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Abstract: Risk analysis and management currently have a strong presence in financial institutions,
where high performance and energy efficiency are key requirements for acceleration systems,
especially when it comes to intraday analysis. In this regard, we approach the estimation
of the widely-employed portfolio risk metrics value-at-risk (VaR) and conditional value-at-risk
(cVaR) by means of nested Monte Carlo (MC) simulations. We do so by combining theory
and software/hardware implementation. This allows us for the first time to investigate their
performance on heterogeneous compute systems and across different compute platforms, namely
central processing unit (CPU), many integrated core (MIC) architecture XeonPhi, graphics processing
unit (GPU), and field-programmable gate array (FPGA). To this end, the OpenCL framework is
employed to generate portable code, and the size of the simulations is scaled in order to evaluate
variations in performance. Furthermore, we assess different parallelization schemes, and the targeted
platforms are evaluated and compared in terms of runtime and energy efficiency. Our implementation
also allowed us to derive a new algorithmic optimization regarding the generation of the required
random number sequences. Moreover, we provide specific guidelines on how to properly handle
these sequences in portable code, and on how to efficiently implement nested MC-based VaR and
cVaR simulations on heterogeneous compute systems.

Keywords: nested MC simulation; value-at-risk; conditional value-at-risk; heterogeneous compute
systems; OpenCL
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1. Introduction

Risk metrics are traditionally computed overnight on large compute clusters, due to the extended
runtime and complexity, which highlights the need for efficient acceleration. The importance of those
metrics in practice is for instance underlined by JPmMorgan’s famous technical document [1], which
is still in use today. When it comes to large portfolios including complex path-dependent nonlinear
derivatives, the most appropriate method for the calculation of risk measures such as the value-at-risk
(VaR) and the conditional value-at-risk (cVaR) is Monte Carlo (MC) simulation (compare, e.g., [2]).
A major reason for this is that analytical approximations such as the delta-gamma method are often
too inaccurate in such a setting.

In this paper, we focus on the efficient computation of the VaR and cVaR of a stylized portfolio
containing derivatives with nonlinear payoffs that require MC simulation for the pricing of the
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derivative (the so-called inner simulation) and for the calculation of the empirical distribution function
in order to determine the quantile of the loss distribution based on risk factors (the so called
outer simulation). The MC evaluation of such complex portfolios thus leads to nested simulations,
which have been extensively studied by Gordy and Juneja in [3] from a mathematical point of view.
In particular, they show that these nested schemes involve a serious computational burden.

These computationally-intense problems in finance face a serious interest in high-performance
computing, especially on heterogeneous compute clusters composed of different processing units, such
as central processing unit (CPU), graphics processor unit (GPU), and field programmable gate array
(FPGA). This is reflected by a large amount of corresponding literature. For instance, in the context of
credit risk, Rees and Walkenhorst have achieved around 90× runtime acceleration on a GPU [4], while
Thomas and Luk have shown a 60–100× runtime acceleration on a FPGA [5], both compared to a CPU.
Concerning interest rate theory, Albanese has shown in [6] the usefulness of parallel GPU architectures
for the pricing of complex interest rate derivatives.

Closer to the analysis of this paper, there is a strand of literature focusing on the hardware efficient
computation of a portfolio-based VaR. Dixon et al. have implemented a MC-based delta-gamma
VaR approximation on GPUs, focusing on three different perspectives: task-, numerical-, and
data-centric [7]. In this way, they have shown up to 169× runtime acceleration compared to a
baseline GPU implementation, all programmed in Compute Unified Device Architecture (CUDA) [8].
Zhang et al. have also evaluated the delta-gamma approach for the computation of the VaR with
GPUs using Open Compute Language (OpenCL) [9]. However, in both cases, the MC-approach is only
used for the outer simulation, whereas the pricing within the inner simulation was performed using a
delta-gamma approximation of the loss function. On architecturally diverse systems, Singla et al. have
proposed different mappings of the MC-based portfolio VaR, achieving a 74× speedup relative to an
eight-core CPU processor [10]. Their results show two winning solutions for the mapping of the MC
simulation: a full GPU implementation, and the pair FPGA–CPU and GPU working in parallel, for
which they hint at the design complexity. Nevertheless, their work only targeted a simple stock-based
portfolio using the Black-Scholes (BS) model, thus preventing nested simulations.

Our work focuses on nested MC simulations, as in [3] in order to determine a VaR as well as a
cVaR on portfolio level, further expanding our preliminary results in [11]. This approach allows for
the implementation of mathematical models with a high complexity and for the pricing of derivatives
with a highly nonlinear payoff. For that sake, we have defined a representative portfolio consisting
of cash, stocks, bonds, options, and foreign currency with a corresponding set of market parameters,
and the derived results are valid within the framework of these selected parameters.

The nested MC simulations are an ideal candidate for hardware acceleration, and as such,
we target in particular heterogeneous compute systems, including CPU, XeonPhi, GPU, and FPGA
platforms. Although generic and well-known benchmarks (such as 3DMark [12]) could be used to
profile the performance of the targeted hardware, here we demonstrate and assess how to efficiently
map these nested MC simulations onto such heterogenous compute systems. In this regard, we solve
the design complexity by exploiting the portability offered by OpenCL, which enables us to quickly
deploy the code to multiple platforms, increasing productivity. Furthermore, we analyze the portability
of our work, and we also highlight key aspects that the programmer must bear in mind when moving
the project between platforms.

The nested VaR and cVaR calculation can also be parallelized. To this end, we assess the pros and
cons of three different parallelization schemes, and we highlight the most suitable one for the given
platforms. One aspect that we cover is the proper handling of the random number (RN) sequences,
especially within portable code. In our case we employ the Mersenne twister (MT) pseudo random
number generator (PRNG). Not only the correct setup of the generators is important, but the code
should also carefully access the RN sequences in the same order on different platforms. At system
level, we present an algorithmic optimization, namely the external generation of the RN sequences,
and we evaluate its effect on the speedup experienced on every platform, including an assessment
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of the asymptotic time and space complexity. We also provide extensive simulations and data for a
detailed comparison of all four platforms in terms of runtime and energy consumption, and comment
on the achieved performances.

2. Basics of Market Risk Quantification: VaR and cVaR

When quantifying market risks, we are particularly interested in the potential losses of the total
value of the portfolio over a future time period. The appropriate concepts for measuring the risk of
such a portfolio of financial assets are those of the loss function and of risk measures. We will be quite
brief on these basics and refer to the corresponding sections of [13] and [14] for more details.

We denote the value at time s of the portfolio under consideration by V(s) and assume that the
random variable V(s) is observable at time s. Further, we assume that the composition of the portfolio
does not change over the period we are looking at.

For a time horizon of ∆, the portfolio loss over the period [s, s + ∆] is given by

L[s,s+∆] , − (V(s + ∆)−V(s)) .

As L[s,s+∆] is not known at time s, it is considered to be a random variable. Its distribution is
called the (portfolio) loss distribution.

As in [13], we will work in units of the fixed time horizon ∆, introduce the notation Vt , V(t∆),
and rewrite the loss function as

Lt+1 , L[t∆,(t+1)∆] = −(Vt+1 −Vt) . (1)

Fixing the time t, the distribution of the loss function L , Lt+1 for ` ∈ R (conditional on time t) is
introduced using a simplified notation as

FL(`) , P(L ≤ `).

We now introduce a risk measure ρ as a real-valued mapping defined on the space of random
variables which correspond to the risks that are faced.

There exists a huge amount of different risk measures which all have certain advantages
and drawbacks, but the most popular example of a risk measure which is mainly used in banks
(and which has become an industry standard) is still the value-at-risk (VaR). It is defined as follows:

The value-at-risk of level α (VaRα) is the α-quantile of the loss distribution of the portfolio; i.e.,

VaRα(L) , inf
`∈R
{P(L > `) ≤ 1− α} = inf

`∈R
{FL(`) ≥ α} ,

where α is a high percentage, such as 95%, 99%, or 99.5%.
By its nature as a quantile, the values of VaRα have an understandable meaning, a fact that makes

it very popular in a wide range of applications, mainly for the measurement of market risks. The
value-at-risk is not necessarily sub-additive; i.e., it is possible that VaRα(X +Y) > VaRα(X)+VaRα(Y)
for two different risks X, Y. This drawback is the basis for most of the criticism of using value-at-risk
as a risk measure. Furthermore, as a quantile, VaRα does not say anything about the actual losses
above it.

A risk measure that does not suffer from these two drawbacks—and which is therefore also
popular in applications—is the conditional value-at-risk (cVaR), and is defined as

cVaRα(L) ,
1

1− α

∫ 1

α
VaRγ(L)dγ.
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If the probability distribution of L has no atoms, then the cVaRα has the interpretation as the
expected losses above the value-at-risk; i.e., it then coincides with the expected shortfall or tail conditional
expectation defined by

TCEα(L) , E (L|L ≤ VaRα(L)) .

As the conditional value-at-risk is the value at risk integrated w.r.t. the confidence level, both
notions do not differ greatly from the computational point of view. In particular, once we have the
loss distribution, the VaR and cVaR computation is straight-forward, which is also underlined by our
numerical investigations.

However, as typically the portfolio value V (and thus by (1) the loss function L) depend on a
d-dimensional vector of market prices for a very large dimension d, the loss function will depend on
the market prices of maybe thousands of different derivative securities.

The first step to making a large portfolio tractable is to introduce risk factors that can explain
(most of) the variations of the loss function, and ideally reduce the dimension of the problem. These
risk factors can be, for instance, log-returns of stocks, indices, or economic indicators, or a combination
of them. A classical method for performing such a model reduction and for finding risk factors is a
principal component analysis of the returns of the underlying positions.

We do not go further here, but simply assume that the portfolio value is modeled by a risk mapping;
i.e., for a d-dimensional random vector Zt , (Zt,1, . . . , Zt,d)

′ of risk factors, we have the representation

Vt = f (t, Zt) (2)

for some measurable function f : R+ × Rd → R. By introducing the risk factor changes (Xt)t∈N by
Xt , Zt − Zt−1, the portfolio loss can be written as

Lt+1 (Xt+1) = − ( f (t + 1, Zt + Xt+1)− f (t, Zt)) (3)

highlighting that the loss is completely determined by the risk factor changes.
With the representations (2) and (3), we are now able to detail how the MC method is used for the

quantification of market risks.

2.1. The Monte Carlo (MC) Method

The MC method assumes a certain distribution of the future risk factor changes; e.g., we can
suppose but are not limited to a Black–Scholes model or a Heston model, as we do it for the upcoming
analysis. Once the choice of this distribution has been made, the MC method simulates independent

identically distributed random future risk factor changes X̃(1)
t+1, . . . , X̃(M)

t+1 , and then computes the
corresponding portfolio losses {

L̃t+1(X̃
(i)
t+1) : i = 1, . . . , M

}
. (4)

Based on these simulated loss data, one now estimates the value-at-risk by the corresponding
empirical quantile; i.e., the quantile of the obtained simulated empirical loss distribution:

The MC estimator for the value-at-risk is given by

VaRα(L̃t+1) , inf
`∈R

{
F̃t+1(`) ≥ α

}
,

where the empirical distribution function F̃t+1(`) is given by
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F̃t+1(`) ,
1
M

M

∑
i=1

I
{L̃t+1(X̃

(i)
t+1)≤`}

.

The MC estimator for the conditional value-at-risk is given by its empirical counterpart

cVaRα(L̃t+1) ,
1

1− α

∫ 1

α
VaRγ(L̃t+1)dγ.

The above simulation to generate the risk factor changes is often named the outer simulation.
Depending on the complexity of the derivatives included in the portfolio, we will need an
inner simulation in order to evaluate the loss function of the risk factor changes.

More precisely, whenever our portfolio contains derivatives that do not admit a closed-form
pricing formula, we have to calculate their prices by a numerical method. In our case, we choose MC
simulation as this method. Thus, we have to perform MC simulations to calculate the future values of
options in each run of the outer simulation.

2.2. The MC Method: Nested Simulations

As already pointed out, in the MC method we have to evaluate the portfolio in its full complexity.
This computational challenge is carried to extremes when the portfolio contains derivatives without a
closed-form price representation. We then need the announced inner MC simulation in addition to the
outer one to compute each realized loss value.

To formalize this, assume for notational convenience that the time horizon ∆ is fixed, that time
t + 1 corresponds to time t + ∆, and that the risk mapping f : R+ ×Rd → R corresponds to a portfolio
of derivatives with payoff functions H1, . . . , HK with maturities T1, . . . , TK. Thus, with Ẽ(.) denoting
the expectation under the risk neutral measure Q, the risk mapping f at time t + ∆ is given by

f (t + ∆, Zt + X̃(i)
t+∆) =

K

∑
k=1

Ẽ
[
e−r(Tk−(t+∆)) Hk|X̃

(i)
t+∆

]
; (5)

i.e.,

L̃t+∆(X̃
(i)
t+∆) , −

(
K

∑
k=1

Ẽ
[
e−r(Tk−(t+∆)) Hk|X̃

(i)
t+∆

]
− f (t, Zt)

)
. (6)

For standard derivatives like European calls or puts, the conditional expectations can be computed
in closed-form. For complex derivatives, however, they have to be determined via MC simulation.
The algorithm that describes the inner MC simulation for complex derivatives in the portfolio is given by:

1. Generate N independent realizations H(1)
k , . . . , H(N)

k of the k = 1, . . . , K (complex) payoffs

given X̃(i)
t+∆.

2. Estimate the discounted conditional expectation of the payoff functions by

Ẽ
[
e−r(Tk−(t+∆)) Hk|X̃

(i)
t+∆

]
≈ e−r(Tk−(t+∆))

N

N

∑
j=1

H(j)
k (X̃(i)

t+∆)

for k = 1, . . . , K.

It is important to understand correctly that H(j)
k (X̃(i)

t+∆) denotes a realization of the payoff of the

kth derivative conditioned on the input value X̃(i)
t+∆. An example of that can be the payoff of a call

option on Xt+2∆, conditioned on the X-value of X̃(i)
t+∆ at time t + ∆.
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Thus, the MC estimator for the value-at-risk of a complex portfolio is given by

VaRα(L̃t+1) , inf
{

x ∈ R|F̃t+1(x) ≥ α
}

, (7)

where the empirical distribution function F̃t+1(x) is given by

F̃t+1(x) ,
1
M

M

∑
i=1

I
{L̃t+1(X̃

(i)
t+1)≤x}

, (8)

and the portfolio losses are given by

L̃t+1(X̃
(i)
t+1) , −

(
K

∑
k=1

(
e−r(Tk−(t+1))

N

N

∑
j=1

H(j)
k (X̃(i)

t+1)

)
− f (t, Zt)

)
. (9)

Again, the MC estimator for the conditional value-at-risk is given by its empirical counterpart

cVaRα(L̃t+1) ,
1

1− α

∫ 1

α
VaRγ(L̃t+1)dγ. (10)

The amount of simulation work in the presence of the need for an inner simulation is enormous,
as the inner simulations have to be redone for each run of the outer simulation. Given a finite
computation time, balancing the load between inner and outer simulation while computing the VaR
resp. cVaR with an adequate accuracy is a serious issue. Highly accurate derivative prices in the inner
simulation lead to an accurate evaluation of the loss function. On the other hand, they cause a big
computational effort, which then results in the possibility of performing only a few outer simulation
runs. This then leads to a poor estimate of the VaR/cVaR value. A high number of outer simulation
runs, however, only allows for a very rough estimation of the derivative prices on the inner run; again,
a non-desirable effect. Therefore, it is essential to balance the number of inner and outer simulations.
For further details on this computational challenge, we refer the reader to [15].

This behavior is also illustrated in Figure 1, where we consider a very simple portfolio consisting
of just one option maturing at the end of the year. The figure shows three simulations under the
subjective measure P of the outer paths, resulting in the three values of the underlying stock price at
(for example) mid-February. To obtain the resulting portfolio value (i.e., the option price) at
mid-February given the just-simulated stock price, one then has to simulate a large number of stock
price paths until the end of the year under Q, of course each one starting at the mid-February price.

time (years)
0 0.25 0.5 0.75 1.0

cu
rr

en
cy

 (
U

S
D

)

0

50

100

External Internal

Figure 1. Illustration of nested Monte Carlo (MC) simulations: External paths (until calculation date)
and Internal paths (until derivative maturity).
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3. Portfolio Risk Setup

The composition of a portfolio is tailor-made to the investment strategy of the financial institution
or even to the individual requirements of each client. Financial products typically found in portfolios
are, for example, stocks, bonds, options, foreign currency, or cash (to keep a certain liquidity level).
From a computational point of view, pricing the complete portfolio is a highly heterogeneous problem,
since each product has its own pricing algorithm with its own associated complexity.

For our stylized exemplary portfolio, we assume from now on that the risk mapping (3) has
been predetermined. We also assume that all parameters of the models used for the simulation of
the risk factor changes (outer simulation) and for the simulation of the dynamics of the complex
derivatives (inner simulation) have been predetermined. For this paper, we focus on the speed-up
when considering nested simulations (see Section 2.2) that arise when the MC approach is used for
both the outer and the inner simulation. Both simulations are performed either with the BS or the
Heston model. In this test-case, this applies to the correlated stocks and the European style options.

The chosen representative portfolio composition is presented in Table 1, which shows the potential
of the nested MC simulation, in particular for complex derivatives. The latter have been selected
according to their computational complexity, as a representative sample of commonly traded options.
American option pricing is a computationally intensive problem, which can be solved, for example,
by applying a Binomial Tree (BT) method [16], or the MC-based Longstaff-Schwartz (LS) algorithm
in particular for the multi-dimensional case [17,18]. Since in our test-case portfolio we deal with the
one-dimensional case, the former is chosen due to its simplicity and lower runtime. Barrier options are
frequently traded and require (at least) fine-grained steps to cope with the computational complexity
close to the barrier [19]. Asian options are less computationally intensive, but still require a MC
approach [19].

The VaR and cVaR on portfolio level are calculated using Equations (7)–(10) by aggregating the
loss functions of the different portfolio ingredients, as given in Table 1. This means in particular that
we directly calculate the VaR of the total loss and do not aggregate the VaR of the single positions.
Thus, we do not need the questionable assumption of additivity of the VaR of single positions (compare
Section 2).

Table 1. Portfolio composition.

Products Portfolio Maturity

Group Description Weight (Years) Characteristics Simulation

Stock A 15% - long position MCStocks Stock B 15% - long position MC

Bonds Corporate Bond 30% 10.0 annual coupons MC

European Asian 5% 1.0 on stock 1 MC
European Barrier 5% 1.0 on stock 2 MCOptions
American Vanilla 5% 1.0 on stock 1 BT

Cash Dollar 10% - - -

Cross Currency Euro/Dollar 15% - long position MC

3.1. Nested MC-Based VaR and cVaR Setup

Below, we list the main parameters that are used throughout the coming sections if not
stated otherwise:

• VaR/cVaR days : 1
• VaR/cVaR prob. : 0.99 (αquantile = 0.01)
• pathsMCext : 32k (where 1k , 1024)
• pathsMCint : 32k (where 1k , 1024)
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• stepsMCext : 1 for BS, 4 for Heston
• Options Maturity : 1 year (assuming 252 trading days)
• stepsMCint : 252 for European Asian, 1008 (= 252*4) for European Barrier
• stepsTree : 252 (= pathsMCint)

The number of MC paths, both external (pathsMCext) and internal (pathsMCint), is thereby chosen
as 32k. This prevents us from facing the problem of too few simulations, while keeping the numerical
complexity tractable.

3.2. Computational Complexity

Figure 2 shows the (preliminary) runtime percentages of a full VaR/VaR computation for the
portfolio given in Table 1, coded in Matlab (optimized). From these results, it is evident that the
major part of the computational complexity originates when highly non-linear derivatives have to
be priced within the inner MC simulation. Note that in the case of high-dimensional options, the BT
method becomes impractical for the American Vanilla (both in terms of runtime and implementation),
in which case the LS algorithm is preferred. In such a case, the computational complexity of this kernel
becomes relevant. For example, if our portfolio included an American 2D Max call option, the runtime
distribution would be: European Barrier: 64%, American 2D Max: 22%, and European Asian 13%
approximately [11].

83%

16%
0%0%0%0%1%

Eur.Barrier

Eur.Asian

Am.Vanilla

Bond

Stocks

For.Currency

VaR / cVaR

Figure 2. Runtime percentages of the complete value-at-risk (VaR)/conditional value-at-risk (cVaR)
computation (Matlab testbench), following Table 1 and Section 3.1. Hardware: personal computer (PC)
with MSI B85M-E45 motherboard [20], Intel Core I7-4970 [21], 16 GB DDR3 memory, running Windows
7 Professional 64-bit.

3.3. Hardware Setup

The hardware setup of our high-performance workstation is detailed below:

• SuperMicro Superserver 7048GR-TR (with a dual-socket X10DRG-Q motherboard, 2000 W
Titanium level high-efficiency redundant power supplies, and the required cooling kit
MCP-320-74701-0N-KIT) [22,23].

• (2×) Intel Xeon Processor E5-2670V3 (Haswell architecture, 12 cores (24 threads) @ 2.3 GHz base
frequency, (8×) 8 GB DDR4). Technology node: 22 nm [24].

• (1×) Intel Xeon Phi Coprocessor 7120P (61 cores @ 1.238 GHz base frequency, 16 GB, passive
cooling). Technology node: 22 nm [25].

• (×1) Nvidia Tesla K80 GPU Accelerator (with dual GK210 GPU, (2×) 2596 CUDA Cores @ 560 MHz
base frequency, (2×) 12 GB, passive cooling). Technology node: 28 nm [26,27].

• (×1) Alpha Data ADM-PCIE-7V3 (with Xilinx Virtex-7 FPGA model XC7VX690T-2 (FFG1157C),
200 MHz SDAccel frequency, 16 GB, active cooling (small fan). Technology node: 28 nm [28].

Our workstation operates with Linux RedHat 6.6 (Linux 2.6.32-504.el6.x86_64), and all individual
OpenCL drivers and additional software were installed from scratch.

Four Host+Accelerator combinations are evaluated in this work: CPU+CPU (exploiting the
dual-socket X10DRG-Q motherboard), CPU+XeonPhi, CPU+GPU, and CPU+FPGA.
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The FPGA card has also been installed and measured used on a much smaller system setup (PC)
with an MSI B85M-E45 motherboard [20], Intel Core I7-4970 (Technology node: 22 nm) [21], 16 GB
DDR3 memory, running CentOS 6.7 (2.6.32-573.18.1.el6.x86_64).

Throughout this work, the room temperature is controlled at ∼23 ◦C.

3.3.1. Notes on Technology Node Differences

In the above description of our main workstation, the term technology node refers to the minimum
size of features in the underlying semiconductor technology. Ideally, platforms should be compared at
the same technology node, since smaller (newer) ones confer (in general terms) higher performance
and energy efficiency (for details on the effects of technology scaling, refer to [29]). However, this is
not always possible, since it is vendor dependent. Therefore, we can still compare the four platforms,
as long as these differences are accounted for.

3.4. Relevant Platform Characteristics: CPU, XeonPhi, GPU, and FPGA

A summary of the most relevant characteristics for this work are detailed below:

• CPU: The most general and versatile platform. It is usually preferred to add an accelerator
device to offload time-consuming computations. The Intel Xeon processor is mainly designed to
have a good performance per single core/thread, while offering a moderate number of parallel
cores [30,31].

• XeonPhi: It is a many integrated core (MIC) architecture offered by Intel for acceleration purposes.
Each core includes a 512-bit vector arithmetic unit capable of executing wide single instruction
multiple data (SIMD) instructions [31,32]. Code that runs on Xeon processors should be slightly
modified to run on these devices, and Intel provides development environments for that purpose
(in our case, we focus on portable OpenCL). One detail to always bear in mind when using the
XeonPhi is that there is no barrier synchronization support in hardware for the work items in
the same work group, which is currently simulated in software [32]. After extensive tests, the
ideal work group size turned out to be around 16 work items, exploiting the implicit vectorization
module. Several tests we have carried out have shown that it is possible to avoid hardware
synchronization completely when using a work group size equal to the size of the vectorization
module, a finding that is exploited in the rest of our work.

• GPU: This device was originally designed for image rendering purposes, offloading these tasks
from the CPU. Over time, GPUs have become widely used for general purpose computations
and have evolved into extremely efficient devices. They rely on executing many parallel threads
(work items in OpenCL) on many processor cores. These cores are simple but highly optimized
for data-parallel computations among groups of threads [33]. As a general rule, the larger the
work group size (currently around 1024 work items) and the larger the number of work groups,
the better the device is exploited; i.e., for light workloads, it will be underutilized.

• FPGA: Besides the details mentioned in Section 4.2, the key strengths of FPGAs can be summarized
in four points:

– Pipelining: The for-loops that are pipelined resemble an assembly line in a manufacturing
company, where products go from one station to the next, each performing a set of specific
operations. Assembly lines are optimized so that multiple items are on the line simultaneously,
and no station is idle at any point in time. Similarly, for-loops that are pipelined can start
processing a new input (or iteration) before the output for the current input (iteration) is ready.
The most efficient for-loops are those whose initiation interval—the time needed between two
consecutive inputs—is just one clock cycle.

– Infinite bit-level parallelism: Being a customized architecture, parallelism can be widely
exploited, even at bit level.

– Customized precision: FPGAs are not restricted to fixed data types, which means that custom
precision data types can be exploited (although not in this work).
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– Customized memory hierarchy: Because of the available on-device random access memory
(RAM), accessed faster than external global memory, the architecture can efficiently exploit a
tailor-made memory hierarchy.

The key with FPGAs is to obtain a pipelined architecture with an initiation interval of one clock
cycle. After a certain latency, the first output will be available, and from that point onward there will
be an output value in every consecutive clock cycle. Furthermore, these pipelines usually need to be
wide, computing as many numbers in parallel as possible, and expanding the architecture to use as
many FPGA resources as possible.

4. OpenCL

No single platform can efficiently cope with all classes of workloads, and most applications include
a variety of workload characteristics. Therefore, systems are designed today based on heterogeneous
compute systems. This provides the programmer with enough flexibility to choose the best architecture
for the given task, or to select the task that optimally exploits the given platform. However, this
flexibility comes at the expense of an increased programming complexity [34].

OpenCL is an open, royalty-free standard for general purpose parallel programming that can be
ported to multiple platforms, including CPUs, GPUs, and FPGAs. OpenCL is managed by the Khronos
Group, a nonprofit technology consortium. It basically utilizes a subset of ISO C99 with extensions for
parallelism, and it supports both data- and task-based parallel programming models [35]. The main
idea behind this framework is to allow the development of portable code across different platforms,
reducing the programming effort when it comes to heterogeneous systems.

There are, however, three key aspects that need to be highlighted. First, although OpenCL code
is portable, its performance is not necessarily so, which means that the same code still needs to be
optimized for the targeted platform in order to achieve a high efficiency. Second, a somewhat higher
performance should be expected from platform-specific programming frameworks, such as CUDA on
GPUs (see as examples [11,36]). Third, the implementation of the OpenCL standard to date is not even
among all members of the consortium (e.g., Intel, Nvidia, Xilinx, etc). Therefore, we have taken care of
generating portable code for all tested platforms.

4.1. Main OpenCL Concepts

An OpenCL architecture assumes the existence of a host (usually a CPU) and a device connected
to it, traditionally via Peripheral Component Interconnect Express (PCIe) (see Figure 3 as a reference).
In general terms, the device is assumed to be composed of compute units, each of them subdivided
into processing elements. The host code handles the interface with the user, it runs all OpenCL setup
steps, and enqueues the work to the device; whereas the device code (also called kernel) specifies the
operations to be performed by a single thread of computation (work item).

Figure 3. Basic OpenCL architecture, including the basic memory hierarchy. CPU = Central Processor
Unit, CU = Compute Unit, PE = Process Element. The communication host–device is performed (in this
case) via Peripheral Component Interconnect Express (PCIe).
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All kernels are enqueued by the host, either as a task (basically a single-threaded kernel), or as
an N-Dimensional Range (NDRange) with a defined number of work items grouped into work-groups.
The latter grouping is necessary in order to fully exploit the granularity of the given architecture
(compute units/processing elements).

The device also has its own memory hierarchy. Basically, a global memory can be accessed by all
compute units, local memory is visible to all work items in the same work group, and private memory
is only visible to the work item. The host only has access to the global device memory, where all data
transfers between host and device take place.

The concepts mentioned before are necessary throughout the coming sections. For more details
on OpenCL, please refer to the specifications [35], the suggested bibliography [34], and available
examples, such as [37,38].

4.2. Xilinx SDAccel

Special tools are required to be able to use OpenCL on FPGAs. Whereas devices like CPUs, Intel’s
XeonPhi, and GPUs have a fixed architecture on top of which a program is run (the compiled OpenCL
code); FPGAs as such do not run any code. In turn, they offer a wide set of unconnected resources that
can be configured and interconnected based on the desired architecture. The configuration of FPGAs
is achieved via a specific file called bitstream.

In essence, the mentioned tools need to translate (map) the OpenCL code into the configuration
(bitstream) file. In our case, we use SDAccel, a development environment offered by Xilinx that enables
the use of OpenCL on their FPGA devices [39]. At the moment of carrying out this work, the latest
version is 2015.4.

4.3. Basic Coding Considerations

When it comes to parallel programming, the programmer should bear several basic concepts in
mind. The literature on this topic is quite extensive and explicative, such as [34,40].

Below, we list a subset of important concepts that will be referenced in the following sections:

• Coalesced memory access: In general terms, memory controllers read/write from/to memory in
bursts (chunks of physically contiguous data), in order to increase efficiency. Therefore, when
work items in a work group need to read/write data from/to memory, they should preferably
do so on consecutive elements (e.g., consecutive elements of an array). This is called coalesced
memory access. (More precisely, the requests should also be aligned to a certain number of bytes).
In any case, it suffices for now to emphasize that uncoalesced memory access can severely reduce
a kernel’s performance.

• Divergent branches: Work items in a work group will be sub-grouped depending on the target
platform. The (sub)grouped work items execute the same line of code simultaneously. This means
that conditionals statements (e.g., if sentences) can negatively impact performance if the work
items take different branches (e.g., when the condition depends on input data). When this happens,
all branches of the conditional statement need to be computed, which slows down the (sub)group.
Therefore, divergent branches should be avoided, or at least minimized.

• Parallel reduction techniques: MC-based pricing algorithms, for example, require at one point the
average of a vector (e.g., a cash flow), which implies the accumulation of all vector elements.
When the work items in a work group cooperate inside the same pricing process, the programmer
should employ the specific reduction techniques suggested in the given literature.

• Barrier synchronization: There are circumstances where it may become necessary to synchronize all
work items in a work group (inside a kernel); e.g., in the previously mentioned parallel reduction
technique. Synchronization may also be required when the work items prefetch data from global
memory, placing it in local memory, that all work items (in the same work group) will then share.
In this case, synchronization may be used to guarantee that the shared vector has been written
to completely, before the work items start reading from it. In order to avoid any performance
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degradation, the programmer should always research beforehand how this barrier synchronization
is physically handled by the target platform.

• Constant operations: Whenever possible, all constant operations should be taken away from the
kernels and placed on the host side. This suggestion applies not only to parallel code, but also to
sequential code.

The main concepts listed above, as well as other subtle considerations mentioned in the literature,
have been taken into account in this work. Furthermore, in order the increase the overall performance,
the compiler optimization flag -03 has been used in our implementation [41].

5. Architecture Part 1: Implementation Basics

Following the OpenCL approach, we assume a host CPU processor with at least one accelerator
connected via PCIe. The host takes care of all general computations, the communication with the
accelerator, and the synchronization of all operations at system level. Conversely, the accelerator is in
charge of performing the heavy workload of the nested MC simulations. For the purposes of this work,
and in order to compare among different platforms, we use only one device at a time.

The complete architecture executes a sequence of steps, as described below and graphically
presented in Figure 4:

1. The host processor reads all inputs and parameters, and pre-computes all constant operations in
order to reduce the workload for the accelerator. Today’s value of the portfolio is computed by
the host as well. Since it is only computed once, there is no real need for acceleration.

2. The host follows all basic OpenCL steps that will allow the communication with the
given accelerator:

• It searches for the target platform, and the target device in that platform,
• it creates a context for that device in that platform,
• then a command queue is created in that context (for the chosen device and platform),
• it also allocates all buffers in device global memory (used for data transfers host–device),
• it builds (at runtime) the program that will run on the device,
• it also creates each OpenCL kernel and sets its arguments,
• each kernel is sent to the command queue (external kernels first, internal ones afterward).

3. The external simulation takes place. Each kernel is launched on the device (enqueued one at a
time), writing all results in a designated buffer (vector) in device global memory. These buffers
are represented with green rectangles in Figure 4.

4. The internal simulation follows. In the case of options, they read the simulated initial stock values
(the underlyings) from global device memory, and they also write back each option price in a
designated buffer (vector, also represented with green rectangles in Figure 4).

5. The loss vector is also computed on the device and stored in device global memory, which is
represented with a red rectangle in Figure 4.

6. Once all kernels have finished their operation (a synchronization host–device takes place here),
the mentioned vector is requested by the host. The host sorts in ascending order the loss vector,
and yields the requested α-quantile (VaRα and cVaRα). Essentially, this α-quantile is the loss value
at a specific position in the sorted loss vector, whereas the cVaR is the mean of the loss values
from index 0 to the α-quantile. A simple bubble-sort operation is sufficient in most cases, since
the sorting process can be stopped as soon as the α-quantile has been found (which is usually
located close to one of the extremes of the vector).

The steps mentioned above also aim at reducing the data transfers between host and device,
avoiding any memory bottleneck. When multiple devices are simultaneously used for the same project,
there is also the possibility of reducing data transfers by recomputing part of the data. For instance,
in the case of options, each of them computed in different devices, one can opt for to recompute the
underlying (in this case the stock values) on each device.
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Figure 4. Sequence of steps for our full portfolio VaR/cVaR project.

5.1. Parallelization Schemes

Referring to the nested MC simulations presented in Figure 1 and our portfolio in Table 1, there
are two sets of kernels that need to be computed:

• External simulations: Stocks, Bond, Foreign Currency, and Loss.
• Internal simulations: All options (European Asian, European Barrier, and American Vanilla).

The external simulations are straightforward to implement, since each path is independent
from the rest, and these kernels are also independent from each other. Besides, in the case of the
two correlated stocks, only the corresponding correlated paths are related to each other.

For the internal simulations, however, each option price can be computed by following the
parallelization schemes that we present in Figure 5. These schemes are derived from the application
point of view. However, we also need to take into account the hardware-level parallelism offered by
each platform, as detailed in Section 3.4. Therefore, we proceed to evaluate each scheme from Figure 5
against the four target platforms:

Figure 5. Parallelization schemes. The blue dots represent where the work items are assigned and how
they are grouped.

P1: All (global) work items contribute to the same internal simulation. The internal paths are distributed
equally among the work items. Once this option price is ready, the kernel moves to the following
option price (starting from the following simulated value of the underlying).

• Advantage: It is a straightforward implementation.
• Disadvantage: This is a naive scheme that suffers from a serious problem regarding work items

synchronization (see Section 4.3). In fact, the MC approach requires the average of the cash flow
among all internal paths. To do so, all paths have to be synchronized at one point. However,
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in OpenCL, only the work items inside each work group can be synchronized (by means of a
synchronization barrier), whereas among work groups it can only be achieved externally from the
host, causing a severe runtime overhead. A similar issue is present with the BT method moving
from one time step to the next. This scheme is limited to a single work group, which does not
represent enough workload to fully exploit GPUs, Xeon Phi, and the Xeon processor. On FPGAs,
this depends on whether a single work group can fully utilize all the available hardware resources.

Therefore, this scheme is not recommended for our target platforms, especially when it comes to
portable code.

P2: Each work group handles the computation of a different internal simulation. All work items in a
work group contribute to one internal simulation (option price) at the same time, distributing the
internal paths equally among them. Moreover, the work groups are given an equal amount of internal
simulations (option prices). Ideally, there should be as many work groups as external paths (there is
one internal simulation per external path). This approach maximizes the global amount of work items.

• Advantage: It is particularly appropriate for GPUs, potentially allowing high utilization of the
device, even at a relatively low number of external and internal paths. GPUs also support barrier
synchronization at hardware level, which is an added advantage [42].

• Disadvantage: Intel’s XeonPhi accelerators do not natively support barrier synchronization
in hardware, which is rather simulated in software [32], causing a severe increase in runtime.
Although this scheme can be used on FPGAs, it is preferred to have completely independent
work items, in order to increase implementation efficiency (explained next). Unfortunately, this
parallelization scheme reduces the portability of the complete project. In later chapters, we will
also consider a second disadvantage of this scheme in terms of accessing an external RN sequence.

This scheme is not the best (portable) choice in our case.
P3: Each single work item computes all internal paths for one option price. In this scheme, each

work item is independent of the others, and the grouping into work groups does not hinder the
implementation efficiency (on the contrary, this will yield an additional advantage in later chapters
regarding the access to an external RN sequence). Here the number of global work items is set equal to
the number of external paths (or, conversely, equal to the number of internal simulations).

• Advantage: This is the most portable scheme for our portfolio project, since it can be mapped
on GPU, XeonPhi, CPU, and FPGA. Because the work items are independent, there are no data
dependencies between them, each running its own simulation. This offers several advantages
regarding implementation. For instance, the BT used for the American option becomes more
efficient, with no idle work items at any time (an issue that arises in the previous two schemes),
because each work item runs its own tree. We can also accumulate the cash flow across the MC
paths on the fly (as soon as each path reaches maturity), avoiding any parallel reduction technique.
On FPGAs, this is particularly useful, because the accumulation can be efficiently placed inside
the main pipelined for-loop, avoiding unnecessary runtime overheads.

• Disadvantage: There are, however, two points that need to be mentioned. First, if the number of
external paths is low, then there might not be enough work items to fully utilize a large device.
This is particularly noticeable on GPUs. Second, in the case of the American option, the size of
the BT (in other words, the maximum number of steps it can support) can become limited by the
available (private) memory resources for each work item.

Thus, the chosen scheme is P3, based on portability and the added advantages regarding
efficient implementation.

Load Balancing in the Parallelization Schemes

Following the sequence of steps in the nested MC simulation (Figure 4) and the parallelization
schemes shown in Figure 5, we detail here how the workload is balanced among the work items.
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First, each kernel of the external part (Stocks, Bond, and Foreign Currency) simulates a number of
external paths determined by pathsMCext, and its results (one per path) are stored in an output vector
(see Figure 4 and Section 5). As long as the global number of work items is set equal to pathsMCext (or
a submultiple), the workload will be equally distributed among them.

Second, each kernel in the internal section simulates per external path of the given underlying asset,
a number of internal paths determined by pathsMCint. Then, its option values (one per external path)
are stored in an output vector (see Figure 4 and Section 5). Depending on the parallelization schemes,
the workload will be equally balanced among the work items for the MC-based kernels (European
options), provided that:

• scheme P1 (although not recommended, see Section 5.1): the global number of work items is set
equal to pathsMCint (or a submultiple),

• scheme P2 (although not recommended, see Section 5.1): the local number of work items is set
equal to pathsMCint (or a submultiple), and the number of work groups is set equal to pathsMCext
(or a submultiple),

• scheme P3: the global number of work items is set equal to pathsMCext (or a submultiple).

In our setup, the American Vanilla kernel makes use of a BT, and it simulates one new tree per
external path of the underlying asset. The use of schemes P1 or P2 has a disadvantage: as we move
from one time step to the next (backward) along the three, an increasing number of work items become
idle. At the initial node, only one work item can determine the option value. On the contrary, scheme
P3 perfectly fits the computation via BT, since each work item computes its own tree. Then, setting
the global number of work items equal to pathsMCext (or a submultiple) offers an equally balanced
workload.

Third, the loss kernel takes the output vector of each simulated financial product (all with a length
equal to pathsMCext), and outputs a vector (with the same length) containing the simulated losses.
Therefore, the workload can be equally distributed, provided the number of work items is set equal to
pathsMCext (or a submultiple).

Although different kernels have different computational complexities (see Figure 2), it is important
to highlight that inside each kernel, all paths have the same computational cost. Therefore, it is sufficient
to equally distribute the number of paths among the work items, in order to achieve a uniform load.
This load balancing has been taken into account in the following sections, where global and local work
group sizes (globalSize and localSize) are specified accordingly.

5.2. Local Random Number Generation

Once we have defined the parallelization scheme, we need to take care of the normally distributed
RNs which are required by the models used in the MC simulation. In our case, we make use of the MT
algorithm [43] (with uniform distribution), as well as the Box–Muller (BM) algorithm to convert from
uniform to normal distribution [44]. This choice is justified as follows:

The MT enables each work item to be assigned its own internal PRNG, provided that each of
them receives a different seed, and that the Dynamic Creation (DC) scheme is used [45] (to ensure
that the sequences are highly independent). This makes it particularly useful for parallel architectures,
where the number of works items in a work group can vary depending on the platform, and where
this number exceeds the maximum number of work items that can concurrently share a single MT.

When it comes to the conversion from uniform to normal random numbers, the most appropriate
approach for our purposes is the BM algorithm, due to its simplicity and ease of implementation
on different platforms. Furthermore, other methods typically consist of cutting off the range of the
normal random numbers, a fact that we do not favor. So, another reason for using the BM algorithm
is the ability to obtain very large normally distributed random numbers. The only drawback in
our case is the cost of the mathematical operations involved; namely: sin, cos, log, sqrt, which are
computationally intensive in all of the targeted platforms: CPU, XeonPhi, GPU, and FPGA. Other
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possibilities, such as the inverse cumulative distribution function (ICDF), have proven to be more
resource- and energy-efficient [46,47] in specific architectures. However, we are interested in a portable
project that we can deploy to fairly compare all targeted platforms.

MT Period

The length of the period in the MT can also be adjusted (minimized) to the problem size, meaning
that the exponent can be adjusted. In our case, we are dealing with four products in the external
simulation (two of which are stocks), and two options in the internal simulation that require RNs.
The largest number of RNs in our setup is required by the European Barrier. Even when taking a
relatively large number of internal paths (128 ∗ 1024 = 131, 072), 252 time steps in a 1 year maturity,
and four times more steps in order to increase the granularity close to the barrier, this adds up to
131072 ∗ (252 ∗ 4) = 1.32e8 RNs. This is also the maximum amount of numbers required for a single
PRNG in the extreme case where we were to launch a single work item. As it turns out, choosing the
exponent p = 521 in the DC scheme gives a period of 2p − 1 = 6.86e156, which is far larger than the
sequence length required in our setup. This is important when the MT is placed inside each work item,
as it reduces the number of states in the generators, which reduces the private memory requirements.
In the coming sections, we will revise the generation of the random sequence and how it can
(and should) be reused.

5.3. Kernel Implementation for CPU, XeonPhi, and GPU

All kernels have been designed following the coding guidelines and optimizations detailed in
Section 4.3. Particular details of each kernel are explained below:

• Stocks (MC): This kernel requires two random number generators in the case of the BS model,
and two pairs for the Heston model. There are two nested for-loops: the external one goes
over the assigned external paths, and the internal one iterates over all steps. Furthermore,
the corresponding random number sequences between stocks are correlated.

• Bond (MC): This kernel is straightforward to implement. It has an external for-loop that goes over
the assigned external paths per work item (usually one path), and an internal one that iterates
over the number of coupons. We have chosen the implementation presented in [48].

• Foreign Currency (MC): It follows the same approach as Stocks, without the need for correlation.
The exchange rate is modeled as a geometric Brownian motion without drift.

• European Asian (MC): Being a kernel that operates in the internal part of the nested MC simulation,
it needs three nested for-loops: the upper one iterates over all assigned internal simulations
(in our case one per work item), the middle one over all internal number of paths, and the inner
one iterates over all time steps. This implementation avoids the storage of internal paths (either
as a matrix or as a vector), avoiding any effect of memory bottlenecks. It also allows each work
item to compute the accumulation of the underlying (used later to obtain the average) alongside
the simulation of the evolution of the underlying. The cash flow is directly accumulated as soon
as each internal path reaches maturity, and is finally divided by the number of internal paths to
obtain the average (option price) per external path.

• European Barrier (MC): Our implementation uses a MC approach with finer step size than that
in the case of the European Asian kernel. (Basically, we use four times more steps than in the
latter). This kernel also requires three nested for-loops (as in the European Asian) and allows
each work item to assess the crossing of the barrier alongside the simulation of the underlying.
The payoff is evaluated for each internal path reaching maturity, which allows the cash flow to be
accumulated accordingly.

• American Vanilla (BT): The binomial tree itself is physically a one-dimensional vector with size
equal to the number of steps plus one, initialized with the values of the underlying at maturity [49].
As the computation moves backward, the corresponding values of this vector are adjusted to the
target step. The cash flow is initialized at maturity (with the appropriate discount factor) and
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updated backward step by step until the initial day. There are three nested for-loops in this kernel:
the upper one corresponds to the number of assigned external paths (in our case, one per work
item), while the inner two correspond to the tree, as in [49].

• Loss: As the easiest kernel to implement, it first reads the values of all simulated prices per external
path from device global memory, in order to compute the simulated value of the portfolio. It then
subtracts the value of the portfolio today. The final result is a vector of values that correspond to
the potential loss of the given portfolio.

5.4. Kernels Implementation for FPGA in Xilinx SDAccel

The FPGA implementation follows the same basic guidelines as the ones used for the other
platforms (see Section 5.3), but with some necessary modifications that are related to the special
characteristics of FPGAs (discussed in Sections 4.2 and 3.4).

In our project, all kernels have pipelined the for-loops. Furthermore, those for-loops where the
kernel spends most of the time (the inner loop of nested ones) are optimized to achieve an initiation
interval of one clock cycle. This is made possible by exploiting customized on-chip memory and
by carefully recoding the kernels, so that two consecutive input values to the pipelined loop are
independent of each other:

• Stocks (MC), Bond (MC): The nested loops are inverted, where now the inner one iterates over all
assigned external paths.

• Foreign Currency (MC): No additional modification.
• European Asian (MC), European Barrier (MC): The external loop still goes over all assigned

external paths, but the middle one now iterates over all steps, while the inner loop does so over
all internal paths. This implies the use of a one-dimensional vector with a length equal to the
maximum number of internal paths. Such a vector is implemented with on-chip memory.

• American Vanilla (BT): The ordering of the for-loops remains unchanged.
• Loss: The suggested implementation on FPGA is (currently) to copy all the simulated values of one

simulated financial instrument at a time from device global memory to the internal memory on
the FPGA, and to add it to a vector (also on FPGA) containing the partial values of the simulated
portfolio. Once all instruments are accounted for, the kernel proceeds as in Section 5.3.

As mentioned in Section 4.1, kernels can be launched as a Task or as an NDRange. We have
designed all kernels to be launched as tasks, in a way that can also be easily ported as NDRanges.
(The specific reason behind such a choice is not detailed here, since it involves our confidential reports
to Xilinx). In any case, since a task is basically a kernel with a single work item, we have modified
the code of all kernels equally, in order to obtain wide pipelines. This means that multiple values can
be processed in parallel in the same clock cycle, and it also guarantees that we use as many available
FPGA resources as possible.

5.5. Runtime with Local Regeneration of RNs

Table 2 presents the kernels runtime for each platform in the given setup, when the pair MT+BM
is included in every work item. As mentioned in Section 3.3, four Host+Accelerator combinations are
evaluated here: CPU+CPU, CPU+XeonPhi, CPU+GPU, and CPU+FPGA. For kernels with a runtime
below one second, the time shown is averaged over 1000 repetitions. The BS and Heston models apply
to the correlated stocks and both European style options. Only one of the two GPU devices on the
Nvidia K80 card is used.

It should be noted that for FPGAs, there is a difference between the accumulated runtime of all
kernels and the total runtime shown. This is due to three factors: First, launching a kernel on FPGA
implies a reconfiguration, which has been measured at approximately 200 ms for each of our kernels
(a total of approximately 1.4 s). Second, there is an additional overhead when loading and building the
binary file that contains the kernel design. Third, the host needs to wait until this kernel has finished in
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order to start processing the next one (note: building and loading the file for the other three platforms
can be executed before launching all kernels, and it will be shown as an OpenCL overhead in later
sections). This first set of results is presented here as the base for further comparisons.

Table 2. Runtime breakdown (s) with internal random number (RN) sequences —
(pathsMCext/pathsMCint) = (32k/32k).

BS

Description: CPU 1 PHI 1 GPU 1 FPGA 2

Kernels:
–Stocks (x2) (MC) 915 us 1121 us 622 us 3.198 ms
–Bond (MC) 663 us 908 us 416 us 1.712 ms
–Currency (MC) 493 us 694 us 334 us 1.600 ms
–European Asian (MC) 79.580 s 55.137 s 53.426 s 87.302 s
–European Barrier (MC) 367.238 s 242.930 s 211.381 s 341.308 s
–American Vanilla (BT) 10.766 ms 19.666 ms 125.758 ms 104.382 ms
–Loss 50 us 787 us 28 us 17.339 ms

All Kernels 446.835 s 298.135 s 264.932 s 432.170 s

Heston

Description: CPU 1 PHI 1 GPU 1 FPGA 2

Kernels:
–Stocks (x2) (MC) 1.870 ms 2.982 ms 1.137 ms 3.431 ms
–Bond (MC) 663 us 908 us 416 us 1.712 ms
–Currency (MC) 493 us 694 us 334 us 1.600 ms
–European Asian (MC) 145.354 s 133.101 s 98.244 s 174.534 s
–European Barrier (MC) 599.308 s 546.026 s 390.582 s 682.547 s
–American Vanilla (BT) 10.766 ms 19.666 ms 125.758 ms 104.382 ms
–Loss 50 us 787 us 28 us 17.339 ms

All Kernels 744.685 s 679.212 s 488.948 s 860.795 s
1 Global work group size (globalSize) = 32, 768 for all kernels. Local work group size (localSize) for
all kernels: CPU, PHI = 16, GPU = 1024 (refer to Section 3.4).; 2 FPGA pipelined for-loop width:
Stocks (BS/Heston) = (8/4); Bond = 16; Currency=16; European Asian, Barrier (BS/Heston) = (16/8);
American Vanilla BT = 64; Loss = 32 (refer to Section 3.4). BS: Black–Scholes model; FPGA: Field
Programmable Gate Array; GPU: Graphics; Processor Unit; PHI: XeonPhi.

5.6. Analysis of the Implementation Basics

Table 2 shows that (at least for the given setup) the GPU implementation provides the best
performance in terms of runtime, followed by the XeonPhi and CPU. On the other hand, the FPGA
shows the highest runtime—a fact that will be addressed in later sections.

In the case of the American Vanilla kernel (which is implemented with a BT), there is a peculiar
difference in runtime among the platforms, where the CPU shows the best performance (i.e., the lowest
runtime). However, in Figure 6, we show that as we increase the number of steps in the tree, the
XeonPhi performs better than the Xeon processor (CPU). Besides, the chosen parallelization scheme P3
implies that each work item generates its own tree, which translates in a private memory allocation of
two vectors: the tree itself and the cash flow (refer to Section 5.3). However, the mapping of private
memory onto the hardware is platform/vendor dependent. In the case of the targeted GPUs, this type
of memory is assigned to registers, although the compiler is allowed to decide whether to place large
structures on local memory, reducing the performance [42]. In the case of the FPGA, its performance is
slightly higher than the GPU, and for larger trees (above 1024 steps) the projection of Figure 6 predicts
better performance than CPU, but less than the XeonPhi.

Even though several detailed comparisons at kernel-level could be drawn, the main focus at this
point is placed on system-level performance. In fact, if we were to simulate 10k portfolios with similar
characteristics on a daily basis (e.g., in scenario analysis), even the GPU implementation fully using the
Nvidia K80 card (2× GPU devices) would require around 370 work-hours. This would either make the



Risks 2016, 4, 36 19 of 35

task infeasible, or it would imply the deployment of several compute nodes to process the simulations
in parallel.
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Figure 6. American Vanilla (BT): Runtime vs. number of steps in the BT, for the four target platforms.

The solution, then, is to first search for possible optimization opportunities at system-level.

6. Revising the RN Sequence Generation: Optimization Opportunity

Implementing the complete project brought up a new insight regarding RN sequence generation.
Here, combining the BT (to price the American Vanilla option) with the MC approach proved to be a
key starting point for our analysis. In fact, for the same set of parameters, and for the same S0 value of
the (external) simulation of the underlying, the BT yields the same option price.

With MC simulations, this behavior is obtained if, and only if, the same sequence of RNs is used
for each internal simulation of the same product. This means that all prices of the European Asian,
for example, should be obtained from the same sequence of normally distributed RNs. Indeed, the
minimum length of such a sequence should be Lmin = pathsMCint · stepsMCint.

Besides, nothing prevents us from using the same sequence for all products in the internal
simulation. This is actually desired, and it constitutes the common numbers technique for variance
reduction. Of course, this raises the question of whether the common random numbers technique is
applicable for the inner and the outer simulation. The answer to this question is twofold:

• In reality, all payments in the inner simulation loop depend on exactly the same capital market
scenario. Therefore, the use of the same underlying set of RNs for each derivative for the same
inner run is not only justified, it seems even mandatory. In particular, the total wealth of the whole
portfolio is one RN, which is made up of a sum of RNs.

• Concerning the outer simulation, one has to realize that the use of MC methods in the inner run is
just one numerical method to obtain the expected payoffs given the current input generated in the
outer run. Actually, we could also use tree methods (as in our setup for the American option) or
partial differential equation (PDE) methods for the inner run, as only the starting values for these
methods are provided by the outer run. Thus, it is also valid to use the same set of RNs for the
calculation of the expected values in the inner run, as long as we have no dependence between the
RNs generated for the outer run and for the inner run, as well as a sufficiently high number of
inner runs (which has been taken care of in our implementation).

The number of necessary independent RN sequences in our application is determined by the
two correlated stocks, each driven by an independent Brownian motion. Therefore, we need two RN
sequences within the BS model, and four RN sequences within the Heston model.

6.1. External Generation of the RN Sequences

Following the idea that the RNs can be reused, it makes sense to move their generation outside
the kernels. As a result, the kernels’ runtime would be reduced. If the speedup they experience could
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compensate the time required to externally generate the RN sequences, the complete project could
experience a speedup.

Before going into the details of how to efficiently implement this new approach, a warning is
given on the proper handling of random numbers.

6.2. Beware of RNs in Portable Code

On one hand, each work item in the basic implementation from Section 5 is assigned its own
random number generator (RNG), and each of them is correctly initialized (see Section 5.2). On the
other hand, the optimal number of work items per work group is different for different platforms
(e.g., GPU vs. XeonPhi). This can cause major problems: If, for example, the work items were
assigned different workloads, or even if they simulated paths in different order due to the work items’
granularity, then it would be fairly easy to (unintentionally) simulate the same path (on different
devices) with a different sequence of random numbers. This means that the pricing processes could
yield different results on different devices, therefore influencing the final results.

Under the common random numbers technique, the RN sequences are generated externally
(see Section 6.1). If each kernel accesses the same RNs but in a different order—for instance, when they
are executed on different devices—the mentioned problem of different results could appear. Figure 7
exemplifies what occurs under such a condition for the VaR, and that it is more noticeable when the
number of MC paths is low. However, we cannot exactly trace back its reason to the different RN
sequences orders, and this delicate issue is left for a more detailed examination in the future. This is
of course a consequence of the intrinsic variance of the MC error, which then is still high. Although
this effect vanishes asymptotically, it is advisable to avoid it, given the usual slow convergence of
MC methods.

Figure 7. VaR variations (for the same kernel) when the RN sequences are given in different order.
(Plot 1) shows the original result, with Mersenne twister (MT) seeds (0x98AB7158/0xF993EFE0);
(Plot 2) uses the same set of RNs (same seeds), but reorganized in memory in the opposite (inverted)
order, from last to first; (Plot 3) shows the difference between both plots (the red grid is placed at
0 difference).

7. Architecture Part 2: Optimized Implementation

Potential optimizations now arise from generating the RN sequences externally. Independent
of whether this is done by the host or by another kernel, the sequences will be finally stored in
(or transferred to) the device’s global memory, and all pricing kernels have to read from there. Therefore,
the highest priority at this point is the minimization of the overall memory accesses (by all work items)
of each kernel, in order to prevent a memory bottleneck.

7.1. Minimizing Device Global Memory Accesses

Recall the three parallelization schemes analyzed in Section 5.1 and Figure 5. For the external
simulation, each RN is read only once per kernel, and there is no optimization possible. However, in
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the case of the internal simulation (where the project spends most of the time), the same RN is read
several times per kernel. We now evaluate which parallelization scheme minimizes these accesses:

1. P1: All (global) work items contribute to the same internal simulation. This is the worst case. All RNs
are read once per internal simulation; that is, pathsMCint ∗ stepsMCint reads. Then, the process
is repeated for all internal simulations (pathsMCext). Therefore,

Naccesses,P1 = pathsMCext ∗ (pathsMCint ∗ stepsMCint).

2. P2: Each work group handles the computation of a different internal simulation. This is the same case
as P1, because different work items in the same work group read different RNs, and as a work
group they read all RNs once per internal simulation. Besides, work groups cannot cooperate
with each other in this sense, so they all execute the reading process independently. Therefore,

Naccesses,P2 = Naccesses,P1.

3. P3: Each single work item computes all internal paths for one option price. Referring to Figure 5,
each work item is assigned its own internal simulation. Paying close attention, it is evident that
all work items have to go through the same set of (pathsMCint) paths, and in our new approach,
all internal simulations use the same RN sequence. However, it also happens that OpenCL groups
the work items into work groups, and this comes as an advantage. In fact, inside each group,
the work items can cooperate reading (from global device memory) a subset of the sequence
(consecutive elements, in a coalesce way), and then share the subset among them. This reduces
the overall memory accesses. Effectively, we now have

Naccesses,P3 = Naccesses,P1/localSize,

localSize being the number of work items in a work group.

Clearly, parallelization scheme P3 remains the best choice. Now, the optimal localSize has
been partially suggested in Section 3.4, but it is summarized here: localSizeCPU,XeonPhi = 16,
localSizeGPU = 1024, localSizeFPGA = 32/16. The latter refers to the achieved width of the pipeline
for BS/Heston.

7.2. How to Handle Work Items Synchronization on Different Platforms

The idea is quite simple. The work items inside each work group cooperate in reading a subset
of the RN sequence at a time, each of them reading (at least) one RN. To have coalesced access,
the elements must be physically contiguous in memory. This subset is stored in local memory (visible
to all work items in the work group), from where the work items will start reading. Once the subset
has been fully utilized, the process is repeated.

The work items must be synchronized every time a new subset of the RN sequence is required,
and this is accomplished on CPU and GPU with a barrier synchronization.

On XeonPhi, the story is a bit different, because (as mentioned before) the barrier synchronization
is simulated in software, which is slow (see Section 3.4). However, we can exploit the fact that the
implicit vectorization module is grouping the work items, and, conversely, they are being implicitly
synchronized. Therefore, as long as the localSize equals the width of the vectorization module, the
barrier synchronization can be omitted in the OpenCL code. In this work, we have noticed around a
2× reduction in runtime by following this approach, while keeping the integrity of the final results.

On FPGA, there is no need for such explicit synchronization (at least in our implementation),
because launching the kernels as a task is equivalent to having a kernel with one single work item.
Therefore, the wide pipelined for-loop takes one RN at a time and uses it for all the paths that can be
simulated in parallel. Certainly, pre-fetching a subset of the RN sequence is also possible, and it is
required in the external simulation.
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7.3. Accessing the RN Sequence in the Same Order

The kernels have to guarantee that the RN sequences are accessed in the same order, irrespective
of the work items’ granularity, as mentioned in Section 6.2. In the case of the FPGA, this is easily
guaranteed, based on the implementation details given in the previous section.

For CPU, XeonPhi, and GPU, it is important to remember how the kernels are implemented
(see Section 5.3). Within the nested for-loops, the inner one is (in general terms) related to the steps
in the MC simulation. Therefore, it is only necessary to use the RN sequences step-wise, meaning
that physically consecutive elements in memory are regarded as consecutive steps of the same path.
As a result, independent of the work item granularity, the paths will be generated with the same
subsequence of RNs (irrespective of the platforms it is being executed on).

7.4. Runtime with External Generation of RNs

Table 3 presents the kernels’ runtime for each platform in the given setup, with the RN sequences
being generated outside the kernels. The elapsed time to generate these sequences on the host (without
parallelization) is also shown.

The same specification from Section 5.5 and Table 2 are applied here. For kernels with a runtime
below one second, the time shown is the average of 1000 repetitions. The BS and Heston models apply
to the correlated stocks, and both European style options.

Table 3. Runtime breakdown (s) with external RN sequences—(pathsMCext/pathsMCint) = (32 k/32 k).

BS

Description: CPU 1 PHI 1 GPU 1 FPGA 2

Kernels:
–Stocks (x2) (MC) 47 us 660 us 27 us 7.604 ms
–Bond (MC) 185 us 587 us 60 us 24.130 ms
–Currency (MC) 47 us 474 us 26 us 3.813 ms
–European Asian (MC) 23.922 s 7.534 s 7.819 s 50.630 s
–European Barrier (MC) 123.725 s 33.851 38.091 s 198.826 s
–American Vanilla (BT) 10.852 ms 19.695 ms 125.713 ms 104.382 ms
–Loss 50 us 782 us 28 us 17.324 ms

All Kernels 147.661 s 41.484 s 46.035 s 253.266 s

RNG (Host) 4.130 s

Heston

Description: CPU 1 PHI 1 GPU 1 FPGA 2

Kernels:
–Stocks (x2) (MC) 67 us 743 us 42 us 19.649 ms
–Bond (MC) 185 us 587 us 60 us 24.130 ms
–Currency (MC) 47 us 474 us 26 us 3.813 ms
–European Asian (MC) 32.130 s 14.015 s 11.877 s 95.273 s
–European Barrier (MC) 155.350 s 54.932 s 52.191 s 377.472 s
–American Vanilla (BT) 10.852 ms 19.695 ms 125.713 ms 104.382 ms
–Loss 50 us 782 us 28 us 17.324 ms

All Kernels 187.495 s 69.054 s 64.193 s 476.659 s

RNG (Host) 8.147 s
1 Global work group size (globalSize) = 32768 for all kernels. Local work group size (localSize) for all
kernels: CPU, PHI = 16, GPU = 1024 (refer to Section 3.4); 2 FPGA pipelined for-loop width: Stocks
(BS/Heston) = (32/8); Bond = 32; Currency = 128; European Asian, Barrier (BS/Heston) = (32/16);
American Vanilla BT = 64; Loss = 32 (refer to Section 3.4). RNG: Random Number Generator.

At this point, emphasis is put on comparing Table 3 with Table 2, in order to show the speedup
achieved by the proposed algorithmic optimization. The comparison between platforms is carried out
in Section 8.
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7.5. Runtime Speedup with External Generation of RNs

Table 4 summarizes the kernel speedup achieved on each platform, when the generation of the
RN sequences is moved outside the kernels. In essence, we are comparing Table 3 with Table 2.

Overall, these speedups are possible because the accesses to device global memory have been
carefully minimized (see Section 7.1).

Nevertheless, each platform experiences the optimization in different ways. As a first order
approximation, we can consider each MC-based kernel as split into two parts: RNG and RN usage.
Consequently, the RNG process (MT+BM) would be responsible for 50% of the kernels’ runtime. In
reality, the BM is computationally expensive (see Section 5.2), so the contribution to the overall runtime
is slightly higher. This effect can be seen on the CPU in Table 4, when the RNG process is moved
outside the kernels.

On the XeonPhi, we have also explicitly avoided the barrier synchronization (under the conditions
explained in Section 7.2), which provides an additional 2×.

Barrier synchronization is supported on the GPU, so the speedup is caused mainly by the
algorithmic optimization itself.

On the FPGA, other effects take place. Removing the RNG process frees FPGA resources that can
be used to widen the single-work-item pipeline (see Section 5.4). However, the percentage of freed
resources is (on average) around 50% of the available amount, so we would expect a 2× reduction in
runtime. Table 4 shows a speedup slightly less than that, because the FPGA now needs to additionally
read the RNs from memory (in the first implementation, this was not required), and the associated line
of code needs to be placed in between the nested for-loops. Since it is physically outside the pipelined
loop, there is an additional overhead in every upper-loop iteration that slightly reduces the speedup.
This shows that, in general, FPGAs are more efficient when they keep all the data/information inside
the device, avoiding external memory accesses.

What is common in all four platforms is a higher speedup in the Heston model than in BS. This is
due to the fact that the former requires 2× more RN sequences than the latter, so the internal RNG
process associated with Heston is more expensive. When the generation is moved away from the
MC-based kernels, the speedup is higher.

Table 4. Kernels’ speedup between external and internal RN sequences (Table 3 vs. Table 2).

BS

Description: CPU PHI GPU FPGA

Internal Regeneration 446.835 s 298.135 s 264.932 s 432.170 s
External Generation 1 151.871 s 45.694 s 50.245 s 257.476 s

Speedup 2.94× 6.52× 5.27× 1.68×

Heston

Description: CPU PHI GPU FPGA

Internal Regeneration 744.685 s 679.212 s 488.948 s 860.795 s
External Generation 1 195.722 s 77.281 s 72.420 s 484.886 s

Speedup 3.80× 8.79× 6.75× 1.78×
1 Including the elapsed time to transfer the externally-generated RN sequences from host to device
global memory, measured at 20 ms (averaged) per sequence (in the given setup).

7.6. Algorithmic Correctness of the Common Numbers Technique

Besides the speedup seen in Table 4, we also evaluate the algorithmic correctness [50] of the
simulation results under the common numbers technique. To this end, Table 5 shows the mean and
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standard deviation (std) of 100 runs of the complete simulation (under the given setup1), with 100
different sets of seeds. These results indicate that for both the BS and Heston model, the confidence
intervals of the VaR and the cVaR using the internal and the external generation of random numbers
overlap. Thus, the introduction of the common random numbers technique does not significantly
change the outcome of the simulations. Besides, the standard deviation is of small magnitude compared
to the mean itself, which furthermore suggests that the chosen number of paths (i.e., 32k/32k, see
Section 3.1) for the nested MC simulation is large enough for our stylized portfolio.

Table 5. Mean and std of VaR and cVaR with external and internal RN sequences.

Model Approach VaR (%) cVaR (%)

Mean std Mean std

BS RNin 6.44 0.06 7.60 0.08
RNout 6.43 0.09 7.59 0.11

Heston RNin 6.68 0.06 7.84 0.08
RNout 6.63 0.10 7.80 0.11

7.7. Time and Space Complexity

Now we evaluate, in general terms, the asymptotic time and space complexity [50] of all kernels
both with and without the common numbers technique, considering a single-threaded implementation.
Besides, we link this complexity to the runtime speedup seen in Table 4.

7.7.1. Time Complexity of the Nested MC Simulation

Inside the kernels linked to the external MC simulations (Stocks, Bond, and Foreign Currency),
we find two nested for-loops: the external loop over all external paths, and an internal one that
iterates N times (N = stepsMCext for Stocks, N = numCoupons for the Bond, N = 1 for the Foreign
Currency). Inside this internal loop, one RN is generated in every iteration, and it is used to compute
the corresponding asset. Additional operations can take place, including writing the final results in
the output vector. Since there is a fixed number of operations inside the inner loop, the asymptotic
time complexity of the nested for-loops is just O(pathsMCext · N), and there is an associated constant
which depends on the runtime

(
Trng + Tpricing

)
.

Following the same analysis, the MC-based kernels in the internal simulation (in our case
the European options) have an asymptotic time complexity equal to O(pathsMCext · pathsMCint ·
stepsMCint), where the associated constant depends on the runtime

(
Trng + Tpricing

)
. The American

Vanilla is computed in our case with the BT, and is therefore independent of the proposed common
numbers technique. However, if the LS algorithm was used (especially in the case of high-dimensional
options), the mentioned technique would still significantly reduce the paths generation step, without
altering the runtime of the backward induction step.

The important message to highlight is the following result. Because the initialization of the MT
states takes a fixed number instructions, and one MT state can be updated every time a RN is generated
inside the inner loops, both time complexities are O(1). If the generation of the RN sequences is moved
outside the kernels, the asymptotic time complexity of these kernels does not change. However, the

1 Refer to Section 3.1. Additional Parameters: Stocks: S0,1 = 130.00 $, S0,2 = 45.00 $, ρstocks = 0.25, xS1 = 3462, xS2 = 10, 000;
Cash: 300k $; Foreign Currency: 403805.0AC, rate = 1.1144, σ = 0.1318; Bond: par = 1000.0 $, r = 0.07(coupon = 70.00 $),
σ = 0.50, ncoupons = 10, yields = {5.00, 5.69, 6.09, 6.38, 6.61, 6.79, 6.94, 7.07, 7.19, 7.30}, xbond = 908; European Asian:
underlying = S1, put, xe.asian = (314 · 100); European Barrier: underlying = S2, Sbarrier = 1.30 · S0,2, call, up, in,
xe.barrier = (386 · 100); American Vanilla: underlying = S1, call, xa.vanilla = (126 · 100); BS parameters: r1 = r2 = 2.5%,
σ0,1 = 0.20, σ0,2 = 0.25; Heston paramters: r1 = r2 = 2.5%, v0,1 = 0.04, v0,2 = 0.0625, κ1 = κ2 = 3.0, θ0,1 = 0.04,
θ0,2 = 0.0625, σ0,1 = 0.20, σ0,2 = 0.25, ρ1 = −0.70, ρ2 = −0.80.



Risks 2016, 4, 36 25 of 35

associated constant is now reduced to
(
Tread + Tpricing

)
, where Tread << Trng on platforms optimized

for high memory bandwidth (at least in our setup, and under the implementation guidelines from
Section 7). In this case, the complete RN sequences are generated once, and the runtime is amortized
during the complete simulation of the kernels. This explains the runtime speedup shown in Table 4.

7.7.2. Time Complexity of VaR and cVaR

The complexity of the loss kernel is O(pathsMCext), whereas the bubble sort algorithm used
by the host (see Section 5) reaches O(pathsMCext2). Nevertheless, the latter could be reduced to
O(α · pathsMCext2) by stopping the sorting process once the α-quantile was reached.

The VaR is obtained by reading the value of the sorted Loss vector at indexVaR = α · pathsMCext,
with O(1). In the case of cVaR, the mean of the loss values from index 0 to indexVaR yields a
time complexity of O(α · pathsMCext). Therefore, the time required to compute VaR and cVaR is
insignificant compared to the sorting process, even if the latter was stopped at the α-quantile.

7.7.3. Time–Space Complexity Tradeoff with the Common Numbers Technique

On one hand, the MT states vector has a fixed length (independent of the parameters that define
the size of the nested MC simulations), and its asymptotic space complexity is O(1). However, in a
parallel implementation, each work item requires its own set of seeds and some specific MT parameters.
In our chosen P3 scheme, we should have (at most) as many work items as pathsMCext, which sets the
asymptotic space complexity equal to O(pathsMCext). This is the complexity when the RN sequences
are regenerated inside each kernel.

On the other hand, moving the generation outside of the kernels requires the storage of the RN
sequences, with a length defined by L = max (pathsMCext · stepsMCext, pathsMCint · stepsMCint).
Therefore, the asymptotic space complexity with the common numbers technique is O(L).

Even though the speedup seen in Table 4 comes at the cost of increasing the asymptotic space
complexity, the common numbers technique is beneficial in terms of runtime to platforms designed for
high memory bandwidth (and with a considerable memory capacity).

8. Platform Comparison: Runtime and Energy Consumption

In this section, we compare the performance of our optimized project (Section 7) on the four target
platforms, in terms of runtime and energy consumption.

8.1. Runtime Analysis: Scaling pathsMCext and pathsMCint

In order to assess the performance of all platforms under different workloads, the MC simulations
are scaled in terms of the external and internal paths. The following results are presented for
the BS model only, but the conclusions drawn from it also apply to the Heston model, since the
runtime increases proportionally for all targeted platforms. Following our parallelization scheme P3
(see Sections 5.1 and 7.1), the host issues as many work items (globalSize) as the number of paths in the
external simulation (pathsMCext). The scaling ranges from 1k to 128k. Since all platforms usually favor
a number of work items in powers of two, we define 1k , 1024.

Table 6 shows the runtimes at different scaling combinations, and for all platforms. Because the
values cover a large range (from a few hundred ms up to several minutes), the comparisons are best
carried out in relative terms. From Figures 8–11 we plot the runtime ratio of platform X vs. platform Y,
as ratio = runtimeX/runtimeY, including a grid in red color at ratio = 1. Over this grid, platform X
needs a larger runtime than platform Y, and vice versa.
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Table 6. Kernels runtime (s) scaling in the BS model.

pathsMCext 1 pathsMCint 1

1k 2k 4k 8k 16k 32k 64k 128k

CPU

1k 0.197 0.346 0.662 1.307 2.591 5.166 10.313 20.598
2k 0.348 0.676 1.307 2.592 5.168 10.305 20.601 41.567
4k 0.666 1.295 2.602 5.161 10.227 20.577 40.926 76.852
8k 1.200 2.416 4.765 9.463 19.708 37.762 75.540 151.981

16k 2.333 4.639 9.307 18.815 37.671 75.333 151.360 303.347
32k 4.635 9.337 19.334 38.617 73.976 153.908 295.214 591.627
64k 9.249 19.207 36.969 73.721 147.586 295.116 590.589 1180.315
128k 18.388 36.827 74.135 146.997 295.599 593.966 1178.057 2352.650

PHI

1k 0.134 0.244 0.498 0.963 1.864 3.646 7.221 14.343
2k 0.190 0.332 0.586 1.081 2.083 4.106 8.100 16.111
4k 0.317 0.561 1.048 2.014 3.949 7.883 15.584 31.007
8k 0.505 0.953 1.751 3.411 6.755 13.896 26.580 53.052

16k 1.127 1.530 2.971 5.838 11.591 23.092 45.228 92.063
32k 1.390 3.040 5.271 10.444 20.780 41.488 82.857 165.601
64k 2.563 5.356 9.915 19.674 39.206 78.300 156.430 312.702
128k 5.050 9.921 19.703 39.245 78.320 156.454 312.745 625.373

GPU

1k 0.623 1.073 2.013 3.849 7.558 14.989 29.860 59.705
2k 0.597 1.077 2.026 3.824 7.629 15.113 30.064 59.973
4k 0.643 1.093 2.057 3.964 7.807 15.473 30.797 61.439
8k 0.616 1.117 2.062 3.969 7.798 15.492 30.802 61.457

16k 0.872 1.620 3.088 5.987 11.831 23.531 47.064 92.814
32k 1.694 3.089 5.946 11.572 23.205 46.190 92.104 184.083
64k 2.513 4.665 8.978 17.653 35.014 69.475 139.096 278.564
128k 4.221 7.905 15.265 29.613 59.295 118.257 236.412 472.409

FPGA

1k 5.210 6.621 9.421 15.096 26.394 48.971 94.146 184.527
2k 5.431 7.054 10.319 16.830 29.837 55.879 107.985 212.370
4k 5.821 7.848 11.910 19.944 36.074 68.337 132.857 261.917
8k 6.659 9.493 15.158 26.496 49.173 94.528 185.238 366.655

16k 8.335 12.818 21.791 39.732 75.620 147.391 290.946 578.035
32k 11.694 19.487 35.071 66.244 130.626 253.342 502.799 1001.686
64k 18.404 32.794 61.624 119.252 234.510 465.038 926.070 1848.085
128k 31.861 59.425 114.678 225.086 445.961 887.705 1771.903 3538.531

1 pathsMCext/pathsMCint values are given in multiples of 1024, starting at 1k = 1024 and ending at
128k = 131, 072, since platforms usually favor a number of work items in powers of two.

PHI vs. CPU (Figure 8): The performance of the XeonPhi dominates the CPU performance across
all combinations of external and internal paths. This is the expected behavior based on the difference
in the number of cores between both platforms. Furthermore, the performance of the XeonPhi is
enhanced as the number of work items (globalSize) is increased.

GPU vs. CPU: In Figure 9 (left), when the host issues less work items than the available number
of cores (more precisely: computational pipelines) in GPU, the device is clearly underutilized. These
devices are designed for heavy workload; therefore, its performance increases when the globalSize
increases (in our case, it means when pathsMCext increases).

The Nvidia K80 GPU actually has two devices available on the same PCIe card. We have observed
that when two projects are launched simultaneously on the K80, the combined runtime is almost
equal to the runtime of each project separately. This gives a total speedup of almost 2×, as illustrated
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in Figure 9 (right). There is actually a small overhead (at least in our project) of less than 3% at
(pathsMCext/pathsMCint) = (32k/32k), which can be explained by observing that the K80 has one
single PCIe connection that is shared by both devices.

Figure 8. Runtime scaling: XeonPhi vs. CPU, given as a ratio between platform X vs. platform Y, (X/Y).
The red-colored grid shows the point where both platforms would achieve the same runtime. Above
this grid, runtime X is larger than runtime Y, and vice versa.

Figure 9. Runtime scaling: GPU(x1) vs. CPU (left), GPU(x2) vs. CPU (right) given as a ratio between
platform X vs. platform Y (X/Y). The red-colored grid shows the point where both platforms would
achieve the same runtime. Above this grid, runtime X is larger than runtime Y, and vice versa.

GPU vs. PHI: Figure 10 (left) is a combination of the previously analyzed plots (Figures 8 and 9);
whereas the XeonPhi has enough work items at pathsMCext = 1k, the GPU requires a heavier
workload to increase its performance.

However, care must be exercised when drawing conclusions from this plot. A first point to
remember is that our MC-based kernels can avoid the barrier synchronization on the XeonPhi
(providing an additional speedup), but on the GPU, this synchronization is required (see Section 7.2).
The second point is an observation on the chosen parallelization scheme P3. In particular, GPUs are
also suitable for the P2 scheme. In the latter scheme, the host can issue a number of work groups equal
to pathsMCext, which means that the global number of work items is far larger, providing much larger
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workload at the lower extreme of the plot. As a result, the plot for the GPU becomes flatter, with the
device being fully utilized almost independently of the scaling. However, it should be remembered that
the P2 scheme increases the memory access (see Section 7.1). The real problem, however, arises when
trying to mix P2 and P3 schemes depending on the target platform. Doing so does not guarantee that
the accesses of the RN sequences will be done in the same order (see Section 7.3) on different platforms,
while at the same time keeping coalesced accesses to memory. Uncoalesced memory accesses severely
affect the overall runtime. A possible way to overcome this issue is by rearranging the RN sequences
in memory, but it is certainly not efficient. As within the comparison to the CPU, the Nvidia K80
can make use of both devices simultaneously on the same PCIe card, as shown in Figure 10 (right).
The message to extract from this part of the analysis is that both platforms are powerful accelerators,
and that their relative performances also dependon the implementation and the estimated workload
of the project.

Figure 10. Runtime scaling: GPU(x1) vs. XeonPhi (left), GPU(x2) vs. XeonPhi (right) given as a ratio
between platform X vs. platform Y, (X/Y). The red-colored grid shows the point where both platforms
would achieve the same runtime. Above this grid, runtime X is larger than runtime Y, and vice versa.

FPGA vs. CPU: This comparison is intentionally analyzed last. Figure 11 (left) shows that the
larger the number of pathsMCext, the more efficient the FPGA implementation becomes, basically
because the kernels spend more time inside the pipelined for-loop. At a low number of pathsMCext
and pathsMCint, the FPGA configuration time becomes larger than the computation of the kernels,
as shown in Figure 11 (right).

Somehow surprising is the high runtime ratio compared to CPU, even though our target PCIe
board uses a large FPGA, and our implementation is fully optimized (where all main for-loops are
pipelined with an initiation interval of one clock cycle). However, not only is the operating frequency on
FPGAs much lower than on the other platforms (see Section 3.3), we also need to consider the effective
number of available resources. What happens is that the PCIe interface module (which is automatically
provided by the tool) is implemented on the FPGA, occupying approximately 1/3 (one-third) of the
available resources (the exact percentage is so far not disclosed by the manufacturer, but it can be
explored by a trial-and-error approach). The remaining 2/3 is dedicated to the reconfigurable area,
called the OCL region in [51]. Inside this area we scale our kernels, in order to make the pipelined
for-loop as wide as possible (see Section 5.4). However, we have found that the widening process
(while still trying to achieve an initiation interval of one clock cycle) is possible only when the number
of parallel paths is a power of two (without going into too much detail, this has to do with the
partitioning of the internal arrays used in each kernel). This power of two limits the widening
granularity. In any case, we have incrementally scaled the widening process by trial-and-error, until
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we achieved the maximum possible width. As a result, our kernels use (on average) around 70%–75%
of the mentioned 2/3 of the total number of resources, which is equivalent to approximately 50% (half)
the maximum amount.

Figure 11. Runtime scaling: FPGA vs. CPU (left), and FPGA configuration vs. FPGA kernels runtime
(right), given as a ratio X vs. Y, (X/Y). The red-colored grid shows the point where both X and Y
achieve the same runtime. Above this grid, runtime X is larger than runtime Y, and vice versa.

Perhaps more surprising is the fact that even if we could theoretically use 100% of the available
resources, the possible 2× speedup would still not be sufficient to justify (from a runtime point of
view) the use of FPGAs vs. a powerful CPU, not to mention against XeonPhi or GPU. In fact, the
chosen FPGA belongs to the powerful Xilinx Virtex-7 family, and is among the highest speed grades
(see Section 3.3). Since this application requires extensive use of floating point data and operations,
we are unable to exploit the advantages of FPGAs in terms of bit-level parallelism and custom precision,
even though our code on FPGA has been modified to fit its internal architecture (see Section 5.4). These
results indicate that the mapping from OpenCL code onto the hardware resources (which is done
automatically by the tool chain) should be improved.

8.2. Power and Energy Consumption

The second evaluation is carried out in terms of energy consumption, which is obtained by
integrating the measured power consumption over the full system runtime. The latter is detailed in
Table 7 for our optimized implementation with an external generation of the RN sequences.

The power measurements have been carried out at system level (meaning host + device), which is
justified twofold. First, the OpenCL model assumes the existence of a host and an accelerator platform,
where the latter cannot operate without the host. Second, we are interested in the energy consumption
of the complete system, which is the one that counts when it comes to the energy bill.

Power measurements have been carried out at the power plug using a Voltcraft VC870 digital
multimeter, which is able to take one sample per second. Such a sample rate is also enough for our tests,
and it also makes the numerical integration very simple in order to obtain the energy consumption.
The values are transmitted via a dedicated Universal Serial Bus (USB) cable to an external PC, where
they are conveniently recorded in a table, and integrated afterward. These measurements are shown
in Figure 12, for both the BS and Heston models. The term Optimal-Fan Mode refers to a SuperMicro
workstation setting where all system fans are set to adapt their rpm in order to keep the temperature
of all devices well inside their operating ranges. This minimizes the power consumption while still
providing optimal (runtime) performance.
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Table 7. Full runtime breakdown (s) with external RN sequences—(pathsMCext/pathsMCint) = (32k/32k).

BS

Description: CPU PHI GPU FPGA

All Kernels 1 147.661 s 41.484 s 46.035 s 253.266 s

RNG (Host) 4.130 s
Portfolio Today (Host) 3.516 s

Sorting 2+ VaR/cVaR 2 (Host) 1.797 s

All Computations 3 157.103 s 50.926 s 55.477 s 262.708 s
Full System 3 164.162 s 58.586 s 61.488 s 264.789 s

Heston

Description: CPU PHI GPU FPGA

All Kernels 1 187.495 s 69.054 s 64.193 s 476.659 s

RNG (Host) 8.147 s
Portfolio Today (Host) 6.480 s

Sorting 2+ VaR/cVaR 2 (Host) 1.797 s

All Computations 3 203.919 s 85.478 s 80.617 s 493.083 s
Full System 3 211.388 s 94.109 s 86.590 s 495.385 s

1 For a runtime breakdown into kernels, please refer to Table 3; Full bubble-sort runtime = 1.797 s;
2 VaR+cVaR runtime = 4 us approx.; 3 The difference between All Computations and Full System time
corresponds to the OpenCL overhead, and the data transfers host–device. In the case of the FPGA
implementation, part of this overhead is already inside All Kernels runtime, as detailed in Section 5.5.

In Figure 12, the project is always triggered at the same point in time (at ttrigger = 10 s), and the
end point is shown for each platform with a vertical dashed line. We have observed that for CPU,
XeonPhi, and GPU there is still some power/energy consumption after the project has finished, mainly
caused by the fans still working until the devices cool back down. In the case of the FPGA, this is not
required due to the low consumption of the device itself, and because this board in particular uses
active cooling (a small fan). In any case, the fair way of setting the integration limits (in order to derive
the energy consumption) is between the start and end points in time of the complete VaR/cVaR project,
disregarding this consumption overhead (considering that it becomes negligible when the workstation
is operating at full workload for longer periods of time).

One particularity of energy consumption is that it is directly proportional to power consumption
and runtime. The latter is, in turn, directly proportional to the MC paths (pathsMCext and pathsMCint)
in our project. Therefore, Figure 12 becomes compressed or stretched along the horizontal axis
while scaling the number of MC paths. The power consumption level of each device is also
directly proportional to the workload. This also means that, as we move to the lower end of
MC paths (1k/1k), the overall runtime becomes too small to be properly measured (and recorded)
with our measurement device. Therefore, all measurements are presented at the given setup, with
(pathsMCext/pathsMCint) = (32k/32k) as a representative measurement.

Figure 12 shows that runtime reduction offered by XeonPhi and GPU compared to CPU also
translates into a reduction in energy consumption (at system level), in the range of 2.5×∼3.2×. These
plots also show that the efficiency of a single GPU device is comparable to that of the XeonPhi.
However, when both GPU devices on the Nvidia K80 card are used (e.g., running two instances of the
project in parallel), the energy efficiency increases compared to the XeonPhi, as shown in Figure 13.

It should also be remembered that in our hardware setup (see Section 3.3.1), the lower technology
node on Intel’s CPU and XeonPhi, compared to Nvidia’s GPU and Xilinx’s FPGA, provides an
additional advantage in terms of energy efficiency.
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Figure 12. Power and Energy consumption of the complete VaR/cVaR project at system-level.
Setup: 32k/32k (see Section 3.1), optimal-fan mode. Only one GPU device in the Nvidia K80 card
is used.

In general, the power consumption of an FPGA device alone is much lower than that of XeonPhi
and GPU. Comparing the specifications of our boards (please refer to the references in Section 3.3),
the maximum power intake of our FPGA card is around 12× smaller than the Intel XeonPhi, and 6×
smaller than one GPU device on the Nvidia K80. What makes the system-level energy consumption so
high in Figures 12 and 13 is the excessive runtime, discussed in Section 8.1. Even though the subclass
of PCIe-based boards with FPGA devices that support OpenCL is (currently) very limited (see for
example [52]), the chosen FPGA belongs to the powerful Xilinx Virtex-7 family, and is among the
highest speed grades (see Section 3.3). Even though it would be possible to design custom PCIe-based
boards with more than one FPGA device (albeit with a significant design overhead), a single FPGA
device is not competitive against the available Xeon processors, XeonPhi, and GPUs, at least for the
application considered here.

XeonE5 XeonPHI GPU(x2) FPGA

Energy (kJ) 166.11 64.74 40.34 270.89

0

50

100

150

200

250

300

E
n

e
rg

y
 (

k
J)

Energy Consumption x2 VaR/cVaR Projects

(Heston model)

(Optimal-Fan Mode)

XeonE5 XeonPHI GPU(x2) FPGA

Energy (kJ) 128.43 38.75 27.72 144.11

0

50

100

150

200

250

300

E
n

e
rg

y
 (

k
J)

Energy Consumption x2 VaR/cVaR Projects

(BS model)

(Optimal-Fan Mode)

Figure 13. Energy consumption at system-level in the case of ×2 VaR/cVaR projects with the same
setup. In this case, each GPU device on the Nvidia K80 card runs its own project (the observed runtime
difference compared to the single (x1) project is: BS = (0.6 s); Heston = (2.4 s)). In the case of CPU,
XeonPhi, and FPGA, we need to run one project after the other in a sequential fashion.
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8.2.1. Evaluating the FPGA Card on a Smaller Workstation with Lower Power Intake

The low power consumption of FPGA devices do have an advantage over XeonPhi and GPU in
terms of the cooling system and the power supply, meaning that smaller workstations can be used
instead. Referring to Section 3.3, the FPGA implementation has also been tested on a smaller PC
(MSI B85M-E45 motherboard with one Intel Core i7-4970) with the same Alpha Data card (FPGA).
Following the same procedure as in the previous section, the system-level energy consumption in the
given setup (and for one project) is: 21.31 kJ for BS and 41.27 kJ for Heston. These values are closer to
those of XeonPhi and GPU in Figure 12. However, the large runtime on FPGA (see Table 7) still plays a
major role in the total energy consumption, and it should be addressed first (see Section 8.1).

8.2.2. Overall Assessment of Energy Consumption

The energy consumption presented in Figures 12 and 13 has been taken at system level. Although
it is also possible to compare these platforms independently, they do require a host to operate (they
are connected to it via PCIe). Besides, it is the full system-level energy consumption that is taken into
account in the energy bill.

From Figures 12 and 13, we can conclude that GPU and XeonPhi offer the highest overall efficiency.
However, these results should always be employed with care. On one hand, the energy consumption
of the Xeon processor might also be acceptable in certain applications, considering that it is physically
located on the same (dual-socket) motherboard as the host, which constitutes a much simpler system.
On the other hand, FPGA-based accelerator cards can also be installed in smaller workstations, as
explained before in Section 8.2.1.

The bottom line regarding energy consumption is that the choice of the most suitable platform
usually depends on both the application and how/where the system is to be deployed/installed.

9. Conclusions

We have exploited nested MC simulations for the computation of the risk measures VaR and
cVaR on portfolio level. By combining theory and hardware/software implementation, we have
been able to carry out a state-of-the-art evaluation of its performance on different compute platforms
(CPU, XeonPhi, GPU, and FPGA) and under different workloads for a representative portfolio with a
corresponding set of selected market parameters. Besides, we have also presented detailed guidelines
for its efficient implementation on heterogeneous compute systems.

With our OpenCL implementation, we have shown that code portability does not necessarily
mean performance portability. In fact, the characteristics of each platform need to be taken into account
by the code. The best example is the use of barrier synchronization on GPUs and XeonPhi, and
we have also explained how (and when) the XeonPhi can avoid them in order to improve runtime.
When it comes to FPGAs, the programmer needs to bear in mind that the code describes a hardware
architecture, for which knowledge of hardware design is (currently) mandatory. The relatively low
performance seen on FPGA suggests that the mapping process carried out by the tool chain onto the
hardware resources should be improved.

The choice of the parallelization scheme is one of the most important steps before any
implementation, and we have shown that this choice strongly depends on the characteristics of each
platform. In fact, we have a different granularity of hardware parallelization, going from moderate
core/thread level on the Xeon processors, many integrated cores (MIC) with 512-bit wide SIMD
instructions on the XeonPhi, to massive thread parallelism on GPUs, and full bit-level parallelism on
FPGAs. Since it can be ported to the four target platforms, our P3 scheme has proven to be the most
general one. Furthermore, this scheme minimizes the memory access in relation to the RNs.

Through the strong interaction between theory and implementation, we have also been able
to derive a new algorithmic optimization regarding the generation and use of the RN sequences.
By properly placing their generation outside the kernels, our implemented project achieves a speedup
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of up to around 8×, again depending on the platform. Furthermore, the RNs should be handled
with care in portable code on heterogeneous systems. In fact, even if the same RN sequence is used,
changing the order in which it is accessed can yield undesired variations on the final results. Such a
situation can easily occur when the project is moved to a different platform, or when parallelization
schemes are mixed across those platforms, and we have provided specific guidelines in this regard.

By means of extensive measurements, we have compared all four platforms in terms of runtime
and energy consumption, showing that the characteristics of the application, as well as system
requirements like energy efficiency and size, influence the selection of the most suitable platform.
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