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Abstract: It is well known that a random vector with given marginals is comonotonic if and only if
it has the largest convex sum, and that a random vector with given marginals (under an additional
condition) is mutually exclusive if and only if it has the minimal convex sum. This paper provides an
alternative proof of these two results using the theories of distortion risk measure and expected utility.
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1. Introduction

After years of efforts made by researchers, the study of sharp convex bounds on the sum of
random variables (also known as aggregate sums) with given marginal distributions but unknown
dependence structure has achieved many significant results. Mathematically, given an arbitrary Fréchet
spaceR(F1, . . . , Fn) of all random vectors having F1, . . . , Fn as marginal distributions, the aim is to find
two random vectors (Xm

1 , . . . , Xm
n ) and (XM

1 , . . . , XM
n ) belonging toR(F1, . . . , Fn), such that

n

∑
i=1

Xm
i ≤cx

n

∑
i=1

Xi ≤cx

n

∑
i=1

XM
i

for any (X1, . . . , Xn) ∈ R(F1, . . . , Fn), where ≤cx denotes the convex order. By definition, for a pair
of random variables X and Y, we say that X is less than Y in the sense of convex order, denoted
as X ≤cx Y, if E f (X) ≤ E f (Y) for every convex function f , provided that expectations E f (X) and
E f (Y) exist. In actuarial science, it is common to define convex order by using a stop-loss transform:
X ≤cx Y ⇔ EX = EY and X ≤sl Y. Here X is said to precede Y in the stop-loss order sense, notation
X ≤sl Y, if and only if X has lower stop-loss premiums than Y:

E(X− d)+ ≤ E(Y− d)+, −∞ < d < ∞.

A summary of other characterizations and properties of convex order can be found, for example,
in [1,2].

Comonotonicity plays a crucial role in determining convex upper bound on aggregate sum. Let us
recall the definition. For any X ∈ R(F1, . . . , Fn), X is said to be comonotonic if

FX(x) = min
1≤k≤n

Fk(xk), ∀ x = (x1, x2, . . . , xn) ∈ Rn.

Equivalently, X is comonotonic if and only if X d
= (F−1

1 (U), . . . , F−1
n (U)), where U is a random

variable uniformly distributed on the interval [0, 1], denoted as U∼U [0, 1]. The concept of
comonotonicity was introduced by Yaari [3] and Schmeidler [4]. For more details and other
characterizations about the concept of comonotonicity and its applications in actuarial science and
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finance, we refer to the overview papers by Dhaene et al. [5,6] and more recently in [7]. Let S be the sum
X1 + . . . + Xn and Sc be the comonotonic sum Xc

1 + . . . + Xc
n, where (Xc

1, . . . , Xc
n) is the comonotonic

counterpart of X = (X1, . . . , Xn). A well-known result between the sums S and Sc says that S ≤cx Sc.
Proofs of this fundamental result can be found in [8–12]. Müller [13] extended the result to higher
dimensions as a special case of the concept of supermodular ordering. A simple geometric argument
is given in [14], and Cheung [15] provided a new proof using the theory of majorization. The converse
remains valid under the assumption that all marginal distribution functions are continuous and that
the underlying probability space (Ω,F ,P) is atomless. For more details, see [16]. This continuity
assumption on the marginals was removed by Cheung [17]. A simple proof without the assumption
that the underlying probability space (Ω,F ,P) is atomless was given by Mao and Hu [18]. Some
equivalent conditions on comonotonicity can be found in [19]. To summarize the above results, we
arrive at the following theorem:

Theorem 1. If (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn), then (X∗1 , . . . , X∗n) is comonotonic if, and only if

X1 + . . . + Xn ≤cx X∗1 + . . . + X∗n for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

Now we focus on the lower convex bound of R(F1, . . . , Fn). When n = 2, the minimum sharp
bound is obtained by the counter-monotonic scenario:

F−1
1 (U) + F−1

2 (1−U) ≤cx X1 + X2 for any (X1, X2) ∈ R(F1, F2),

where U∼U [0, 1]. Proofs for this assertion can be found in [9,19]. Moreover, Cheung and Lo [20]
shows that the converse remains valid. However, the sharp lower convex bound for n ≥ 3 is missing in
general. Bernard et al. [21] gave an example showing that ∑n

i=1 Xi does not have a sharp lower convex
bound. Sufficient conditions for the existence of a such sharp lower convex bound for some classes of
distributions can be found in [19,21–24]. In another special case, when F1, . . . , Fn are defined on [0, ∞)

with ∑n
i=1(1− Fi(0)) ≤ 1, the convex lower bound is obtained by the mutually exclusive scenario:

X∗1 + . . . + X∗n ≤cx X1 + . . . + Xn

for any (X1, . . . , Xn) ∈ R(F1, . . . , Fn), where (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) and P(X∗i > 0, X∗j > 0) = 0
for all i 6= j (see [25,26]). Mutual exclusivity can be considered as the strongest negative dependence
structure in a multivariate setting. It was first studied in [26] when the marginals F1, F2, . . . , Fn are
two-point distributions and in Dhaene and Denuit [25] in a more general setting. A revisited and further
characterized treatment of mutual exclusivity can be found in [27]. A recent overview paper by Puccetti
and Wang [19] introduced the concept of pairwise countermonotonicity, which is more general than
that of mutual exclusivity. Moreover, several equivalent conditions on pairwise countermonotonicity
have been provided (see Theorem 3.3 in [19]).

Definition 1. (Definition 3.4 in [27]) Let X1, . . . , Xn be random variables with essential infima l1, . . . , ln and
essential suprema u1, . . . , un, respectively. They are said to be

(i) mutually exclusive from below if P(Xi > li, Xj > lj) = 0 for all i 6= j;

(ii) mutually exclusive from above if P(Xi < ui, Xj < uj) = 0 for all i 6= j.

The following theorem is concerned with mutually exclusive random variables and the minimal
lower bound in convex order.
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Theorem 2. (Theorem 5.1 in [27]) Let X∗ = (X∗1 , . . . , X∗n) be a fixed random vector inR(F1, . . . , Fn) (n ≥ 3)
which satisfies ∑n

i=1(1− Fi(li)) ≤ 1 or ∑n
i=1 Fi(ui−) ≤ 1. Then X∗ is mutually exclusive if, and only if

X∗1 + . . . + X∗n ≤cx X1 + . . . + Xn

for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

In this short note, we give alternative proofs of Theorems 1 and 2 in the next two sections.

2. Proof of Theorem 1

To prove Theorem 1, we need two useful lemmas. Here are some notations. Let FX be the
cumulative distribution function of random variable X, and the decumulative distribution function
is denoted by F̄X; i.e., F̄X(x) = 1 − FX(x) = P(X > x). A distortion function is defined as a
non-decreasing function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. The distortion risk
measure associated with distortion function g is defined by

ρg[X] =
∫ +∞

0
g(F̄X(x))dx +

∫ 0

−∞
[g(F̄X(x))− 1]dx,

for any random variable X, provided at least one of the two integrals above is finite. If X is a
non-negative random variable, then ρg reduces to

ρg[X] =
∫ +∞

0
g(F̄X(x))dx.

Obviously, a concave distortion function is continuous on (0, 1] and can only jump at 0. In view of
Theorem 6 of Dhaene et al. [28], we know that for any concave distortion function g, one can rewrite
ρg[X] as

ρg[X] =
∫
[0,1]

VaR1−q[X]dg(q),

where VaRp[X] denotes the value-at-risk at level p of X and is defined as

VaRp[X] = inf{x ∈ R|FX(x) ≥ p}, p ∈ (0, 1).

The following theorem shows that stop-loss order can be characterized in terms of ordered
concave distortion risk measures (see [29,30]). Here we provide a short proof.

Lemma 1. For any random vector (X, Y), we have that X ≤sl Y if and only if their respective concave distortion
risk measures are ordered: X ≤sl Y ⇔ ρg[X] ≤ ρg[Y] for all concave distortion functions g. In particular,
if E[X] = E[Y], then X ≤cx Y ⇔ ρg[X] ≤ ρg[Y] for all concave distortion functions g.

Proof. For any concave distortion function g, it is differentiable at all but at most countably many
points on [0, 1]. The distortion risk measure ρg can be written as

ρg[X] =
∫ 1

0
TVaRp[X]dµ(p),

where µ(p) :=
∫ p

0 (1− α)dν(α) is a probability measure in which ν is defined by ν([0, p]) = g′(1− p),
TVaRp is the tail value-at-risk(also known as the expected shortfall), defined as

TVaRp[X] =
1

1− p

∫ 1

p
VaRw[X]dw, p ∈ (0, 1),
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which is a distortion risk measure corresponding to the concave distortion function

g(x) = min
{

x
1− p

, 1
}

, 0 < p < 1.

The result follows as X ≤sl Y ⇔ TVaRp[X] ≤ TVaRp[Y] for all p ∈ (0, 1) (see Theorem 3.2 in [30]).
The following subadditivity theorem can be found in [29], the bivariate case can be found in [31],

see also [32].

Lemma 2. For any concave distortion function g and (X1, . . . , Xn) ∈ R(F1, . . . , Fn), we have

ρg[X1 + . . . + Xn] ≤ ρg[X1] + . . . + ρg[Xn].

Proof of Theorem 1. First we assume (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) is comonotonic. For any concave
distortion function g and (X1, . . . , Xn) ∈ R(F1, . . . , Fn), by Lemma 2 we have

ρg[X1 + . . . + Xn] ≤ ρg[X1] + . . . + ρg[Xn]. (1)

Comonotonicity of (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) implies that (cf. Dhaene et al. [30])

ρg[X1] + . . . + ρg[Xn] = ρg[X∗1 + . . . + X∗n]. (2)

Therefore, combining (1) with (2), one has

ρg[X1 + . . . + Xn] ≤ ρg[X∗1 + . . . + X∗n],

and the desired result follows from Lemma 1.

To prove the other implication, we assume that (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) and

X1 + . . . + Xn ≤cx X∗1 + . . . + X∗n for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

From Lemma 1, we have that

ρg[X1 + . . . + Xn] ≤ ρg[X∗1 + . . . + X∗n],

for any concave distortion function g. In particular,

ρg[Xc
1 + . . . + Xc

n] ≤ ρg[X∗1 + . . . + X∗n], (3)

where (Xc
1, . . . , Xc

n) is the comonotonic counterpart of (X1, . . . , Xn). On the other hand, by Lemma 2,
we get

ρg[X∗1 + . . . + X∗n] ≤ ρg[X∗1 ] + . . . + ρg[X∗n]. (4)

Note that
ρg[Xc

1 + . . . + Xc
n] = ρg[Xc

1] + . . . + ρg[Xc
n], (5)

and
ρg[Xc

1] + . . . + ρg[Xc
n] = ρg[X∗1 ] + . . . + ρg[X∗n]. (6)

It follows from (3)–(6) that we have

ρg[Xc
1 + . . . + Xc

n] = ρg[X∗1 + . . . + X∗n], (7)
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for any concave distortion function g. Therefore, Theorem 7 in [17] implies (X∗1 , . . . , X∗n) is comonotonic.
This ends the proof of Theorem 1.

3. Proof of Theorem 2

To prove Theorem 2, we need two useful lemmas. Lemma 3 gives a necessary and sufficient
condition for the convex order of two random variables.

Lemma 3. (Proposition 3.4.3 in [1]) Given two rvs X and Y, then the following statements are equivalent:

(1) X ≤cx Y.
(2) E[v(X)] ≤ E[v(Y)] for all convex functions v, such that the expectations exist.
(3) E[v(X)] ≤ E[v(Y)] for all functions v with v′′ ≥ 0, such that the expectations exist.

The following lemma, due to Cheung and Lo [33], will play a crucial role in the proof of Theorem 2.

Lemma 4. (Theorem 3.1 in [33]) Let X1, . . . , Xn be non-negative random variables, and f be a convex function
such that E[ f (∑n

i=1 Xi)] exists.

(i) We have

E

[
f

(
n

∑
i=1

Xi

)]
≥

n

∑
i=1

E[ f (Xi)]− (n− 1) f (0);

(ii) if f is strictly convex, then

E

[
f

(
n

∑
i=1

Xi

)]
=

n

∑
i=1

E[ f (Xi)]− (n− 1) f (0)

if, and only if X1, . . . , Xn are mutually exclusive random variables in the sense of Dhaene and Denuit [25].

Remark 1. We remark that the “if part" is still true when the function f is convex, but not necessarily strictly convex.

Proof of Theorem 2. To prove Theorem 2, as in the proof to Lemma 3.6 in [27], there are three cases
to consider. Recall that l1, . . . , ln are the essential infima of random variables X1, . . . , Xn, respectively
(see Definition 1).

Case 1. l1 = . . . = ln = 0. We assume (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) is mutually exclusive. For any
convex function u and (X1, . . . , Xn) ∈ R(F1, . . . , Fn), by Lemma 4 (i) we have

E

[
u

(
n

∑
i=1

Xi

)]
≥

n

∑
i=1

E[u(Xi)]− (n− 1)u(0). (8)

Thanks to Lemma 4 (ii) and Remark 1, mutual exclusivity of (X∗1 , . . . , X∗n) implies that

E

[
u

(
n

∑
i=1

X∗i

)]
=

n

∑
i=1

E[u(X∗i )]− (n− 1)u(0). (9)

Therefore, combining (8) with (9), and noting that E[u(X∗1)] + . . . + E[u(X∗n)] = E[u(X1)] + . . . +
E[u(Xn)], one has

E

[
u

(
n

∑
i=1

X∗i

)]
≤ E

[
u

(
n

∑
i=1

Xi

)]
,

from which and from Lemma 3, we deduce that

X∗1 + . . . + X∗n ≤cx X1 + . . . + Xn
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for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).
To prove the other implication, we assume that (X∗1 , . . . , X∗n) ∈ R(F1, . . . , Fn) and

X∗1 + . . . + X∗n ≤cx X1 + . . . + Xn for all (X1, . . . , Xn) ∈ R(F1, . . . , Fn).

From Lemma 3, we have that

E[u(X∗1 + . . . + X∗n)] ≤ E[u(X1 + . . . + Xn)]

for all convex functions u. In particular,

E[u(X∗1 + . . . + X∗n)] ≤ E[u(XM
1 + . . . + XM

n )] (10)

where (XM
1 , . . . , XM

n ) is the mutually exclusive counterpart of (X1, . . . , Xn). On the other hand, by
Lemma 4 and Remark 1, we get

E[u(X∗1 + . . . + X∗n)] ≥ E[u(X∗1)] + . . . + E[u(X∗n))]− (n− 1)u(0), (11)

and

E[u(XM
1 + . . . + XM

n )] = E[u(XM
1 )] + . . . + E[u(XM

n ))]− (n− 1)u(0). (12)

If (X∗1 , . . . , X∗n) is not mutually exclusive, then, for strict convex u,

E[u(X∗1 + . . . + X∗n)] 6= E[u(X∗1)] + . . . + E[u(X∗n))]− (n− 1)u(0). (13)

Combining (10)–(12) with (13), we get

E[u(X∗1)] + . . . + E[u(X∗n))] < E[u(XM
1 )] + . . . + E[u(XM

n ))],

for any strict convex function u. This contradicts (X∗1 , . . . , X∗n) and (XM
1 , . . . , XM

n ) having the same
marginals. Thus, (X∗1 , . . . , X∗n) is mutually exclusive.

Case 2. (X∗1 , . . . , X∗n) is mutually exclusive from below. For any (X1, . . . , Xn) ∈ R(F1, . . . , Fn), then
Z := Xi− li are non-negative random variables, and Z∗ := X∗i − li are non-negative mutually exclusive
random variables. Applying the result in Case 1, we obtain that (X∗1 , . . . , X∗n) is mutually exclusive ⇔
(X∗1 − l1, . . . , X∗n − ln) is mutually exclusive

⇔
n

∑
i=1

(X∗i − li) ≤cx

n

∑
i=1

(Xi − li)⇔
n

∑
i=1

X∗i −
n

∑
i=1

li ≤cx

n

∑
i=1

Xi −
n

∑
i=1

li

⇔
n

∑
i=1

X∗i ≤cx

n

∑
i=1

Xi.

Case 3. (X∗1 , . . . , X∗n) is mutually exclusive from above. For any (X1, . . . , Xn) ∈ R(F1, . . . , Fn),
applying the result in Case 2, we have (X∗1 , . . . , X∗n) is mutually exclusive from above⇔ (−X∗1 , . . . ,−X∗n)
is mutually exclusive from below⇔ −∑n

i=1 X∗i ≤cx −∑n
i=1 Xi ⇔ ∑n

i=1 X∗i ≤cx ∑n
i=1 Xi. The proof of

Theorem 2 is now complete.
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