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Abstract: The aim of this paper is to understand and to model claims arrival and reporting delay
in general insurance. We calibrate two real individual claims data sets to the statistical model of
Jewell and Norberg. One data set considers property insurance and the other one casualty insurance.
For our analysis we slightly relax the model assumptions of Jewell allowing for non-stationarity
so that the model is able to cope with trends and with seasonal patterns. The performance of our
individual claims data prediction is compared to the prediction based on aggregate data using the
Poisson chain-ladder method.
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1. Introduction

The aim of this paper is to understand the reporting delay function of general insurance claims.
The reporting delay function is an important building block in claims reserving. We study this
reporting delay function in continuous time based on real individual claims data. The data is
used to calibrate a non-stationary version of the statistical model considered in Jewell [1,2]. This
calibration then provides an estimation of the number of incurred but not yet reported (IBNYR)
claims. The second building block in claims reserving is the modeling of the cost process of
insurance claims. Jewell [1] stated in 1989: “Currently, the development of a good model for cost
evolution over continuous time appears to require a long-term research effort, one that we believe
will use the basic understanding of the event generation and reporting processes developed here,
but will require much additional empirical effort to develop an understanding of cost-generating
mechanisms and their evolution over time.” Meanwhile, there have been some improvements into this
direction, see Bühlmann et al. [3], Arjas [4], Norberg [5,6], Haastrup-Arjas [7], Taylor [8,9], Herbst [10],
Larsen [11], Taylor et al. [12], Jessen et al. [13], Rosenlund [14], Pigeon et al. [15], Agbeko et al. [16],
Antonio-Plat [17] and Badescu et al. [18,19]. But we believe that state-of-the-art modeling is still far
from having a good statistical model that can be used in daily industry practice. This may partly be
explained by the fact that it is rather difficult to get access to real individual claims data.

In this paper we study individual claims data of two different portfolios: a property insurance
portfolio and a casualty insurance portfolio. We choose explicit distributional models for the individual
claims arrival process modeling and we calibrate these models dynamically to the data. The calibration
is back-tested against the observations and compared to the (Poisson) chain-ladder method (which
is applied to aggregated data). The main conclusion is that the chain-ladder method has a good
performance as long as the claims process is stationary, but in non-stationary environments our
individual claims estimation approach clearly outperforms the chain-ladder method.
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In the next two sections we introduce the underlying statistical model and we describe the
available claims data. In Section 4 we model seasonality of the claims arrival process. In Section 5 we
calibrate the reporting delay function and underpin this by statistical analysis. Finally, in Section 6 we
compare the individual claims modeling estimate to the classical chain-ladder method on aggregated
data and we back-test the results of these two approaches. The figures and the proofs are deferred to
the appendix.

2. Individual Claims Arrival Modeling

We extend the model considered in Jewell [1,2] to an inhomogeneous marked Poisson point
process. We define Λ(t) ≥ 0 to be the instantaneous claims frequency and w(t) ≥ 0 to be the
instantaneous exposure at time t ≥ 0. The total exposure WΛ on time interval (0, τm] is given by

WΛ =
∫ τm

0
w(t)Λ(t) dt (1)

We consider the run-off situation after time τm meaning that the exposure expires at time τm, i.e.,
w(t) = w(t)1{t≤τm} for t ≥ 0. This implies that the total exposure is assumed to be finite WΛ < ∞.

Assume that the claims of the total exposure WΛ on (0, τm] occur at times T` (called accident dates
or claims occurrence dates) and the claims counting process (N(t))t≥0 is given by

N(t) = ∑
`≥1

1{T`≤t}, for t ≥ 0

and the total number of claims is given by

N = N(τm) = lim
t→∞

N(t)

Model Assumptions 1. We assume that the claims counting process (N(t))t≥0 is an inhomogeneous Poisson
point process with intensity (w(t)Λ(t))t≥0.

The second ingredient that we consider is the reporting date. Assume that a given claim ` occurs
at time T` then we denote its reporting date at the insurance company by S` ≥ T`. For accident date T`

and corresponding reporting date S` of claim ` we define the reporting delay by

U` = S` − T` ≥ 0

This motivates the study of the following inhomogeneous marked Poisson point process.

Model Assumptions 2. We assume that ((T`, U`)`=1,...,N(t))t≥0 describes an inhomogeneous marked Poisson
process with accident dates (T`)`≥1 generated by an inhomogeneous Poisson point process (N(t))t≥0 having
intensity (w(t)Λ(t))t≥0 and with mutually independent reporting delays (marks) U` = U(T`) having a
time-dependent distribution U = U(t) ∼ FU|t,Θ for t ≥ 0 and being independent of (N(t))t≥0.

From Jewell [1,2] and Norberg [5,6] we immediately obtain the following likelihood function for
parameters Λ and Θ

LN,(T`,S`)`=1,...,N
(Λ, Θ) = e−WΛ

WN
Λ

N!

N

∏
`=1

w(T`)Λ(T`)

WΛ
fU|T`,Θ(S` − T`) (2)

where fU|t,Θ denotes the density of FU|t,Θ (for parameter Θ). Observe that we use a slight abuse
of notation here. In Norberg [5,6] there is an additional factor N! because strictly speaking Model
Assumptions 2 consider ordered claims arrivals T(`) ≤ T(`+1) for all ` = 1, . . . , N − 1, whereas in
Jewell [1] and in Equation (2) claims arrivals are not necessarily ordered. The aim is to calibrate this
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model to individual claims data, that is, we would like to calibrate claims frequency Λ and reporting
delay distribution FU|t,Θ. One difficulty in this calibration lies in the fact that we have missing data,
because information about occurred claims with reporting dates S` > τ is not available at time τ ≥ τm.
Therefore, we only observe a thinned inhomogeneous Poisson process, we also refer to Norberg [5,6].

We choose τ ≥ τm. This implies that all claims have occurred at time τ, providing
N = N(τ) = N(τm). By M = M(τ) ≤ N we denoted the number of claims that are reported at time τ.
The intractable likelihood (2) is then converted to, for details we refer to Jewell [1],

L(T`,S`)`=1,...,M
(Λ, Θ) = e−πΛ,Θ(τ)WΛ

WM
Λ

M!

M

∏
`=1

w(T`)Λ(T`)

WΛ
fU|T`,Θ(S` − T`) (3)

= e−πΛ,Θ(τ)WΛ
(πΛ,Θ(τ)WΛ)

M

M!

M

∏
`=1

w(T`)Λ(T`)

πΛ,Θ(τ)WΛ
fU|T`,Θ(S` − T`)

where we only consider reported claims ` with S` ≤ τ and πΛ,Θ(τ) denotes the probability that an
incurred claim is reported by time τ ≥ τm. This is given by

πΛ,Θ(τ) =
∫ τm

0

w(t)Λ(t)
WΛ

FU|t,Θ(τ − t)dt

3. Description of the Data

For the statistical analysis we consider two different European insurance portfolios: (1) line of
business (LoB) Property, and (2) LoB Casualty. For both portfolios data is available from 1/1/2001
until 31/10/2010. In Figures 1–3 we illustrate the data. Generally, LoB Property is colored blue and
LoB Casualty is colored green (depending on the context special features may also be highlighted with
other colors, this will be described in the corresponding captions). Figure 1 gives daily claims counts
on the left-hand side (lhs) and monthly claims counts on the right-hand side (rhs). The following needs
to be remarked for Figure 1:

• The monthly claims counts on the rhs show a clear annual seasonality.
• The daily claims counts on the lhs show a weekly seasonality with blue/green dots for weekdays,

violet dots for Saturdays and orange dots for Sundays, in Table 1 we present the corresponding
statistics.

• In general, these graphs are decreasing because of missing IBNYR claims (late reportings) that
affect younger accident years more than older ones.

In Figure 2 (lhs) we give the daily claims reporting and Figure 2 (rhs) plots accident dates T`

versus reporting delays U` = S` − T`:

• Daily reporting differs between weekdays (blue/green) and weekends (violet for Saturdays
and orange for Sundays). Basically there is no reporting on weekends because claims staff in
insurance companies does not work on weekends, however there is a visible change in LoB
Property after 2006.

• There is a change in reporting policy in LoB Property after 2006 (top, lhs), this is visible by the
change of reportings on weekends (and will become more apparent in the statistical analysis
below). We do not have additional information on this, but it may be caused by web-based
reporting and needs special attention in modeling. We call 1/1/2006 “break point” in our analysis
because it leads to non-stationarity, this will analyzed in detail below.

• Figure 2 (rhs) gives the accident dates T` versus the reporting delays U` = S` − T`. We observe
that the big bulk of the claims has a reporting delay of less than 1 year, and for both LoBs the
resulting dots are located densely for U` ≤ 1. Bigger reporting delays are more sparse and LoB
Casualty has more heavy-tailed reporting delays than LoB Property, the former having several
claims with a reporting delay U` of more than 3 years.
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Finally, Figure 3 gives the box plots on the yearly scale of the logged reporting delays log(U`):

• LoB Property has a change in reporting policy that leads to a faster reporting after break
point 1/1/2006.

• The graphs are generally decreasing because IBNYR claims (late reportings) are still missing, this
corresponds to the upper-right (white) triangles in Figure 2 (rhs).

Table 1. Statistics per weekday: average daily claims counts and empirical standard deviation for LoB
Property and LoB Casualty.

Mon Tue Wed Thu Fri Sat Sun

LoB Property
average 11.48 11.02 11.87 12.15 14.23 15.46 10.73
standard deviation 4.51 4.05 4.26 4.30 4.66 4.95 4.26
LoB Casualty
average 2.89 2.92 2.89 2.65 2.61 1.09 0.82
standard deviation 2.72 2.82 2.63 2.40 2.45 2.08 1.80

Figure 1. Observed claims counts from 1/1/2001 until 31/10/2010: (top) LoB Property colored blue
and (bottom) LoB Casualty colored green. The lhs gives daily claims counts and the rhs monthly claims
counts; the red lines are the rolling averages over 30 days on the lhs and over 2 months on the rhs;
violet dots show claims occurrence on Saturdays and orange dots claims occurrence on Sundays, the
resulting statistics are provided in Table 1.
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Figure 2. Observed and reported claims counts from 1/1/2001 until 31/10/2010: (top) LoB Property
colored blue and (bottom) LoB Casualty colored green. The lhs gives daily claims reporting; the red
lines are the 30 days rolling averages; violet dots show claims reporting on Saturdays and orange dots
claims reporting on Sundays. The rhs plots accident dates T` versus reporting delays U` = S` − T`;
the upper-right (white) triangle corresponds to the missing data (IBNYR claims); the blue/green dots
illustrate reported and settled claims; the orange dots reported but not settled (RBNS) claims.

Figure 3. Box plots of the logged reporting delays log(U`) on the yearly scale (lhs) LoB Property,
(rhs) LoB Casualty.
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4. Seasonal Claims Frequency Modeling

4.1. Likelihood Function with Seasonality

We discuss the modeling of the claims frequency Λ = (Λ(t))t≥0 which can be any measurable
function having finite integral on interval (0, τm]. Time t ∈ R is measured in daily units (unless stated
otherwise). In order to get an appropriate model we study annual and weekly seasonality that both
influence Λ, see Figure 1. For the weekly seasonality we choose a stationary periodic pattern. This is
an appropriate choice unless the insurance product or the portfolio changes. For the annual seasonality
we split the time interval (0, τm] into smaller sub-intervals on which statistical estimation is carried
out. These smaller time intervals (τi−1, τi] are given by finitely many integer-valued endpoints

0 = τ0 < τ1 < . . . < τm−1 < τm, and we set ∆τi = τi − τi−1 (4)

for 1 ≤ i ≤ m. Typically, ∆τi corresponds to a calendar month: this is naturally given if data becomes
available on a monthly time scale. The following has to be considered: (i) the monthly time grid is
not equidistant because months differ in the number of days; (ii) months and weekdays do not have
the same periodicity; (iii) ∆τi should be sufficiently large so that reliable estimation can be done, and
sufficiently small so that we have homogeneity on these time intervals; and (iv) smoothing between
neighboring time intervals can be applied later on. Such a (monthly) seasonal split is reasonable
because often insurance claims are influenced by external factors (such as winter and summer) that
(may) only affect bounded time intervals for claims occurrence. This approximation can be seen as a
reasonable modeling assumption; if more randomness is involved then we should switch to a hidden
Markov model, such as the Cox model presented in Badescu et al. [18,19].

On this time grid we then make the following assumptions: for all 1 ≤ i ≤ m and t ∈ (τi−1, τi]

wi := w(τi) = w(t), Λiλdte = Λiλt = Λ(t) (5)

with weekly periodic (piece-wise constant) pattern λdte = λt = λt+7 for all t > 0 fulfilling
normalization ∑7

k=1 λk = 7 and global parameter Λi for interval (τi−1, τi]. We remark the following:

• We have a weekly periodic piece-wise constant pattern that is assumed to be stationary and a
(monthly) seasonal parameter Λi. The total exposure on (τi−1, τi] is given by

W(i)
Λ = wiΛi

∫ τi

τi−1

λtdt = wiΛi

τi

∑
k=τi−1+1

λk =: wiΛiλ
+
i (6)

λ+
i = ∑τi

k=τi−1+1 λk in general differs from ∆τi because different months may have different
weekday constellations.

• In the special case of λt ≡ 1 we obtain the piece-wise homogeneous case

wi = w(τi) = w(t), Λi = Λ(τi) = Λ(t), λ+
i = ∆τi (7)

This is a step function for the claims frequency providing total exposure W(i)
Λ = wiΛi∆τi. Note that

model (7) was studied in Section 4.2 of Antonio-Plat [17]. For our real data examples, the influence
of the additional weekly periodic parameter (λk)k=1,...,7 will be visualized in Figure 4, below.

• We could also choose a yearly seasonal pattern for (Λi)1≤i≤m if, for instance, ∆τi correspond to
calendar months. This is supported by Figure 1 (rhs) and would reduce the number of parameters.
This is particularly important for claims prediction, i.e., for predicting the number of claims of
future exposure years. In our analysis we refrain from choosing additional structure for (Λi)1≤i≤m
because we will concentrate on inference of past exposures and because the volumes of the two
LoBs are sufficiently large to get reliable inference results on a monthly scale.
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Figure 4. Estimated probability π
(m,1)

Θ̂(τm )
1

(τm), see (23), for τm ∈ {31/1/2001, . . . , 31/10/2010} using

weekly periodic pattern (λk)k=1,...,7 (blue/green) and setting (λk)k=1,...,7 ≡ 1 (black) for (lhs) LoB
Property under the full model (21), and (rhs) LoB Casualty under the null hypothesis reduced model.

Time grid (4) defines a natural partition on which the inhomogeneous marked Poisson point
process decouples into independent components, see Theorem 2 in Norberg [6]. The (τ-observable)
likelihood on time interval (τi−1, τi] under the above assumptions is given by

L(i)
(T(i)

` ,S(i)
` )`=1,...,Mi

(Λ, Θ) = e−π
(i)
Θ (τ)W(i)

Λ
(W(i)

Λ )Mi

Mi!

Mi

∏
`=1

λ
T(i)
`

λ+
i

f
U|T(i)

` ,Θ
(S(i)

` − T(i)
` ) (8)

where Mi = Mi(τ) denotes the number of reported claims at time τ ≥ τm with accident dates
T(i)
` ∈ (τi−1, τi] and corresponding reporting dates S(i)

` ≤ τ for ` = 1, . . . , Mi. The probability that an
incurred claim with accident date in (τi−1, τi] is reported at time τ ≥ τi simplifies to

π
(i)
Θ (τ) =

1

W(i)
Λ

∫ τi

τi−1

wiΛiλtFU|t,Θ (τ − t) dt =
1

λ+
i

∫ τi

τi−1

λtFU|t,Θ (τ − t) dt

Observe that probability π
(i)
Θ (τ) only depends on the (weekly-) seasonal pattern (λt)t∈(τi−1,τi ]

and
on Θ, but not on global parameter Λi of time interval (τi−1, τi].

Formula (8) specifies the likelihood on time interval (τi−1, τi]. Due to the independent splitting
property of inhomogeneous marked Poisson processes under partitions the total likelihood function at
time τ ≥ τm is given by

L(T`,S`)`=1,...,M
(Λ, Θ) =

m

∏
i=1
L(i)
(T(i)

` ,S(i)
` )`=1,...,Mi

(Λ, Θ) (9)

In the estimation procedure below we assume that the weekly periodic pattern (λk)k=1,...,7 is given
and parameters (Λi)1≤i≤m and Θ are estimated with maximum likelihood estimation (MLE) from (9),
based on the knowledge of (λk)k=1,...,7. In fact, in the applications below we will use a plug-in estimate
for (λk)k=1,...,7. We could also consider the full likelihood, including (λk)k=1,...,7, but for computational
reasons we refrain from doing so.
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4.2. Analysis of the MLE System

In this section we derive the maximum likelihood estimate (MLE) of (Λi)1≤i≤m and Θ based
on the knowledge of the weekly periodic pattern (λk)k=1,...,7. We calculate the derivatives of the
logarithms of (9) and (8), respectively, and set them equal to zero to find the MLE. This provides the
following lemma.

Lemma 3. Under Model Assumptions 2 with exposure (5), the MLE ((Λ̂(τ)
i )1≤i≤m, Θ̂(τ)) of parameter

((Λi)1≤i≤m, Θ) at time τ ≥ τm for given weekly periodic pattern (λk)k=1,...,7 is obtained by the solution of

∂

∂Θ

m

∑
i=1

Mi

∑
`=1

log

λ
T(i)
`

f
U|T(i)

` ,Θ
(S(i)

` − T(i)
` )

λ+
i π

(i)
Θ (τ)

 = 0

and
Λi =

Mi

π
(i)
Θ (τ)wiλ

+
i

The proof is given in Appendix A. Observe that for known weekly periodic pattern (λk)k=1,...,7
the MLE decouples in the sense that the MLE of Θ can be calculated independently of (Λi)1≤i≤m. This
substantially helps in the calibration below because it reduces complexity. Secondly, we remark that
the function

(t, s) 7→ fT,S|{τi−1<T≤τi},{S≤τ},Θ(s− t) =
λt fU|t,Θ(s− t)

λ+
i π

(i)
Θ (τ)

1{s≥t} (10)

gives a density on (τi−1, τi]× (0, τ].

4.3. Calibration of the Weekly Periodic Pattern

The MLE in Lemma 3 assumes that the weekly periodic pattern (λk)k=1,...,7 is given (and known).
In this section we compute a plug-in estimate (λ̂k)k=1,...,7. This has the advantage that the MLE remains
tractable. We estimate this weekly periodic pattern (λk)k=1,...,7 under one additional assumption which
we only use for this purpose (and drop again thereafter): assume τ ≥ τm is fixed and that there exists
m∗ ∈ {1, . . . , m} such that

FU|t,Θ(τ − t) = 1 (11)

for all t ≤ τm∗ and all Θ. Assumption Equation (11) is an approximation that we only use for choosing
(λk)k=1,...,7. It has the advantage that all time points t ≤ τm∗ are fully experienced at time τ. Estimation
of (λk)k=1,...,7 is then only done based on claims with T` ≤ τm∗ because for these occurrence days there
are no missing values. Of course, this neglects the latest information but often (in stationary cases, if
τm∗ is not too small and if late reportings do not distort the weekly periodic pattern) this estimation is
sufficiently robust. The following lemma is proved in Appendix A.

Lemma 4. Under Model Assumptions 2 with exposure (5) on a weekly time grid ∆τi = 7 (for all 1 ≤ i ≤ m∗)
and under assumption (11), the MLE (λ̂k)k=1,...,7 of the weekly periodic pattern (λk)k=1,...,7 with side constraint
∑7

k=1 λk = 7 based on claims with accident dates before τm∗ is for k = 1, . . . , 7 given by

λ̂k = 7
∑m∗

i=1 ∑Mi
`=1 1

{dT̃(i)
` e=k}

∑m∗
i=1 Mi

where
T̃(i)
` = T(i)

` − τi−1
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We may examine the robustness of these estimates by choosing different time horizons τm∗ , this is
done in Figure 5 (lhs); these graphs also show the confidence bounds we explain how to construct.
We have

λ̂−1
k =

1
7

∑m∗
i=1 Mi

∑m∗
i=1 ∑Mi

`=1 1
{dT̃(i)

` e=k}

=
1
7

1 +
∑m∗

i=1 ∑Mi
`=1 1

{dT̃(i)
` e6=k}

∑m∗
i=1 ∑Mi

`=1 1
{dT̃(i)

` e=k}

 =:
1
7

(
1 +

X1

X2

)

The latter ratio considers the realization of two independent Poisson distributed random variables
with means and variances, respectively,

µ1 = E [X1] = Var(X1) =
7− λk

7

m∗

∑
i=1

wiΛi, µ2 = E [X1] = Var(X1) =
λk
7

m∗

∑
i=1

wiΛi

We set v∗ = ∑m∗
i=1 wiΛi. The central limit theorem provides for i = 1, 2

(Xi − µi) /
√

µi ⇒ N (0, 1) for v∗ → ∞

For this reason we approximate Xi
(d)
≈ Zi ∼ N (µi, µi) and similarly

λ̂−1
k =

1
7

(
1 +

X1

X2

)
(d)
≈ 1

7

(
1 +

Z1

Z2

)
Following Hinkley [20] we can study the asymptotic behavior of the latter using µ2/

√
µ2 → ∞

for v∗ → ∞. This provides approximation for large v∗

P
[
λ̂k ≤ x

]
≈ 1− P

[
Z1

Z2
≤ 7x−1 − 1

]
≈ 1−Φ

(
µ2(7x−1 − 1)− µ1√
µ2(7x−1 − 1)2 + µ1

)

This allows us to derive approximate confidence bounds of the weekly periodic pattern estimates.
Choose confidence level α ∈ (1/2, 1), then we get a two-sided confidence bound estimate

λ̂k ∈
[
x− ((1− α)/2) , x+ ((1− α)/2)

]
(12)

with for p ∈ (0, 1)

x±(p) = 7
(Φ−1(p))2µ2 − µ2

2

(Φ−1(p))2µ2 − µ2
2 − µ1µ2 ∓Φ−1(p)

√
µ1µ2

√
µ1 + µ2 − (Φ−1(p))2

Replacing all parameters by their MLEs given by Lemma 4 and wiΛ̂i = Mi (which is the MLE for
i ≤ m∗ under assumption (11)) we get an estimate for the confidence bounds (12). These are plotted
in Figure 5.

In Figure 5 (rhs) we present the resulting MLEs (λ̂k)k=1,...,7 and the corresponding (estimated)
confidence bounds for confidence level α = 90%. We observe narrow confidence bounds and
substantial daily differences. In particular, claims frequencies in LoB Casualty are much lower on
weekends than on weekdays (this may suggest that we consider commercial casualty insurance
business). For LoB Property we observe higher frequencies on Fridays and Saturdays, also this is
directly related to the underlying business. Figure 5 (lhs) gives the corresponding time series as a
function of τm∗ . We observe convergence of the estimates after roughly 3 years of observations.
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Figure 5. Weekly periodic pattern estimate (λ̂k)k=1,...,7 (top) LoB Property and (bottom) LoB Casualty:
(lhs) time series as a function of τm∗ and (rhs) for maximal τm∗ such that (11) holds at time
τm = 31/10/2010 for a maximal reporting delay of 2 years (LoB Property) and of 4 years (LoB Casualty).
The confidence bounds in all plots are given by (12) for confidence level α = 90%.

5. Calibration of the Reporting Delay Distribution

In this section we study the choice of the reporting delay distribution FU|t,Θ. In an empirical
analysis we identify three regimes of reporting delays which we will model separately. In short,
(1) small reporting delay layer where we consider a weekday structure, see Figure 6; (2) middle
reporting delay layer with the main bulk of reportings, see Figure 14 (top); and (3) large reporting
delay layer that should have an appropriate tail for late reportings, see Figure 14 (bottom). We call
these the small, middle and large layers, and label them by n = 1, 2, 3.

Figure 6. Cont.
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Figure 6. (top) LoB Property and (bottom) LoB Casualty: empirical distribution of reporting delays
separated by weekdays of claims occurrence of all data with accident date prior to 01/2006 and
maximal reporting delay of U` ≤ 365 days (lhs) per day, (middle) compressed by weekends, and (rhs)
compressed and normalized to 1 after a delay of one week.

5.1. Decoupling of the Reporting Delay Distribution

As introduced in (4), we choose a monthly time grid 0 = τ0 < τ1 < . . . < τm with τm being the
end point of the last observed calendar month. The monthly time grid is naturally given because
available data is provided on that time scale. From a statistical point of view also finer or wider time
grids are possible. In LoB Property we have about 400 claims per month which gives a coefficient
of variation of 5% (for the Poisson distribution) and in LoB Casualty we have between 80 and 100
claims which gives a coefficient of variation of roughly 10%, see Figure 1 (rhs). If we would have
stationarity we could (or even should) take bigger time intervals, but because of the yearly seasonal
pattern, monthly time intervals are preferred to capture these seasonal differences.

The end point τm of the last observed calendar month will also be considered as a variable
that evolves when more and more information becomes available. First (rather limited) information
is available at 31/1/2001 and latest available information is as of 31/10/2010. Thus, τm will run
from 31/1/2001 to 31/10/2010 and we perform dynamic calibration based on actual information.

We make assumption (5) on that monthly time grid and we remark that the monthly time grid is
not equally spaced in number of days. Therefore it is convenient to measure time t in daily units. We
then assume that the weekly seasonal pattern (λk)k=1,...,7 is estimated (and fixed, see Figure 5) through
Lemma 4 (and we drop the upper hat in the notation of λk). Note that fixing the weekly periodic
pattern reduces the computational complexity in the sequel.

Next we need to choose the reporting delay distribution FU|t,Θ. We choose three layers with
thresholds 0 = u(0) < u(1) < u(2) < u(3) = ∞ and density

fU|t,Θ(u) =
3

∑
n=1

p(n)U|t,Θ f (n)U|t,Θ(u)1{u(n−1)≤u<u(n)} (13)

where the probability weights p(n)U|t,Θ ≥ 0 are normalized ∑3
n=1 p(n)U|t,Θ = 1, and f (n)U|t,Θ(·) are densities

supported on [u(n−1), u(n)) for n = 1, 2, 3. We make the following assumptions:

Assumption 5. We choose time units in days and make the following (additional) assumptions for the density
in (13): For t ∈ (τi−1, τi] and n = 1, 2, 3 we assume

p(n)U|t,Θ = p(n)U|τi ,Θ
, f (1)U|t,Θ = f (1)U|dte,Θ, f (2)U|t,Θ = f (2)U|τi ,Θ

, f (3)U|t,Θ = f (3)U|τi ,Θ
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This assumption says that the density of the small layer depends on weekdays dte and the
remaining terms only depend on the accident month (τi−1, τi]. The cumulative distribution function is
under Assumption 5 for t ∈ (τi−1, τi] given by

FU|t,Θ(u) =


p(1)U|τi ,Θ

F(1)
U|dte,Θ(u) for u(0) ≤ u < u(1)

p(1)U|τi ,Θ
+ p(2)U|τi ,Θ

F(2)
U|τi ,Θ

(u) for u(1) ≤ u < u(2)

p(1)U|τi ,Θ
+ p(2)U|τi ,Θ

+ p(3)U|τi ,Θ
F(3)

U|τi ,Θ
(u) for u(2) ≤ u < u(3)

(14)

This split in layers again defines a partition and the likelihood decouples into independent parts;
see also Theorem 2 of Norberg [6]. The log-likelihood of (9) is then at time τm given by

m

∑
i=1

3

∑
n=1

`
(i,n)

(T(i,n)
` ,S(i,n)

` )`=1,...,Mi,n

(Λ, Θ) ∝
m

∑
i=1

3

∑
n=1
−π

(i,n)
Θ (τm)W

(i,n)
Λ,Θ + Mi,n log(W(i,n)

Λ,Θ )

+
Mi,n

∑
`=1

log

λ
T(i,n)
`

λ+
i

f (n)
U|T(i,n)

` ,Θ
(U(i,n)

` )

 (15)

with Mi,n = Mi,n(τm) being the number of reported claims at time τm with accident dates

T(i,n)
` ∈ (τi−1, τi] and reporting delays U(i,n)

` = S(i,n)
` − T(i,n)

` ∈ [u(n−1), u(n)). The total exposures
for this partition are given by

W(i,n)
Λ,Θ = wiΛi

∫ τi

τi−1

λt

∫ u(n)

u(n−1)
fU|t,Θ(u)du dt = wiΛi p(n)U|τi ,Θ

∫ τi

τi−1

λtdt = wiΛiλ
+
i p(n)U|τi ,Θ

(16)

The probability that these claims are reported at time τm is given by

π
(i,n)
Θ (τm) =

1
λ+

i

∫ τi

τi−1

λtF
(n)
U|t,Θ (τm − t) dt (17)

Note that F(n)
U|t,Θ (τm − t) = 1 for τm − t ≥ u(n) because in that case all claims have been reported

at time τm with reporting delay less than u(n). This may substantially simplify the analysis in the lower
and middle layers n = 1, 2, and is similar to (11).

5.2. Calibration of the Small Reporting Delay Layer

5.2.1. Model in the Small Reporting Delay Layer

We start by considering the small reporting delay layer [u(0), u(1)). Data shows that reporting
delays have a weekly pattern because claims divisions do not (necessarily) work at weekends and a
claim occurring, for instance, on a Saturday can only be reported on Monday. This is illustrated
in Figure 6. This indicates that we need a (week-) daily modeling approach. In order to not
over-parametrize our model we try to keep this (week-) daily modeling layer as small as possible.
The canonical choice then is to set u(1) = 7 because after one week all claims have experienced a full
weekly cycle and reporting should be on a similar level for all weekdays, this is supported by Figure 6
(middle), though not fully.

We could now try to maximize the log-likelihood (15) by brute force. Observe that this includes a
coupling between all layers through exposures W(i,n)

Λ,Θ because we have p(3)U|t,Θ = 1− p(1)U|t,Θ − p(2)U|t,Θ.
This is unpleasant from a computational point of view, and we therefore propose an approximation.
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For i < m we have τm ≥ u(1) + τi which implies π
(i,1)
Θ (τm) = 1 for all i < m. For i = m we have

from (17) and under Assumption 5, assumption λt = λdte and a change of variable u = τm − t

π
(m,1)
Θ (τm) =

1
λ+

m

∫ ∆τm

0
λτm−uF(1)

U|τm−u,Θ(u)du (18)

= 1− 1
λ+

m

u(1)−1

∑
v=0

λτm−v

∫ v+1

v
1− F(1)

U|τm−v,Θ(u)du

This shows that if parameter Θ = (Θ1, Θ2, Θ3, p1, p2) splits into parameters Θn for f (n)U|t,Θ = f (n)U|t,Θn
,

n = 1, 2, 3, and p(1)U|t,Θ = p1 and p(2)U|t,Θ = p2 (we omit possible time dependence in the notation of Θn

and pn), then the coupling of the lower layer with the other two layers happens through π
(m,1)
Θ1

(τm) and

p(1)U|t,Θ = p1 and p(2)U|t,Θ = p2 in exposures W(i,n)
Λ,Θ . If we neglect in (18) the latest 7 days of observations,

i.e., claims with occurrence dates T(m,1)
` ∈ (τm− u(1), τm], then the calibration of the lower layer density

f (1)U|t,Θ = f (1)U|t,Θ1
completely decouples from the other two layers because we have full information (no

missing data) for accidents with occurrence dates in (τ0, τm − u(1)] at time τm. This is indicated by the
dashed red line in Figure 7 (lhs). In most cases this provides a reasonable approximation because the
last u(1) = 7 days will not completely change the calibration of the lower reporting delay distribution
F(1)

U|t,Θ1
if we have observations over, say, 10 years ≈ 3652 days. For this reason we shorten the last time

interval to (τm−1, τm − u(1)] which provides in view of (15) MLE for Θ1

0 !
=

∂

∂Θ1

m−1

∑
i=1

Mi,1

∑
`=1

log f (1)
U|T(i,1)

` ,Θ1
(U(i,1)

` ) +

M′m,1

∑
`=1

log f (1)
U|T(m,1)

` ,Θ1
(U(m,1)

` )

 (19)

where M′m,1 denotes the number of reported claims at time τm with accident dates

T(m,1)
` ∈ (τm−1, τm − u(1)] and reporting delays U(m,1)

` ∈ [0, u(1)). The first component Θ1 of Θ is

assumed to fully characterize density f (1)U|t,Θ1
but no other part of the reporting delay distribution.

Figure 7. (lhs) small reporting delay layer as of 31/10/2010 for occurrence dates in 10/2010 of LoB
Property, and (rhs) estimated trend parameter α at times τm ∈ {31/12/2001, . . . , 31/10/2010} for LoB
Property (blue/light blue) and LoB Casualty (green/light green) with dark colors are for u(2) = 3
months and light colors for u(2) = 6 months.
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Next we discuss the explicit choice of f (1)U|t,Θ1
. In Figure 6 (lhs) we plot the empirical distribution

of all claims with accident dates before 01/2006 and a maximal reporting delay of 365 days. Figure 6
only shows the claims with reporting delays U` < u(1) = 7, i.e., belonging to the small layer. The lhs
shows the individual delay distributions per weekday of occurrence, the middle pictures the same
distributions but compressed by the weekends (because there are (almost) no reportings on Saturdays
and Sundays) and the rhs shows the compressed graph that is normalized to 1 at time u(1). The graphs
indicate that we should start by modeling weekdays individually. We make the following Ansatz:
choose discrete distributions with, for u = 0, . . . , u(1) − 1 = 6 and t ≥ 0,

f (1)U|t,Θ1
(u) = θdte(u) = θdte+u(1)(u) (20)

with θdte(u) ≥ 0 such that ∑u(1)−1
v=0 θdte(v) = 1. The second identity in (20) implies that we obtain a

weekly periodic reporting delay distribution with 42 parameters Θ1 = (θs(u))0≤u≤u(1)−1,1≤s≤u(1)−1, if
we assume stationarity (20) on the weekly time grid. We may even ask for more parameters because of
potential non-stationarity of the reporting behavior, see Figure 2. We refrain from doing so but we use
a rolling window to detect and capture non-stationarity. We should also remark that the 42 parameters
raise questions about over-parametrization. We will investigate this question below and we will find
that we can reduce the number of parameters in LoB Casualty, in LoB Property we will work with
parametrization (20) which will provide rather stable results due to sufficient volume in this LoB.

Optimization problem (19) provides Lagrangian with Lagrange multipliers χ = (χs)1≤s≤u(1)

Lτm(Θ1, χ) =
m−1

∑
i=1

Mi,1

∑
`=1

log f (1)
U|T(i,1)

` ,Θ1
(U(i,1)

` ) +

M′m,1

∑
`=1

log f (1)
U|T(m,1)

` ,Θ1
(U(m,1)

` )

−
u(1)

∑
s=1

χs

u(1)−1

∑
v=0

θs(v)− 1


The MLE of (19) is then found by setting the derivatives of Lτm(Θ1, χ) w.r.t. Θ1 and χ equal

to zero and solving this system of equations. For s = 1, . . . , u(1) and u = 0, . . . , u(1) − 1 we define
M′′s,u = M′′s,u(τm) to be the number of reported claims at time τm with accident dates in (τ0, τm − u(1)],
reported on weekday s and having reporting delay u (we think of s = 1 being Mondays and s = 7
being Sundays). The MLE of θs(u) at time τm is then given by

θ̂
(τm)
s (u) =

M′′s,u(τm)

∑u(1)−1
u=0 M′′s,u(τm)

The lower reporting delay layer distribution is at time τm estimated by

f (1)
U|t,Θ̂(τm)

1

(u) = θ̂
(τm)
dte (u) =

M′′dte,u(τm)

∑u(1)−1
u=0 M′′dte,u(τm)

(21)

To capture potential non-stationarity we will choose a fixed window length K and consider this
estimate based on observations in (τ(m−K)∨0, τm − u(1)].

5.2.2. Empirics and Fitting the Small Reporting Delay Layer Distributions

We estimate distributions (21) in the lower reporting delay layer [u(0), u(1)) for the 2 LoBs.
In Tables 2 and 3 we give the observed number of reported claims M′′s,u(τm) for weekdays

1 ≤ s ≤ 7 and reporting delays 0 ≤ u ≤ 6 = u(1) − 1 at time τm = 31/10/2010 for claims with accident
dates before 26/10/2010. We see that there is a weekly pattern with no reportings on weekends in LoB
Casualty and fewer reportings on weekends in LoB Property. For the latter we estimate all parameters
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θs(u) individually, for the former we may also discuss other approaches, for instance, compressing
weekends and shift the weekdays in Table 3 to the left (which is done on the rhs of Table 3). Moreover,
the numbers in Table 3 are rather small and of similar size which may also suggest that we should not
distinguish different reporting delays. We investigate this more formally below.

Table 2. Observed number of reported claims M′′s,u(τm) for weekdays 1 ≤ s ≤ 7 and reporting delays
0 ≤ u ≤ 6 = u(1) − 1 at time τm = 31/10/2010 for claims with accident dates before 26/10/2010 of
LoB Property.

u = 0 1 2 3 4 5 6

Mon s = 1 164 482 254 220 172 5 3
Tue s = 2 172 504 255 221 3 5 207
Wed s = 3 178 545 258 17 4 246 248
Thu s = 4 163 542 20 9 355 239 257
Fri s = 5 193 88 15 651 369 296 287
Sat s = 6 49 33 754 445 314 266 266
Sun s = 7 20 470 307 211 195 197 6

Table 3. Observed number of reported claims M′′s,u(τm) for weekdays 1 ≤ s ≤ 7 and reporting delays
0 ≤ u ≤ 6 = u(1) − 1 at time τm = 31/10/2010 for claims with accident dates before 26/10/2010 of
LoB Casualty, the rhs is compressed by weekends.

u = 0 1 2 3 4 5 6 0* 1* 2* 3* 4*

Mon s = 1 17 31 33 41 34 0 0 17 31 33 41 34
Tue s = 2 15 36 25 42 0 0 30 15 36 25 42 30
Wed s = 3 16 40 25 0 0 43 53 16 40 25 43 53
Thu s = 4 19 43 0 0 33 27 38 19 43 33 27 38
Fri s = 5 12 0 0 29 40 33 40 12 29 40 33 40
Sat s = 6 0 0 9 10 12 10 15 9 10 12 10 15
Sun s = 7 0 5 12 7 5 10 0 5 12 7 5 10

We start with LoB Property. We show in Figure 8 the resulting estimates (see (20)) with a
rolling window of length 2·365 days (solid lines) which is compared to the estimate considering all
observations (dotted lines). We clearly see the non-stationarity after the break point at 1/1/2006, and
the rolling window seems to capture it rather well. Therefore, we do not use any other measures here,
but work with the rolling window of length 2·365 days (solid lines).

Figure 8. Cont.
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Figure 8. LoB Property, small reporting delay layer: estimated cumulative distribution F(1)
U|t,Θ per

weekday s = dte. Dotted lines show calibration based on all observations since τ0 and lines show
calibration based on a rolling window of length 2·365 days.

For LoB Casualty the non-stationarity is less obvious, see Figure 9. In fact, the resulting estimates
with a rolling window of length 2·365 days (solid lines) are rather volatile which is a clear sign of
over-parametrization. The dotted lines show the estimates based on all available observations, these
are much smoother with a slight positive trend for some of the weekdays. At this point we could
investigate more thoroughly this non-stationarity, we refrain from doing so because in this case study
it may only marginally influence the estimation of the number of IBNYR claims: the potential trend
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has a very moderate slope which affects less then 10% of the claims in LoB Casualty (small reporting
delay layer). For this reason, we simply choose a stationary model and we mainly aim at studying
whether we can further reduce the number of parameters in Θ1. First, we compress the weekends
(in Table 3 we go from the lhs denoted 0, . . . , 6 to the rhs denoted 0∗, . . . , 4∗). Then we test the null
hypothesis whether for all weekdays s = 1, . . . , 7 and compressed reporting delays u∗ = 1∗, . . . , 4∗ we
can choose the same (empirical) probability, and for all weekdays s = 1, . . . , 7 we can choose the same
probability for reporting delay u∗ = 0∗, that is, we test the null hypothesis θ1(0∗) = . . . = θ7(0∗) (delay
0∗ does not differ between weekdays s = 1, . . . , 7) and θ1(1∗) = . . . = θ7(4∗) (delays 1∗, . . . , 4∗ and
weekdays s = 1, . . . , 7 do not differ). We perform for every weekday s = 1, . . . , 7 a Pearson’s χ2-test
(for the information at time τm = 31/10/2010). The corresponding test statistics is

χ2
s =

4∗

∑
u∗=0∗

(
M′′s,u∗(τm)−M′′s,•(τm) θ̂

(τm)
s (u∗)

)2

M′′s,•(τm) θ̂
(τm)
s (u∗)

, (22)

with M′′s,u∗(τm) being the number of reported claims with occurrence day s and compressed reporting

delay u∗, M′′s,•(τm) = ∑4∗
u∗=0∗ M′′s,u∗(τm) and θ̂

(τm)
s (u∗) being the corresponding MLE under the

null hypothesis.

Figure 9. Cont.
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Figure 9. LoB Casualty, small reporting delay layer: estimated cumulative distribution F(1)
U|t,Θ per

weekday s = dte. Dotted lines show calibration based on all observations since τ0 and lines show
calibration based on a rolling window of length 2·365 days.

We provide the resulting p-values in Table 4. The resulting p-value for claims with accident dates
on Wednesdays s = 3 is 3.2% and for all other weekdays s we obtain p-values bigger than 20%. We
consider these p-values to be sufficiently large so that we do not reject the null hypothesis. This leads
to a substantial reduction in the number of parameters, and we only choose three different values
for Θ1 = (θs(u))0≤u≤u(1)−1,1≤s≤u(1) at any time point τm in this reduced case (the third one being 0%
for weekends). In Figure 10 we show the results, the solid line gives the estimates under the null
hypothesis and the dotted lines the estimates of the model with 42 parameters. For LoB Casualty we
choose this reduced model (under the null hypothesis).

Using (18) and the fact that we choose a step function for F(1)
U|t,Θ1

we obtain estimated probability
in the small reporting delay layer given by

π
(m,1)

Θ̂(τm)
1

(τm) = 1− 1
λ+

m

u(1)−1

∑
v=0

λτm−v

(
1−

v

∑
u=0

θ̂
(τm)
τm−v(u)

)
. (23)

The results are presented in Figure 4 and they are compared to the case where we do not choose
a weekly periodic pattern, that is, where we set (λk)k=1,...,7 ≡ 1. This latter model is the one used
in Section 4.2 of Antonio-Plat [17]. We see that the weekly periodic pattern essentially smooths the
estimates, in particular, for weekends in LoB Casualty. This confirms the findings of Section 4.3 and, in
particular, of Figure 5. For this reason we continue with the model allowing us for the modeling of a
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weekly periodic pattern (λk)k=1,...,7. We fix the resulting estimates π
(m,1)

Θ̂(τm)
1

(τm) and then calibrate the

middle and large layers, this is explained next.

Table 4. p-values of the χ2-tests under the corresponding null hypotheses for test statistics χ2
s ,

see Equation (22), for weekdays s = 1, . . . , 7 (with 4 degrees of freedom).

Mon s = 1 Tue s = 2 Wed s = 3 Thu s = 4 Fri s = 5 Sat s = 6 Sun s = 7

p-values 79% 29% 3.2% 37% 44% 52% 47%

Figure 10. LoB Casualty, small reporting delay layer: estimated cumulative distribution F(1)
U|t,Θ per

weekday s = dte. Dotted lines show calibration based on individual weekdays and reporting delays
and lines show calibration under compressed weekends and the null hypothesis that we only need
three parameters.
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5.3. Calibration of Middle and Large Reporting Delay Layers

We come back to log-likelihood (15). We replace in the small reporting delay layer parameter Θ1

by its estimate Θ̂(τm)
1 derived in the previous subsection. This provides the log-likelihood at time τm,

we only show the terms including the unknown parameters (Λ, Θ−1) := (Λ, Θ2, Θ3, p1, p2),

`τm(Λ, Θ−1) ∝
m

∑
i=1

[
−π

(i,1)

Θ̂(τm)
1

(τm)W
(i,1)
Λ,Θ +

3

∑
n=2
−π

(i,n)
Θn

(τm)W
(i,n)
Λ,Θ +

3

∑
n=1

Mi,n log(W(i,n)
Λ,Θ )

]

+
m

∑
i=1

3

∑
n=2

Mi,n

∑
`=1

log

λ
T(i,n)
`

λ+
i

f (n)
U|T(i,n)

` ,Θn
(U(i,n)

` )

 (24)

where π
(i,1)

Θ̂(τm)
1

(τm) = 1 for i < m. From this we compute the MLE of Λ = (Λi)i=1,...,m (see also

Lemma 3):

Λi =
Mi(τm)

wiλ
+
i

(
π
(i,1)

Θ̂(τm)
1

(τm)p(1)U|τi ,Θ
+ ∑3

n′=2 π
(i,n′)
Θn′

(τm)p(n
′)

U|τi ,Θ

) for i = 1, . . . , m (25)

If we insert this back into (24) we get (only stating relevant terms for parameter estimation)

`τm(Θ−1) ∝
m

∑
i=1

3

∑
n=1

Mi,n log

 p(n)U|τi ,Θ

π
(i,1)

Θ̂(τm)
1

(τm)p(1)U|τi ,Θ
+ ∑3

n′=2 π
(i,n′)
Θn′

(τm)p(n
′)

U|τi ,Θ


+

m

∑
i=1

3

∑
n=2

Mi,n

∑
`=1

log
(

f (n)U|τi ,Θn
(U(i,n)

` )
)

where we have used Assumption 5 for f (n)U|t,Θn
with n = 2, 3. Recall that we have normalization

∑3
n′=1 p(n

′)
U|τi ,Θ

= 1 of the layer probabilities because the reporting delays need to be in one of the three

layers. Assuming p(3)U|τi ,Θ
> 0 we can normalize these probabilities by dividing by this third probability

and setting q(n)τi = p(n)U|τi ,Θ
/p(3)U|τi ,Θ

≥ 0. From this we see that we can rewrite the last log-likelihood in

terms of q = (q(1)τi , q(2)τi , q(3)τi = 1)1≤i≤m. This provides the log-likelihood

`τm(Θ2, Θ3, q) ∝ −
m

∑
i=1

Mi log

(
π
(i,1)

Θ̂(τm)
1

(τm)q
(1)
τi +

3

∑
n′=2

π
(i,n′)
Θn′

(τm)q
(n′)
τi

)
(26)

+
m

∑
i=1

2

∑
n=1

Mi,n log
(

q(n)τi

)
+

m

∑
i=1

3

∑
n=2

Mi,n

∑
`=1

log
(

f (n)U|τi ,Θn
(U(i,n)

` )
)

To implement MLE of (26) there remains the calculation of π
(i,n′)
Θn′

(τm) for n′ = 2, 3. This is what
we are going to discuss next.

5.3.1. Choice of Layers and Approximate Log-likelihood

We still need to specify threshold u(2). The lower limit was chosen to be u(1) = 7 days. For u(2)

we test different reporting delays κ = 3, 6, 9 or 12 months. Note that κ months is not well-defined in
terms of number of days. We set u(2) equal to 89, 181, 273 or 365 which is the minimal number of days
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that κ consecutive calendar months can have. The accident periods (τi−1, τi] with i ≤ m− κ are then
fully observed in the middle layer at time τm, and we have

π
(i,2)
Θ2

(τm) = 1 for 1 ≤ i ≤ m− κ

Thus, we only need to study m− κ + 1 ≤ i ≤ m in more detail for the middle reporting delay
layer. As for the large reporting delay layer we see that there are no observations possible at time τm

for accident periods (τi−1, τi] with m− κ + 2 ≤ i ≤ m and, therefore,

π
(i,3)
Θ3

(τm) = 0 for m− κ + 2 ≤ i ≤ m

The remaining layers and probabilities are more involved, and we consider these next.
Large reporting delay layer [u(2), ∞) with n = 3. For i ≤ m− κ + 1 we have under Assumption 5

π
(i,3)
Θ3

(τm) =
1

λ+
i

∫ τi

τi−1

λtF
(3)
U|τi ,Θ3

(τm − t) dt

To simplify optimization (26) we assume that for reportings in the large layer the weekly periodic
pattern (λk)k=1,...,7 only has a marginal influence. This is justified by the argument that between claims
occurrence and reporting there are at least κ months of delay, and therefore the specific weekday of the
accident should only marginally influence the late reporting (as long as a particular claim type cannot
only occur on one specific weekday). For i ≤ m− κ this provides the approximation

π
(i,3)
Θ3

(τm) ≈ π̃
(i,3)
Θ3

(τm) =
1

∆τi

∫ τm−τi−1

τm−τi

F(3)
U|τi ,Θ3

(u) du

The situation i = m − κ + 1 is more delicate. We have u(2) ∈ {89, 181, 273, 365} which is the
minimal number of days that κ consecutive calendar months can have, the maximal number of days
being 92, 184, 276 or 366 days, respectively. Therefore, the following integral may also be non-zero on
time interval (τm−κ , τm−κ+1] at time τm

π
(m−κ+1,3)
Θ3

(τm) ≈ π̃
(m−κ+1,3)
Θ3

(τm) =
1

∆τm−κ+1

∫ τm−τm−κ

τm−τm−κ+1

F(3)
U|τm−κ+1,Θ3

(u) du

=
1

∆τm−κ+1

∫ τm−τm−κ

u(2)
F(3)

U|τm−κ+1,Θ3
(u) du

Note that ∆τm−κ+1 ≥ 28 and τm − τm−κ − u(2) ≤ 3 which implies that π̃
(m−κ+1,3)
Θ3

(τm) ≤ 3/28 <

1/9 for all m. Therefore, this term only marginally influences the results (and it could also be skipped
for parameter estimation but we will keep it).

Middle reporting delay layer [u(1), u(2)) with n = 2. We still need to treat the cases m− κ + 1 ≤ i ≤
m− 1 and i = m. We have for m− κ + 1 ≤ i ≤ m

π
(i,2)
Θ2

(τm) =
1

λ+
i

∫ τi

τi−1

λtF
(2)
U|τi ,Θ2

(τm − t) dt

=
1

λ+
i

∆τi−1

∑
v=0

λτi−v

∫ v+1

v
F(2)

U|τi ,Θ2
(τm − τi + u) du

As we indicate below, this can be implemented and MLE can be performed. In order to speed
up the MLE optimization we also approximate π

(i,2)
Θ2

(τm). However, this approximation is only used
for parameter estimation, for the number of IBNYR claims estimation we will use the exact form
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π
(i,2)
Θ2

(τm). For the approximation in MLE we also neglect weekday differences which provides for
m− κ + 1 ≤ i ≤ m− 1

π
(i,2)
Θ2

(τm) ≈ π̃
(i,2)
Θ2

(τm) =
1

∆τi

∫ τm−τi−1

τm−τi

F(2)
U|τi ,Θ2

(u) du

For i = m we have F(2)
U|τm ,Θ2

(u) = 0 for u ≤ u(1). This provides the approximation

π
(m,2)
Θ2

(τm) ≈ π̃
(m,2)
Θ2

(τm) =
1

∆τm

∫ ∆τm

u(1)
F(2)

U|τm ,Θ2
(u) du

because otherwise reporting delays belong to the small layer.
This allows us to approximate the log-likelihood (26) by (we also refer to Corollary 7, below)

˜̀
τm(Θ2, Θ3, q) ∝ −

m

∑
i=1

Mi log

(
π
(i,1)

Θ̂(τm)
1

(τm)q
(1)
τi +

3

∑
n′=2

π̃
(i,n′)
Θn′

(τm)q
(n′)
τi

)
(27)

+
m

∑
i=1

2

∑
n=1

Mi,n log
(

q(n)τi

)
+

m

∑
i=1

3

∑
n=2

Mi,n

∑
`=1

log
(

f (n)U|τi ,Θn
(U(i,n)

` )
)

where several of the π’s and π̃’s are either 0 or 1 (we give them in detail below). To calculate them we
need the following lemma.

Lemma 6. Assume X ∼ F and choose x1 < x2. We have∫ x2

x1

F(x)dx = x2F(x2)− x1F(x1)−E
[

X1{x1<X≤x2}

]
Proof of Lemma 6. The proof follows by applying integration by parts.

Corollary 7. We choose U(i,n) ∼ F(n)
U|τi ,Θn

and denote the corresponding expectation by E(n)
U|τi ,Θn

.

1. Small layer [0, u(1)) = [0, 7). For 1 ≤ i ≤ m− 1 we have probability π
(i,1)

Θ̂(τm)
1

(τm) = 1 and the case i = m

is given by (23).

2. Middle layer [u(1), u(2)) = [7, u(2)). For 1 ≤ i ≤ m− κ we have probability π
(i,2)
Θ2

(τm) = π̃
(i,2)
Θ2

(τm) = 1.
For m− κ + 1 ≤ i ≤ m− 1 we have

π̃
(i,2)
Θ2

(τm) =
τm − τi−1

∆τi
F(2)

U|τi ,Θ2
(τm − τi−1)−

τm − τi
∆τi

F(2)
U|τi ,Θ2

(τm − τi)

− 1
∆τi

E(2)
U|τi ,Θ2

[
U(i,2)1{τm−τi<U(i,2)≤τm−τi−1}

]
and for i = m

π̃
(m,2)
Θ2

(τm) = F(2)
U|τm ,Θ2

(∆τm)−
1

∆τm
E(2)

U|τm ,Θ2

[
U(m,2)1{u(1)<U(m,2)≤∆τm}

]
3. Large layer [u(2), ∞). For m − κ + 2 ≤ i ≤ m we have probability π

(i,3)
Θ3

(τm) = π̃
(i,3)
Θ3

(τm) = 0.
For 1 ≤ i ≤ m− κ we have

π̃
(i,3)
Θ3

(τm) =
τm − τi−1

∆τi
F(3)

U|τi ,Θ3
(τm − τi−1)−

τm − τi
∆τi

F(3)
U|τi ,Θ3

(τm − τi)

− 1
∆τi

E(3)
U|τi ,Θ3

[
U(i,3)1{τm−τi<U(i,3)≤τm−τi−1}

]
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and for i = m− κ + 1

π̃
(m−κ+1,3)
Θ3

(τm) =
τm − τm−κ

∆τm−κ+1
F(3)

U|τm−κ+1,Θ3
(τm − τm−κ)

− 1
∆τm−κ+1

E(3)
U|τm−κ+1,Θ3

[
U(m−κ+1,3)1{u(2)<U(m−κ+1,3)≤τm−τm−κ}

]

Finally, we need to choose explicit distribution functions F(n)
U|τi ,Θn

for the reporting delay layers
n = 2, 3. This is what we are going to do in the next subsection.

5.3.2. Choice of Explicit Distributions and Layer Probabilities

There remains the modeling of the reporting delay distributions F(n)
U|τi ,Θn

in the middle and large

layers as well as the relative layer probabilities q(n)τi for n = 1, 2. We have considered different models,
compared them to each other, checked them for robustness and applied statistical model selection
criteria such as Akaike’s information criterion. Our favorite model that is at the same time not too
difficult and gives appropriate results is the following: (i) for the middle layer n = 2 we choose a
stationary truncated log-normal distribution, (ii) for the upper layer n = 3 we choose a stationary
shifted log-normal distribution, and (iii) we choose non-stationary relative layer probabilities q(n)τi . We
justify these choices by some statistical analysis below.

Lemma 8. Assume X(2) has a truncated log-normal distribution with parameters µ2 ∈ R and σ2 > 0 supported
in a non-empty interval [νi−1, νi] ⊂ R+. The density of X(2) is given by

f (2)(x) =
1

Φ
(

log νi−µ2
σ2

)
−Φ

(
log νi−1−µ2

σ2

) 1√
2πσ2

1
x

exp

{
− (log x− µ2)

2

σ2
2

}
1{νi−1≤x≤νi}

The distribution of X(2) is given by

F(2)(x) =
Φ
(

log(x∧νi)−µ2
σ2

)
−Φ

(
log νi−1−µ2

σ2

)
Φ
(

log νi−µ2
σ2

)
−Φ

(
log νi−1−µ2

σ2

) 1{νi−1≤x}

The expectation of X(2) on layer (x1, x2] ⊂ [νi−1, νi] is given by

E
[

X(2)1{x1<X(2)≤x2}

]
= exp{µ2 + σ2

2 /2}
Φ
(

log x2−(µ2+σ2
2 )

σ2

)
−Φ

(
log x1−(µ2+σ2

2 )
σ2

)
Φ
(

log νi−µ2
σ2

)
−Φ

(
log νi−1−µ2

σ2

)
Assume X(3) = ν + Z ∼ F(3) has a shifted log-normal distribution with Z being log-normally distributed

with parameters µ3 ∈ R and σ3 > 0. We have on the layer (x1, x2] ⊂ [ν, ∞), set z1 = x1 − ν and z2 = x2 − ν,

∫ x2

x1

F(3)(x)dx = z2Φ
(

log z2 − µ3

σ3

)
− z1Φ

(
log z1 − µ3

σ3

)
− exp

{
µ3 +

σ2
3

2

}[
Φ

(
log z2 − (µ3 + σ2

3 )

σ3

)
−Φ

(
log z1 − (µ3 + σ2

3 )

σ3

)]

Proof of Lemma 8. The proof is a straightforward consequence of calculations with log-normal
distributions, see also Section 3.2.3 in [21].
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The model of Lemma 8 will be chosen below. We will compare it to the situation where we also
have a truncated log-normal distribution for F(3) in the upper layer, and we also compare it to the case
of replacing the log-normal by gamma distributions. More details are provided below.

There remains the choice of q(n)τi = p(n)U|τi ,Θ
/p(3)U|τi ,Θ

≥ 0 for n = 1, 2. We consider for break point
τm0 = 1/1/2006, γ > 0 and t ∈ (τi−1, τi] the functional forms

p(1)U|τi ,Θ
/p(3)U|τi ,Θ

= q(1)τi = q(1) exp
{

α(i−m0)
γ
+

}
(28)

p(2)U|τi ,Θ
/p(3)U|τi ,Θ

= q(2)τi = q(2) exp

{
−α

q(1)

q(2)
(i−m0)

γ
+

}

with given trend parameter α ≥ 0 after break point τm0 . For α→ 0 we have

p(1)U|t,Θ = q(1)p(3)U|τi ,Θ
+ α q(1)p(3)U|τi ,Θ

(i−m0)
γ
+ + o(α)

p(2)U|t,Θ = q(2)p(3)U|τi ,Θ
− α q(1)p(3)U|τi ,Θ

(i−m0)
γ
+ + o(α)

This shows that we roughly model a γ-power increase/decrease after the break point τm0 .

Normalization p(1)U|τi ,Θ
+ p(2)U|τi ,Θ

+ p(3)U|τi ,Θ
= 1 implies

p(3)U|τi ,Θ
=

(
q(1) exp{α(i−m0)

γ
+}+ q(2) exp{−α(i−m0)

γ
+}+ 1

)−1

=
(

q(1) + q(2) + 1 + o(α)
)−1

as α→ 0

This shows that p(3)U|τi ,Θ
is almost constant for α small, i.e., the break point only marginally

influences late reportings (because it mainly speeds up immediate reporting after claims occurrence,
this will be seen below and corresponds to the red graphs in Figure 11).

Figure 11. Estimated layer probabilities p(n)U|τm ,Θ, n = 1, 2, 3, in the truncated/shifted log-normal

model (lhs) LoB Property with u(2) = 3 and (rhs) LoB Casualty with u(2) = 6 months for
τm ∈ {31/12/2010, . . . , 31/10/2010}; the solid lines give the dynamic versions α > 0 with γ = 1/4
and the dotted lines the static versions α = 0.
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With these choices we revisit log-likelihood (27) which is now given by, set q = (q(1), q(2), α, γ),

`τm(Θ2, Θ3, q) ∝ −
m

∑
i=1

Mi log
(

π
(i,1)

Θ̂(τm)
1

(τm)q
(1)
τi + π̃

(i,2)
Θ2

(τm)q
(2)
τi + π̃

(i,3)
Θ3

(τm)

)
(29)

+
m

∑
i=1

2

∑
n=1

Mi,n log
(

q(n)τi

)
+

m

∑
i=1

3

∑
n=2

Mi,n

∑
`=1

log
(

f (n)U|τi ,Θn
(U(i,n)

` )
)

If we use the explicit truncated/translated log-normal distributions introduced in Lemma 8 there
are 9 parameters (q(1), q(2), α, γ, µ2, σ2, µ3, σ3, u(2)) involved in this optimization. Note that we use
canonical translation ν = u(2) for the upper layer distribution F(3)

U|t,Θ3
.

5.3.3. Preliminary Model Selection

We need to choose optimal parameters (q(1), q(2), α, γ, µ2, σ2, µ3, σ3, u(2)) for the model presented
in Lemma 8. This can be achieved by applying MLE to log-likelihood (29). Since, eventually, we would
like to do this for any time point τm ∈ {31/12/2001, . . . , 31/10/2010}, this would be computationally
too expensive, and also not sufficiently robust (over time). For this reason we do a preliminary model
selection based on the data as of 31/10/2010. In this preliminary model selection analysis we determine
(a) the explicit distributions, (b) the upper layer threshold u(2) as well as (c) the parameter γ > 0
of power function (28). Based on these three choices we then calibrate the model for the time series
τm ∈ {31/12/2001, . . . , 31/10/2010}. These three choices are done based on Tables 5–7.

Table 5. AIC and BIC as of 31/10/2010 (top) γ = 1/4 and u(2) = 6 months and (bottom) LoB
Property truncated/truncated dynamic (α > 0) log-normal model with γ = 1/4 and LoB Casualty
truncated/truncated static (α = 0) log-normal model.

Method: Log-normal Distribution AIC BIC

LoB Property

truncated/shifted (static α = 0) 347’532 347’592
truncated/truncated (static α = 0) 347’461 347’522
truncated/shifted (dynamic α > 0) 339’270 339’348
truncated/truncated (dynamic α > 0) 339’204 339’274

LoB Casualty

truncated/shifted (static α = 0) 87’979 88’028
truncated/truncated (static α = 0) 87’941 87’990
truncated/shifted (dynamic α > 0) 87’973 88’028
truncated/truncated (dynamic α > 0) 87’934 87’990

Threshold AIC BIC

LoB Property

u(2) = 3 months 339’033 339’103
u(2) = 6 months 339’204 339’274
u(2) = 9 months 339’291 339’361
u(2) = 12 months 339’376 339’445

LoB Casualty

u(2) = 3 months 87’908 87’957
u(2) = 6 months 87’941 87’990
u(2) = 9 months 87’963 88’013
u(2) = 12 months 87’988 88’037
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Table 6. AIC and BIC as of 31/10/2010 for LoB Property truncated/truncated dynamic log-normal
model with u(2) = 6 months.

Threshold AIC BIC

LoB Property

γ = 1/2 months 339’594 339’663
γ = 1/3 months 339’267 339’337
γ = 1/4 months 339’204 339’274
γ = 1/5 months 339’222 339’292

Table 7. AIC and BIC as Table 5 (top) but with log-normal distributions replaced by gamma distributions.

Method: Gamma Distribution AIC BIC

LoB Property

truncated/shifted (static α = 0) 348’121 348’174
truncated/truncated (static α = 0) 348’109 348’161
truncated/shifted (dynamic α > 0) 339’935 340’005
truncated/truncated (dynamic α > 0) 339’856 339’926

LoB Casualty

truncated/shifted (static α = 0) 88’000 88’042
truncated/truncated (static α = 0) 88’887 88’929
truncated/shifted (dynamic α > 0) 87’995 88’051
truncated/truncated (dynamic α > 0) 88’888 88’943

We start by comparing the following models for the pair (F(2), F(3)): (i) truncated/shifted
log-normal (as in Lemma 8); and (ii) truncated/truncated log-normal. For these two models we
consider the static version α = 0 in (28) and the dynamic version α > 0. We set γ = 1/4 and
u(2) = 6 months (this is further considered below) and then we calculate the MLE of (q(1), q(2), α = 0,
µ2, σ2, µ3, σ3) (for the static version) and the MLE of (q(1), q(2), α, µ2, σ2, µ3, σ3) (for the dynamic version).
Finally, we calculate Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC)
for these model choices. The model with the smallest AIC and BIC, respectively, should be preferred.
The results are presented in Table 5 (top). LoB Property: the dynamic (α > 0) truncated/truncated
log-normal model should be preferred, closely followed by the dynamic (α > 0) truncated/shifted
log-normal one. LoB Casualty: the truncated/truncated log-normal model should be preferred, the
static and the dynamic versions are judged by BIC rather similarly. We have decided in favor of the
static version because this reduces the number of parameters to be selected.

Next we analyze AIC and BIC of the optimal layer limit u(2) for the dynamic truncated/truncated
log-normal model in LoB Property (for given γ = 1/4) and the static truncated/truncated log-normal
model in LoB Casualty. The results are presented in Table 5 (bottom). We observe that we prefer for
both LoBs a small threshold of u(2) = 3 months.

Next we do the same analysis for the parameter γ in the dynamic (α > 0) version of LoB Property,
see Table 6 and we compare the log-normal model to the gamma model, see Table 7. From this
preliminary analysis our conclusions are:

B LoB Property: We choose the dynamic (α > 0) truncated/truncated log-normal model with
γ = 1/4 and u(2) = 3 months.

B LoB Casualty: We choose the static (α = 0) truncated/truncated log-normal model with
u(2) = 3 months.

These are our preferred models as of τm = 31/10/2010 and the remaining model parameters
(q(1), q(2), α, µ2, σ2, µ3, σ3) are obtained by MLE from (29).
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5.3.4. Model Calibration Over Time

In the previous subsection we have identified the optimal models as of τm = 31/10/2010 using
AIC and BIC. Observe that this is the optimal model selection with having maximal available data. This
selection will be revised in this subsection because we study the models when incoming information
increases over τm ∈ {31/12/2001, . . . , 31/10/2010}. In Figures 12 and 13 we present the MLEs of
parameters (µ2, σ2, µ3, σ3) using (29) for (lhs) the truncated/truncated log-normal models and (rhs)
the truncated/shifted log-normal models. LoB Property considers the dynamic version α > 0 with
γ = 1/4 and LoB Casualty considers the static version α = 0. From this analysis we see that the
parameters behave much more robust over time in the truncated/shifted log-normal model, see
Figures 12 (rhs) and 13 (rhs). For this reason we abandon our previous choice, and we select the
truncated/shifted log-normal model for both LoBs. This is in slight contrast to the AIC and BIC
analysis in the previous subsection, but the differences between the two models in Table 5 (lhs) are
rather small which does not severely contradict the truncated/shifted model selection. In addition,
for LoB Property we choose threshold u(2) = 3 months (Figure 12 (top, rhs)) and for LoB Casualty we
decide for the bigger threshold u(2) = 6 months (Figure 13 (bottom, rhs)), also because estimation over
time is more robust for this latter choice.

Figure 12. LoB Property: parameter estimates of (µ2, σ2, µ3, σ3) for the dynamic model α > 0 with
γ = 1/4 for τm ∈ {31/12/2010, . . . , 31/10/2010} (top, lhs) u(2) = 3 months truncated/truncated and
(top, rhs) and truncated/shifted; and (bottom, lhs) u(2) = 6 months truncated/truncated and (bottom,
rhs) and truncated/shifted.
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Figure 13. LoB Casualty: parameter estimates of (µ2, σ2, µ3, σ3) for the static model α = 0 for
τm ∈ {31/12/2010, . . . , 31/10/2010} (top, lhs) u(2) = 3 months truncated/truncated and (top, rhs)
and truncated/shifted; and (bottom, lhs) u(2) = 6 months truncated/truncated (bottom, rhs) and
truncated/shifted.

In Figure 11 we provide the estimated layer probabilities p(n)U|τm ,Θ, n = 1, 2, 3, in the

truncated/shifted log-normal model for LoB Property (with u(2) = 3 months) and for LoB Casualty
(with u(2) = 6 months) for τm ∈ {31/12/2010, . . . , 31/10/2010}. The solid lines give the dynamic
versions α > 0 with γ = 1/4 and the dotted lines the static versions α = 0. In LoB Property we observe
stationarity of these layer probabilities up to break point τm0 = 1/1/2006, and our modeling approach
Equation (28) with γ = 1/4 seems to capture the non-stationarity after the break point rather well
(note that the thin solid line shows an exact function x1/4 after the break point by considering the map
i 7→ p(n)U|τi ,Θ

at time τm = 31/10/2010 and the dotted lines show the stationary case α = 0). In this
analysis we also see that LoB Casualty may be slightly non-stationary after 1/1/2008, see Figure 11
(rhs). This was not detected previously, but is also supported by the time series of the trend parameter
α estimates given in Figure 7 (rhs). However, since the resulting trend parameter α is comparably small
we remain with the static version for LoB Casualty.

Our conclusions are as follows. For LoB Property we choose the dynamic (α > 0)
truncated/shifted log-normal model with γ = 1/4 and u(2) = 3 months; for LoB Casualty we
choose the static (α = 0) truncated/shifted log-normal model with u(2) = 6 months. In Figure 14 we
present the resulting calibration as of τm = 31/10/2010. In the middle layer the fitted distribution looks
convincing, see Figure 14 (top). In the upper layer the fitted distribution is more conservative than the
observations, see Figure 14 (bottom), this is supported by the fact that the empirical distribution is
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not sufficiently heavy-tailed because of missing information about late reportings (IBNYR claims in
upper left triangles in Figure 2). This missing information has a bigger influence in casualty insurance
because reporting delays are more heavy-tailed. Moreover, in both LoBs the shifted modeling approach
is more conservative than the truncated one.

Figure 14. (top) calibration of truncated log-normal distribution in the middle layer [u(1), u(2)) for (lhs)
LoB Property with u(2) = 3 months and (rhs) LoB Casualty with u(2) = 6 months; (bottom) calibration
of shifted and truncated log-normal distributions in the large layer [u(2), ∞) for (lhs) LoB Property with
u(2) = 3 months (static and dynamic versions) and (rhs) LoB Casualty with u(2) = 6 months (only
static versions).

The model is now fully specified and we can estimate the number of IBNYR claims (late
reportings). Using Equations (6), (25) and replacing all parameters Θ by their MLEs Θ̂(τm) at time τm

we receive estimate for the total number of incurred claims in time interval (τi−1, τi]

N̂(τm)
i = wiΛ̂

(τm)
i λ+

i =
Mi(τm)

∑3
n=1 π

(i,n)

Θ̂(τm)
n

(τm)p(n)
U|τi ,Θ̂(τm)

(30)

The number of estimated IBNYR claims is given by the difference ̂IBNYR
(τm)

i = N̂(τm)
i −Mi(τm).

For illustration we choose three time points τm ∈ {31/03/2004, 31/07/2007, 31/10/2010}, and we
always use the relevant available information at those time points τm. The results are presented
in Figure 15, the blue/green line gives the number of reported claims Mi(τm) and the red line the
estimated number of incurred claims N̂(τm)

i (the spread being the number of estimated IBNYR claims).
We note that the spread is bigger for LoB Casualty than LoB Property (which is not surprising in view



Risks 2016, 4, 25 30 of 36

of our previous analysis). For LoB Property in Figure 15 (top) we also compare the static (gray) to the
dynamic (red) estimation. The static version seems inappropriate since it cannot sufficiently capture
the non-stationarity and estimation is too conservative after the break point τm0 = 1/1/2006.

Figure 15. Estimation of the number of incurred claims N̂(τm)
i for (top) LoB Property and (bottom)

LoB Casualty at times τm ∈ {31/03/2004, 31/07/2007, 31/10/2010} using the truncated/shifted
log-normal model with u(2) = 3 months and u(2) = 6 months, respectively; “observed” (blue/green)
gives the number of reported claims Mi(τm) in each period (τi−1, τi] at time τm, “dynamic/static” (red)

gives the total number of estimated claims N̂(τm)
i (the spread N̂(τm)

i − Mi(τm) giving the estimated
number of IBNYR claims).

In the final section of this paper, we back-test our calibration and estimation, and compare it to
the chain-ladder estimation.

6. Homogeneous (Poisson) Chain-Ladder Case and Back-Testing

In this section we compare our individual claims modeling calibration to the classical chain-ladder
method on aggregate data. The chain-ladder method is probably the most popular method in claims
reserving. Interestingly, the cross-classified chain-ladder estimation can be derived under Model
Assumptions 2 and additional suitable homogeneity assumptions.

6.1. Cross-Classified Chain-Ladder Model

We choose an equidistant grid

0 = τ0 < τ1 < τ2 < . . . with ∆τi = τi − τi−1 = τ1 for all i ∈ N.
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Denote by Mi,j the number of claims with accident dates in (τi−1, τi] and reporting dates in
(τi+j−1, τi+j], for i ∈ N and j ∈ N0. Under Model Assumptions 2 the random variables Mi,j are
independent and Poisson distributed with exposures

Wi,j =
∫ τi

τi−1

w(t)Λ(t)
∫ τi+j−t

τi+j−1−t
fU|t,Θ(u)dudt

We now make the following homogeneity assumptions for t ∈ (τi−1, τi] and i ∈ N

w(t)Λ(t) = wτi Λτi , fU|t,Θ = fU|0,Θ = fU|Θ (31)

i.e., we may drop time index t in fU|t,Θ and FU|t,Θ, respectively. We define Wi = ∆τiwτi Λτi .
Assumptions (31) imply

Wi,j = Wi
1

∆τi

∫ τi

τi−1

∫ τi+j−t

τi+j−1−t
fU|Θ(u)dudt = Wi

1
∆τ1

∫ τ1

0

∫ τj+1−t

τj−t
fU|Θ(u)dudt

If we now define reporting pattern (γj)j≥0 by

γj = γj(Θ) =
1

∆τ1

∫ τ1

0

∫ τj+1−t

τj−t
fU|Θ(u)dudt =

1
∆τ1

∫ τ1

0
FU|Θ(τj+1 − t))− FU|Θ(τj − t))dt

we see that under (31) the random variables Mi,j are independent and Poisson distributed with

Mi,j ∼ Poisson
(
Wiγj

)
(32)

Moreover, we have normalization ∑j≥0 γj = 1. This provides the cross-classified Poisson version

of the chain-ladder model. Under the additional assumption that ∑J
j=0 γj = 1 for a finite J the MLE

exactly provides the chain-ladder estimator. This result goes back to Hachemeister-Stanard [22],
Kremer [23] and Mack [24], and for more details and the calculation of the chain-ladder estimator
M̂CL(τm)

i,j of Mi,j with i + j > m at time τm ≥ τJ we refer to Theorem 3.4 in Wüthrich-Merz [25]. Using
these chain-ladder estimators we get estimate

N̂CL(τm)
i =

m−i

∑
j=0

Mi,j + ∑
j≥m−i+1

M̂CL(τm)
i,j = Mi(τm) + ∑

j≥m−i+1
M̂CL(τm)

i,j (33)

for the estimated number of claims in period (τi−1, τi] with τi ≤ τm. This chain-ladder estimate N̂CL(τm)
i

is compared to the estimate N̂(τm)
i provided in (30).

6.2. Back-Testing

In this section we back-test the estimations obtained by calibration (21) and (29) and compare it
to the homogeneous chain-ladder case (33). We therefore calculate for each exposure period (τi−1, τi]

with τi ≤ τm ∈ {31/12/2001, . . . , 31/10/2010} the estimates N̂(τm)
i and N̂CL(τm)

i . These estimates

are compared to the latest estimates N̂(τe)
i and N̂CL(τe)

i at time τe = 31/10/2010. In particular, we
back-test the estimates with time lags j = 0, 1 against the latest available estimation. We therefore
define the ratios

χi,0 =
N̂(τi)

i

N̂(τe)
i

and χi,1 =
N̂(τi+1)

i

N̂(τe)
i

χCL
i,0 =

N̂CL(τi)
i

N̂CL(τe)
i

and χCL
i,1 =

N̂CL(τi+1)
i

N̂CL(τe)
i
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The first ratio χi,0 compares the estimation of the number of claims in period (τi−1, τi] based on
the information available at time τi to the latest available estimation at time τe = 31/10/2010, and the
second variable χi,1 considers the same ratio but with the estimation based on the information at time
τi+1 (i.e., after one period of development). Moreover, we calculate the relative process uncertainties
for j = 0, 1 defined by

ςi,j =

(
N̂

(τi+j)

i −Mi(τi+j)

)1/2

N̂(τe)
i

this is the relative standard deviation of the number of IBNYR claims at time τi+j for a Poisson random

variable, normalized with N̂(τe)
i to make it comparable to χi,j. We present the results in Figure 16:

• Figure 16 (top), LoB Property: We see that the chain-ladder estimate N̂
CL(τi+j)

i , j = 0, 1, clearly
over-estimates the number of claims after the break point τm0 = 1/1/2006, whereas our
non-stationary approach (28) can capture this change rather well and estimations χi,j are centered
around 1. Remarkable is that after 5 years of observations, the volatility of the estimation can
almost completely be explained by process uncertainty (we plot confidence bounds of 2ςi,j), which
means that model uncertainty is comparably low. We also see that the faster reporting behavior
after break point τm0 has substantially decreased the uncertainty and the volatility in the number
of IBNYR claims. Before the break point, uncertainty for j = 0 is comparably high, this can partly
be explained by the fact that claims history is too short for model calibration.

• Figure 16 (bottom), LoB Casualty: After roughly 5 years of claims experience the estimation in
the individual claims model and the chain-ladder model are very similar. This indicates that in a
stationary situation, the performance of the (simpler) chain-ladder model is sufficient. However,
this latter statement needs to be revised because non-stationarity can be detected more easily in
the individual claims history modeling approach, in particular, the individual claims model reacts
more sensitively to structural changes. The confidence bounds have a reasonable size because the
back-testing exercise does not violate them too often (i.e., the observations are mostly within the
confidence bounds), however, in practice they should be chosen slightly bigger because they do
not consider model uncertainty.

We close this section with a brief discussion of two related modeling approaches. Our approach
can be viewed as a refined model of the one used in Antonio-Plat [17]. The first refinement we use
is that we consider the weekly periodic pattern (λk)k=1,...,7 which was supported by the statistical
analysis given in Figure 5. Neglecting this weekly periodic pattern would lead to less smooth small
layer probabilities, in particular, in LoB Casualty, see Figure 4. The second refinement is that we choose
a reporting delay distribution that depends on the weekday of the claims occurrence. This is especially
important for the small reporting delay layer because weekday configuration essentially influences
the short reporting delays. In our analysis, this then leads to a mixture model with three different
layers. Antonio-Plat [17] use a mixture of a Weibull distribution and 9 degenerate components which
fits their purposes well. Our approach raises the issue of over-parametrization which we analyze
graphically, i.e., we observe rather stable parameter estimates after 4 years of observations, see for
instance Figures 12 (rhs) and 13 (rhs).

The issue of over-parametrization is of essential relevance if we would like to do prediction for
future exposure periods. That is, in our analysis we have mainly concentrated on making statistical
inference of the instantaneous claims frequency Λ(t) of past exposures t ≤ τm at a given time point
τ ≥ τm. Going forward, we may also want to model and predict the claims occurrence and the claims
reporting processes, respectively, of future exposures. An over-parametrized model will have a low
predictive power because it involves too much model uncertainty, therefore we should choose as
few parameters as necessary. Moreover, for predictive modeling it will also be necessary to model
stochastically the instantaneous claims frequency process Λ, i.e., our statistical inference method is
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not sufficient for predicting claims of future exposures, but it will help to calibrate a stochastic model
for Λ. A particularly interesting model is the marked Cox model proposed in Badescu et al. [18,19].
Similarly to Antonio-Plat [17], Badescu et al. [18,19] consider the piece-wise homogeneous case (7), but
with (Λi)i being a state-dependent process which is driven by a time-homogeneous hidden Markov
process (in the sense of a state-space model). We believe that this is a promising modeling approach
for claims occurrence and reporting prediction, if merged with our weekday dependent features (both
for claims occurrence and claims reporting delays).

Figure 16. Back-test LoB Property (top) and LoB Casualty (bottom): we compare the (non-stationary)
estimate χi,j (blue/green) to the (stationary) chain-ladder estimate χCL

i,j (orange) for (lhs) time lag j = 0
and (rhs) time lag j = 1. The black line shows the process uncertainty confidence bounds of 2 (relative)
standard deviations ςi,j.

6.3. Conclusions

We have provided an explicit calibration of a reporting delay model to individual claims data.
For the two LoBs considered it takes about 5 years of observations to have sufficient information to
calibrate the model (this is true for the stationary case and needs to be analyzed in more detail in a
non-stationary situation). As long as the claims reporting process is stationary the individual claims
reporting model and the aggregate chain-ladder model provide very similar estimates for the number
of IBNYR claims, but as soon as we have non-stationarity the chain-ladder model fails to provide
reliable estimates and one should use individual claims modeling. Moreover, our individual claims
modeling approach is able to detect non-stationarity more quickly than the aggregate chain-ladder
method. Going forward, there are two different directions that need to be considered. First, for the
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evaluation of parameter uncertainty one can embed our individual claims reporting model into a
Bayesian framework (this is similar to the Cox model proposed in Badescu et al. [18,19]) or one can use
bootstrap methods. Secondly, the far more difficult problem is the modeling of the cost evolution and
the claims cash flow process. We believe that this is still an open problem and it is the next building
block of individual claims reserving that should be studied on real data examples.

Author Contributions: Both authors have contributed equally to this paper.
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Appendix A. Proofs

Proof of Lemma 3. We maximize likelihood function (9). The derivatives of its logarithm provide for

i = 1, . . . , m the requirements (denoted by !
=)

∂logL(T`,S`)`=1,...,M
(Λ, Θ)

∂Λi
= −π

(i)
Θ (τ)wiλ

+
i +

Mi
Λi

!
= 0

and for the derivative w.r.t. the reporting delay parameter Θ we obtain

∂ logL(T`,S`)`=1,...,M
(Λ, Θ)

∂Θ
=

m

∑
i=1

−wiΛiλ
+
i

∂

∂Θ
π
(i)
Θ (τ) +

Mi

∑
`=1

∂
∂Θ f

U|T(i)
` ,Θ

(S(i)
` − T(i)

` )

f
U|T(i)

` ,Θ
(U(i)

` − S(i)
` )

 !
= 0

The first requirements provide identity

Λi =
Mi

π
(i)
Θ (τ)wiλ

+
i

Plugging this into the second requirement provides identity

0 =
m

∑
i=1

[
−Mi

∂

∂Θ
log(π(i)

Θ (τ)) +
Mi

∑
`=1

∂

∂Θ
log( f

U|T(i)
` ,Θ

(S(i)
` − T(i)

` ))

]

=
m

∑
i=1

Mi

∑
`=1

∂

∂Θ

[
log
(

f
U|T(i)

` ,Θ
(S(i)

` − T(i)
` )

)
− log(π(i)

Θ (τ))

]

=
m

∑
i=1

Mi

∑
`=1

∂

∂Θ
log

λ
T(i)
`

f
U|T(i)

` ,Θ
(S(i)

` − T(i)
` )

λ+
i π

(i)
Θ (τ)


where in the last identity we have added constants in Θ which vanish under the derivative (note that
these constants were added to indicate that we obtain the densities (10)).

Proof of Lemma 4. We maximize likelihood function (9) for i ≤ m∗ on weekly time grid ∆τi = 7 under
side constraint ∑7

k=1 λk = 7 and under assumption (11) which implies π
(i)
Θ (τ) = 1 and ∂

∂λk
π
(i)
Θ (τ) = 0

for i ≤ m∗. The corresponding Lagrangian is given by

m∗

∑
i=1

logL(i)
(T(i)

` ,S(i)
` )`=1,...,Mi

(Λ, Θ)− χ

(
7

∑
k=1

λk − 7

)

Under the above assumptions we calculate the derivative w.r.t. λk, 1 ≤ k ≤ 7, of the Lagrangian

∂

∂λk

(
m∗

∑
i=1

logL(i)
(T(i)

` ,S(i)
` )`=1,...,Mi

(Λ, Θ)− χ

(
7

∑
k=1

λk − 7

))
=

m∗

∑
i=1
−wiΛi +

Mi

∑
`=1

1
λk

1{dT̃(i)
` e=k} − χ

!
= 0
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and the derivative w.r.t. Λi are given by

∂

∂Λi

(
m∗

∑
i=1

logL(i)
(T(i)

` ,S(i)
` )`=1,...,Mi

(Λ, Θ)− χ

(
7

∑
k=1

λk − 7

))
= −wiλ

+
i +

Mi
Λi

= −7wi +
Mi
Λi

!
= 0

where we have used λ+
i = 7 on the weekly time grid ∆τi = 7. The latter implies Λi = Mi/(7wi) and

plugging this into the former requirement provides

m∗

∑
i=1
−Mi/7 +

Mi

∑
`=1

1
λk

1
{dT̃(i)

` e=k}
− χ

!
= 0

This implies that

λk =
∑m∗

i=1 ∑Mi
`=1 1

{dT̃(i)
` e=k}

χ + ∑m∗
i=1 Mi/7

Lagrange multiplier χ is found from normalization ∑7
k=1 λk = 7 which provides the claim.
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