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Abstract: In this paper, we review pricing of the variable annuity living and death guarantees
offered to retail investors in many countries. Investors purchase these products to take advantage of
market growth and protect savings. We present pricing of these products via an optimal stochastic
control framework and review the existing numerical methods. We also discuss pricing under
the complete/incomplete financial market models, stochastic mortality and optimal/sub-optimal
policyholder behavior, and in the presence of taxes. For numerical valuation of these contracts in the
case of simple risky asset process, we develop a direct integration method based on the Gauss-Hermite
quadratures with a one-dimensional cubic spline for calculation of the expected contract value, and a
bi-cubic spline interpolation for applying the jump conditions across the contract cashflow event
times. This method is easier to implement and faster when compared to the partial differential
equation methods if the transition density (or its moments) of the risky asset underlying the contract
is known in closed form between the event times. We present accurate numerical results for pricing
of a Guaranteed Minimum Accumulation Benefit (GMAB) guarantee available on the market that
can serve as a numerical benchmark for practitioners and researchers developing pricing of variable
annuity guarantees to assess the accuracy of their numerical implementation.

Keywords: variable annuity; guaranteed living and death benefits; guaranteed minimum
accumulation benefit; optimal stochastic control; direct integration method

1. Introduction

Many wealth management and insurance companies worldwide are offering investment products
known as variable annuities (VA) with some guarantees of living and death benefits to assist investors
with managing their pre-retirement and post-retirement plans. These products take advantage
of market growth while providing a protection of the savings against the market downturns.
Insurers started to offer these products from the 1990s in the United States. Later, these products
became popular in Europe, UK and Japan and more recently in Australia. The VA contract cashflows
received by the policyholder are linked to the investment portfolio choice and performance (e.g., the
choice of mutual fund and its strategy) while traditional annuities provide a pre-defined income
stream in exchange for the lump sum payment. According to LIMRA (Life Insurance and Market
Research Association) reports, the VA market is huge: VA sales in United States were $158 billion in
2011, $147 billion in 2012 and $145 billion in 2013.

The types of VA guarantees (referred in the literature as VA riders) offered for investment portfolios
are classified as guaranteed minimum withdrawal benefit (GMWB), guaranteed minimum accumulation benefit
(GMAB), guaranteed minimum income benefit (GMIB) and guaranteed minimum death benefit (GMDB). These
guarantees, generically denoted as GMxB, provide different types of protection against the market
downturns and policyholder death. GMWB allows the withdrawing of funds from the VA account up
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to some pre-defined limit regardless of the investment performance during the contract; GMAB and
GMIB both provide a guaranteed investment account balance at the contract maturity that can be
taken as a lump sum or standard annuity respectively. Guaranteed lifelong withdrawal benefit (GLWB),
a specific type of GMWB, allows withdrawing funds at the contractual rate as long as the policyholder
is alive. GMDB provides a specified payment if the policyholder dies. Precise specifications of the
products within each type can vary across companies and some products may include combinations of
these guarantees.

A good overview of the VA products and the development of their market can be found in [1–3].
There have been a number of papers in the academic literature considering pricing of these products.
Most of these are focused on pricing VA riders under the pre-determined (static) policyholder behaviour
in withdrawal and surrender. Some studies include pricing under the active (dynamic) strategy when
the policyholder ‘optimally’ decides the amount of withdrawal at each withdrawal date depending
on the information available at that date. Standard Monte Carlo (MC) method can easily be used
to estimate price in the case of pre-defined withdrawal strategy but handling the dynamic strategy
requires a backward in time solution that can be done only via the partial differential equation (PDE),
direct integration or regression type MC methods.

In brief, pricing under the static and dynamic withdrawal strategies via the PDE based methods
has been developed in [4–6]. The authors of [1] develop a unified approach with numerical estimation
via MC and direct integration methods. The direct integration method was developed further in [7,8]
using the Gauss-Hermite quadrature and cubic interpolations. The authors of [9] consider many VA
riders under the stochastic interest rate and stochastic volatility if the policyholder withdraws at the
pre-defined contractual rate or completely surrenders the contract. Their pricing is accomplished
either by the ordinary MC or Least-Squares MC to account for the optimal surrender. Often, pricing
of the VA riders is considered under the assumption of a geometric Brownian motion for the risky
asset underlying the contract, though a few papers looked at extensions such as stochastic interest rate
and/or stochastic volatility, see, e.g., [9–12].

The authors of [13] prove the existence of an optimal bang-bang control for GLWB contract when
thecontract holder can maximize contract writer’s losses by only ever performing non-withdrawal,
withdrawal at the contract rate or full surrender. However, they also demonstrate that the related
GMWB contract does not satisfy the bang-bang principle other than in certain degenerate cases.
The authors of [11] developed a regression-based MC method for pricing GLWB under the bang-bang
strategy in the case of stochastic volatility. GMWB pricing under the bang-bang strategy was studied
in [14]. The difficulty with applying the well known Least-Squares MC introduced in [15] for pricing
VA riders under the optimal strategy is due to the fact that the paths of the underlying VA wealth
account are affected by the withdrawals. In principle, one can apply the control randomization methods
extending Least-Squares MC to handle optimal stochastic control problems with controlled Markov
processes recently developed in [16], but the accuracy and robustness of this method for pricing of the
VA riders have not been studied yet.

One common observation in the above mentioned literature is that pricing under the optimal
strategy often leads to prices significantly higher than observed on the market. These studies rely on the
option pricing risk-neutral methodology in quantitative finance to find a fair fee. Here, the fundamental
idea is to find the cost of a dynamic self-financing replicating portfolio which is designed to provide
an amount at least equal to the payoff of the contract. The cost of establishing this hedging strategy is
the no-arbitrage price of the contract. This is under the assumption that the contract holder adopts an
optimal strategy (exercise strategy maximising the monetary value of the contract). If the purchaser
follows any other exercise strategy, the contract writer will generate a guaranteed profit if continuous
hedging is performed. Of course the strategy optimal in this sense is not related to the policyholder
circumstances. In pricing VA with guarantees, it is reasonable to consider alternative assumptions
regarding the investor’s withdrawal strategy. This is because an investor may follow what appears
to be a sub-optimal strategy that does not maximise the monetary value of the option. This could be
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due to reasons such as liquidity needs, tax and other personal circumstances. Moreover, the mortality
risk is diversified by the contract issuer through selling many contracts while the policyholder cannot
do it. Also, there might be no liquid secondary market for VAs on which the policy could be sold
(or repurchased) at its fair value. The policyholder may act optimally with respect to his preferences
and circumstances but it may be different from the optimal strategy that maximises the monetary
value of the contract. In this case we calculate a fair fee to be deducted in order to finance a dynamic
replicating portfolio for the guarantees (options) embedded in the contract under the assumption of a
particular exercise strategy. The replicating portfolio will provide sufficient funds to meet any future
payouts that arise from writing the contract.

However, the fair fee obtained under the assumption that investors behave optimally to maximise
the value of the guarantee does offer an important benchmark because it is a worst case scenario for
the contract writer. Also, as noted in [17], secondary markets for the equity linked insurance products
(where the policyholder can sell their contracts) are growing. Thus, third parties can potentially
generate a guaranteed profit through hedging strategies from the financial products such as VA
riders which are not priced under the assumption of the optimal withdrawal strategy. The authors
of [18] mention several companies recently suffering large losses related to increased surrender rates,
indicating that either the charged fees were not sufficiently large or that the hedging program did not
perform as expected.

One way to analyze the withdrawal behavior of a VA holder and evaluate the need of these
products is to solve the life-cycle utility model accounting for consumption, housing, bequest and other
real life circumstances. Developing a full life-cycle model with all preferences and required parameters
is challenging but there are already several contributions reporting some interesting findings in this
direction: [19–22]. This topic will not be considered in this paper. It is also important to note a
recent paper by [23] considering the pricing under the optimal strategy in the presence of taxes via
subjective risk-neutral valuation methodology. They demonstrated that including taxes significantly
affects the value of the VA withdrawal guarantees producing results in line with empirical market
prices. This approach will be discussed in Section 5.

Often it is assumed that insurance company can diversify the mortality risk through selling many
contracts and the financial risk can be completely hedged using the underlying financial asset. Then the
fair price of the product is calculated as the expected present value of the product benefits with respect
to the risk-neutral process for the financial risk and the real process for the mortality. In practice,
one has to account for a systemic mortality risk that cannot be diversified (often modelled through
stochasticity of the death probabilities). If the assets for perfect hedging of the mortality risk would
exist then one could calculate the unique fair price as expectation with respect to a risk-neutral process
for mortality. However, the current status of the insurance market does not allow investment into
such assets. There will be a residual risk for the contract issuer not only due to systemic mortality
risk but also due to the finite size of the portfolio and imperfections of the hedging with respect to the
financial risk. In this case, one can calculate extra loading to the fair price so that the issuer residual
risk (quantified as, e.g., Value-at-Risk or expected shortfall at some confidence level) is no greater
than zero. This can be accomplished via simulations of the hedging strategy based on the fair price
valuation and quantification of the residual hedging errors. The extra loading to cover the residual risk
depends on the risk management strategy for the product and was considered in [24,25]. This topic
will be briefly discussed in Section 3.

In this paper we review pricing of living and death benefit guarantees offered with VAs,
and present an optimal stochastic control framework for pricing these contracts. The main ideas have
been developed and appeared in some forms in a number of other papers. However, we believe that
our presentation is easier to understand and implement. We also present a direct integration method
based on computing of the expected contract values in a backward time-stepping through the high
order Gauss-Hermite integration quadrature applied on the cubic spline interpolation. This method can
be applied when transition density of the underlying asset between the contract cashflow event dates
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or its moments are known in closed form. We have used this for pricing specific financial derivatives
and some simple versions of the VA guarantees in [7,26]. Here, we adapt and extend the method to
handle pricing VA riders in general. As a numerical example, we calculate accurate prices of GMAB
with possible annual ratchets (reset of the guaranteed capital to the investment portfolio value if the
latter is larger on the contract anniversary dates) and allowing optimal withdrawals. The contract
that we consider is very similar in specifications to the real product marketed in Australia, see for
example [27,28]. Numerical difficulties encountered in pricing this VA rider are common across other
VA guarantees and at the same time comprehensive numerical pricing results for this product are not
available in the literature. These results (reported for a range of parameters) can serve as a numerical
benchmark for practitioners and researchers developing pricing of the VA riders to assess the accuracy
of their numerical implementations.

In the next section, a general specification of VA riders is given. In Section 3 we discuss different
stochastic models used for pricing these products including complete/incomplete financial market
models and stochastic mortality. Section 4 provides precise specification for some popular VA riders.
In Section 5 we present calculation of the fair price and fair fee as a solution of an optimal stochastic
control problem and discuss pricing under the optimal/sub-optimal policyholder behaviour and in
the presence of taxes. Section 6 reviews the numerical methods and algorithms for pricing VA riders.
In Section 7 we present numerical results for the fair fees of GMAB rider. Concluding remarks are
given in Section 8.

2. VA Rider Contract Specification

Consider a VA contract with some guarantees for living and death benefits purchased by an
x-year old individual at time t0 = 0 with the up-front premium invested in a risky asset (e.g., a mutual
fund), denoted as S(t) at time t ≥ 0. The VA rider specification includes dates when events such as
withdrawal, ratchet (step-up), bonus (roll-up), death benefit payment, etc. may occur. Precise definitions
of these events depend on the contract and corresponding examples will be provided in Section 4.
The contract holder is allowed to take withdrawals and we assume that these can only take place on
the set of the ordered event times T = {t1, . . . , tN}, where T = tN is the contract maturity (in the case of
lifelong guarantees T corresponds to the maximum age beyond which survival is deemed impossible).
Denote the withdrawal amount at time tn ∈ T as γn. Also, the set of policy anniversaries when the
ratchet event may occur is denoted as Tr and is assumed to be a subset of T . For simplicity of notation
we assume that all other events may only occur on the withdrawal dates. The value of the contract
payments at time tn is determined by three state variables: wealth account W(tn), guarantee account
A(tn) and life status indicator In.

• Wealth account W(t) is value of the investment account which is linked to the risky asset S(t).
Initially, W(0) is set equal to the upfront premium. For a given process of risky asset S(t), t ≥ 0,
the value of the wealth account W(t) evolves as

W(t−n ) =
W(t+n−1)

S(tn−1)
S(tn)e−αdtn , n = 1, 2, . . . , N

W(t+n ) := hW
n
(
W(t−n ), A(t−n ), γn

)
= max(W(t−n )− γn, 0)

(1)

where dtn = tn − tn−1 and α is the annual fee continuously charged by the contract issuer for
the provided guarantee. Here, we denote the values of the wealth account just before and just
after tn as W(t−n ) and W(t+n ) respectively, and similarly for other variables. The function hW

n (·) is
introduced to have a generic notation covering cases of discretely charged fees discussed later in
this section.

• Guarantee account A(t) is the value used to calculate benefits provided by the VA rider, also referred
in the literature as benefit base. It is not changing between the event times but can be stochastic via
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stochasticity in W(t) at the event times depending on the contract features. Initially, A(0) is set
equal to the upfront premium. At the event time, the benefit base may change as

A(t+n ) := hA
n
(
W(t−n ), A(t−n ), γn

)
(2)

where the function hA
n (·) is determined by the contract specifications and may also depend on

the fee, penalty and other parameters. Specific cases will be provided in Section 4. For example,
if only a ratchet is possible at tn ∈ Tr and no other contract events, then

A(t+n ) = max
(

A(t−n ), W(t−n )× 1tn∈Tr

)
Also, if there is only withdrawal at time tn, then A(t+n ) = max (A(t−n )− γn, 0) . In practice,
several events such as withdrawal, ratchet, bonus, etc. may occur at the same time, and the
contract specification determines the order of these events.

• Life status indicator In is a discrete random variable with the states in the set G = {1, 0,−1}
corresponding to the policyholder is being alive at tn, died during (tn−1, tn], or died before or at
tn−1 respectively. This variable is needed if there are death benefit features in the contract. It can
be extended to include extra states corresponding to the policyholder partner if there is a spouse
continuation feature in the contract. This case will not be considered explicitly but is easy to add.
One could write the contract payoff function using the random variable τ representing lifetime of
the policyholder, but instead we introduce In to have a payoff written in the standard form for the
optimal stochastic control framework.

An extra state variable is also required to track a tax free base to account for taxes; this will be
considered in Section 5.4. In principle, different guarantees included in VA may have different benefit
base state variables. For notational simplicity and also from a practical perspective, we assume that all
guarantees in VA are linked to the same benefit base account.

The contract product specification also determines:

• the contractual (guaranteed) withdrawal amount Gn for the period (tn−1, tn] that may depend on
the benefit base A(t−n ) and/or W(t−n );

• possible range for withdrawal γn ∈ An (W(t−n ), A(t−n ));
• the payout PT(W, A) at the contract maturity if policyholder is alive at t = T;
• the payout Dn(W, A) to the beneficiary at tn in the case of the policyholder death during (tn−1, tn],

n = 1, . . . , N;
• the cashflow received by the policyholder f̃n(W(t−n ), A(t−n ), γn) at the event times tn,

n = 1, . . . , N − 1, that might be different from γn due to penalties.

The specification details typically vary across different companies and are difficult to extract from
the very long product specification documents. Moreover, results for specific GMxB riders presented
in academic literature often refer to different specifications.

Denote the state variable vector at time tn before the withdrawal as Xn = (W(t−n ), A(t−n ), In) and
X = (X1, . . . , XN). Then, given the withdrawal strategy γ = (γ1, . . . , γN−1), the present value of the
overall payoff of the VA contract with a guarantee can be written as

H0(X, γ) = B0,N HN(XN) +
N−1

∑
n=1

B0,n fn(Xn, γn) (3)

Here,

HN(XN) = PT
(
W(T−), A(T−)

)
× 1IN=1 + DN

(
W(T−), A(T−)

)
× 1IN=0 (4)

is the cashflow at the contract maturity, and

fn(Xn, γn) = f̃n(W(t−n ), A(t−n ), γn)× 1In=1 + Dn
(
W(t−n ), A(t−n )

)
× 1In=0 (5)
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is the cashflow at time tn. Also, Bi,j is the discounting factor from tj to ti

Bi,j = exp
(
−
∫ tj

ti

r(t)dt
)

, tj > ti (6)

where r(t) is the risk-free interest rate (possibly stochastic).
In practice, the guarantee fee is charged discretely and proportional to the wealth account that

requires some changes to the wealth process (1). Denoting the discretely charged fee with the annual
basis as α̃, the wealth process becomes

W(t−n ) =
W(t+n−1)

S(tn−1)
S(tn), n = 1, 2, . . . , N

W(t+n ) := hW
n
(
W(t−n ), A(t−n ), γn

)
= max

(
W(t−n )(1− α̃dtn)− γn, 0

) (7)

Typically, the difference between continuously and discretely charged fees is not material as
observed in our numerical results given in Section 7.

Another popular fee structure corresponds to fees charged as a proportion of the benefit base,
so that

W(t−n ) =
W(t+n−1)

S(tn−1)
S(tn), n = 1, 2, . . . , N

W(t+n ) := hW
n
(
W(t−n ), A(t−n ), γn

)
= max

(
W(t−n )− A(t−n )α̃dtn − γn, 0

) (8)

Here, it is assumed that discrete fees are deducted before the withdrawal but it can be vice versa
depending on the contract specifications.

Once the above conditions, i.e., functions hW
n (·), hA

n (·), PT(·), PD(·), f̃n(γn) and admissible range
for withdrawal An are specified by the contract design, and a specific stochastic evolution of the
financial risky asset S(t) and death indicator In is assumed, then pricing of the contract can be
accomplished by numerical methods. In particular, if the withdrawals are optimal then pricing can
be accomplished by the PDE, direct integration or regression based MC methods. If the withdrawals
are pre-defined, then the standard MC along with PDE and direct integration methods can be used.
The use of a particular numerical technique is determined by the complexities of the underlying
stochastic model and contract details.

3. Stochastic Model

Commonly in the literature, stochastic models for the financial risky asset S(t) underlying
the VA rider assume that there is no arbitrage in the financial market which means that there is
a risk-neutral measure Q under which payment streams can be valued as expected discounted values.
Moreover, this means that the cost of a portfolio replicating the contract is given by its expected
discounted value under Q. Hence, the fair price of the contract can be expressed as an expectation
of the contract discounted cashflows with respect to Q. Some models (such as Black-Scholes model)
considered in the literature are complete which means that the risk-neutral measure Q is unique.
Other models (such as extending Black-Scholes model to stochastic volatility and/or stochastic interest
rate) are incomplete implying that Q is not unique. It is also assumed that the financial market has a
risk-free asset that accumulates continuously at the risk-free interest rate. These are typical assumptions
in the academic research literature on pricing financial derivatives, for a good textbook in this area we
refer the reader to, e.g., [29].

A benchmark model commonly considered in the literature on pricing VA riders is the well-known
Black-Scholes dynamics for the reference portfolio of assets S(t) that under the risk-neutral measure Q
is known to be

dS(t) = r(t)S(t)dt + σ(t)S(t)dB(t) (9)
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Here, B(t) is the standard Wiener process, r(t) is deterministic time dependent risk-free interest
rate and σ(t) is deterministic time dependent volatility. Under this model the financial market is
complete. The solution for this process is just

S(tn) = S(tn−1)e(rn− 1
2 σ2

n)dtn+σn
√

dtnzn

where z1, . . . , zN are independent and identically distributed standard Normal random variables,
rn =

∫ tn
tn−1

r(u)du/dtn and σ2
n =

∫ tn
tn−1

σ2(u)du/dtn.
Many models have been developed in the literature of pricing financial derivatives extending the

Black-Scholes dynamics to the stochastic interest rate and/or stochastic volatility. These are incomplete
models where the risk-neutral measure Q is not unique. It is impossible to review all these models
and we refer the reader to the standard textbooks in this area such as [30] or [31]. Some of these
models have been applied for pricing VA riders that can be represented as the following risk-neutral
diffusion process

dr(t) = ξr(ζr − r(t))dt + σr(r(t))a1 dBr(t)

dνt = ξννa2
t (ζν − νt)dt + σννa3

t dBν(t), νt = σ2(t)

with a1 = {0, 1/2}, a2 = {0, 1}, a3 = {1/2, 1, 3/2}
(10)

where (ξr, ζr, σr, ξν, ζν, σν) are the model parameters, and Br(t) and Bν(t) are the Wiener processes
possibly correlated with B(t). In particular, [9] studied the case of stochastic interest rate and stochastic
volatility corresponding to a1 = 1/2, a2 = 0, a3 = 1/2. In [11], the authors considered the case of
deterministic interest rate and stochastic volatility with a2 = {0, 1} and a3 = {1/2, 1, 3/2}. In [12],
the authors developed solution for deterministic volatility and stochastic interest rate with a1 = 0.
An alternative way to modelling stochasticity in the interest rate and volatility via diffusion processes is
to consider the Markov regime switching models. Under this approach, the interest rate and volatility
are assumed to have the finite number of possible values and their evolution in time is driven by the
finite state Markov chain variable representing possible regimes of the economy. In the context of
pricing VA riders under the optimal withdrawal strategy, this approach was used in, e.g., [10].

The mortality risk is assumed to be independent from the financial risk. A standard way to model
mortality is to introduce the force of mortality λ(t) for a person aged x at time t = 0 which may be
stochastic or deterministic, such that the person lifetime τ satisfies

Pr[τ > t′|τ > t; λ(y), t ≤ y ≤ t′] = e−
∫ t′

t λ(y)dy

For calculation of the VA rider payoff we need evolution of a life status indicator variable In with
the states in the set G = {1, 0,−1} corresponding to the policyholder is being alive at tn, died during
(tn−1, tn], or died before or at tn−1 correspondingly. Then the conditional transition probabilities
q(gn−1, gn) := Pr[In = gn|In−1 = gn−1; λ(y), tn−1 ≤ y ≤ tn] with gn−1, gn ∈ G can be written as

qn := q(1, 0) = 1− e
−
∫ tn

tn−1
λ(y)dy

, q(1, 1) = 1− qn

q(1,−1) = q(0, 1) = q(0, 0) = q(−1, 1) = q(−1, 0) = 0, q(0,−1) = q(−1,−1) = 1
(11)

If λ(t) is modelled as stochastic, then the transition probabilities qn become stochastic due to
stochasticity of λ(t) and a random variable In becomes a doubly stochastic random variable. It is
common to assume that λ(t) is a Markov process. Then the survival function (probability of surviving
from time t to t′) given the knowledge of the mortality force at time t is

p(t, t′, λ(t)) := E
[

e−
∫ t′

t λ(y)dy
∣∣∣∣λ(t)]
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There are many mortality models developed in the actuarial literature starting from the Gompertz
deterministic model λ(x) = aex/b introduced in 1825, for a textbook treatment of this topic see,
e.g., [32]. If λ(t) is deterministic, the mortality risk can be fully diversified via selling the contract
to many policyholders, i.e., the contract price averaged over L independent policyholders of the
same age converges to the expected value of the contract as L increases. The standard way to
estimate deterministic death probabilities qn is to use the official Life Tables that provide annual
death probabilities for each age and gender in a given country; probabilities for time periods within a
year are typically estimated assuming constant force of mortality within a year.

Stochastic modelling of λ(t) is a more recent development starting from the Lee-Carter model
introduced in [33]. Many stochastic mortality models extending the Lee-Carter model have
been developed to capture the period, cohort and stochastic volatility features, see, e.g., [34–36].
The stochasticity of λ(t) will introduce some dependence between the lifetimes of the policyholders
leading to the systemic (undiversified) mortality risk. For pricing VA riders, the force of mortality is
often model by a real diffusion process

dλ(t) = µλ(λ(t), t)dt + σλ(λ(t), t)dB∗λ(t) (12)

where B∗λ(t) is the Wiener process and some specific forms for the drift µλ(·) and volatility σλ(·) are
considered in, for example, [9,24]. If we need to model a portfolio of the contracts, then the dependence
between the policyholder deaths can be introduced via models for the number of deaths in a given
population driven by some common factors as in the Lee-Carter model and its extensions reviewed in,
e.g., [34], or under the CreditRisk+ framework for mortality developed recently in [37,38].

Note that the current status of the insurance market does not allow to invest into the assets
to hedge the systemic mortality introducing incompleteness in the model. In this case, pricing
can be accomplished by either the financial mathematics no-arbitrage approach or the actuarial
principle. Under the financial mathematics no-arbitrage approach, ([29] (proposition 15.3)), we find
the risk-neutral mortality process corresponding to the real process (12) to be

dλ(t) = {µλ(λ(t), t)− ζ(λ(t), t))σλ(λ(t), t)} dt + σλ(λ(t), t)dBλ(t) (13)

where ζ(λ(t), t)) is the risk premium and Bλ(t) is the Wiener process under the risk-neutral measure.
Then the fair price is calculated as an expectation with respect to the risk-neutral measure both for
the financial asset and mortality processes. Of course, the risk premium is unknown and should be
found using extra condition such as the requirement for the risk of hedging error loss (measured, e.g.,
as Value-at-Risk or expected shortfall at some confidence level) to be no greater than zero. This is the
approach taken in, e.g., [24]. Under the actuarial principle, the fair price is calculated as the expectation
under the risk-neutral process for financial asset and under the real process for mortality. As a result,
there will be a residual risk that the issuer cannot control and the fair price can be adjusted by adding
extra loading to the fair fee so that the risk of hedging error loss is no greater than zero, similarly to the
estimation of the risk premium under the financial mathematics no-arbitrage approach. This procedure
was considered in, e.g., [25].

Even if the force of mortality is deterministic, there will be a residual risk due to the finite size
of the portfolio. Moreover, it is important to note that even if there is no mortality risk, in practice,
there will be a residual risk due to discrete hedging and other incompleteness of financial markets.
To handle this, again, one should quantify the fair price hedging error distribution and adjust the
price extra loading under the actuarial principle or adjust risk premium under the no-arbitrage
financial mathematics approach so that the risk of hedging error loss will not exceed the required level.
These adjustments depend on the risk management strategy for the product.

Remark 1. For simplicity, we do not consider management fees αm charged by a mutual fund for
managing the investment portfolio. If management fees αm is given exogenously, then it will have an
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impact on the fair fee α that should by charged by the VA guarantee issuer. This can be accomplished
as described in, e.g., [10] and can be easily incorporated in the framework outlined in our paper.
Obviously, α will be larger for given αm > 0 comparing to the case αm = 0. The management fees
reduce the performance of the investment account thus increasing the value of the guarantee as
reported in, e.g., [39] for GMWB or [10] for GLWB. They commented that insurers wishing to provide
the cheapest guarantee could provide the guarantee on the corresponding inexpensive exchange
traded index fund rather than on a managed mutual fund account with extra fees.

4. VA Riders

There are many different specifications for the GMWB, GLWB, GMAB, GMIB and GMDB riders
in the industry and academic literature. In this section we provide a mathematical formulation for
some standard VA rider setups. We assume that the guarantee fee α is charged continuously. If the fee
is charged discretely (and before withdrawal and other contract events), then one should make the
following adjustment to the formulas in this section:

W(t−n )→W(t−n )(1− α̃dtn)

if the fee is proportional to the wealth account, or

W(t−n )→ max(W(t−n )− A(t−n )α̃dtn, 0)

if the fee is proportional to the benefit base.

4.1. GMWB

A VA contract with GMWB promises to return at least the entire initial investment through cash
withdrawals during the policy life plus the remaining account balance at maturity, regardless of the
portfolio performance. Often in the academic literature, the studied GMWB type has a very simple
structure, where the penalty is applied to the cashflow paid to the contract holder, while the benefit
base is reduced by the full withdrawal amount. Specifically,

A(t+n ) := hA
n (W(t−n ), A(t−n ), γn) = A(t−n )− γn (14)

with γn ∈ An, An = [0, A(t−n )]; and the cashflow paid to the contract holder is

f̃n(W(t−n ), A(t−n ), γn) =

{
γn, if 0 ≤ γn ≤ Gn

Gn + (1− β)(γn − Gn), if γn > Gn
(15)

where β ∈ [0, 1] is the penalty parameter for the excess withdrawal. The contractual amount is defined
as Gn = W(0)(tn − tn−1)/T and the maturity condition is

PT(W(t−N), A(t−N)) = max(W(t−N), f̃n(A(t−N)))

Note that the above specification does not allow any early surrender which can be included via
extending the withdrawal space An. Also, there is no death benefit; it is assumed that the beneficiary
will maintain the contract in the case of a policyholder death. This contract has only basic features
facilitating comparison of results from different academic studies, such as [4,5,7,14].

Specifications common in the industry include cases where the contractual amount Gn is specified
to be different from Gn = W(0)(tn − tn−1)/T and a penalty is applied to both the withdrawn
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amount and the benefit base. For example, specifications used in [23] to compare with the industry
products include:

f̃n(W(t−n ), A(t−n ), γn) = γn − δexcess − δpenalty
δexcess = βe

n max (γn −min(A(t−n ), Gn), 0)
δpenalty = β

g
n(γn − δexcess)× 1x+tn<59.5

(16)

where x is the age of the policyholder in years at t0 = 0, βe
n and β

g
n are excess withdrawal and early

withdrawal penalty parameters that can change with time, and

γn ∈ An, An =
[
0, max

(
W(t−n ), min(A(t−n ), Gn)

)]
The authors of [23] also considered several specifications for the benefit base jump conditions.

• Specification 1:

A(t+n ) =

{
max(A(t−n )− γn, 0), if γn ≤ Gn

max
(

min
(

A(t−n )− γn, A(t−n )
W(t+n )

W(t−n )

)
, 0
)

, if γn > Gn
(17)

• Specification 2:

A(t+n ) =

{
max(A(t−n )− γn, 0), if γn ≤ Gn

max (min (A(t−n )− γn, W(t+n )) , 0) , if γn > Gn
(18)

• Specification 3:

A(t+n ) =

{
max(A(t−n )− γn, 0), if γn ≤ Gn

max (A(t−n )− Gn, 0) W(t+n )

max(W(t−n )−Gn ,0)
, if γn > Gn

(19)

In addition, a ratchet (reset of the benefit base to the wealth account if the latter is higher) can
apply at the contract anniversary dates. If it occurs before the withdrawal, then in the above formulas
one should make the following adjustment

A(t−n )→ max(A(t−n ), W(t−n )), if tn ∈ Tr

If the reset is taking place after the withdrawal, then one should have

A(t+n )→ max(A(t+n ), W(t+n )), if tn ∈ Tr

4.2. GLWB

A GLWB rider is similar to GMWB but provides a guaranteed withdrawal for life; upon the
policyholder death the remaining wealth account value is paid to the beneficiary. The contractual
withdrawal amount Gn is typically based on a fixed proportion g of the benefit base A(t), i.e.,
Gn = g× A(t−n )(tn − tn−1). The benefit base can increase via ratchet (step-up) or bonus (roll-up)
features. Bonus feature provides an increase of the benefit base if no withdrawal is made on
a withdrawal date. Complete surrender refers to the withdrawal of the whole policy account.
The withdrawal can exceed the contractual amount and in this case the net amount received by
the policyholder is subject to a penalty. Under the typical specification considered, e.g., in [11], the
cashflow received by the policyholder is

f̃n(W(t−n ), A(t−n ), γn) =

{
γn, if 0 ≤ γn ≤ Gn

Gn + (1− β)(γn − Gn), if γn > Gn
(20)

γn ∈ An, An = [0, max(W(t−n ), Gn)]
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where β is the penalty parameter for the excess withdrawal. The benefit base jump condition, including
ratchets and bonus features, is given by

A(t+n ) = max
(

A(t−n )(1 + bn), W(t−n )1tn∈Tr

)
× 1γn=0

+max
(

A(t−n ), max(W(t−n )− γn, 0)× 1tn∈Tr

)
× 10<γn≤Gn

+max
(

A(t−n )
W(t−n )− γn

W(t−n )− Gn
, (W(t−n )− γn)× 1tn∈Tr

)
× 1Gn<γn≤W(t−n ) (21)

where bn is the bonus rate parameter that may change in time. Finally, if the policyholder dies
during (tn−1, tn], the beneficiary receives a death benefit payment Dn(W(t−n ), A(t−n )) = W(t−n ) and tN
corresponds to the maximum age beyond which survival is deemed impossible.

4.3. GMAB

A GMAB rider provides a certainty of capital till some maturity (e.g., 10 or 20 years) and the
potential for a capital growth. Typical GMAB products sold on the market do not impose penalty
on the policyholder withdrawal amount but can penalise the benefit base (protected capital balance)
under some conditions. It is also common to have a ratchet feature, where the protected capital balance
increases to the wealth account if the latter is higher on an anniversary date. The withdrawals from
the account are allowed subject to a penalty. For example, specifications of the product marketed
by [27,28] in Australia are very close to the following formulation:

f̃n(W(t−n ), A(t−n ), γn) = γn (22)

A(t+n ) := hA
n (W(t−n ), A(t−n ), γn) =

{
max (A(t−n ), W(t−n ))− Cn(γn), if tn ∈ Tr

max (A(t−n )− Cn(γn), 0) , otherwise
(23)

where Cn(γn) is a penalty function that can be larger than γn as defined below, and γn ∈ An = [0, W(t−n )].
The product is offered for the super and pension account types. The super account is designed for

an investor being in an accumulation phase, while the pension account is for a retired investor in an
annuitization phase. The difference between the accounts in terms of technical details is only in the
penalty applied to the protected capital after withdrawals; the super account discourages withdrawals
more than the pension account. In both cases the penalty is in the form of a reduction of the protected
capital larger than the withdrawn amount. The penalty only applies if the wealth account balance is
below the protected capital amount. A super account penalizes any amount of withdrawals, while the
pension account only penalizes excessive withdrawals.

Specifically, for a super account, the function Cn(γn) is given by

Cn(γn) =

{
γn, if W(t−n ) ≥ A(t−n )
A(t−n )γn/W(t−n ), if W(t−n ) < A(t−n )

(24)

and for a pension account, the penalty is

Cn(γn) =

{
γn, if W(t−n ) ≥ A(t−n ) or γn ≤ Gn

A(t−n )γn/W(t−n ), if W(t−n ) < A(t−n ) and γn > Gn
(25)

That is, the penalty for the pension account applies only if the wealth account balance is below
the protected capital amount and the withdrawal is above a pre-determined amount Gn.

Finally, the terminal condition is given by

PT(W(t−N), A(t−N)) = max(W(t−N), A(t−N))
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A total withdrawal of the wealth account balance effectively terminates the contract, as the penalty
mechanism ensures the protected capital is always exhausted to zero by a complete withdrawal.

4.4. GMIB

At maturity, the holder of a GMIB rider can select to take a lump sum of the wealth account
W(T) or annuitise this amount at annuitization rate äT current at the contract maturity or annuitize
the benefit base A(T−) at the pre-specified annuitization rate äg. Annuitization rate is defined as
the price of an annuity paying one dollar each year. If the account value is below the benefit base,
then the customer cannot take A(T−) as a lump sum but only as an annuity at the pre-specified rate.
Thus, the payoff of VA with GMIB at time T is

PT(W(t−N), A(t−N)) = max
(

W(t−N), A(t−N)
äT
äg

)
The benefit base may include roll-ups and ratchets similar to as described for the GLWB case.

Again, this rider can be offered jointly with other riders. For example, it can be part of GMWB or
GMAB contract maturity conditions. For discussion and pricing of GMIB in academic literature,
see [1,40].

4.5. GMDB

A GMDB rider provides a death benefit if the policy holder death occurs before or at the contract
maturity. Assuming that if the policyholder dies during (tn−1, tn], then the beneficiary will be paid an
amount Dn(·) at tn, some of the common death benefit types are:

Dn(W(t−n ), A(t−n )) =


max(A(t−n ), W(t−n )), death benefit type 0
W(0), death benefit type 1
max(W(0), W(t−n )), death benefit type 2
W(t−n ), death benefit type 3

(26)

Some providers adjust the initial premium W(0) for inflation in the death benefit. For some
policies, the death benefit type may change at some age, e.g., death benefit type 1 or type 2 may
change to type 0, effectively making the death benefit expiring at some age (e.g., at the age of 75 years).
The death benefit can be provided on top of some other guarantees and the contract may provide a
spousal continuation option that allows a surviving spouse to continue the contract. The contract may
have accumulation phase where the death benefit may increase, and continuation phase where the
death benefit remains constant. Pricing GMDB rider has been considered in, e.g., [8,41,42].

5. Fair Pricing

Given the withdrawal strategy γ = (γ1, . . . , γN−1), the present value of the contract cahsflows is
given by (3) which is a function of the state vector Xn = (W(t−n ), A(t−n ), In), n = 0, . . . , N. Let Qt(W, A)

be the price of the VA contract with a guarantee at time t, when W(t) = W, A(t) = A and the
policyholder is alive. For simplicity of notation, if the policyholder is alive, we drop mortality state
variable In = 1 in the function arguments. Then the contract fair price under the given withdrawal
strategy γ can be calculated as

Q0 (W(0), A(0)) = EQ,I
t0

[H0(X, γ)] (27)

Here, EQ,I
t [·] denotes an expectation with respect to the state vector X, conditional on information

available at time t, i.e., with respect to the financial risky asset process under the risk-neutral probability
measure Q and with respect to the mortality process under the probability measure I. The latter can be
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either real or risk-neutral probability measure depending on the pricing approach in the incomplete
market as discussed in Section 3.

The fair fee value of α to be charged for the VA guarantee corresponds to Q0(W(0), A(0)) = W(0).
That is, once a pricing of Q0(W(0), A(0)) for a given α is developed, then a numerical root search
algorithm is required to find the fair fee.

Remark 2. If volatility, interest rate or force of mortality are stochastic then these variables should be
added to the state vector X for valuation of the fair price expectation (27).

5.1. Pricing as Stochastic Control Problem

The withdrawal strategy γ can depend on the time and state variables and is assumed to be given
when the price of the contract is calculated in (27). The withdrawal strategies are classified as static,
optimal, and sub-optimal.

• Static strategy. Under this strategy, the policyholder decisions are deterministically determined
at the beginning of the contract and do not depend on the evolution of the wealth and benefit
base accounts. For example, policyholder withdraws at the contractual rate only.

• Optimal strategy. Under the optimal withdrawal strategy, the decision on the withdrawal
amount γn depends on the information available at time tn, i.e., depends on the state variable Xn.
The optimal strategy is calculated as

γ∗(X) = argsup
γ∈A

EQ,I
t0

[H0(X, γ)] (28)

where the supremum is taken over all admissible strategies γ. Any other strategy γ(X) different
from γ∗(X) is called sub-optimal and leads to a smaller price.

Given that the state variable X = (X1, . . . , XN) is a Markov process and the contract payoff
is represented by the general formula (3), calculation of the contract value (27) under the optimal
withdrawal strategy (28) is a standard optimal stochastic control problem for a controlled Markov process.
Note that, the control variable γn affects the transition law of the underlying wealth W(t) process
from t−n to t−n+1 and thus the process is controlled. For a good textbook treatment of stochastic control
problems in finance, see [43]. This type of problems can be solved recursively to find the contract value
Qtn(x) at tn when Xn = x for n = N − 1, . . . , 0 via the backward induction Bellman equation

Qtn(Xn) = sup
γn∈An

(
fn(Xn, γn) + EQ,I,γn

tn

[
Bn,n+1Qtn+1(Xn+1)

∣∣∣∣Xn

])
(29)

starting from the final condition QT(x) = HN(x). The upperscript γn in the expectation operator is
used to indicate that the transition probability to reach state Xn+1 = x′ at time tn+1 if the withdrawal
(action) γn is applied in the state x at time tn depends on γn. Obviously, the above backward induction
can also be used to calculate the fair contract price in the case of a static strategy γ; in this case the
space of admissible strategies An contains only one pre-defined value and sup(·) becomes redundant.

For clarity, denote Qt−n
(·) and Qt+n

(·) the contract values just before and just after the event time tn

respectively. Then, in the case of deterministic force of mortality, after calculating the expectation with
respect to the mortality state variable In+1 in (29), the required backward recursion can be rewritten
explicitly as

Qt+n (W, A) = (1− qn+1)E
Q
t+n

[
Bn,n+1Qt−n+1

(
W(t−n+1), A

) ∣∣∣∣W, A
]

+qn+1EQ
t+n

[
Bn,n+1Dn+1

(
W(t−n+1), A

) ∣∣∣∣W, A
]

(30)
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with the jump condition

Qt−n (W, A) = max
γn∈An

(
f̃n(W, A, γn) + Qt+n

(
hW

n (W, A, γn), hA
n (W, A, γn)

))
(31)

This recursion is solved for n = N − 1, N − 2, . . . , 0, starting from the maturity condition
Qt−N

(W, A) = PT(W, A).

In the case of a stochastic force of mortality λ(t), when qn = 1− exp(−
∫ tn

tn−1
λ(y)dy), see (11),

the contract value Qtn(·) and the optimal value of γn are not only functions of W(t−n ) and A(t−n ) but
also functions of a stochastic force of mortality λ(tn). In this case, one has to add expectation with
respect to λ(t) process conditional on λ(tn) to the right side of Equation (30). Similarly, if the interest
rate and/or volatility are modelled as stochastic.

Also, we would like to note that if the risk-free interest rate r(t) is stochastic, then it can be
convenient to use change of numéraire technique. In particular, changing the numéraire from the
money market account M(t) = exp(

∫ t
0 r(q)dq) to the bond price P(tn, tn+1) at time tn with maturity

tn+1 will simplify calculations in (30) using

EQ
t+n

[
e−
∫ tn+1

tn r(u)duQt−n+1

(
W(t−n+1), A

) ∣∣∣∣ · ] = P(tn, tn+1)E
Q̃
t+n

[
Qt−n+1

(
W(t−n+1), A

) ∣∣∣∣ · ]
Here, Q̃ is a new probability measure obtained from Q using the Radon-Nikodym derivative

dQ̃/dQ = (M(tn)/M(t))× (P(t, tn+1)/P(tn, tn+1)), t ∈ [tn, tn+1], see, e.g., [12].

5.2. Alternative Solution

Consider the case of deterministic force of mortality λ(t) used to calculate death probabilities
in (11). Given that the mortality and financial asset processes are independent, and the withdrawal
decision does not affect the mortality process, one can calculate the expected value of the payoff (3)
with respect to the mortality process, H̃0(W , A) = EI

t0
[H0(X, γ)], and then calculate the price under

the optimal strategy as supγ EQ
t0
[H̃0(W , A)] or under the given strategy as EQ

t0
[H̃0(W , A)]. It is easy to

find that

H̃0(W , A) = B0,N

(
pN PT

(
W(T−), A(T−)

)
+ qN pN−1DN

(
W(T−), A(T−)

) )
+

N−1

∑
n=1

B0,n

(
pn f̃n(W(t−n ), A(t−n ), γn) + pn−1qnDn

(
W(t−n ), A(t−n )

))
(32)

where pn = Pr[τ > tn|τ > t0] and qn pn−1 = Pr[tn−1 < τ ≤ tn|τ > t0] for a random death time τ,
i.e., pn = pn−1 × (1− qn). Note that, previously we defined qn = Pr[tn−1 < τ ≤ tn|τ > tn−1].

The payoff (32) has the same general form as the payoff (3). Thus, the optimal stochastic control
problem Ψt0(W(0), A(0)) = supγ EQ

t0
[H̃0(W , A)] can be solved using the Bellman Equation (29) leading

to the following explicit recursion

Ψt+n (W, A) = EQ
t+n

[
Bn,n+1Ψt−n+1

(
W(t−n+1), A(t−n+1)

)
|W, A

]
(33)

Ψt−n (W, A) = max
γn∈An

(
pn f̃n(W, A, γn) + pn−1qnDn(W, A)

+Ψt+n

(
hW

n (W, A, γn), hA
n (W, A, γn)

))
(34)

for n = N − 1, N − 2, . . . , 0, starting from Ψt−N
(W, A) = pN PT(W, A) + pN−1qN DN(W, A).
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It is easy to verify that this recursion leads to the same solution Ψt0(W, A) = Qt0(W, A) and the
same optimal strategy for γ as obtained from the recursion (30) and (31), noting that Ψt−n

(W, A) =

pnQt−n
(W, A) + pn−1qnDn(W, A). The result is somewhat obvious because

sup
γ

EQ,I
t0

[H0(X, γ)] = sup
γ

EQ
t0

[
EI

t0
[H0(X, γ)]

]
(35)

Note that, supγ EQ,I
t0

[H0(X, γ)] 6= EI
t0

[
supγ EQ

t0
[H0(X, γ)]

]
. That is, one cannot find the price

under the optimal strategy conditional on the death time and then average over random death times,
that would lead to the result larger than Qt0(W, A), see [8].

Note that if the force of mortality λ(t) is stochastic then equality (35) is not valid, the optimal
withdrawal value of γn becomes a function of λ(tn) and the formulas in this section cannot be used to
calculate the fair price.

5.3. Remarks on Withdrawal Strategy

The guarantee fare fee based on the optimal policyholder withdrawal is the worst case scenario
for the issuer, i.e., if the guarantee is hedged then this fee will ensure no losses for the issuer (in other
words full protection against the policyholder strategy and market uncertainty). Of course this is
under the given assumptions about stochastic model for the underlying risky asset, and in the case
of deterministic force of mortality assuming that the mortality risk is fully diversified. If the issuer
hedges continuously but investors deviate from the optimal strategy, then the issuer will receive a
guaranteed profit.

Any strategy different from the optimal is sup-optimal and will lead to smaller fair fees. Of course
the strategy optimal in this sense is not related to the policyholder circumstances. The policyholder
may act optimally with respect to his preferences and circumstances but it may be different from
the optimal strategy calculated in (31). On the other hand, as noted in [17], secondary markets
for equity linked insurance products (where the policyholder can sell their contracts) are growing.
Thus, financial third parties can potentially generate guaranteed profit through hedging strategies
from financial products such as VA riders which are not priced according to the worst case assumption
of the optimal withdrawal strategy. Thus the development of secondary markets for VA riders would
lead to an increase in the fees charged by the issuing companies. [18] undertakes an empirical study of
policyholders behavior in Japanese VA market and they show that the moneyness of the guarantee has
the largest explanatory power for the surrender rates.

One way to introduce a reasonable sub-optimal withdrawal model is to assume that the
policyholder follows a default strategy withdrawing a contractual amount Gn at each event time
tn unless the extra value from undertaking an optimal withdrawal is greater than θ × Gn, θ ≥ 0.
Setting θ = 0 corresponds to the optimal strategy, while θ � 1 leads to the strategy of withdrawals at
the contract rate. This is the approach considered, e.g., in [10,39]. More complicated approach would
specify a life-cycle utility model to determine the strategy optimal for the policyholder with respect
to his circumstances and preferences, this is the approach studied in [19–22]. In any case, once the
strategy is specified (estimated empirically or by another model), one can use Equation (31) to calculate
the fair price and fair fee with the admissible strategy space An restricted to the specified strategy.

5.4. Tax Consideration

Withdrawals from the VA type contracts may attract country and individual specific government
taxes. In [23], the authors demonstrated that including taxes significantly affects the value of VA
withdrawal guarantees. They developed a subjective risk-neutral valuation methodology and produced
results in line with empirical market prices. Following closely to [23], we introduce an extra state
variable R(t) to present the tax base which is the amount that may still be drawn tax-free, and assume
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that all event times tn ∈ T are the policy anniversary dates. The initial premium is assumed to be
post-tax and taxes are applied to future investment gains (not the initial investment).

Denote a marginal income tax rate as κ̃ and a marginal capital gain tax from investment outside of
VA contract as κ. It is assumed that earnings from VA are treated as ordinary income and withdrawals
are taxed on a last-in first-out basis. Thus if the wealth account W(t−n ) exceeds the tax base R(t−n ),
any withdrawal up to W(t−n ) − R(t−n ) will be taxed at the rate κ̃ and will not affect the tax base;
larger withdraws will not be subject to tax but will reduce the tax base. Specifically, the tax base will
change at the withdrawal time tn as

R(t+n ) = R(t−n )−max
(
γt −max(W(t−n )− R(t−n ), 0), 0

)
The cashflow received by the policyholder will be reduced by taxes,

tax = κ̃ min
(

f̃n(W(t−n ), A(t−n ), γn), max(W(t−n )− R(t−n ), 0)
)

i.e., one has to make the following change in the contract specifications listed in Section 4,

f̃n(W(t−n ), A(t−n ), γn)→ f̃n(W(t−n ), A(t−n ), γn)− tax

Using arguments for replicating pre-tax cashlows at tn with post-tax cashflows at tn+1, it was
shown in [23] that Qt+n

(W, A, R) should be found not as the direct expectation (30) but should be found
as the solution of the following nonlinear equation

Qt+n
(W, A, R) = EQ

t+n

[
V(t−n+1)|W, A, R

]
+

κ

1− κ
EQ

t+n

[
max

[
V(t−n+1)− Bn,n+1Qt+n

(W, A, R), 0
] ∣∣∣∣W, A, R

]
(36)

where

V(t−n+1) = (1− qn+1)Bn,n+1Qt−n+1

(
W(t−n+1), A(t−n+1), R(t−n+1)

)
+qn+1Bn,n+1Dn+1

(
W(t−n+1), A(t−n+1), R(t−n+1)

)
(37)

This is referred to as subjective valuation from the policyholder perspective and depends
on the investor current position (including possible offset tax responsibilities) and tax rates.
Numerical examples in [23] show that the VA guarantee prices accounting for taxes in the above
way are lower than ignoring the taxes (not surprisingly, because it is just a sub-optimal strategy),
making the prices overall more aligned with those observed in the market.

6. Numerical Valuation of VA Riders

In the case of realistic VA riders with discrete events such as ratchets and optimal withdrawals,
there are no closed form solutions and the fair price has to be calculated numerically, even in the case
of simple geometric Brownian motion process for the risky asset. In general, one can use the PDE,
direct integration or regression type MC methods, where the backward recursion (30) and (31) is solved
numerically. Of course, if the withdrawal strategy is known, then one can always use a standard
MC to simulate all state variables forward in time till the contract maturity or the policyholder death
and average the payoff discounted cashflows over many independent realizations. This standard
procedure is well known and no further discussion is needed.

In this section, we give a brief review of different numerical methods that can be used for valuation
of VA riders. Then, we provide detailed description of the direct integration method that can be very
efficient and simple to implement, when the transition density of the underlying asset or it’s moments
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between the event times are known in closed form. Finally, in Section 6.5 we present calculation of the
hedging parameters (the so-called Greeks).

6.1. Numerical Algorithms

Simulation based Least-Squares MC method introduced in [15] is designed for uncontrolled
Markov process problems and can be used to account for the contract early surrender, as, e.g., in [9].
However, it cannot be used to estimate the full optimal withdrawal strategy. This is because dynamic
withdrawals affect the paths of the underlying wealth account and one cannot carry out a forward
simulation step required for the subsequent regression in the backward induction. However, it should
be possible to apply the control randomization methods extending Least-Squares MC to handle the
optimal stochastic control problems with controlled Markov processes, as was recently developed in
Kharroubi et al. [16]. The idea is to first simulate the control (withdrawals) and the state variables
forward in time, where the control is simulated independently from other variables. Then, use a
regression on the simulated state variables and control to estimate the expectation in (30) and find
the optimal withdrawal using (31). However, the accuracy and robustness of this method for pricing
withdrawal benefit type products have not been studied yet. As usual, it is expected that the choice of
the basis functions for the required regression step will have significant impact on the performance.
We also note that in some simple cases of the withdrawal strategy admissible space such as bang-bang
(no withdrawal, withdrawal at the contractual rate, or full surrender), it is possible to develop other
modifications of Least-Squares MC such as in [11] for pricing of the GLWB rider.

The expectation in (30) can also be calculated using PDE or direct integration methods. In both
cases, the modeller discretizes the space of the state variables and then calculates the contract value for
each grid point. The PDE for calculation of expected value (30) under the assumed risk-neutral process
for the risky asset S(t) is easily derived using Feynman-Kac theorem; for a good textbook treatment of
this topic, see, e.g., [29]. However, the obtained PDE can be difficult or even not practical to solve in
the high-dimensional case. In the case of the geometric Brownian motion process for the risky asset (9),
the governing PDE in the period between the event times is the one-dimensional Black-Scholes PDE,
with the jump conditions (31) at each event time to link the prices at the adjacent periods. Since the
benefit base state variable A(t) remains unchanged within the interval (ti−1, ti), i = 1, 2, . . . , N,
the contract value Qt(W, A) satisfies the following PDE with no explicit dependence on A,

∂Q
∂t

+
σ2

2
W2 ∂2Q

∂W2 + (r− α)W
∂Q
∂W
− rQ = 0 (38)

This PDE can be solved numerically using, e.g., Crank-Nicholson finite difference scheme for each
A backward in time with the jump condition (31) applied at the contract event times. This has been
done, e.g., in [4,5] for pricing GMWB with discrete optimal withdrawals. Of course, if the volatility
or/and interest rate are modelled as diffusion processes, then extra dimensions will add to the PDE
making it more difficult to solve. [10] used the PDE approach to calculate VA rider prices in the case of
stochastic regime-switching volatility and interest rate. In this case the required PDE to be solved is
still one-dimensional that allows to develop a very efficient numerical valuation.

Under the direct integration approach, the expected value (30) is calculated as an integral
approximated by summation over the space grid points, see, e.g., [1]. More efficient quadrature
methods (requiring less points to approximate the integral) exist. In particular, in the case of a
geometric Brownian motion process for the risky asset, it is very efficient to use the Gauss-Hermite
quadrature as developed in [26] and applied for GMWB pricing in [7]. Section 6.3 provides detailed
description of the method for pricing VA riders in general. This method can be applied when the
transition density of the underlying asset between the event times or it’s moments are known in closed
form. It is relatively easy to implement and computationally faster than PDE method because the latter
requires many time steps between the event times. In [12], this method was also used to calculate
GMWB in the case of stochastic interest rate under the Vasicek model.
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In both PDE and direct integration approaches, one needs some interpolation scheme to implement
the jump condition (31), because state variables located at the grid points of the discretized space do
not appear on the grid points after the jump event. This will be discussed in detail in Section 6.4.
Of course, if the underlying stochastic process is more complicated than geometric Brownian motion (9)
and does not allow efficient calculation of the transition density or its moments, one can always resort
to PDE method.

In our numerical examples of GMAB pricing in Section 7, we adapt a direct intergation
method based on the Gauss-Hermite integration quadrature applied on a cubic spline interpolation,
hereafter referred to as GHQC. For testing purposes, we also implemented Crank-Nicholson finite
difference (FD) scheme solving corresponding PDE (38) with the jump condition (31).

6.2. Overall Algorithm Description

Both PDE and direct integration numerical schemes start from a final condition for the contract
value at t = T−. Then, a backward time stepping using (30) or solving corresponding PDE gives
solution for the contract value at t = t+N−1. Application of the jump condition (31) to the solution at
t = t+N−1 gives the solution at t = t−N−1 from which further backward in time recursion gives solution
at t0. For simplicity assume that there are only W(t) and A(t) state variables. The numerical algorithm
then takes the following key steps.

Algorithm 1 Direct Integration or partial differential equation (PDE) method

• Step 1. Generate an auxiliary finite grid 0 = A1 < A2 < · · · < AJ to track the benefit base
balance A.

• Step 2. Discretize wealth account balance W space as W0 < W1 < · · · < WM to generate the grid
for computing the expectation (30).

• Step 3. At t = tN , apply the final condition at each node point (Wm, Aj), j = 1, 2, . . . , J,
m = 1, 2, . . . , M to get Qt−N

(W, A).
• Step 4. Evaluate expectation (30) for each Aj, j = 0, . . . , J, to obtain Qt+N−1

(W, A) either using direct
integration or solving PDE. In the case of direct integration method, this involves one-dimensional
interpolation in W space to find values of Qt−N

(W, A) at the guadrature points different from the
grid points.

• Step 5. Apply the jump condition (31) to obtain Qt−N−1
(W, A) for all possible values of γN−1 and

find γN−1 that maximizes Qt−N−1
(W, A). In general, this involves a two-dimensional interpolation

in (W, A) space.
• Step 6. Repeat Steps 4 and 5 for t = tN−2, tN−3, . . . , t1.
• Step 7. Evaluate integration (30) for the backward time step from t1 to t0 to obtain solution

Q0(W, A) at W = W(0) and A = A(0), or may be at several points if these are needed for
calculation of some hedging sensitivities such as Delta and Gamma discussed in Section 6.5.

In our implementation of the direct integration method based on the Gauss-Hermite quadrature
for numerical examples in Section 7, we use a one-dimensional cubic spline interpolation required to
handle integration in Step 4 and a bi-cubic spline interpolation to handle jump condition in Step 5.

If the model has other stochastic state variables (similar to W) changing stochastically between
the contract event times, such as stochastic volatility and/or stochastic interest rate, then grids for
these extra dimensions should be generated and the required integration or PDE to evaluate (30) will
have extra dimensions. Also, extra auxiliary state variables (similar to A) unchanged between the
contract event times, such as tax base and/or extra benefit base, will require extra dimensions in the
grid and interpolation for the jump condition at the event times.

We have to consider the possibility of W(t) goes to zero due to withdrawal and market movement,
thus one has to use the lower bound W0 = 0. The upper bound WM should be set sufficiently far
from the initial wealth at time zero W(0). A good choice of such a boundary could be based on the
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high quantiles of distribution of S(T). For example, in the case of the geometric Brownian motion
process (1), one can set conservatively

WM = W(0)e|mean(ln(S(T)/S(0)))|+5×stdev(ln(S(T)/S(0)))

Often, it is more efficient to use an equally spaced grid in ln W space. In this case, W0 cannot be
set to zero and instead should be set to a very small value (e.g., W0 = 10−10). Also, for some VA riders,
using equally spaced grid in ln A space is also more efficient.

6.3. Direct Integration Method

To compute Q0 (W(0), A(0)), we have to evaluate the expectations in the recursion (30).
Assuming the conditional probability density of W(t−n ) given W(t+n−1) is known in closed form
p̃n(w|W(t+n−1)), the required expectation (30) can be calculated as

Qt+n−1

(
W(t+n−1), A

)
=
∫ +∞

0
p̃n(w|W(t+n−1))Q̃t−n

(w, A)dw (39)

where
Q̃t−n

(w, A) = Bn−1,n ×
(
(1− qn)Qt−n

(w, A) + qnDn(w, A)
)

The above integral can be estimated using various numerical integration (quadrature) methods.
Note that, one can always find W(t−n ) as a transformation of the standard normal random variable
Z as

W(t−n ) = ψ(Z) := F−1
n (Φ(Z))

where Φ(·) is the standard normal distribution, and Fn(·) and F−1
n (·) are the distribution and its

inverse of W(t−n ). Then, the integral (39) can be rewritten as

Qt+n−1

(
W(t+n−1), A

)
=

1√
2π

∫ +∞

−∞
e−

1
2 z2

Q̃t−n
(ψn(z), A)dz (40)

This type of integrand is well suited for the Gauss-Hermite quadrature that for an arbitrary
function f (x) gives the following approximation

∫ +∞

−∞
e−x2

f (x)dx ≈
q

∑
i=1

λ
(q)
i f (ξ(q)i ) (41)

Here, q is the order of the Hermite polynomial, ξ
(q)
i , i = 1, 2, . . . , q are the roots of the Hermite

polynomial Hq(x), and the associated weights λ
(q)
i are given by

λ
(q)
i =

2q−1q!
√

π

q2[Hq−1(ξ
(q)
i )]2

This approximate integration works very well if function f (x) is without singularities and it
calculates the integral exactly if f (x) is represented by a polynomial of degree 2q− 1 or less.

Note that Q̃t(w, ·) is known only at the grid points Wm, m = 0, 1, . . . , M and interpolation is
required to estimate Q̃t(w, ·) at the quadrature points. From our experience with pricing different VA
guarantees, we recommend the use of the natural cubic spline interpolation which is smooth in the
first derivative and continuous in the second derivative; and the second derivative is assumed zero for
the extrapolation region above the upper bound.
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Of course it can be difficult to find the distribution Fn(·) and its inverse F−1
n (·) in general. In the

case of geometric Brownian motion process (1), the transition density p̃n(·|·) is just a lognormal
density and

W(t−n ) = ψn(Z) := W(t+n−1) exp
(
(rn − α− 1

2
σ2

n)dtn + σn
√

dtnZ
)

Then, a straightforward application of the Gauss-Hermite quadrature for the evaluation of
integral (39) gives

Qt+n−1

(
W(t+n−1), A

)
≈ 1√

π

q

∑
i=1

λ
(q)
i Q̃t−n

(
ψn(
√

2ξ
(q)
i ), A

)
(42)

that should be calculated for each grid point W(t+n−1) = Wm, m = 0, 1, . . . , M. Often, a small number
of quadrature points is required to achieve a very good accuracy; in our numerical examples in the
next section we use q = 9 but very good results are also obtained with q = 5.

If the transition density function from W(t+n−1) to W(t−n ) is not known in closed form but one
can find its moments, then the integration can also be done with similar efficiency and accuracy by
the method of matching moments as described in [7,26]. The method also works very well in the
two-dimensional case, see, e.g., [12] where it was applied for GMWB pricing in the case of stochastic
interest rate.

6.4. Jump Condition Application

Either in PDE or direct integration method, one has to apply the jump condition (31) at the
event times to obtain Qt−n

(W, A). For the optimal strategy, we chose a value of withdrawal γn ∈ An

maximizing the value Qt−n
(W, A).

To apply the jump conditions, for each Aj, we associate a continuous solution using (42) and
interpolation. In general, as can be seen from (31), the jump condition makes it impractical, if not
impossible, to ensure the values of W and A after the jump to always fall on a grid point. Thus a
two-dimensional interpolation is required. In this work we adopted the bi-cubic spline interpolation
for accuracy and efficiency. Figure 1 illustrates the application of jump conditions.

It is natural to form a uniform grid in A so that optimal withdrawal strategies can be tested on a
constant increment δA = Aj+1 − Aj, as has been done successfully in [7] for pricing of a basic GMWB
specified by (14) and (15). However, extensive numerical tests show that if a uniform grid in A is
used for pricing GMAB with ratchets and optimal withdrawals (our numerical example in Section 7),
then neither linear interpolation nor cubic interpolation in A can achieve an efficient convergence
in pricing results. A very fine mesh has to be used before we see a stable solution, which can take
up to several hours to obtain a fair fee, in sharp contrast to the basic GMWB where less than one
minute computer time is required. On the other hand, if we make the grid in A uniform in ln A and
use a linear or cubic interpolation based on variable Y, then we obtain a very good convergence on a
moderately fine grid and the CPU time for a fair fee is about 30 min (a few minutes for a fair price).
The CPU used for all the calculations in this study is Intel(R) Core(TM) i5-2400 @3.1GHz.

As we have already mentioned, a two-dimensional interpolation has to be used for applying the
jump condition. We suggest to use either a bi-linear interpolation or a bi-cubic spline interpolation,
e.g., see (see Section 3.6 in [44]), in both cases applied on the log-transformed state variables X = ln W
and Y = ln A. For numerical examples in this paper, we have adapted the more accurate bi-cubic
spline interpolation for all the numerical results.
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Figure 1. Illustration of the application of jump condition. The value Qt(Wi, Aj) at t = t−n and at the
node point (Wi, Aj) equals to Qt(W, A) at t = t+n with W = hW

n (Wi, Aj, γn) and A = hA
n (Wi, Aj, γn).

The point (W, A) is located inside the grid bounded by (Wm, Wm+1) and (Ak, Ak+1).

For uniform grids, the bi-cubic spline is about five times as expensive in terms of computing
time as the one-dimensional cubic spline. Suppose the jump condition requires the value Q(W, A) at
the point (W, A) located inside a grid: Wi ≤ W ≤ Wi+1 and Aj ≤ A ≤ Aj+1. Equivalently, the point
X = ln W and Y = ln A is inside the grid: ln Wi = xi ≤ X ≤ xi+1 = ln Wi+1 and ln Aj = yj ≤ Y ≤
yj+1 = ln Aj+1. Because the grid is uniform in both X and Y variables, the second derivatives ∂2Q/∂X2

and ∂2Q/∂Y2 can be accurately approximated by the three-point central difference, and consequently
the one-dimensional cubic spline on a uniform grid involves only four neighboring grid points for
any single interpolation. For the bi-cubic spline, we can first obtain Q(·, ·) at four points Q(W, Aj−1),
Q(W, Aj), Q(W, Aj+1), Q(W, Aj+2) by applying the one-dimensional cubic spline on the dimension
X = log W for each point and then we can use these four values to obtain Q(W, A) through a
one-dimensional cubic spline in Y = log A. Thus five one-dimensional cubic spline interpolations
are required for a single bi-cubic spline interpolation, which involves sixteen grid points neighboring
(W, A) point.

6.5. Calculating Greeks for Hedging

Calculation of the contract price in (30) under the risk-neutral probability measure Q means that
one can find a portfolio replicating the VA guarantee (assuming mortality risk is fully diversified),
i.e., perform hedging eliminating the financial risk. Finding correct hedging depends on the underlying
stochastic model for the risky asset. The basic hedging is the so-called delta hedging eliminating
randomness due to stochasticity in the underlying risky asset S(t). Here, we use S(t) as a tradable
asset to hedge the exposure of the guarantee to the wealth account W(t). One can construct a portfolio
consisting of the money market account and ∆S(t) units of S(t), so that ∆S(t)S(t) = ∆W(t)W(t),
where ∆W(t) is the number of units of the wealth account referred as Delta. Denote the value of the
VA guarantee as Ut(W, A) which is just a difference between the contract value with the guarantee
Qt(W, A) and the value of the wealth account W, i.e.,

Qt(W, A) = Ut(W, A) + W (43)
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Then, under the delta hedging strategy, one has to select

∆W(t) =
∂Ut(W, A)

∂W
⇔ ∆S(t) =

∂Ut(W, A)

∂S
W
S

for time t between the contract event times. Of course if there are extra stochasticities in the model such
as stochastic interest rate and/or stochastic volatility, delta hedging will not eliminate risk completely
and hedging with extra assets will be required which is model specific. See, e.g., [10], for constructing
hedging in the case of regime switching stochastic volatility and interest rate. A popular active hedging
strategy in the case of extra stochastic factors is the minimum variance hedging strategy, where ∆W(t)
is selected to minimize the variance of portfolio’s instantaneous changes, e.g., applied in [11] for
hedging GLWM in the case of stochastic volatility model.

Practitioners also calculate other sensitivities (partial derivatives) of the contract with respect
to the interest rate and volatility (referred to as Rho and Vega) and even second partial derivatives
such as Gamma = ∂2Ut(W, A)/∂W2 to improve hedging strategies. Here, we refer the reader to the
standard textbooks in the area of pricing financial derivatives such as [30] or [31].

Numerical estimation of the contract sensitivities (referred to as Greeks) is more difficult than
estimation of the contract price. A general standard approach to calculate the Greeks is to perturb
the relevant parameter and re-calculate the price. Then one can use a two-point central difference to
estimate the first derivatives and a three-point central difference for the second derivatives. In general,
the finite difference PDE (or direct integration) methods generally produce superior accuracy in
calculating Greeks when compared to the Monte Carlo method (at least for low dimensions when
the finite difference method is practical or direct integration is possible). For Delta and Gamma,
the finite difference method (or direct integration method) yields second order accurate values without
re-calculating price using prices already calculated at the uniform grid points.

More accurate calculation of the main Greeks, Delta and Gamma, can be achieved using the
so-called likelihood method as follows. The contract price at t0 is calculated in the last time step (t0, t1) in
backward induction as an integral (39). Differentiating (39) with respect to W(0) = w0, Delta can be
found as

∂Qt+0
(w0, A)

∂w0
=

∫
Q̃t−1

(w, A)
∂ p̃1(w|w0)

∂w0
dw

=
∫

Q̃t−1
(s, A)

∂ ln p̃1(w|w0)

∂s0
p̃1(w|w0)dw

= EQ
t+0

[
Q̃t−1

(W, A)
∂ ln p̃1(W|w0)

∂w0

∣∣∣∣W(0) = w0, A
]

(44)

Thus it can be calculated using the same direct integration method as used for Qt+0
(w0, A) with

the factor ∂ ln p̃1(W|w0)/∂w0 added to the integrand. Similarly, the required derivative to calculate
Gamma can be found as

∂2Qt+0
(w0, A)

∂w2
0

=
∫

Q̃t−1
(w, A)

∂

∂w0

[
∂ ln p̃1(w|w0)

∂w0
p̃1(w|w0)

]
dw

=
∫

Q̃t−1
(w, A)

[(
∂ ln p̃1(w|w0)

∂w0

)2

+
∂2 ln p̃1(w|w0)

∂w2
0

]
p̃1(w|w0)dw

= EQ
t+0

[
Q̃t−1

(W, A)

[(
∂ ln p̃1(w|w0)

∂w0

)2

+
∂2 ln p̃1(w|w0)

∂w2
0

] ∣∣∣∣W(0) = w0, A

]
(45)

Note, the above integrations for Delta and Gamma are only required for the (t0, t1) time step and
for a single grid point W(0) = w0. Here, t0 should be understood as the current contract valuation
time rather than time when the contract was initiated. Equivalently, for the PDE approach using finite



Risks 2016, 4, 22 23 of 31

difference method, one can sometimes derive the corresponding PDEs for the Greeks and solve these
PDEs for the last time step, see, e.g., [45]. Similarly for Monte Carlo method, simulations used to
calculate the price can be used to calculate Delta and Gamma weighted with extra factors under the
expectations in (44) and (45).

It is illustrative to show how to derive a hedging portfolio under the basic Black-Scholes model.
Here, we assume that the underlying risky asset S(t) follows

dS(t) = µ(t)S(t) + σ(t)S(t)dB∗(t) (46)

where B∗(t) is the standard Brownian motion under the physical (real) probability measure, and µ(t)
is the real drift. Then the wealth account evolution is

dW(t) = (µ(t)− α)W(t) + σ(t)W(t)dB∗(t)

Here, we assume a continuously charged fee proportional to the wealth account but it is not
difficult to deal with the case of discretely charged fees.

To hedge, the guarantee writer takes a long position in ∆S units of S(t), i.e., forms a portfolio

Πt = −Ut(W, A) + ∆S × S

By Ito’s lemma, the changes of portfolio within (tn−1, tn), n = 1, . . . , N are

dΠt = −
(

∂Ut

∂t
+

∂Ut

∂W
dW +

1
2

σ2S2 ∂2Ut

∂W2

)
dt− ∆SdS + αWdt (47)

where the last term αWdt is the fee amount collected over dt. Setting

∆S =
∂Ut(W, A)

∂W
W
S

=

(
∂Qt(W, A)

∂W
− 1
)

W
S

(48)

eliminates all the random terms in (47), making the portfolio locally riskless. This means that the
portfolio earns at the risk-free interest rate r(t), i.e., dΠt = rΠtdt, leading to the PDE

∂Ut

∂t
+ (r− α)W

∂Ut

∂W
+

1
2

σ2S2 ∂2Ut

∂W2 − rUt − αW = 0 (49)

Substituting Ut(W, A) = Qt(W, A)−W in the above gives the PDE for Qt(W, A), the total value
for the contract with the guarantee, i.e., the same as (38). Recalling Feynman-Kac theorem, it is easy to
see that the stochastic process for W corresponding to this PDE is the risk-neutral process (9).

7. Numerical Example: GMAB Pricing

Numerical solutions for pricing VA riders involve many complicated numerical procedures and
features. These are more involved when compared to pricing of most exotic derivatives in financial
markets. It is important that these solutions are properly tested and validated. As a numerical example
for illustration, using direct integration method (GHQC), we calculate accurate prices of GMAB
with possible annual ratchets, allowing optimal withdrawals and no death benefit as specified in
Section 4.3. With these features, the GMAB rider is very close to the real product marketed in Australia
by, e.g., [27,28]. We assume geometric Brownian motion model for the risky asset (9). When applicable,
we compare results with the MC and finite difference PDE methods. Numerical difficulties encountered
in pricing this GMAB rider are common across other VA guarantees. Also, comprehensive numerical
pricing results for this particular product are not available in the literature. These validated results
(reported for a range of parameters) can serve as a numerical benchmark for practitioners and
researchers developing numerical pricing of the VA with guarantees. We consider four GMAB types:
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1. GMAB with the annual ratchets but no withdrawals. In this case, a standard MC method can be
used to compare with GHQC results—this is a good validation of the implemented numerical
functions related to the ratchet feature, in addition to validating the numerical integration based
on the Gauss-Hermite quadrature.

2. GMAB with the annual ratchets and regular withdrawals of a fixed percentage of the wealth
account. In this case a standard MC method can also be used to compare with GHQC
results—this is a good validation of implemented numerical functions related to jump conditions
due to both ratchet and withdrawal features. In addition, in order to test the numerical functions
related to the application of penalties, we assume a pension account where the static withdrawal
rate is set above the penalty threshold.

3. GMAB with the optimal quarterly withdrawals and the annual ratchets for a super account,
where the penalty (24) is applied on any withdrawal γn when W(t−n ) < A(t−n ).

4. GMAB with the optimal quarterly withdrawals and the annual ratchets for a pension account,
where the penalty (25) is applied if the withdrawal γn is above the penalty threshold Gn and
if W(t−n ) < A(t−n ).

As a comparison, results from our PDE finite difference implementation will also be shown for
Case 4, the most complicated example among the four listed above. In addition, we will also calculate
results for Case 4 in the case of the guarantee fee charged discretely (quarterly). All reported GHQC
results are based on q = 9 quadrature points. We did not observe any material difference in results if
q is increased further. Results based on q = 5 are also very accurate.

7.1. GMAB with Ratchet and No Withdrawal

Consider a GMAB rider with the annual ratchet and no withdrawals. In this case a standard
MC method can be used to compare with GHQC results which is a good validation of implemented
numerical functions related to the ratchet feature. Table 1 compares GHQC and MC results for the fare
fee α of GMAB with the annual ratchet for the interest rate r ranging from 1% to 7% and the volatility
σ = 10% and 20%. The maximum relative difference between the two methods is 0.76% at the interest
rate r = 5% and the volatility σ = 10%. The maximum absolute difference between the two methods is
one basis point at the lowest interest rate r = 1% where the fee is the highest. On average, the relative
difference is 0.52% and the absolute difference is 0.5 basis point, which is 5 cents per year on a one
thousand dollar account. The GHQC results are obtained with the mesh size M = 400 and J = 200,
and on the average it takes 22 s per price (calculation of the fare fee requires iterations over several
prices). The MC results are obtained using 20 million simulations and it takes about 62 s per price.

Table 1. Fair fee α in bp (1 bp = 0.01%) as a function of the interest rate r for the Guaranteed Minimum
Accumulation Benefit (GMAB) rider with the annual ratchet and no withdrawal. The contract maturity
is T = 10 years. δ̃ is the relative difference between Monte Carlo (MC) and GHQC method results.

Interest Rate, r σ = 10% σ = 20%

GHQC, bp MC, bp δ̃ GHQC, bp MC, bp δ̃

1% 337.2 338.2 0.30% 998.7 999.8 0.11%
2% 186.0 186.8 0.43% 637.1 637.7 0.09%
3% 116.8 117.3 0.43% 458.0 458.5 0.11%
4% 77.94 78.31 0.47% 346.9 347.5 0.17%
5% 53.91 54.32 0.76% 271.1 271.6 0.18%
6% 38.54 38.77 0.60% 216.3 216.7 0.18%
7% 28.11 28.30 0.68% 175.1 175.3 0.34%

The agreement between the two methods at σ = 20% is also very good. In absolute terms,
the maximum difference between the two methods is 1.1 basis point at the lowest interest rate r = 1%.
In relative terms, the maximum difference between the two methods is 0.34% at the highest interest
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rate r = 7%. On average, the relative difference is 0.17% which is significantly smaller than the
corresponding case at σ = 10%.

7.2. GMAB with Ratchet and Static Withdrawal

Consider a GMAB rider with the annual ratchet and a regular quarterly withdrawals of a fixed
percentage of the wealth account. In this case a standard MC method can also be used to compare with
the GHQC results which is a good validation of implemented numerical functions related to jump
conditions due to both ratchet and withdrawal features. Here, we consider a pension type account with
the penalty given by (25). In this case, regular withdrawals at a pre-determined percentage level are
allowed. In order to test the numerical functions related to the application of penalty, we also consider
the static withdrawal above a pre-determined threshold level that will attract a penalty. We set the
withdrawal threshold at 15% of the wealth account per annum, and the withdrawal frequency is
quarterly, i.e., the quarterly withdrawal threshold is Gn = 3.75% of the wealth account.

In the first test we allow a regular quarterly withdrawal of 3.75% of the wealth account balance,
i.e., γn = Gn and there is no penalty on the withdrawals. Table 2 compares the GHQC and MC results
for the fare fee α. In relative terms, the maximum difference between the two methods is 0.08% at
interest rate r = 5%. On average, the relative difference is 0.06% and the absolute difference is 0.3 basis
point. The GHQC results are obtained with the mesh size M = 400 and J = 400, and the MC results
are obtained with 20 million simulations per price.

Table 2. Fair fee α in bp as a function of interest rate r for the GMAB with the annual ratchet and
static quarterly withdrawal of 3.75% and 4% of the wealth account (15% and 16% annually respectively).
The penalty threshold (pension type account) is set at 15% annually. The contract maturity is T = 10 years
and volatility is σ = 20%. δ̃ is the relative difference between Monte Carlo (MC) and GHQC results.

Interest Rate, r 15% Annual Withdrawal 16% Annual Withdrawal

GHQC, bp MC, bp δ̃ GHQC, bp MC, bp δ̃

1% 1084 1085 0.09% 185.3 185.3 <0.01%
2% 669.1 669.5 0.06% 152.9 152.9 <0.01%
3% 464.1 464.4 0.06% 126.6 126.6 <0.01%
4% 339.0 339.2 0.06% 105.1 105.1 <0.01%
5% 255.0 255.2 0.08% 87.54 87.51 0.03%
6% 195.7 195.7 <0.01% 73.21 73.14 0.1%
7% 152.1 152.2 0.07% 61.40 61.36 0.07%

Comparing with Table 1, the fair fee for the static withdrawal is about 8% higher than the
corresponding no-withdrawal case at the lowest interest rate r = 1%, but it is about 13% lower than the
corresponding no-withdrawal case at r = 7%. We have also tested static 2.5% quarterly withdrawals
and obtained the same pattern: at the lower interest rate the fair fee of static withdrawal (which is also
below the penalty threshold) is higher than the corresponding no-withdrawal case, and at the higher
interest it is the opposite. These differences in the fair fees at relatively low and high interest rates can
be broadly interpreted as follows. At the lower interest rates, where the expected capital growth is
relatively slow, it is better to perform a regular withdrawal at or below the penalty threshold and take
the protected capital at the maturity. However, at the higher interest rates, where the expected capital
growth rate is also high, it is beneficial not to carry out a regular withdrawal and keep the capital
to grow.

The above test also demonstrates that the MC and GHQC methods agree very well for pricing
GMAB with a static withdrawal not exceeding the penalty threshold. This confirms the accuracy and
efficiency of our numerical implementation of the jump condition using a bi-cubic interpolation in
GHQC method.
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In the second test of static withdrawal, we allow a regular quarterly withdrawal of 4% (16% per
annum), i.e., the annual withdrawal rate is slightly higher than the penalty threshold of 15% per
annum and there is a penalty applied for each withdrawal. The GHQC and MC results for this test
are also presented in Table 2. In absolute terms, the maximum difference between the two methods is
only 0.07 basis point at the interest rate r = 6%, which is less than 1 cent per year for a one thousand
dollar account. In relative terms, the maximum difference between the two methods is 0.1% at the
interest rate r = 6%. On average the relative difference is only 0.03%, which shows the two methods
also agree very well in the case of excessive static withdrawals, where the penalty is applied for each
withdrawal. This is a very convincing validation that our GHQC implementation of all numerical
functions associated with the jump conditions, including the bi-cubic spline interpolation, is correct
and accurate. The above tests are very close to validation of the entire algorithm in the case of optimal
withdrawals. This is because in pricing the optimal withdrawal case, exactly the same integration
and interpolation functions are used, and the only extra step required is to find the withdrawal
rate maximizing the price. Nevertheless, for optimal strategy cases we will carry out some further
validations by comparing results between GHQC and finite difference PDE methods.

Comparing Table 2 with Table 1 for the no-withdrawal case, the fair fee for the static withdrawal
in excess of the penalty threshold is dramatically reduced: it is reduced by about 80% from the
corresponding no-withdrawal case at r = 1%, and it is reduced by about 65% at r = 7%. Thus, a regular
withdrawal above the penalty threshold is a very bad strategy regardless the interest rate level. In this
instance, the penalty takes away the protected capital on a regular basis. Note that, the penalty
is applied in terms of the whole withdrawal amount, not just on the exceeded part, see penalty
function (25). Thus a slight excess over the penalty threshold can cause a large change in the price or
in the fair fee, as observed in the second test.

The above two tests show that a regular static withdrawal is only slightly beneficial at very low
interest rate and only when the withdrawal rate does not exceed the penalty threshold. In the next
section, it will be demonstrated by numerical results that an optimal withdrawal is always beneficial
regardless the interest rate level and penalties.

7.3. Optimal Withdrawal—Super Account

Consider a GMAB for a super account with the annual ratchet and assume that the policyholder
can exercise an optimal withdrawal strategy quarterly. For a super account, any withdrawal will
penalize the protected capital amount (benefit base) if the wealth account is below the benefit base
according to (23) and (24).

Table 3 shows the fair fee for a super account as a function of the interest rate at σ = 10% and
σ = 20%. The columns under ε̃ show an extra percentage value in the fee due to optimal withdrawal
when compared to the static case of no withdrawal in Table 1. The results show, the extra fee is only
about one or two percent for most cases, except at the low interest rate and high volatility. This extra
fee due to optimal withdrawal is insignificant for the super account in most cases, mainly due to the
heavy penalties applied. As will be shown in the next section, if the penalty is less severe as in the case
of pension account, the extra fee becomes much more significant. If the penalty is completely removed,
then numerical experiments show that the extra fee will be several times, e.g., 300%, larger than the
static case, demonstrating the full value of the optimal strategy.
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Table 3. Fair fee α in bp (1 bp = 0.01%) as a function of interest rate r for the GMAB on a super account
when withdrawals are optimal. The contract maturity is T = 10 years. ε̃ is the percentage difference
between the fair fee in the case optimal withdrawal and the fair fee in the static case (no withdrawal)
from Table 1.

Interest Rate, r σ = 10% σ = 20%

Fee (b.p) ε̃ Fee (b.p) ε̃

1% 370.7 10% 1235 23.7%
2% 191.2 2.8% 700.1 9.89%
3% 118.1 1.2% 478.8 4.54%
4% 78.52 0.9% 355.5 2.48%
5% 54.47 1.1% 275.2 1.51%
6% 39.00 1.48% 218.8 1.16%
7% 28.38 1.36% 176.9 1.03%

7.4. Optimal Withdrawal—Pension Account

Consider a GMAB for a pension account with the annual ratchet and assume that the policyholder
can exercise an optimal withdrawal strategy quarterly. For a pension account, any withdrawal above a
pre-defined withdrawal level Gn will penalize the protected capital amount A(t) if the wealth account
W(t) is below A(t) according to (23) and (25). Here, we set the annual withdrawal limit at 15% of the
wealth account, i.e., Gn = 0.25× 15% = 3.75% is quarterly withdrawal threshold.

Table 4 shows the fair fee of GMAB for a pension account as a function of the interest rate r when
σ = 10% and 20%. The columns under ε̃ show an extra percentage value in the fee due to optimal
withdrawal when compared to the static case of no withdrawal in Table 1. The results show, the
extra fee ranges from about 9% at the highest interest rate r = 7% to about 39% at the lowest interest
rate r = 1%. This extra fee is much more significant than in the case of super account, see Table 3,
apparently due to reduced penalties. At σ = 20%, the extra fee ranges from about 9% at the highest
interest rate r = 7% to about 46% at the lowest interest rate r = 1%. This extra fee is higher than in the
case of lower volatility σ = 10%, in both percentage and absolute terms.

Also, in Table 4, the numbers in the parentheses next to the continuous fair fee values α are
the GHQC results for the discretely charged fair fee αd = − log(1− α̃dtn)/dtn, where at the end of
each quarter tn, the policyholder wealth account is charged a fee proportional to the account value
α̃dtnW(t−n ), see the wealth process (7). Results show only little difference between the continuous fee
α and the discrete fee αd. On average, the relative difference is 0.15%. Of course, at a higher frequency
of charging fee (e.g., a monthly fee), the difference will be even less.

The last column in Table 4 shows the continuous fee calculated using our PDE finite difference
(FD) method. The agreement between the GHQC (quadrature method) and FD method is very good.
The average relative difference in the fair fees between the two methods is 0.20%. Figure 2 show the
curves of the fair fee for a pension account as a function of interest rate r using results from Table 4,
in comparison with the static case (no withdrawal) from Table 1.

For some comparison, the market fees offered by [28] are 1.75% for a 10 year capital protection of a
“balanced portfolio” and 0.95% for a “conservative growth portfolio”; and fees offered by [27] are 1.3%
for a 10 year capital protection of a “balanced strategy” portfolio and 0.95% for a “moderately defensive
strategy” portfolio. Though the values of volatility are not known for these market portfolios, it seems
that market prices are significantly lower than the fair fee, which is also observed in the literature before;
e.g., see [1,6,39].

For results in Table 4, the average CPU time per price is 108 s for GHQC and 138 s for FD. Since all
the cases have the same maturity and withdrawal frequency, the variation of CPU time among the
cases under the same method is negligible. Note the speed advantage of GHQC over FD, although
still significant, is not as great as in the case of the basic GMWB reported in [7], where GHQC is
several times faster than FD. This is because a much higher proportion of CPU time is spent on the
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two-dimensional cubic spline interpolation for applying the jump condition in the case of GMAB,
and GHQC and FD use identical interpolation functions.

Table 4. Fair fee α in bp (1 bp = 0.01%) as a function of interest rate r for the GMAB for a pension account
when withdrawals are optimal. The contract maturity is T = 10 years and quarterly withdrawal limit
is Gn = 0.25× 15%. ε̃ is the percentage difference between the fair fee in the case optimal withdrawal
and the fair fee in the static case (no withdrawal) from Table 1. The numbers in the parentheses next to
the continuous fair fee are the results for the quarterly charged fees.

Interest Rate, r σ = 10% σ = 20%

Fee (b.p) ε̃ Fee (b.p) ε̃ Fee-FD (b.p)

1% 472.6 39% 1474 (1479) 46% 1466
2% 227.7 21% 836.1 (836.3) 30% 833.7
3% 135.4 15% 552.8 (553.6) 20% 551.7
4% 88.15 13% 399.1 (399.7) 14% 398.6
5% 60.24 11% 304.3 (304.7) 12% 304.0
6% 42.58 10% 239.6 (239.9) 10% 239.4
7% 30.63 9% 192.5 (192.8) 9% 192.4
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Figure 2. Fair fee α in bp as a function of the interest rate r at σ = 10% and σ = 20% for the GMAB
on a pension account when withdrawals are optimal, in comparison with the static case where no
withdrawal is allowed. Values are taken from Tables 1 and 4, respectively.

8. Conclusions

In this paper we have reviewed the pricing VA riders and presented a unified pricing approach
via an optimal stochastic control framework. We discussed different models and numerical procedures
applicable in general to most of the VA riders with various contractual specifications. To price
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these VA riders under the geometric Brownian motion model for the risky asset, often assumed in
practice, we have extended and generalized the direct integration method based on the Gauss-Hermite
quadrature, introduced earlier in [7] for some specific and simpler product specifications.

As an example, we presented a numerical valuation of capital protection guarantees (GMAB
riders), with specifications matching closely the real market products offered in Australia by,
e.g., [27,28]. Numerical valuation of this guarantee involves all the main numerical difficulties
encountered in pricing other VA riders, such as ratchets and optimal withdrawals. Numerical results
have been validated by MC and finite difference PDE methods and can serve as a numerical benchmark
for practitioners and researchers developing numerical pricing of VA riders to assess the accuracy
of numerical implementations. As expected, we observed that the extra fee that has to be charged
to counter the optimal policyholder behavior is most significant at lower interest rates and higher
volatility levels, and it is very sensitive to the penalty withdrawal threshold.

As we have already discussed in Section 5.3, the fee based on the optimal policyholder withdrawal
is the worst case scenario for the issuer. That is, if the guarantee is hedged perfectly to eliminate
the financial risk and mortality risk is fully diversified then this fee will ensure no losses for the
issuer (in other words a full protection against the policyholder strategy and the market uncertainty).
If the issuer hedges continuously but investors deviate from the optimal strategy, then the issuer
will receive a guaranteed profit. Any strategy different from the optimal is sup-optimal and
will lead to smaller fair fees. Of course the strategy optimal in this sense is not related to the
policyholder circumstances. The policyholder may act optimally with respect to his preferences
and circumstances which may be different from the optimal strategy maximizing losses for the policy
issuer. Life-cycle modelling can be undertaken to analyze and estimate sub-optimality of policyholder
behaviors. However, development of the secondary markets for insurance products may expose the
policy issuers to some significant risk if a fee for the guarantees is not charged to cover the worst
case scenario.

It is important to note that the guarantee could be written on more than one asset (e.g., on several
mutual funds). In this case it is still common for practitioners to use a single-asset proxi model to
calculate the price and hedging parameters. Obviously such approach has significant drawbacks
(e.g., the sum of geometric Brownian motions is not a geometric Brownian motion). The PDE and direct
integration methods are not practical in high-dimensions and thus one has to rely on the MC methods
to treat multi-asset case accurately. In the case of static withdrawals, it is not difficult to consider a
full multi-asset model and calculate the price using a standard MC as in [46]. However, in the case of
optimal withdrawal strategies, numerical valuation in the multi-asset case will require the development
of a regression type MC solving the backward recursion for processes affected by the withdrawals.
One could apply control randomization methods extending the Least-Squares MC developed in [16],
but the accuracy and robustness of this method for pricing VA riders have not been studied yet.

The specification details of VA riders typically vary across different companies and are difficult
to extract and compare from the very long product specification documents. Moreover, results for
specific GMxB riders presented in the academic literature often refer to different specifications. As a
result, cross-validation and benchmark research studies are rare. Given that numerical solutions
used for pricing of VA riders are complex, it is important that these solutions are properly tested
and validated. Moreover, new products are appearing in the VA market regularly with increasing
complexity that raises an important question, as discussed in [47] and mentioned in [23], whether new
complex products are designed to suite the policyholder needs better or introduced for the purpose
of obfuscation.
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