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Abstract: This paper studies the dependence between coupled lives, i.e., the spouses’ dependence,
across different generations, and its effects on prices of reversionary annuities in the presence of
longevity risk. Longevity risk is represented via a stochastic mortality intensity. We find that
a generation-based model is important, since spouses’ dependence decreases when passing from
older generations to younger generations. The independence assumption produces quantifiable
mispricing of reversionary annuities, with different effects on different generations. The research is
conducted using a well-known dataset of double life contracts.
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1. Introduction

Longevity risk, i.e., the risk that individuals live longer than expected, has become a relevant
issue for the sustainability of public and private pension systems. It is likely to become even more
important, at least in industrialized countries, thanks to the improvement in health care. Already in
the past century, populations of industrialized countries, such as the U.K., have been living longer
than expected. The difference between actual and forecasted lifetime has been on average close to
three years. The consequence of greater survivorship on public pension systems is likely to count for
several points of GDP, as a recent study of the IMF shows ([1]). While the reaction of public systems to
increased outflows due to longevity is mainly a policy issue, the reaction of private pension systems
and funds is likely to be more technical. Private funds can transfer longevity risk to reinsurers or to
the market, through customized derivative contracts, such as s-forwards. The recent surge in these
contracts, together or as a substitute of reinsurance treaties, proves that the burden of longevity is
important, and its quantification is key (see [2]). Within these arrangements and the assessments
they require, attention should be paid to annuities or pensions payable to couples. Indeed, both in
the first and in the second pillar of pension provision, the offer of insurance products includes last
survivor and reversionary annuities. These are paid either to the survivor in a couple or to the original
beneficiary and its survivor. Quite clearly, the problem of longevity is doubled for reversionary
or last survivor contracts. It seems to us that a missing piece of research is longevity assessment
when two individuals are involved. An accurate pricing scheme of joint survivorship, which goes
beyond the elementary assumption of independence between the lifetimes of members of a couple,
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is needed, even before addressing reinsurance or marketability. First, one needs to determine the
correct dependence between two members of a couple, i.e., spouses’ dependence. Second, one needs
to investigate whether and how this dependence evolves over time, i.e., over different generations.
The first issue has been addressed in the literature, at least to a certain extent. To the best of our
knowledge, the second has not been tackled, since it requires a treatment of longevity risk, as well.
To model longevity risk, the researcher has to adopt so-called stochastic mortality, or stochastic
intensity, models, in which the actual mortality rate can be different from the forecasted one.

The existing actuarial literature rejects the spouses’ independence and measures both the level
of dependence and the extent of mispricing through the comparison between premia of insurance
products on two lives with and without independence. In this field, the seminal paper is [3],
which introduces a dataset of couples provided by a large Canadian insurer, the largest publicly
available. Their paper has been followed by a few others, including [4–8]. Some of these papers
include stochastic mortality. When couples are considered, one has to model both marginal stochastic
mortality, taking the due age and generation effects into account, and spouses’ dependence. The latter
aim is achieved by coupling marginal survival functions with a copula function. The work in [7,8]
addresses the existence of spouses’ dependence, without performing a best-fit copula analysis.
The work in [4–6] investigates which copula better encapsulates spouses’ dependence.

The present paper deepens the study of spouses’ dependence in two directions: firstly,
by addressing its evolution over time, i.e., across generations; secondly, by extending the features
of spouses’ dependence with multi-parameter copulas. It then applies the enhanced spouses’
dependence model to pricing contracts on two lives. Since pricing is a pre-requisite for hedging,
we understand our contribution as a necessary step towards the marketability of products on two
lives, as well.

By analyzing the evolution of dependence across different generations, we are also considering
how dependence evolves across different ages. This seems novel in the actuarial literature.
Moreover, the analysis of the mortality of married individuals across cohorts or ages (not considered
in the actuarial literature) has been addressed by a limited number of papers also in the demographic
and sociological literature. While a huge number of papers concentrates on the relationship between
marital status and mortality (see for instance the survey by [9]), a reduced number of papers
investigate the effect of age on the mortality risk experienced by survivors after the spouse’s death.
Among them, [10] study how the mode of death (whether the spouse’s death occurred suddenly or
after a long illness) affects the relative risk of mortality of the survivor by gender and age, and [11]
find that the adverse effects of widowhood on mortality (that are significantly higher for men than
for women) are more pronounced at younger ages and less pronounced at older ages.

A preview of our results, obtained using the dataset on couples introduced by [3], is that
spouses’ dependence decreases when passing from older to younger generations, as intuition would
suggest. Not only the level of spouses’ dependence, but also its features, as measured by the copula,
change across generations. For all of the generations considered, goodness-of-fit and significance tests
indicate that two-parameter copulas are significantly more suitable to describe spouses’ dependence
than one-parameter copulas. The analysis of prices of reversionary annuities confirms that spouses’
dependence matters on pricing, for the independence assumption produces a quantifiable mispricing.
Mispricing is heavier for older generations than for younger ones. Even when the copula approach
is adopted, the misspecification of the copula has different and opposite effects on the mispricing for
different generations.

The paper is organized as follows. In Section 2, we present the methodology. In Sections 3 and 4,
we present respectively the calibration method, as required by the specific dataset, and its results.
In Section 5, we discuss the effect of different models on premia of reversionary annuities, comparing
them with those obtained under the independence assumption. Section 6 concludes.
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2. Methodology

This paper models the mortality of couples using a copula approach: the joint survival
probability is written in terms of the marginal survival probabilities and a function—the survival
copula—which represents spouses’ dependence. The calibration procedure has two steps, as usual in
the copula field. The best-fit parameters of the marginal distributions are chosen separately from the
best-fit parameters of the copula. This section briefly describes the modeling and calibration choices
in the two steps.

Since one of the aims of this research is to compare the spouses’ dependence across different
generations, throughout the paper, we will assume that the two members of a given couple belong to
the same generation. Male and female have remaining lifetimes Tm

x and T f
y (x and y being the initial

ages of male and female, respectively), which are assumed to have continuous distributions. Denote
by Sm

x and S f
y the corresponding marginal survival functions:

Sm
x (t) = Pr [Tm

x > t] , ∀t ≥ 0

S f
y (t) = Pr

[
T f

y > t
]

, ∀t ≥ 0

Denote as Sxy(s, t) the joint survival function of the couple (x, y), i.e.,

Sxy(s, t) = Pr
[

Tm
x > s, T f

y > t
]

∀s, t ≥ 0

As is known, Sklar’s theorem states the existence (and uniqueness over the range of the marginal
distributions) of a survival copula C : [0, 1]× [0, 1] → [0, 1], such that, for all (s, t) ∈ [0, ∞]× [0, ∞],
S can be represented in terms of Sm

x , S f
y :

Sxy(s, t) = C(Sm
x (s), S f

y(t))

2.1. Marginal Survival Functions

For a given generation, we model the marginal survival functions of males and females with
the stochastic-intensity or doubly-stochastic approach. This approach is well established in the
actuarial literature; see [12–14]. Within this approach, the random time of death T of the individual is
modeled as the first jump time of a doubly-stochastic process, i.e., a counting process, the intensity of
which is itself a nonnegative, measurable stochastic process Λ(s). Under some technical properties,
this construction permits one to write the marginal survival probabilities as:

Sj
i(t) = Pr(T j

i > t) = E
[

exp
(
−
∫ t

0
Λj

i(s)ds
)]

(1)

where i = x, y, j = m, f .
As usual, we focus on the case in which the intensity is an affine diffusion. This permits one to

write the marginal survival probability in Equation (1) in terms of the intensity evaluated at time 0
and two functions of time, denoted as α(·) and β(·). One can indeed show that:

Sj
i(t) = exp

[
α

j
i(t) + β

j
i(t)Λ

j
i(0)

]
(2)

where the functions α
j
i(·) and β

j
i(·) satisfy appropriate Riccati ODEs.

Previous papers motivate the appropriateness, among generation-based affine intensities,
of processes without mean reversion. Luciano and Vigna ([15,16]), using the evidence
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provided by a comparison of competing models over the U.K. population, focused on the
Cox–Ingersoll–Ross process:

dΛj
i(s) = aj

iΛ
j
i(s)ds + σ

j
i

√
Λj

i(s)dW j
i (s) (3)

where W j
i is a one-dimensional Wiener process, with aj

i > 0 and σ
j
i ≥ 0. Notice that the process

Equation (3), that belongs to the Feller family, is a natural stochastic extension of the Gompertz model
(indeed, it is an exponential force of mortality if σ

j
i = 0). This is a desirable property, given that in

general, the Gompertz model is appropriate for ages greater than 35. In addition, [4] finds that the
Gompertz model outperforms competing mortality models on the same dataset used in this paper.

The Cox–Ingersoll–Ross process is a parsimonious choice that, for each generation under
scrutiny, involves only two parameters (aj

i , σ
j
i ) for each gender j. From the empirical point of view, it

proved to fit a number of different datasets quite accurately. These are the reasons that motivate its
adoption in [17] and in this paper. For such a process, we have:

α
j
i(t) = 0

β
j
i(t) =

1−exp
(

bj
i t
)

cj
i+dj

i exp(bj
i t)

(4)

where: 
bj

i = −
√(

aj
i

)2
+ 2

(
σ

j
i

)2

cj
i =

bj
i+aj

i
2

dj
i = cj

i − aj
i

and therefore1:

Sj
i(t) = exp

 1− exp
(

bj
i t
)

cj
i + dj

i exp(bj
i t)

Λj
i(0)

 (5)

2.2. Copulas

In line with the related literature, we start from single-parameter (1P) Archimedean copulas.
Archimedean copulas indeed permit one to compare our results with the survival studies conducted
on the same or similar datasets. In a second step, in an attempt to get a better fit, we introduce
two-parameter (2P) copulas.

2.2.1. One-Parameter Copulas

Each one-parameter Archimedean copula is obtained from a continuous, decreasing, convex
function φ : [0, 1] → [0,+∞] , the generator, such that φ(1) = 0. Using φ and its generalized inverse
φ−1, the copula is defined as follows:

C(v, z) = φ−1 (φ(v) + φ(z)) (6)

Usually the generator, and consequently the copula, contains one parameter, which we denote
as θ. Archimedean copulas are symmetric and associative and have convex level curves. They are
easily amenable to calibration, thanks to the link between the generator and popular measures of

1 The survival function given by Equation (5) is biologically reasonable (i.e., it is decreasing over time) if and only if the

following condition holds: ebj
i t
[(

σ
j
i

)2
+ 2

(
dj

i

)2
]
>
(

σ
j
i

)2
− 2dj

i c
j
i . In our calibrations, this is always true.
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association, mainly Kendall’s tau. They have clear relationships not only with association measures,
but also with measures, such as Oakes’ cross-ratio function, tail and positive quadrant dependence.

The link between an Archimedean copula and its Kendall’s τ is as follows:

τ = 4
∫ 1

0

φ(v)
φ′(v)

dv + 1 (7)

For all of these reasons, Archimedean copulas provide a flexible, comprehensive family widely
used in the literature. Thanks to the fit exploration provided in [6] on the same dataset, we consider
the Archimedean copulas, listed in Table 1.

Table 1. Archimedean single-parameter copulas considered.

Name C (u, v)

Clayton
(

u−θ + v−θ − 1
)− 1

θ

Gumbel-Hougaard exp
[
−
(
(− ln u)θ + (− ln v)θ

) 1
θ

]
Frank − 1

θ ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
Nelsen 4.2.20

[
ln
(

exp
(

u−θ
)
+ exp

(
v−θ

)
− e
)]− 1

θ

Special
(
−W+

√
4+W2

2

) 1
θ ; with W = 1

uθ − uθ + 1
vθ − vθ

While the first three copulae are common in the literature, the last two are not. They have
been included because, differently from the first three copulae, their association, as measured by
the cross-ratio function, is increasing over time, which is what one would expect from couples, as
time from marriage or coupling increases (see [18]).

The joint survival function is:

S(x, y) = Pr(X > x, Y > y) (8)

Thanks to Sklar’s theorem for survival functions, the joint survival probability may be written
using the marginal survival functions, as:

S(x, y) = C(1− F1 (x) , 1− F2 (y))

2.2.2. Two-Parameter Copulas

The goodness-of-fit may be improved significantly by copulas with enhanced flexibility through
an additional parameter. There are numerous two-parameter copula families available in the
literature, many of them being a result of generalizing one parameter families. In this paper,
we will adopt one such generalization by mixing the one-parameter Archimedean copulas with the
independence copula. A justification of this is partly based on previous work in this area (see further
in this section) and partly on the data at hand, as will be argued in Section 4.3.

Two-parameter copulas may be obtained by combining the Archimedean copulas with the
independence copula in three distinct ways. We obtain three types, through:

1. a product:
Cα,θ(u, v) = u1−αv1−αCθ(uα, vα) (9)

where Cθ is any Archimedean copula and α ∈ [0, 1]. It is a subcase of [19];
2. a linear mix:

Cα,θ(u, v) = (1− α)uv + αCθ(u, v) (10)
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where Cθ is any Archimedean copula and α ∈ [0, 1]. It is the method proposed by [4] for the
special case in which Cθ is Clayton. Both the limiting cases of Cθ being Fréchet upper bound or
Fréchet lower bound lead to subclasses of the Fréchet copula family;

3. a geometrically-weighted average:

Cα,θ(u, v) = (uv)1−α (Cθ(u, v))α

with α ∈ [0, 1]. This mix, envisaged in [20], generates a valid copula if Cθ is absolutely
continuous. The work in [4] considered also this type of mixing for the special case of Cθ being
Clayton, leading to a copula called “correlated frailty”, originally stemming from [21].

In all cases, the two-parameter model nests the one-parameter one, when α = 1, as well as the
product copula, when α = 0. Note that Types 1 and 3 coincide in the special case of Cθ being an
extreme value copula. In this paper, only Gumbel–Hougaard belongs to this class. The limiting case
of Cθ being the Fréchet upper bound leads to the Cuadras–Augé copula family.

The selection of these three types of mixing is also motivated by the fact that [4] obtained a very
good fit, both with his “linear mix” and with the “correlated frailty”. To the best of our knowledge,
so far, only Carriere has adopted the “mix with independence” approach in fitting a copula to joint
survival data. In this respect, this paper can be considered as an extension of Carriere’s work.2

3. Calibration Methods

3.1. Marginal Survival Functions

We consider the large Canadian dataset introduced by [3]. In this dataset, thousands of couples
of individuals are observed in a time frame of five years, from 29 December 1988–31 December 1993.
In order to provide an estimate of the marginal parameters for each generation, (âj

i , σ̂
j
i ), we first

identify the generations. It is reasonable to assume that persons with ages of birth close to each
other belong to the same generation. As in [6], we define a generation as the set of all individuals
born in a fourteen-year time interval. We set the age difference between male and female of the
same couple equal to three years, as this is the average age difference between spouses in the
whole dataset. We select two generations: 1900–1913, 1914–1927 for males, 1903–1916, 1917–1930 for
females.3 From now on, we refer to these generations as “old” and “young”. Notice that the members
of each generation may enter the observation period at nineteen different years of age. For instance,
the male members of the old generation may start to be observed at every age between 75 and 94.
For notational convenience and according to [6], we will consider as the initial age of each generation
the smallest possible entry age, namely, x = 75 for the old male, x = 61 for the young male, y = 72
for the old female, y = 58 for the young female.

2 We did fit more common 2P families, such as Student’s copula and several families in [22], to the data, as well, but the fits
obtained were not as good as the ones resulting from the three types specified above. In preliminary work, we investigated
also the general three-parameter families as proposed in [23,24], built as follows:

Cα,β,θ(u, v) = u1−αv1−βCθ(uα, vβ) (11)

where (α, β) ∈ [0, 1]× [0, 1]. However, the empirical tests do not give clear answers regarding the dominance of any three
versus the corresponding two-parameter model. We omit the discussion here.

3 To be more precise, the males of the older generation were born between 1.1.1900 and 31.12.1913, while the corresponding
females between 1 January 1903 and 31 December 1916, and so on.
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Then, we extract from the raw data the Kaplan–Meier (KM) empirical distribution for each
generation and each gender.

The last step consists of using the KM data to calibrate the parameters of the intensity of each
gender and generation, (âj

i , σ̂
j
i ). This is done by minimizing the squared error between empirical

and theoretical probabilities; the former being the KMs; the latter being obtained by replacing the
appropriate function in the survival function Equation (5).

3.2. Copulas

The calibration of the copulas belonging to classes 1P and 2P proceeds through the
pseudo-maximum likelihood (PML) approach as in [25]. In order to use the methodology, we need
complete data. This is a relevant restriction for the dataset available. In fact, the five-year observation
window of the dataset implies that the majority of couples under observation are censored data.
Restricting our attention only to complete data makes the number of couples suitable for the
investigation drop remarkably. The restriction to complete data is unavoidable even in the absence
of multi-parameter copulas, whenever the accent is on the evolution of spouses’ dependence across
generations. Indeed, suppose that the focus of the investigation is only on the comparison of spouses’
dependence of different generations, and the copulas considered are only one parameter. Ideally, it
is possible to keep the vast number of censored data and to perform the best-fit copula test within
each generation with the [26] procedure, which is suitable for censored data.4 The Wang and Wells
procedure involves selecting a starting point ξ ∈ [0, 1] in the calculation of the empirical Kendall’s tau
τ̂. In turn, the selection of ξ induces an overestimation of τ̂, on which the whole procedure is based,
and the higher ξ, the higher the overestimation of τ̂. It can be shown that the value of ξ strongly
depends on the generation considered: the older the generation, the lower the cutting point ξ and
vice versa. Therefore, the overestimation of τ̂ strongly depends on the generation chosen and is bigger
with younger generations. This phenomenon is not acceptable if the focus of the investigation is
on the comparison of spouses’ dependence among different generations. If the investigator wants to
compare in a consistent way the association within a couple across different generations, she is bound
to select smaller subsets of complete data.

This has disadvantages and advantages. On the first side, the price to pay in order to be able to
make consistent comparisons across generations is a remarkable reduction of the size of the sample,
which in our case becomes n = 66 for each generation. In spite of this, as [4] notices, this approach is
still informative, even though inefficient due to the scarcity of couples. Indeed Carriere, when testing
the null hypothesis of the independence of the data, considered only the complete observations of
the same data. As in [3], he pooled all of the generations together, rather than considering different
generations. Also, in his case, the number of couples drops to a surprisingly low 229. On the second
side, the advantage of working with complete data only is that this allows one to employ relatively
straightforward goodness-of-fit tests that appeared in the literature in recent years. We greatly benefit
from this possibility in performing significance tests of the goodness-of-fit of copulas with different
numbers of parameters.

We now illustrate the PML approach. For survival copulas, the rank-based log likelihood to be
maximized with respect to the parameters has the form:

` (θ`) =
n

∑
i=1

log

{
cθ`

(
1−

R(1)
i

n + 1
, 1−

R(2)
i

n + 1

)}
(12)

4 This was indeed the method used in [6], where the authors used censored data on the same dataset.
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where ` (θ`) is the resulting log-likelihood with parameter θ (which can be real or vector valued), n is

the number of data, cθ` (u, v) = ∂2Cθ `(u,v)
∂u∂v is the density of the copula Cθ` and R(j)

i is the rank of part
j of observation i, with j ∈ {1, 2} and i ∈ {1, .., n}. In this context, the rank is in terms of the waiting
time, i.e., the time between entry and exit (death). The motivation for using this pseudolikelihood
and its intuitive meaning are illustrated, for instance, in [27]. Since the focus of our investigation is to
compare the spouses’ dependence among different generations, we use complete data to implement
the estimation strategy. Due to the five-year observation window of the dataset, the majority of
couples under observation are censored data, and considering only complete data means that the
number of observations drops to n = 66.

We start by calibrating the parameters for each copula in each class, using Equation (12).
Once this is done, we first perform a best-fit copula test among all copulas with the same
number of parameters. Then, we compare the best-fit one-parameter copula with the best-fit
two-parameter copula.

Since, in the absence of adjustments, the higher the number of parameters, the better the fit,
below, we adjust the likelihood by penalizing for the number of parameters. Below, we are going
to use the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for
each model.5

4. Calibration Results

4.1. Marginal Survival Functions

The parameters of the marginal survival functions, for both the old generation (OG) and the
young generation (YG), are presented (in basis points) in Table 2.

Table 2. Parameters of the marginal survival functions.

OG Male OG Female YG Male YG Female

a 961.045 790.232 528.581 619.733
σ 0.007 0.057 0.019 0.5

Their initial values for the two generations are λx(0)OG = 0.0361, λy(0)OG = 0.01645,
λx(0)YG = 0.01314 and λy(0)YG = 0.00354.

The following figures report the plot of the survival probabilities, grouped by generation and
gender. Each figure reports the analytical survival function Sz(t) for initial age z and the empirical
survival function obtained with the Kaplan–Meier methodology. Figures 1 and 2 report the old
generation, female and male, respectively; Figures 3 and 4 report the young generation, female and
male, respectively.

5 Let ` (θ`) be defined as in Equation (12). Then, the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are defined as:

AIC = − 2
n
(` (θ`)− p) , BIC = − 2

n

(
` (θ`)− log n

2
p
)

where p is defined as the number of parameters of cθ `. According to these methods, the lower the AIC or BIC value,
the more suitable the model.
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Figure 1. Females, old generation.

Figure 2. Males, old generation.

Figure 3. Females, young generation.
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Figure 4. Males, young generation.

4.2. Decreasing Spouses’ Dependence over Generations

Before calibrating any specific copula, we first compute an empirical estimate τ̂ of Kendall’s tau
coefficient for each generation. The results are given in Table 3.

Table 3. Kendall’s τ across generations.

OG YG

Kendall’s τ 0.440 0.279

Spouses’ dependence decreases as we consider younger generations. This interesting result is
not surprising and is in accordance with the observed increase in the rate of divorces, the creation of
extended families, the increased independence of women in the family, and so on. We call this effect
the “cohort effect”.

We acknowledge that this result can be subject to skepticism. One might wonder whether
the decrease in dependence from older to younger generations is really due to the cohort effect
or rather to the age effect, which works as follows. The two generations enter the observation
window (from December 1988–December 1993) at different ages. In particular, the old generation
enters at ages 75–72 (male-female), while the young generation enters at ages 61–58 (male-female).
Thus, the higher spouses’ dependence of the old generation could be partially explained by higher
spouses’ dependence of a couple at older ages: one could argue that also for the same generation,
spouses’ dependence increases with age or with the duration of marriage or coupling. Because of the
age effect, one would expect a higher spouses’ dependence coefficient for the older generation, even
without a cohort effect.

Therefore, it seems crucial to disentangle age and cohort effect and to investigate which one is the
main explanation of Table 3. In order to do so, one would need either to observe the same cohort over
two different time windows, i.e., at different ages, or different generations over different windows,
but when they have the same initial age. The latter is not feasible with this dataset, because it would
require two observation windows distant by 14 years (at least). However, we can observe the same
cohort at different ages, as follows:

• We create artificially two observation windows out of the unique one, by distinguishing the
period 29 December 1988–30 June 1991 from the period 1 July 1991–31 December 1993.

• For each cohort, we compute Kendall’s tau in the two sub-windows, in which the same
individuals have different initial ages.
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Implementing this procedure, we are observing the same generation with different initial ages.
The results are reported in Table 4.

Table 4 shows the unexpected result that for each generation, τ decreases when time passes,
meaning that the spouses’ dependence seems to decrease when the two members of the same cohort
become older. This may be due to the small number of couples at disposal in the dataset and to the
fact that in order to implement the procedure, we had to further reduce the number of couples in
each sub-window. However, had we found the opposite results (i.e., an increasing τ), we would have
been puzzled by the issue of whether the decreasing Kendall’s tau of Table 3 was due to cohort effects
or to age effects. The likely answer would have been “by both”, and it would have been impossible
(with this dataset) to measure the extent of age effect and cohort effect. This would have remained an
open issue.

Table 4. Kendall’s τ across two close observations windows.

τ December 1988–June 1991 July 1991–December 1993

OG 0.636 0.502
YG 0.543 0.411

However, the evidence produced by Table 4 indicates that, for the two generations under
scrutiny, increasing age does not imply higher spouses’ dependence. Transferring this conclusion to
Table 3, there seems to be no age effect on the decreasing Kendall’s tau from old generation to young
generation. In this dataset, spouses’ dependence decreases when passing from older to younger
generations, and this seems to be due only to cohort effects.

We do not intend to claim that, in general, dependence decreases when considering
younger generations. This would require extensive investigations that we cannot perform.
However, an insurance company endowed with a complete series of data on coupled lives would be
able to perform a deeper investigation and separate the age from the generation effect on Kendall’s
tau. This would permit one to further support our results that spouses’ dependence is affected by the
generations’ effect and decreases when considering younger cohorts.

4.3. Joint Calibration: Archimedean Copulas

Following the method illustrated in Section 3, for each copula of Table 1, we calibrate the
single-parameter and the two-parameter versions. Given the parameters, we perform a best-fit test
among all copulas with the same number of parameters first, among the best-fit copulas with a
different number of parameters then.

The results on the log likelihood, AIC and BIC are provided by Tables 5–8 (Tables 5 and 6 report
data for the old generation; Tables 7 and 8 those for the young generation). In the tables, LH stands
for “log likelihood”; 2Ppr stands for “2P product”; 2Pl stands for “2P linear mix”; 2Pg stands for
“2P geometrically weighted average”; Fr stands for “Frank copula”; Cl stands for “Clayton copula”;
GH stands for “Gumbel–Hougaard copula”; Ne stands for “Nelsen 4.2.20 copula”; and Sp stands for
“special copula”. The highest LH, the lowest AIC and the lowest BIC are reported in bold.

Table 5. Loglikelihood, AIC and BIC values for the old generation, one-parameter (1P)-copulas.

OG LH-1P AIC-1P BIC-1P

Fr 11.806 −0.327 −0.294
Cl 6.04 −0.153 −0.120

GH 14.396 −0.406 −0.373
Ne 4.950 −0.12 −0.086
Sp 2.216 −0.037 −0.004
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Table 6. Loglikelihood, AIC and BIC values for the old generation, 2P-copulas.

OG LH-2Ppr AIC-2Ppr BIC-2Pr LH-2Pl AIC-2Pl BIC-2PL LH-2Pg AIC-2Pg BIC-2Pg

Fr 32.627 −0.928 −0.862 32.625 −0.928 −0.862 33.731 −0.961 −0.895
Cl 31.583 −0.896 −0.830 26.607 −0.745 −0.679 31.583 −0.896 −0.830
GH 41.015 −1.182 −1.116 41.714 −1.203 −1.137 41.015 −1.182 −1.116
Ne 18.754 −0.508 −0.441 12.887 −0.329 −0.263 18.754 −0.507 −0.441
Sp 12.619 −0.321 −0.255 10.722 −0.264 −0.198 13.258 −0.341 −0.275

Table 7. Loglikelihood, AIC and BIC values for the young generation, 1P-copulas.

YG LH-1P AIC-1P BIC-1P

Fr 4.736 −0.113 −0.080
Cl 6.696 −0.173 −0.139

GH 2.39 −0.042 −0.009
Ne 6.444 −0.165 −0.132
Sp 6.832 −0.177 −0.144

Table 8. Loglikelihood, AIC and BIC values for the young generation, 2P-copulas.

YG LH-2Ppr AIC-2Ppr BIC-2Ppr LH-2Pl AIC-2Pl BIC-2Ppl LH-2Pg AIC-2Pg BIC-2Ppg

Fr 9.31 −0.221 −0.155 11.055 −0.274 −0.208 8.762 −0.204 −0.139
Cl 9.555 −0.229 −0.163 11.048 −0.274 −0.208 9.555 −0.229 −0.163
GH 9.057 −0.214 −0.148 11.516 −0.288 −0.222 9.057 −0.214 −0.147
Ne 8.915 −0.209 −0.143 9.835 −0.237 −0.171 8.915 −0.209 −0.143
Sp 10.049 −0.244 −0.178 11.250 −0.280 −0.214 10.049 −0.243 −0.178

The results of the comparison within each class (1P, 2P) can be summarized as follows.

1. Class 1P: The one-parameter Archimedean family that performs best according to Tables 5 and 7,
is the Gumbel–Hougaard for the old generation and the special one for the young generation.

2. Class 2P: For both generations, Tables 6 and 8 show that the two-parameter family that performs
best is the Gumbel–Hougaard linear mix. We observe that the LH of the 2P-product is very
similar (and in many cases, identical) to those of the 2P-geometric. For the old generation,
the linear-mixing copula is closely followed by the product and geometric Gumbel–Hougaard
mixes (as pointed out before, the latter two entail identical copulas): the 2P mixes with the GH
copula have a LH much higher than all of the other copulas. This is not the case for the young
generation, where the LH are of similar order of magnitude for all copulas and way of mixing.

We see that for the old generation, the best-fit copulas are nested, i.e., the 2P copula is an
extension of the 1P, but they are not for the young generation.

The parameters of the best-fit copulas are reported in Tables 9 and 10.

Table 9. Best-fit copulas parameters for the old generation.

OG Gumb-Houg-1P Gumb-Houg-Linear–Mix-2P

θ 1.758 12.134
α − 0.550

Table 10. Best-fit copulas parameters for the young generation.

YG Special-1P Gumb-Houg-Linear–Mix-2P

θ 1.116 6.100
α − 0.373
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Consistently with the decrease of Kendall’s tau across generations, when the best-fit copula
remains the same across generations, the spouses’ dependence parameter is decreasing when passing
from the older to the younger generation. Indeed, θ goes from 12.134 to 6.1 for the 2P case.

After having established, for a given number of parameters, which copula fits best for each
generation, we compare the 1P and 2P versions of each copula in order to assess the correct trade-off
between fit and parsimony. We observe that in all cases, the AIC and the BIC values of the 2P
copulas are lower than the AIC and BIC values of the corresponding 1P copulas. This indicates
that the 2P copulas are more suitable to describe the dependence of this dataset than the 1P
copulas. We also note that for the old generation, the passage from 1P to 2P is characterized by
a huge gap in the LH. A possible way to explain the superiority of 2P versus 1P copulas is by
observing the scatterplots of the ranked observations for both generations. These are displayed in
Figures 5 (old generation) and 6 (young generation).

Figure 5. Ranks of the observations, old generation.

Figure 6. Ranks of the observations, young generation.

We observe that for both generations, we can distinguish between two subgroups of
ranked observations:
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1. points on or close to the main diagonal; considering these points only gives an impression
of very strong spouses’ dependence (evidently stronger for the old generation than for the
young generation);

2. the remaining points; considering these points only gives an impression of weak or no
spouses’ dependence.

The presence of many observations that display strong spouses’ dependence and others that
show no spouses’ dependence can be intuitively captured by mixing a 1P copula with strong spouses’
dependence with the independence copula. Therefore, we are not surprised that the best copula for
both generations is the linear-mixing between Gumbel–Hougaard and independence. An intuitive
interpretation of the linear mix copula is that a couple has a 100α% (55% for the old generation, 37.3%
for the young generation) chance of strong dependence, reflected by the points on or near the main
diagonal, and a 100(1− α)% (45% for the old generation, 62.7% for the young generation) chance of
no dependence at all. A similar interpretation applies to the geometrically-weighted average (Type 3)
after a log transform of the copula, and presumably, although less intuitive, also to the product
(Type 1) given that overall, the results in terms of LH and AIC are very similar.

5. Effects of Spouses’ Dependence on Pricing

In this section, we investigate the effect of the spouses’ dependence to the pricing of policies on
two lives. We consider a combined joint life and reversionary annuity , which pays 1 as long as both
members are alive and a fraction R of it (R stands for “reduction factor”) when only one member of
the couple is alive. In this scheme, the last survivor product corresponds to R = 1 (the benefit paid
remains constant also after the first death), and the joint life annuity corresponds to R = 0 (nothing is
paid to the last survivor). In practice, such contracts are quite common (see [3]) for R = 1/2, 2/3.

If the interest rate used in the actuarial evaluation is constant at the level i over the maturity of
the contract, the fair price of the reversionary annuity with reduction factor R ∈ [0, 1] is:

+∞

∑
t=1

vt
[

R(t pm
x −t pxy) + R(t p f

y −t pxy) +t pxy

]
(13)

where v = (1 + i)−1 is the discount factor, (t pm
x −t pxy) is the probability that the benefit R is paid

only to the male, (t p f
y −t pxy) is the probability that the benefit R is paid only to the female and t pxy

is the probability that the benefit 1 is paid when both are alive. Connecting the survival probabilities
needed to the marginal and the joint survival functions, we have:

t pm
x −t pxy = Sm

x (t)− Sxy(t, t), and t p f
x −t pxy = S f

y(t)− Sxy(t, t)

and also:
t pxy = Sxy(t, t) = C(Sm

x (t), S f
y(t))

Therefore, the price of the combined joint life and reversionary annuity is equal to:

+∞

∑
t=1

vtR
(

Sm
x (t) + S f

y(t)− 2C(Sm
x (t), S f

y(t)
)
+

+
+∞

∑
t=1

vtC(Sm
x (t), S f

y(t))

We have implemented the pricing formulas when R takes the values 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1.
Results are in the next section.
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5.1. Prices of Combined Joint Life and Reversionary Annuities

Tables 11 and 12 report the single premia of R-reversionary annuities for the old generation and
the young generation, respectively. The interest rate used is i = 2%. While the first column reports the
value of R, the second reports the price of the annuity under the independence assumption. For each
model specification (1P, 2P), there is a column reporting the best-fit copula price (cum-dependence
price) and a column with the ratio between the cum-dependence price and the independence price.
In Table 11 and 12, “GH” stands for “Gumbel-Hougaard”, while in Table 12 “Spec.” stands for “special”.

Table 11. Reversionary annuity price for the old generation under independence and using best-fit
1P, 2P copulas.

R Indep. GH-1P Ratio GH-2Pl Ratio

0 7.72 8.786 1.138 8.755 1.110
1/4 9.772 10.305 1.054 10.199 1.044
1/3 10.456 10.811 1.032 10.740 1.027
1/2 11.823 11.823 1 11.823 1
2/3 13.191 12.835 0.975 12.906 0.978
3/4 13.875 13.342 0.964 13.448 0.969

1 15.926 14.860 0.937 15.072 0.946

Table 12. Reversionary annuity price for the young generation under independence and using best-fit
1P, 2P copulas.

R Indep. Spec.-1P Ratio GH-2Pl Ratio

0 16.421 17.056 1.039 17.137 1.044
1/4 19.271 19.589 1.016 19.580 1.019
1/3 20.221 20.433 1.010 20.394 1.012
1/2 22.121 22.121 1 22.121 1
2/3 24.021 23.810 0.991 23.650 0.990
3/4 24.971 24.654 0.987 24.464 0.986

1 27.822 27.187 0.977 26.907 0.974

Before commenting on dependence effects, notice that for each R and each model specification
(1P, 2P), the annuity prices of the young generation are higher than those of the old generation. This is
expected, because all survival probabilities are higher for younger insureds. Furthermore, in both
tables and for each model specification (1P, 2P), each annuity has a value increasing in R, both under
dependence and independency. This is also expected: a higher benefit for the bereaved life implies a
higher actuarial value of the benefits to be paid.

Regarding dependence, the reader can notice the following.

1. For each R and each model specification (1P, 2P), the young generation shows ratios of
cum-spouses’ dependence to independence price that are closer to one than those of the old
generation. This is a clear consequence of the decreasing τ from old generation to young
generation: the milder spouses’ dependence of the young generation generates prices that
deviate less from the independence prices than the old generation prices.

2. In both tables and for each model specification (1P, 2P), the ratio cum-spouses’
dependence/independence is decreasing when R increases. This can be explained, as well.
Let us recall that for R = 0, we have the joint life annuity, and for R = 1, we have the last
survivor policy. Then, R measures the weight given to the last-survivor part of the reversionary
annuity, with respect to the joint-life part. When R = 0, positive spouses’ dependence implies
that the joint survival probability is higher than in the independence case, leading to a ratio
greater than one. At the opposite, when R = 1, we have the last survivor, for which positive
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spouses’ dependence implies lower survivorship after the spouse’s death, implying ratios lower
than one. The values 0 < R < 1 give all of the intermediate situations between these two
extremes. In particular, for R ∈ (0, 1/2), we still have ratios greater than one; for R ∈ (1/2, 1),
we have ratios lower than one. For R = 1/2, the ratio is exactly one: the annuity price is
unaffected by the level of spouses’ dependence. In fact, due to Equation (13), the joint survival
probability does not enter the premium that reduces to:

+∞

∑
t=1

vt

(
t pm

x +t p f
y

2

)

The weight given to the last survivor benefit is equal to that given to the joint life annuity, and
the two opposite effects of the overestimation and underestimation of the premium perfectly
offset each other.

3. The practical consequence of having ratios greater than one as long as R < 1/2 and ratios
smaller than one when R > 1/2 is that insurance companies, by assuming independence when
pricing the former, are under-pricing contracts, while they are over-pricing, or prudentially
pricing, the latter. Consider the joint life case. Insurance companies that assume independence
are not “on the safe side”. The previous tables give a measure of the lack of safety
so obtained. Consistently with Item 1 above, the lack of safety is greater for the older
generation. Consider now the last survivor policy, for which insurance companies that assume
independence are overpricing the contract. This can be interpreted as a prudential maneuver
from the point of view of insurers, and the previous tables give a measure of the extent of
prudence so obtained. Consistently with Item 1 above, prudence decreases when the younger
generation is selected.

4. For the old generation, the impact on prices and on the ratio cum-spouses’
dependence/independence is smaller for the 2P copulas than for the 1P copula; the opposite
happens for the young generation. As a consequence, for the old generation, the width of
the range of prices and ratios when R changes is smaller for the 2P copulas than for the
1P copula; the opposite happens for the young generation. The next item illustrates the
mispricing implications of this asymmetry.

5. Misspecification of the copula produces opposite mispricing effects on the two generations.
Indeed, given the assessed superiority of the 2P model with respect to the 1P one, annuity
prices show that when the spouses’ dependence is described with a 1P copula rather than
with a 2P one, for the old generation, the insurer over-prices annuities with R < 1/2 and
under-prices annuities with R > 1/2. Opposite results apply to the young generation: when
the spouses’ dependence is described with a 1P copula rather than with a 2P one, the insurer
under-prices annuities with R < 1/2, and over-prices annuities with R > 1/2. The occurrence
of opposite mispricing effects for the two generations could represent a potential for the insurer
who wants to natural-hedge reversionary annuities written on one cohort with products on a
different cohort.

6. Conclusions

This paper analyzes, first from a statistical, then from a pricing point of view, spouses’
dependence between coupled lives of insureds. We model the marginal distributions of the two
spouses with the doubly-stochastic setup and the dependence of the spouses’ lifetimes with the
copula approach. We develop the statistical analysis in two directions. We first study the evolution
of dependence across generations. We find that on our data, spouses’ dependence decreases when
passing from older to younger generations. This decrease in spouses’ dependence is due to the
cohort and not to the age effect. We provide a methodology that, if sufficiently rich datasets
are available, allows one to separate further age and cohort effects on the evolution of spouses’
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dependence. Second, we consider not only a class of single-parameter Archimedean copulas, but
also their two-parameter extensions, obtained by mixing with the independence copula. We find
that the two-parameter copulas are significantly more suitable to describe spouses’ dependence than
single-parameter ones, especially if the extension is the linear-mixing with independence. In this way,
our findings echo the results in [4], even though the datasets are not the same.

When we study the effect of spouses’ dependence on pricing insurance products, we find that
dependence matters in pricing annuities on two lives, including joint-life and last-survivor ones.
Indeed, when assuming independence, the insurer under-/over-prices such annuities when the
benefit payable to the bereaved life is lower/greater than half of the initial benefits payable while both
spouses are alive. The misspecification of spouses’ dependence affects in a different way each cohort.
Indeed, when the insurer misspecifies the copula (taking one parameter rather than two parameters),
the sign in the over- and under-estimation is reversed in the two generations. Since mispricing
caused by inaccurate modeling of spouses’ dependence is not uniform across cohorts, the longevity
of couples can be hedged away using reinsurance and longevity derivatives on single generations,
but also using natural hedging across generations. This is the agenda for future research.

An alternative approach to the study of couples’ dependence could be the multiple state
approach. We did not pursue it here because the benchmark literature is copula-based and due to
the relative paucity of data, which would make multiple state modeling quite hard. However, we
certainly consider it as an alternative worth investigation in the future.

Author Contributions: The three authors contributed in equal shares to the paper. Luciano and Vigna focused
more on modelling and calibrating the marginal survival functions, Spreeuw focused more on fitting the several
copula families.
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