problem (A9) (since 0 ď Y ď X, and so,
ş

SzA
`

X´Y
˘

dT ˝Q “ 0 by Remark A2). Thus,

F˚A pβ
˚q ` u

`

W0 ´Π
˘

P pSzAq ě F˚A pαq ` u
`

W0 ´Π
˘

P pSzAq

ě

ż

A
u
`

W0 ´Π´ X`Y
˘

dP` u
`

W0 ´Π
˘

P pSzAq

ě

ż

A
u
`

W0 ´Π´ X`Y
˘

dP`
ż

SzA
u
`

W0 ´Π´ X`Y
˘

dP

“

ż

u
`

W0 ´Π´ X`Y
˘

dP

However, F˚A pβ
˚q “

ş

A u
`

W0 ´Π´ X`Y˚1
˘

dP. Therefore,

ż

u
`

W0 ´Π´ X`Y˚
˘

dP “ F˚A pβ
˚q ` u

`

W0 ´Π
˘

P pSzAq ě
ż

u
`

W0 ´Π´ X`Y
˘

dP.

Hence, Y˚ is optimal for Problem (9).
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Lemma A7. R0 is optimal for Problem (A10).

Proof. The feasibility of R0 for Problem (A10) follows from Assumption A1. The optimality of R0 for
Problem (A10) follows from the monotonicity of the utility function u appearing in Problem (A8) and
of the Choquet integral, which imply that the function β ÞÑ F˚A pβq is nonincreasing.

By Lemma A7, we can restrict ourselves to solving Problem (A8) with parameter β “ R0. That is,
Lemmata A6 and A7 imply the following result.

Lemma A8. Consider the problem:

sup
YPBpΣq

ż

A
u
`

W0 ´Π´ X`Y
˘

dP (A11)

s.t. 0 ď Y ď X,
ż

pX´Yq dT ˝Q “ R0

If Y˚1 is optimal for Problem (A11), then Y˚ :“ Y˚1 1A ` X1SzA is optimal for Problem (9).

Appendix C.2. Solving Problem (A11)

Recall that for all Z P B pΣq,
ş

Z dP “
ş

A Zh dQ `
ş

SzA Z dP, where h “ dPac{dQ is the
Radon–Nikodým derivative of Pac with respect to Q. Moreover, by definition of the set A P Σ, we have
Q pSzAq “ Ps pAq “ 0. Therefore,

ş

A Zh dQ “
ş

Zh dQ, for each Z P B pΣq. Hence, we can rewrite
Problem (A11) (recalling that h “ φ ˝ X) as the following problem:

sup
YPBpΣq

ż

u
`

W0 ´Π´ X`Y
˘

φ pXq dQ (A12)

s.t. 0 ď Y ď X,
ż

pX´Yq dT ˝Q “ R0

We then obtain the following result immediately:

Lemma A9. If Y˚1 is optimal for Problem (A12), then it is optimal for Problem (A11), and hence, the function
Y˚ :“ Y˚1 1A ` X1SzA is optimal for Problem (9).

Now, consider the following problem:

sup
ZPBpΣq

ż

u
`

W0 ´Π´ Z
˘

φ pXq dQ (A13)

s.t. 0 ď Z ď X,
ż

Z dT ˝Q “ R0 “

ż `8

0
T
´

Q
`

ts P S : Z psq ě tu
˘

¯

dt

Lemma A10. If Z˚ is optimal for Problem (A13), then Y˚ :“ X ´ Z˚ is optimal for Problem (A12).
Consequently, the function pX´ Z˚q 1A ` X1SzA is optimal for Problem (9).
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Proof. Suppose that Z˚ is optimal for Problem (A13), and define Y˚ :“ X ´ Z˚. Then, Y˚ P B pΣq.
Moreover, since 0 ď Z˚ ď X, it follows that 0 ď Y˚ ď X. Now,

ż

pX´Y˚q dT ˝Q “

ż

´

X´ pX´ Z˚q
¯

dT ˝Q “

ż

Z˚ dT ˝Q “ R0

and so, Y˚ is feasible for Problem (A12). To show optimality of Y˚ for Problem (A12), suppose, by
way of contradiction, that Y ‰ Y˚ is feasible for Problem (A12) and:

ż

u
`

W0 ´Π´ X`Y
˘

h dQ ą

ż

u
`

W0 ´Π´ X`Y˚
˘

h dQ

that is, with Z :“ X´Y, we have:
ż

u
`

W0 ´Π´ Z
˘

h dQ ą

ż

u
`

W0 ´Π´ Z˚
˘

h dQ

Now, since 0 ď Y ď X and
ş `

X´Y
˘

dT ˝ Q “ R0, Z is feasible for Problem (A13),
hence contradicting the optimality of Z˚ for Problem (A13). Thus, Y˚ :“ X ´ Z˚ is optimal for
Problem (A12). The rest follows from Lemma A9.

Definition A7. If Z1, Z2 P B` pΣq are feasible for Problem (A13), we will say that Z2 is an
improvement of Z1 (or is improving) when the following hold:

(1)
ş

u
`

W0 ´Π´ Z2
˘

h dQ ě
ş

u
`

W0 ´Π´ Z1
˘

h dQ; and,
(2)

ş

Z2 dT ˝Q “
ş

Z1 dT ˝Q.

The next result shows that for any feasible claim for Problem (A13), there is a another feasible
claim for Problem (A13), which is comonotonic with X and improving.

Lemma A11. If Z is feasible for Problem (A13) and if rZ is the nondecreasing Q-rearrangement of Z with
respect to X, then rZ is feasible for Problem (A13), comonotonic with X and an improvement of Z.

Proof. Let Z be feasible for Problem (A13), and note that by Assumption 5, the map ξ pX, Zq :“
u
`

W0 ´ Π ´ Z
˘

φ pXq is supermodular (see Example A1). Let rZ denote the nondecreasing
Q-rearrangement of Z with respect to X. Then, by Lemma A1 and by equimeasurability of Z and rZ,
the function rZ is feasible for Problem (A13). Furthermore, by Lemma A3 and by the supermodularity
of ξ pX, Zq, it follows that rZ is an improvement of Z.

Appendix C.3. Quantile Reformulation

Let Z P B` pΣq be feasible for Problem (A13); let FZ ptq “ Q
`

ts P S : Z psq ď tu
˘

denote the
distribution function of Z with respect to the probability measure Q; and let FX ptq “ Q

`

ts P S :
X psq ď tu

˘

denote the distribution function of X with respect to the probability measure Q. Let F´1
Z ptq

be the left-continuous inverse of the distribution function FZ (that is, the quantile function of Z),
defined by:

F´1
Z ptq “ inf

!

z P R` : FZ pzq ě t
)

, @t P r0, 1s

Let rZ denote the nondecreasing Q-rearrangement of Z with respect to X. Since Z P B` pΣq,
it can be written as ψ ˝ X for some nonnegative Borel-measurable and bounded map ψ on X pSq.
Moreover, since 0 ď Z ď X, ψ is a mapping of r0, Ms into r0, Ms. Let ζ :“ Q ˝ X´1 be the
image measure of Q under X. By Assumption 4 (1), ζ is nonatomic. We can then define the
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mapping rψ : r0, Ms Ñ r0, Ms as in Appendix B (see Equation (A2) on p. 14) to be the nondecreasing
ζ-rearrangement of ψ, that is,

rψ ptq :“ inf
!

z P R` : ζ
`

tx P r0, Ms : ψ pxq ď zu
˘

ě ζ
`

r0, ts
˘

)

Then, as in Appendix B, rZ “ rψ ˝ X. Therefore, for each s0 P S,

rZ ps0q “ rψ pX ps0qq “ inf
!

z P R` : ζ
`

tx P r0, Ms : ψ pxq ď zu
˘

ě ζ
`

r0, X ps0qs
˘

)

However, for each s0 P S,

ζ
`

r0, X ps0qs
˘

“ Q ˝ X´1` r0, X ps0qs
˘

“ FX pX ps0qq :“ FX pXq ps0q

Moreover,

ζ
`

tx P r0, Ms : ψ pxq ď zu
˘

“ Q ˝ X´1`tx P r0, Ms : ψ pxq ď zu
˘

“ Q
`

ts P S : ψ pX psqq ď zu
˘

“ FZ pzq

Consequently, for each s0 P S,

rZ ps0q “ inf
!

z P R` : FZ pzq ě FX pXq ps0q
)

“ F´1
Z pFX pX ps0qqq :“ F´1

Z pFX pXqq ps0q

That is,
rZ “ F´1

Z pFX pXqq (A14)

where F´1
Z is the left-continuous inverse of FZ, as defined in Equation (10).

Hence, by Lemma A11 and Equation (A14), we can restrict ourselves to finding a solution to
Problem (A13) of the form F´1 pFX pXqq, where F is the distribution function of a function Z P B` pΣq,
such that 0 ď Z ď X and

ş

Z dT ˝ Q “ R0. Moreover, since X is a nondecreasing function
of X and Q-equimeasurable with X, it follows from the Q-a.s. uniqueness of the equimeasurable
nondecreasing Q-rearrangement (see Appendix B) that X “ F´1

X pFX pXqq, Q-a.s. (see also [44, Lemma
A.21]). Thus, for any Z P B` pΣq,

ż

u
`

W0 ´Π´ F´1
Z pFX pXqq

˘

φ
`

F´1
X pFX pXqq

˘

dQ “

ż

u
`

W0 ´Π´ rZ
˘

φ pXq dQ

ě

ż

u
`

W0 ´Π´ Z
˘

φ pXq dQ

where the inequality follows from the proof of Lemma A11. Moreover, since ζ “ Q ˝X´1 is nonatomic
(by Assumption 4), it follows that FX pXq has a uniform distribution over p0, 1q ([44] Lemma A.21),
that is, Q

`

ts P S : FX pXq psq ď tu
˘

“ t for each t P p0, 1q. Finally, letting U :“ FX pXq, we have:

ż

F´1 pUq dT ˝Q “

ż `8

0
T
”

Q
`

ts P S : F´1 pUq psq ě tu
˘

ı

dt

“

ż `8

0
T
”

Q
`

ts P S : F´1 pUq psq ą tu
˘

ı

dt

“

ż `8

0
T
”

1´ F ptq
ı

dt

“

ż 1

0
T1 p1´ tq F´1 ptq dt “

ż

T1 p1´Uq F´1 pUq dQ
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where the third and last equalities above follow from the fact that U has a uniform distribution over
p0, 1q and where the second-to-last equality follows from a standard argument7.

Now, recall from Definition 5 that AQuant given in Equation (11) is the collection of all admissible
quantile functions, that is the collection of all functions f of the form F´1, where F is the distribution
function of a function Z P B` pΣq, such that 0 ď Z ď X, and consider the following problem:

sup
f

ż

u
`

W0 ´Π´ f pUq
˘

φ
´

F´1
X pUq

¯

dQ (A15)

s.t. f P AQuant,
ż

T1 p1´Uq f pUq dQ “ R0

Lemma A12. If f ˚ is optimal for Problem (A15), then the function f ˚ pUq is optimal for Problem (A13),
where U :“ FX pXq. Moreover, X ´ f ˚ pUq is optimal for Problem (A12). Consequently, the function
pX´ f ˚ pUqq 1A ` X1SzA is optimal for Problem (9).

Proof. Suppose that f ˚ P AQuant is optimal for Problem (A15), and let Z˚ P B` pΣq be a
corresponding function. That is, f ˚ is the quantile function of Z˚ and 0 ď Z˚ ď X. Let rZ˚ :“ f ˚ pUq.
Then, rZ˚ is the equimeasurable nondecreasing Q-rearrangement of Z˚ with respect to X, and so,
0 ď rZ˚ ď X by Lemma A1. Moreover,

R0 “

ż

T1 p1´Uq f ˚ pUq dQ “

ż

f ˚ pUq dT ˝Q

“

ż

rZ˚ dT ˝Q “

ż `8

0
T
”

Q
`

ts P S : rZ˚ psq ě tu
˘

ı

dt

“

ż `8

0
T
”

Q
`

ts P S : Z˚ psq ě tu
˘

ı

dt “
ż

rZ˚ dT ˝Q

where the second-to-last equality follows from the Q-equimeasurability of Z˚ and rZ˚.
Therefore, rZ˚ “ f ˚ pUq is feasible for Problem (A13). To show optimality, let Z be any feasible solution
for Problem (A13), and let F be the distribution function for Z. Then, by Lemma A11, the function
rZ :“ F´1 pUq is feasible for Problem (A13), comonotonic with X and Pareto-improving. Moreover,
rZ has also F as a distribution function. To show the optimality of rZ˚ “ f ˚ pUq for Problem (A13),
it remains to show that:

ż

u
`

W0 ´Π´ rZ˚
˘

φ pXq dQ ě

ż

u
`

W0 ´Π´ rZ
˘

φ pXq dQ

Now, let f :“ F´1, so that rZ “ f pUq. Since rZ is feasible for Problem (A13), we have:

R0 “

ż

rZ dT ˝Q “

ż

F´1 pUq dT ˝Q

“

ż 1

0
T1 p1´ tq F´1 ptq dt “

ż

T1 p1´Uq f pUq dQ

Hence, f is feasible for Problem (A15). Since f ˚ is optimal for Problem (A15), we have:
ż

u
`

W0 ´Π´ f ˚ pUq
˘

φ
´

F´1
X pUq

¯

dQ ě

ż

u
`

W0 ´Π´ f pUq
˘

φ
´

F´1
X pUq

¯

dQ

7 See, e.g. Denneberg [40], Proposition 1.4 on p. 8 and the discussion on pp. 61–62. See also [45], p. 418, [46], p. 210 and p.
213, or [30], p. 207.
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Moreover, since X “ F´1
X pUq , Q-a.s., we have:

ż

u
`

W0 ´Π´ rZ˚
˘

φ pXq dQ ě

ż

u
`

W0 ´Π´ rZ
˘

φ pXq dQ

Therefore, rZ˚ “ f ˚ pUq is optimal for Problem (A13). Hence, by Lemma A10, Y˚ :“ X ´ rZ˚ “
X ´ f ˚ pUq is optimal for Problem (A12). Finally, by Lemma A10, the function pX´ f ˚ pUqq 1A `

X1SzA is optimal for Problem (9).

Lemma A12 completes the proof of Theorem 2. l

Appendix D. Proof of Corollary 1

Corollary A1. Under the assumptions of Corollary 1, an optimal solution Y˚ for Problem (9) takes the
following form:

Y˚ “

˜

X´max

«

0, min
!

F´1
X pUq , f ˚λ˚ pUq

)

ff¸

1A ` X1SzA

where for each t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f ˚λ˚ ptq “ W0 ´Π´
`

u1
˘´1

¨

˝

´λ˚T1 p1´ tq

φ
´

F´1
X ptq

¯

˛

‚

and λ˚ is chosen so that:
ż 1

0
T1 p1´ tqmax

”

0, min
!

F´1
X ptq , f ˚λ˚ ptq

)ı

dt “ R0

Proof. Recall from Equation (11) that

AQuant “
!

f P Quant : 0 ď f pzq ď F´1
X pzq , for each 0 ă z ă 1

)

where Quant “
!

f : p0, 1q Ñ R
ˇ

ˇ

ˇ
f is nondecreasing and left-continuous

)

. Define the collection K of
functions on p0, 1q as follows:

K “
!

f : p0, 1q Ñ R
ˇ

ˇ

ˇ
0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

(A16)

Then, AQuant “ QuantXK. Consider the following problem.

sup
f

ż 1

0
u
`

W0 ´Π´ f ptq
˘

φ
´

F´1
X ptq

¯

dt (A17)

s.t. f P AQuant,
ż 1

0
T1 p1´ tq f ptq dt “ R0

Lemma A13. If f ˚ P AQuant satisfies the following:

(1)
ş1

0 T1 p1´ tq f ˚ ptq dt “ R0;
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(2) There exists λ ď 0, such that for all t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f ˚ ptq “ arg max
0ďyďF´1

X ptq

”

u pW0 ´Π´ yq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq y
ı

Then, f ˚ solves Problem (A17).

Proof. Suppose that f ˚ P AQuant satisfies Conditions (1) and (2) above. Then, in particular, f ˚ is
feasible for Problem (A17). To show the optimality of f ˚ for Problem (A17), let f by any other feasible
solution for Problem (A17). Then, for all t P p0, 1q ztt : φ ˝ F´1

x ptq “ 0u,

u pW0 ´Π´ f ˚ ptqq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq f ˚ ptq

ě u pW0 ´Π´ f ptqq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq f ptq

That is,
”

u pW0 ´Π´ f ˚ ptqq ´ u pW0 ´Π´ f ptqq
ı

φ
´

F´1
X ptq

¯

ě λT1 p1´ tq
”

f ˚ ptq ´ f ptq
ı

.
Integrating yields V p f ˚q ´V p f q ě λ rR0 ´ R0s “ 0, that is V p f ˚q ě V p f q, as required.

Hence, in view of Lemma A13, in order to find a solution for Problem (A17), one can start by
solving the problem:

max
0ď fλptqďF´1

X ptq

”

u pW0 ´Π´ fλ ptqq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq fλ ptq
ı

(A18)

for a given λ ď 0 and a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.

Consider first the following problem:

max
fλptq

”

u pW0 ´Π´ fλ ptqq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq fλ ptq
ı

(A19)

for a given λ ď 0 and a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.

By concavity of the utility function u, in order to solve Problem (A19), it suffices to solve for the
first-order condition:

´u1 pW0 ´Π´ f ˚λ ptqq φ
´

F´1
X ptq

¯

´ λT1 p1´ tq “ 0

which gives

f ˚λ ptq “ W0 ´Π´
`

u1
˘´1

¨

˝

´λT1 p1´ tq

φ
´

F´1
X ptq

¯

˛

‚ (A20)

Then, the function f ˚λ ptq solves Problem (A19), for a given λ ď 0 and a fixed t P p0, 1q ztt :
φ ˝ F´1

x ptq “ 0u.
By Assumption 7, the function t ÞÑ T1p1´tq

φ
´

F´1
X ptq

¯ is nondecreasing. By Assumption 2, the function

u is strictly concave and continuously differentiable. Hence, the function u1 is both continuous and
strictly decreasing. This then implies that

`

u1
˘´1 is continuous and strictly decreasing, by the inverse

function theorem ([50] pp. 221–223). Therefore, the function f ˚λ ptq in Equation (A20) is nondecreasing
(λ ď 0). Moreover, by Assumption 4, the function T1 is continuous. Therefore, Assumption 6 then
implies that f ˚λ ptq is left-continuous.
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Define the function f ˚˚λ by:

f ˚˚λ ptq “ max

«

0, min
!

F´1
X ptq , f ˚λ ptq

)

ff

(A21)

Then, f ˚˚λ ptq P K. Moreover, since both F´1
X and f ˚λ are nondecreasing and left-continuous

functions, it follows that f ˚˚λ is nondecreasing and left-continuous. Consequently, f ˚˚λ ptq P AQuant.
Finally, it is easily seen that f ˚˚λ ptq solves Problem (A18) for the given λ. Now, if λ˚ is chosen, so that
ş1

0 T1 p1´ tq f ˚˚λ˚ ptq dt “ R0, then by Lemma A13, f ˚˚λ˚ is optimal for Problem (A17).
Hence, in view of Theorem 2 and Lemma A13, to conclude the proof of Corollary A1, it remains

to show that there exists a λ˚ ď 0, such that
ş1

0 T1 p1´ tq f ˚˚λ˚ ptq dt “ R0. This is given by Lemma A14 below.

Lemma A14. Let ψ be the function of the parameter λ ď 0 defined by ψ pλq :“
ş1

0 T1 p1´ tq f ˚˚λ ptq dt.
Then, there exists a λ˚ ď 0, such that ψ pλ˚q “ R0.

Proof. First note that ψ is a continuous and nonincreasing function of λ, where the continuity of ψ is
a consequence of Lebesgue’s dominated convergence theorem ([37], Theorem 11.21). Indeed, since X
is bounded and since F´1

X is nondecreasing, it follows that for each t P r0, 1s,

min
!

F´1
X ptq , f ˚λ ptq

)

ď F´1
X ptq ď F´1

X p1q ď M “ }X}s ă `8

Moreover, since T is concave and increasing, T1 is nonincreasing and nonnegative, and so, for each
t P r0, 1s, 0 ď T1 p1´ tq ď T1 p0q. However, T1 p0q ă `8, by Assumption 4 (since T1 is differentiable,
it is continuous and, therefore, bounded on every closed and bounded subset of R). Hence, for each
t P r0, 1s,

min
!

F´1
X ptq , f ˚λ ptq

)

T1 p1´ tq ď F´1
X p1q T1 p0q ď }X}s T1 p0q ă `8

Furthermore, ψ p0q “ 0 (by Assumption 2), and:

lim
λÑ´8

ψ pλq “

ż 1

0
T1 p1´ tqmin

!

F´1
X ptq , W0 ´Π

)

dt

“

ż FXpW0´Πq

0
T1 p1´ tq F´1

X ptq dt` pW0 ´Πq
ż 1

FXpW0´Πq
T1 p1´ tq dt

However, by Assumption 3, we have FX pW0 ´Πq “ 1. This then implies that:

lim
λÑ´8

ψ pλq “

ż 1

0
T1 p1´ tq F´1

X ptq dt “
ż

X dT ˝Q

Now, for any Y P B` pΣq, which is feasible for Problem (A8), one has:

(i) 0 ď Y ď X; and,
(ii)

ş

pX´Yq dT ˝Q “ R0

Hence, 0 ď X ´ Y ď X, and so, by the monotonicity of the Choquet integral (Proposition A1),
it follows that R0 “

ş

pX´Yq dT ˝Q ď
ş

X dT ˝Q. Consequently,

0 “ ψ p0q ď R0 ď

ż

X dT ˝Q “ lim
λÑ´8

ψ pλq

Hence, by the intermediate value theorem ([50], Theorem 4.23), there exists some λ˚ ď 0, such
that ψ pλ˚q “ R0.

By Theorem 2 and Lemmatas A13 and A14, this concludes the proof of Corollary A1.
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Now, since the function f ˚˚λ ptq “ max

«

0, min
!

F´1
X ptq , f ˚λ˚ ptq

)

ff

is optimal for Problem (A17),

it is optimal for Problem (A15). Therefore, by Lemma A12, the function:

f ˚˚λ pUq “ max

«

0, min
!

F´1
X pUq , f ˚λ˚ pUq

)

ff

is optimal for Problem (A13), and the function:

˜

X´max

«

0, min
!

F´1
X pUq , f ˚λ˚ pUq

)

ff¸

1A ` X1SzA

is optimal for Problem (9). However, since Q ˝ X´1 is nonatomic (by Assumption 4), it follows that
U “ FX pXq has a uniform distribution over p0, 1q ([44], Lemma A.21), and that X “ F´1

X pFX pXqq ,
Q-a.s. Therefore,

f ˚˚λ pUq “ max

«

0, min
!

F´1
X pUq , f ˚λ˚ pUq

)

ff

“ max

«

0, min
!

F´1
X pUq , W0 ´Π´

`

u1
˘´1

¨

˝

´λ˚T1 p1´Uq

φ
´

F´1
X pUq

¯

˛

‚

)

ff

“ max

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff

, Q-a.s.

This Q-a.s. equality implies that:

max

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff

is also optimal for Problem (A13). Lemma A12 then implies that the function:

˜

X´max

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff¸

1A ` X1SzA

is optimal for Problem (9).
Finally, it can be easily verified that:

X´max

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff

“ min

«

X, max

˜

0, X´
„

W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

¸ff

The rest follows form Corollary A1, noting that since X “ F´1
X pUq , Q-a.s., one has:

R0 “

ż 1

0
T1 p1´ tqmax

”

0, min
!

F´1
X ptq , f ˚λ˚ ptq

)ı

dt

“

ż

T1 p1´Uqmax
”

0, min
!

F´1
X pUq , f ˚λ˚ pUq

)ı

dQ

“

ż

T1 p1´Uqmax

«

0, min

#

X, W0 ´Π´
`

u1
˘´1

ˆ

´λ˚T1 p1´Uq
φ pXq

˙

+ff

dQ
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This concludes the proof of Corollary 1. l

References

1. Arrow, K. Essays in the Theory of Risk-Bearing; Markham Publishing Company: Chicago, IL, USA, 1971.
2. De Finetti, B. La Prévision: Ses Lois Logiques, Ses Sources Subjectives. Ann. l’Inst. Henri Poincaré 1937,

7, 1–68.
3. Savage, L. The Foundations of Statistics, 2nd ed.; Dover Publications: New York, NY, USA, 1972.
4. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University

Press: Princeton, NJ, USA, 1944.
5. KNIGHT, F. Risk, Uncertainty, and Profit; Houghton Mifflin: Boston, MA, USA; New York, NY, USA, 1921.
6. Ellsberg, D. Risk, Ambiguity, and the Savage Axioms. Q. J. Econ. 1961, 75, 643–669.
7. Camerer, C. Individual Decision Making. In Handbook of Experimental Economics; Kagel, J.H.,

Roth, A.E., Eds.; Princeton University Press: Princeton, NJ, USA, 1995.
8. Schmeidler, D. Subjective Probability and Expected Utility without Additivity. Econometrica 1989,

57, 571–587.
9. Gilboa, I.; Schmeidler, D. Maxmin Expected Utility with a Non-Unique Prior. J. Math. Econ. 1989,

18, 141–153.
10. Ghirardato, P.; Maccheroni, F.; Marinacci, M. Differentiating Ambiguity and Ambiguity Attitude.

J. Econ. Theory 2004, 118, 133–173.
11. Amarante, M. Foundations of Neo-Bayesian Statistics. J. Econ. Theory 2009, 144, 2146–2173.
12. Gilboa, I.; Marinacci, M. Ambiguity and the Bayesian Paradigm. In Advances in Economics and Econometrics:

Theory and Applications, Tenth World Congress of the Econometric Society; Acemoglu, D., Arellano, M.,
Dekel, E., Eds.; Cambridge University Press: New York, NY, USA, 2013.

13. Hogarth, R.; Kunreuther, H. Risk, Ambiguity, and Insurance. J. Risk Uncertain. 1989, 2, 5–35.
14. Amarante, M.; Ghossoub, M.; Phelps, E. Ambiguity on the Insurer’s Side: The Demand for Insurance.

J. Math. Econ. 2015, 58, 61–78.
15. Alary, D.; Gollier, C.; Treich, N. The Effect of Ambiguity Aversion on Insurance and Self-Protection.

Econ. J. 2013, 123, 1188–1202.
16. Klibanoff, P.; Marinacci, M.; Mukerji, S. A Smooth Model of Decision Making under Ambiguity.

Econometrica 2005, 73, 1849–1892.
17. Gollier, C. Optimal Insurance Design of Ambiguous Risks. Economic Theory 2014, 57, 555–576.
18. Jeleva, M. Background Risk, Demand for Insurance, and Choquet Expected Utility Preferences.

GENEVA Pap. Risk Insu.-Theory 2000, 25, 7–28.
19. Young, V. Optimal Insurance under Wang’s Premium Principle. Insur. Math. Econ. 1999, 25, 109–122.
20. Bernard, C.; He, X.; Yan, J.; Zhou, X. Oprimal Insurance Design under Rank-Dependent Expected Utility.

Math. Financ. 2015, 25, 154–186.
21. Quiggin, J. A Theory of Anticipated Utility. J. Econ. Behav. 1982, 3, 323–343.
22. Yaari, M. The Dual Theory of Choice under Risk. Econometrica 1987, 55, 95–115.
23. Doherty, N.; Eeckhoudt, L. Optimal Insurance without Expected Utility: The Dual Theory and the

Linearity of Insurance Contracts. J. Risk Uncertain. 1995, 10, 157–179.
24. Karni, E. Optimal Insurance: A Nonexpected Utility Analysis. In Contributions to Insurance Economics;

Dionne, G., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 1992.
25. Machina, M. Non-Expected Utility and the Robustness of the Classical Insurance Paradigm. GENEVA Pap.

Risk Insur.-Theory 1995, 20, 9–50.
26. Schlesinger, H. Insurance Demand without the Expected-Utility Paradigm. J. Risk Insur. 1997, 64, 19–39.
27. Carlier, G.; Dana, R.; Shahidi, N. Efficient Insurance Contracts under Epsilon-Contaminated Utilities.

GENEVA Pap. Risk Insur.-Theory 2003, 28, 59–71.
28. Anwar, S.; Zheng, M. Competitive Insurance Market in the Presence of Ambiguity. Insur. Math. Econ.

2012, 50, 79–84.
29. Carlier, G.; Dana, R. Insurance Contracts with Deductibles and Upper Limits. Universite Paris Dauphine:

Paris, France, 2002; Preprint, Ceremade.
30. Carlier, G.; Dana, R. Core of Convex Distortions of a Probability. J. Econ. Theory 2003, 113, 199–222.



Risks 2016, 4, 8 27 of 27

31. Carlier, G.; Dana, R. Two-persons Efficient Risk-sharing and Equilibria for Concave Law-invariant
Utilities. Econ. Theory 2008, 36, 189–223.

32. Chateauneuf, A.; Dana, R.; Tallon, J. Optimal Risk-sharing Rules and Equilibria with
Choquet-expected-utility. J. Math. Econ. 2000, 34, 191–214.

33. Balbás, A.; Balbás, B.; Balbás, R.; Heras, A. Optimal Reinsurance under Risk and Uncertainty.
Insur. Math. Econ. 2015, 60, 61–74.

34. Ert, E.; Trautmann, S. Sampling Experience Reverses Preferences for Ambiguity. J. Risk Uncertain. 2014,
49, 31–42.

35. Kocher, M.; Lahno, A.; Trautmann, S. Ambiguity Aversion is the Exception; CESifo Group: Munich, Germany,
2015; Preprint, CESifo Working Paper Series No. 5261.

36. Trautmann, S.; van de Kuilen, G. Ambiguity Attitudes. In The Wiley Blackwell Handbook of Judgment and
Decision Making; Keren, G., Wu, G., Eds.; Wiley-Blackwell: Oxford, UK, 2016.

37. Aliprantis, C.; Border, K. Infinite Dimensional Analysis, 3rd ed.; Springer-Verlag: Heidelberg, Germany,
2006.

38. Pichler, A. Insurance Pricing under Ambiguity. Eur. Actuar. J. 2014, 4, 335–364.
39. Ghossoub, M. Vigilant Measures of Risk and the Demand for Contingent Claims. Insur. Math. Econ. 2015,

61, 27–35.
40. Denneberg, D. Non-Additive Measure and Integral; Kluwer Academic Publishers: Dordrecht, Netherlands,

1994.
41. Marinacci, M.; Montrucchio, L. Introduction to the Mathematics of Ambiguity. In Uncertainty in Economic

Theory: Essays in Honor of David Schmeidlers 65th Birthday; Gilboa, I., Ed.; Routledge: London, UK,
2004; pp. 46–107.

42. Schmeidler, D. Integral Representation without Additivity. Proc. Am. Math. Soc. 1986, 97, 255–261.
43. Cohn, D. Measure Theory; Birkhauser: Boston, MA, USA, 1980.
44. Föllmer, H.; Schied, A. Stochastic Finance: An Introduction in Discrete Time, 3rd ed.; Walter de Gruyter:

Berlin, Germany, 2011.
45. Jin, H.; Zhou, X. Behavioral Portfolio Selection in Continous Time. Math. Financ. 2008, 18, 385–426.
46. He, X.; Zhou, X. Portfolio Choice via Quantiles. Math. Financ. 2011, 21, 203–231.
47. Jin, H.; Zhou, X. Greed, Leverage, and Potential Losses: A Prospect Theory Perspective. Math. Financ.

2013, 23, 122–142.
48. Carlier, G.; Dana, R. Optimal Demand for Contingent Claims when Agents Have Law Invariant Utilities.

Math. Financ. 2011, 21, 169–201.
49. Dudley, R. Real Analysis and Probability; Cambridge University Press: New York, NY, USA, 2002.
50. Rudin, W. Principles of Mathematical Analysis, 3rd ed.; McGraw-Hill Book Company: New York, NY,

USA, 1976.
51. Ghossoub, M. Equimeasurable Rearrangements with Capacities. Math. Oper. Res. 2015, 40, 429–445.
52. Ghossoub, M. Contracting under Heterogeneous Beliefs. Ph.D. Thesis, Department of Statistics & Actuarial

Science, University of Waterloo, Waterloo, ON, Canada, May 2011.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Ambiguity in Optimal Insurance Design
	Related Literature
	This Paper's Contribution
	Outline

	Optimal Insurance: The Classical Case
	Setup and Preliminaries
	The Insurance Design Problem
	Premium Constraint vs. Minimal Expected Retention Constraint

	The Case of an Ambiguity-Seeking Insurer
	Preliminaries: Capacities, Choquet Integration and the CEU Model
	The Insurance Design Problem
	A Characterization of the Optimal Indemnity Schedule
	A Special Case

	More on Capacities and Choquet Integration
	Rearrangements and Supermodularity
	The Nondecreasing Rearrangement
	Supermodularity

	Proof of Theorem 2
	``Splitting''
	Solving Problem (A11)
	Quantile Reformulation

	Proof of Corollary 1

