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Abstract: The family of Liouville copulas is defined as the survival copulas of multivariate Liouville
distributions, and it covers the Archimedean copulas constructed by Williamson’s d-transform.
Liouville copulas provide a very wide range of dependence ranging from positive to negative
dependence in the upper tails, and they can be useful in modeling tail risks. In this article, we study
the upper tail behavior of Liouville copulas through their upper tail orders. Tail orders of a more
general scale mixture model that covers Liouville distributions is first derived, and then tail order
functions and tail order density functions of Liouville copulas are derived. Concrete examples are
given after the main results.
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1. Introduction

Recently, the notion of Liouville copula has been introduced in [1], and it is defined as the survival
copula of a Liouville distribution (see, [2]). The Liouville copula includes the Archimedean copulas
constructed by Williamson’s d-transform ψ as special cases (see, [3]), and it inherits the dependence
structure of a multivariate Liouville distribution which can be represented as a scale mixture model.

As a copula model for modeling the dependence of risks, Liouville copulas can account for
various strength of dependence in the upper tail, ranging from tail negative dependence to the usual
tail dependence case. We refer to [4] for the tail behavior of those Archimedean copulas that can be
represented as special cases of the Liouville copulas, and [5] for the conditions that lead to a wide
range of strength of dependence in the upper tail of such Archimedean copulas and their applications
in modeling tail negative dependence between loss severity and loss frequencies. Most recently,
Raymond-Belzile, L. [6] studies the extreme value copulas of Liouville copulas when asymptotic
dependence is present.

In this paper, we study the upper tail behavior of Liouville copulas in terms of the following
two asymptotic expressions. Studies on the lower tail of a copula C coincide with those on the upper
tail of its survival copulas. So, in what follows, in order to study the upper tail of Liouville copulas,
we consider the lower tail of survival Liouville copulas. Let C be a survival Liouville copula and c be
its copula density function, then for any w1, . . . , wd > 0, we are interested in the following

C(uw1, . . . , uwd) ∼ uκ`(u)b(w1, . . . , wd), u→ 0+, κ ≥ 1;

c(uw1, . . . , uwd) ∼ uκ−d`(u)λ(w1, . . . , wd), u→ 0+, κ ≥ 1,

where ` is a slowly varying function, κ is referred to as the (lower) tail order of the copula C,
b(w1, . . . , wd) is the (lower) tail order function, and λ(w1, . . . , wd) is referred to as the (lower) tail
order density function of C. We refer to [7,8] for details about the notion of tail orders. The notion of
tail order of copulas corresponds to 1/η, with η proposed in [9] as an “coefficient of tail dependence”
when the univariate marginals follow the unit Fréchet distribution. We refer to [9–13] for some relevant
theories and applications.
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Depending on the value of κ and the limits of `(u) as u→ 0+, various tail dependence patterns
can be captured: for the bivariate case, κ = 1 with `(u)→ λ > 0 coincides with the usual tail dependence
defined in [14]; κ = 1 with `(u)→ 0, 1 < κ < 2, or κ = 2 with `(u)→ ∞ are referred to as intermediate
tail dependence; κ = 2 with `(u) → λ, 0 < λ < ∞, is referred to as tail quadrant independence; κ = 2
with `(u)→ 0, or κ > 2 are referred to as tail negative dependence. For example, a bivariate Gaussian
copula has both upper and lower tail orders being κ = 2/(1 + ρ), where −1 < ρ < 1 is the correlation
coefficient of the Gaussian copula. Clearly, 0 < ρ < 1 leads to intermediate tail dependence, ρ = 0
leads to tail quadrant independence, and −1 < ρ < 0 leads to tail negative dependence. Parametric
models that have a wide range of tail orders are important for statistical inference on dependence in
the tails. For instance, in [15], a regression analysis has been conducted based on a copula that has
full-range upper tail dependence, where tail order is linked to covariates so that dynamic upper tail
dependence patterns can then be appropriately captured.

Since the Liouville copula is the survival copula of the scale mixture representation X d
= RS,

where R is the scaling/radial random variable, and S follows a Dirichlet distribution, the tail behavior
of the Liouville copulas will be largely affected by the interaction between the tail behavior of R and Si’s.
We will first consider a more general scale mixture model of which the S does not necessarily follow
the Dirichlet distribution. Conditions leading to different tail orders of such scale mixture models are
derived. Then, as a special case, Liouville copulas will be studied in details. Tail order functions and
tail order densities are further derived for Liouville copulas. The results derived contribute to the
understanding of upper tails of such a large family of copulas.

The paper is organized as follows. In Section 2, notation and basic concepts will be introduced.
Section 3 studies tail order for a more general scale mixture model, and tail oder functions of Liouville
copulas are derived in Section 4. Section 5 contains results on tail order density functions of Liouville
copulas. Finally, Section 6 concludes the paper.

2. Notation

A measurable function f is said to be regularly varying at t0 ∈ [−∞,+∞] with index α if
limt→t0 f (xt)/ f (t) = xα for any x > 0; it is denoted as f ∈ RVα(t0), and when t0 = ∞, it can
be simplified as f ∈ RVα. If α = 0, then such an f is said to be slowly varying at t0, and ` is
used for a slowly varying function. For a random variable X, if its survival function F ∈ RV−α

with α > 0, then it is written as X ∈ RV−α. Two random variables X and Y supported on [0, ∞)

are said to be tail equivalent if FX(t) ∼ FY(t) as t → ∞, with notation g(t) ∼ h(t), t → t0

meaning that limt→t0 g(t)/h(t) = 1. Some partial derivatives of copula functions are defined as
following: C2|1(u, v) := DuC(u, v), C1|2(u, v) := DvC(u, v), and c(u, v) := DuvC(u, v). For a copula C,
its lower tail order is denoted as κL(C). For two real constants x and y, x ∧ y := min{x, y}, and
x ∨ y := max{x, y}.

3. Tail Order of a Scale Mixture Model

Copula functions can be constructed by inverting the univariate cdfs of a random vector.
Let X := (X1, . . . , Xd) be a random vector with univariate marginal cdf Fi and joint cdf F, then a copula
C can be induced by X as C(u1, . . . , ud) = F(F−1

1 (u1), . . . , F−1
d (ud)). Now, we assume that X has a

scale mixture representation as follows:

X d
= RS = R(S1, . . . , Sd), (1)

where the radial/scaling random variable R ∈ (0, ∞), and (S1, · · · , Sd) is a nonnegative random
vector. This representation is commonly used for constructing multivariate models. For example, for
Archimedean copulas constructed by Williamson’s d-transforms (see, [3]), S is a uniform distribution
on a unit simplex; for Archimedean copula constructed by Laplace transformation of positive random
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variables, 1/Si’s are independent standard exponential distributions; for Liouville copulas, S follows
a Dirichlet distribution [1].

Proposition 1. Let a random vector X be defined as (1), and the induced copula be C. Suppose that
1/R ∈ RV−α, α > 0, 1/Si’s are tail equivalent with 1/Si ∈ RV−ξ , ξ > 0, and there exists an ε > 0 such that
S∗ ≥ ε, where S∗ := max{S1, . . . , Sd}. Then, κL(C) = max{1, α/ξ}.

Proof. Let Fi be the univariate cdf for Xi, i = 1, . . . , d and F be the joint cdf. It suffices to study the
lower tail of X. Due to Equation (1) of [8], the lower tail order κ of X can be written as

κ = lim
u→0+

logP[X1 ≤ F−1
1 (u), . . . , Xd ≤ F−1

d (u)]

logP[Xi ≤ F−1
i (u)]

. (2)

Let y := 1/x := 1/F−1
i (u), T := 1/R, and t := sy in what follows.

If α < ξ, then 1/Si ∈ RV−ξ implies that there exists δ > 0 such that E[(1/Si)
α+δ] < 0. By the

Breiman’s theorem [16],

P[T/Si > y] = P[1/Xi > y] ∼ E[(1/Si)
α]P[T > y], y→ ∞. (3)

If α > ξ, then similarly, P[1/Xi > y] ∼ E[Tξ ]P[(1/Si) > y] as y→ ∞.
If α = ξ, then 1/Xi ∈ RV−α, see [17].
Letting s∗ = max{s1, . . . , sd}, we have

P[X1 ≤ x, . . . , Xd ≤ x]

= P[RS1 ≤ x, . . . , RSd ≤ x] =
∫

P[T ≥ s∗/x]FS(ds1, . . . , dsd).

Since P[T ≥ ·] ∈ RV−α, there exists a slowly varying function `T(·) such that P[T ≥ t] = t−α`T(t).
Also, the condition s∗ ≥ ε > 0 implies that, as y → ∞, P[T > s∗y]/P[T > y] → s−α

∗ uniformly in
s∗ ∈ [ε, ∞). Therefore,

−∞ < lim
y→∞

log
(∫ P[T ≥ s∗y]

P[T > y]
FS(ds1, . . . , dsd)

)
= log

(∫
s−α
∗ FS(ds1, . . . , dsd)

)
≤ −α log (ε) < ∞.

Then,

κ := lim
x→0+

log(P[X1 ≤ x, . . . , Xd ≤ x])
log(P[Xi ≤ x])

= lim
y→∞

log (P[T > y]) + log (
∫
P[T ≥ s∗y]/P[T > y]FS(ds1, . . . , dsd))

log(P[1/Xi > y])

= lim
y→∞

−α log y + log(`T(y))
log(P[1/Xi > y])

=

{
1, α ≤ ξ;
α/ξ α > ξ,

due to the fact that limy→∞ log(`(y))/ log(y) = 0 based on Proposition 1.3.6 (i) of [18], which completes
the proof.

Remark 1. In Proposition 1, S∗ = max{S1, . . . , Sd} is required to be bounded away from 0.
The condition is actually very mild, and it is satisfied as long as the point 0 is excluded from the
support of S. For example, Dirichlet distributions satisfy the condition, and a uniform distribution
on the surface of a unit ball truncated to be within the positive orthant satisfies the condition as
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well. The condition leading to κL(C) = 1 can be further relaxed. We only need to require that
P[1/Si > y] = o(P[T > y]) as y → ∞, and P[1/Si > ·] is not necessarily regularly varying; see
Lemma 4.1 of [19].

Remark 2. In Proposition 1 and what follows throughout the paper, all univariate marginals are
assumed to be tail equivalent in the sense that Fi(t) ∼ Fj(t) and fi(t) ∼ f j(t) as t → ∞ or t → 0+,
depending on the context. Otherwise, the tail order κ can not be calculated as in Equation (2). For cases
where univariate marginals are not tail equivalent, one needs to first transform them into those that
are tail equivalent, and then similar techniques here can be applied.

4. Tail Order Function of Liouville Copulas

The family of Liouville distributions is an important multivariate distribution family that is able
to induce very flexible multivariate dependence structures. The corresponding Liouville copulas have
been studied in [1]. Now, we are studying the upper tail orders for Liouville copulas.

A random vector X on Rd
+ is said to follow a Liouville distribution if it has the following scale

mixture representation [2]:

X d
= RSξ1,...,ξd , ξi > 0, i = 1, . . . , d, (4)

where the random vector Sξ1,...,ξd := (S1, . . . , Sd) follows a Dirichlet distribution on the unit simplex
Sd−1 := {x ≥ 0 : ||x|| = 1}, with the l1 norm ||x|| := ∑d

i=1 xi. Note that, for a Dirichlet distribution,
we have the following representation: for i = 1, . . . , d, Si = Zi/||Z||, where Z := (Z1, . . . , Zd), Zi’s are
independent, and Zi follows Gamma(ξi, 1). Let C be the copula induced by X, then its survival copula
Ĉ is referred to as a Liouville copula in [1]. For a special case with ξi ≡ 1, Sξ1,...,ξd becomes a uniform
distribution on the unit simplex, and such a survival copula Ĉ becomes an Archimdean copula [3].

A study on the upper tail of a Liouville copula is dependent on the left tail of R, or equivalently, the
right tail of 1/R. Based on Theorem 5.5 and Theorem 6.1 in [2], the density of a Liouville distribution
is directly related to the density of R. We first extend the result of Proposition 1 of [5] to Liouville
copulas in Proposition 2.

Proposition 2 (Upper tail order of Liouville copulas). Let a random vector X be defined as (4) with its
induced copula C, where the radial random variable R is supported on (0, ∞) with 1/R ∈ RV−α for 0 < α < ∞.
Further, let ξi = ξ > 0, i = 1, . . . , d. Then, κL(C) = max{1, α/ξ}.

Proof. For the ith univariate marginal Xi, since univariate marginal of a Dirichlet distribution follows
Beta(ξ, dξ − ξ) distribution (see, [2,20]), 1/Si ∈ RV−ξ . Also, T := 1/R ∈ RV−α. Moreover, with
S∗ := max{S1, . . . , Sd} ≥ 1/d > 0. The claim is concluded based on Proposition 1.

Tail order κ can be a quantity to indicate the degree of dependence in the tail, with a larger κ

leading to weaker dependence. Tail order functions, in addition, provide higher order approximations
about the tails. Tail order functions of Liouville copulas are derived in Proposition 3.

Proposition 3 (Tail order functions of Liouville copulas). Let X be a random vector defined in Proposition 2,
and C be its induced copula. Then, for any w1, . . . , wd > 0:

1. If 0 < α < ξ, then

C(uw1, . . . , uwd) ∼ u× B(ξ, dξ − ξ)

B(ξ − α, dξ − ξ)

∫
s≥0,||s||=1

min
i
{s−α

i wi}FS(ds), u→ 0+. (5)
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2. If 0 < ξ < α, then

C(uw1, . . . , uwd) ∼ uα/ξ`(u)×
[

B(ξ, dξ − ξ)

ξE[Tξ ]

]α/ξ ∫
s≥0,||s||=1

min
i
{s−α

i wi}FS(ds), u→ 0+, (6)

where `(u) = `T(1/F−1
1 (u)) with P[T > y] = y−α`T(y) as y→ ∞.

3. If 0 < ξ = α, and moreover, E[Tξ ] < ∞, then expression (6) holds.

Proof. Let T = 1/R, and then P[T ≥ ·] ∈ RV−α. Write P[T > y] = y−α`T(y), where `T(y) is slowly
varying as y→ ∞. If α < ξ, and thus κ = 1, then,

lim
u→0+

C(uw1,...,uwd)
u = lim

u→0+
P[X1≤F−1

1 (uw1),...,Xd≤F−1
d (uwd)]

P[X1≤F−1
1 (u)]

= lim
u→0+

∫
s≥0,||s||=1 P[T≥maxi{si/F−1

i (uwi)}]FS(ds)∫ 1
0 P[T≥s1/F−1

1 (u)]FS1
(ds1)

.
(7)

Also, F−1
i ∈ RV1/α(0+). Then,

η1(u) :=
∫

s≥0,||s||=1
P[T ≥ max

i
{si/F−1

i (uwi)}]FS(ds)

=
∫

s≥0,||s||=1
P
[

T ≥ max
i

{
si

F−1
1 (u)

F−1
i (uwi)

}
× 1

F−1
1 (u)

]
FS(ds)

= P[T > y]×
∫

s≥0,||s||=1

P
[

T ≥ maxi

{
si

F−1
1 (u)

F−1
i (uwi)

}
× y
]

P[T > y]
FS(ds).

Let η2(u) be the denominator of (7), and then Equation (3) implies that

lim
u→0+

η1(u)
η2(u)

=
1

E[(1/Si)α]

∫
s≥0,||s||=1

min
i
{s−α

i wi}FS(ds). (8)

Since Si ∼ Beta(ξ, dξ − ξ), we have

E[S−α
i ] = [B(ξ, dξ − ξ)]−1

∫ 1

0
s−αsξ−1(1− s)dξ−ξ−1ds =

B(ξ − α, dξ − ξ)

B(ξ, dξ − ξ)
, (9)

which completes the proof of the first part.
When α > ξ, from the proof of Proposition 2, P[1/Xi > y] ∼ E[Tξ ]P[(1/Si) > y] as y → ∞.

Since Si follows Beta(ξ, dξ − ξ), by the dominated convergence theorem

P[(1/Si) > y] = [B(ξ, dξ − ξ)]−1
∫ 1/y

0 sξ−1(1− s)dξ−ξ−1ds
= [B(ξ, dξ − ξ)]−1y−ξ

∫ 1
0 tξ−1(1− t/y)dξ−ξ−1dt

∼ [B(ξ, dξ − ξ)]−1ξy−ξ , y→ ∞.
(10)

Therefore,

lim
u→0+

C(uw1, . . . , uwd)

uα/ξ`T(1/F−1
1 (u))

= lim
u→0+

P[X1 ≤ F−1
1 (uw1), . . . , Xd ≤ F−1

d (uwd)]

(P[X1 ≤ F−1
1 (u)])α/ξ`T(1/F−1

1 (u))

= lim
y→∞

P[T > y]×
∫

s≥0,||s||=1 mini{s−α
i wi}FS(ds)

(E[Tξ ][B(ξ, dξ − ξ)]−1ξy−ξ)α/ξ`T(y)

=

[
B(ξ, dξ − ξ)

ξE[Tξ ]

]α/ξ ∫
s≥0,||s||=1

min
i
{s−α

i wi}FS(ds),
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which completes the proof of second part.
For the case with ξ = α, the condition E[Tξ ] < ∞ guarantees that P[1/Xi > y] ∼ E[Tξ ]P[(1/Si) > y],

due to (10) and Lemma 4.2(3) of [19]. Therefore, the third part is proved. Note that, when ξ = α,
E[(1/Si)

α] is not finite, and therefore a similar case to (5) does not hold.

Next we give two examples when R follows Gamma(α, 1), where α is the shape parameter.
Both tail dependence and intermediate tail dependence cases are derived.

Example 1 (Gamma-Liouville copula: tail dependence). Let R ∼ Gamma(α, 1), and a 2-dimensional
S follows a Dirichlet distribution on S1 with ξ1 = ξ2 = ξ > α. Since the univariate marginal of such
a Dirichlet distribution is Beta(ξ, ξ), E[(1/Si)

α] = B(ξ− α, ξ)/B(ξ, ξ). Letting w̃ := (1+(w2/w1)
1/α)−1,

then as u→ 0+, C(uw1, uw2) ∼ ub(w1, w2) with

b(w1, w2)

=
B(ξ, ξ)

B(ξ − α, ξ)

∫
0<s1≤1

min{s−α
1 w1, (1− s1)

−αw2}FS1(ds1)

=
1

B(ξ − α, ξ)

[∫
0<s1≤w̃

sξ−1
1 (1− s1)

−α+ξ−1w2ds1 +
∫

w̃<s1≤1
s−α+ξ−1

1 (1− s1)
ξ−1w1ds1

]
=

1
B(ξ − α, ξ)

[B(ξ, ξ − α)Iw̃(ξ, ξ − α)w2 + B(ξ − α, ξ)[1− Iw̃(ξ − α, ξ)]w1]

= Iw̃(ξ, ξ − α)w2 + [1− Iw̃(ξ − α, ξ)]w1,

where Ix(α, β) is the regularized incomplete beta function.

Example 2 (Gamma-Liouville copula: intermediate and negative tail dependence). We consider the
same X as in Example 1 except that α > ξ, then κL(C) = α/ξ > 1, which ranges from intermediate tail
dependence to tail negative dependence cases. Also, if R ∼ Gamma(α, 1), then P[1/R > y] = y−α`T(y)
with `T(y)→ [αΓ(α)]−1, and E[Tξ ] = Γ(α− ξ)/Γ(α). Therefore, based on Proposition 3, as u→ 0+,

C(uw1, uw2) ∼ [αΓ(α)]−1
[

Γ(α)B(ξ, ξ)

ξΓ(α− ξ)

]α/ξ ∫
s≥0,||s||=1

min
i=1,2
{s−α

i wi}FS(ds)× uα/ξ . (11)

It can be verified from (11) that, we recover the special case when ξ = 1 for Archimedean copulas
in (3.15) of [21] by taking β = 1 and the upper limit of the integration there as w1/α.

5. Tail Order Density of Liouville Copulas

In Section 2 of [22], and in [21], a uniform convergence condition is assumed for establishing tail
order density functions for asymptotic dependence and asymptotic independence cases, respectively.
While, in [7], a heuristic argument using the monotone density theorem (Theorem 1.7.2 of [18]) is
used for derivatives of a tail order function, and ultimate monotonicity of a function needs to be
checked. Here we give a proof of the result only on the bivariate case for tail order functions to avoid
tedious arguments, and the proof is based on the typical arguments for the monotone density theorem.
The multivariate case can be similarly established for c(uw1, . . . , uwd) ∼ uκ−d`(u)Dwb(w1, . . . , wd),
as u→ 0+.

Proposition 4. Let C(u, v) be a copula with C(u, u) ∼ uκ`(u), κ ≥ 1 , and C(uw1, uw2) ∼ uκ`(u)b(w1, w2)

as u→ 0+ for w1, w2 > 0. Assume that C(u, v) is absolutely continuous with density c(u, v).

1. If C1(x, v) := DxC(x, v) is ultimately monotone as x → 0+ for any 0 < v ≤ 1, and
g(w1, w2) := limu→0+

C1(uw1,uw2)
uκ−1`(u) exists and continuous in w1, then Dw1 b(w1, w2) exists and

g(w1, w2) = Dw1 b(w1, w2).
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2. Further, if c(u, x) := DxC1(u, x) is ultimately monotone as x → 0+ for any 0 < u ≤ 1, and
h(w1, w2) := limu→0+

c(uw1,uw2)
uκ−2`(u) exists and continuous in w2, then Dw2 Dw1 b(w1, w2) exists and

h(w1, w2) = Dw2 Dw1 b(w1, w2).

Proof. For the first part, let C1(u, v) := DuC(u, v), then for any given 0 < v ≤ 1, without loss of
generality, assume that C1(x, v) is ultimately nondecreasing as x→ 0+. Then for a small ∆w > 0,

u∆wC1(uw1 + u∆w, uw2)

uκ`(u)
≤ C(uw1 + u∆w, uw2)−C(uw1, uw2)

uκ`(u)
≤ u∆wC1(uw1, uw2)

uκ`(u)
,

which implies that

C1(uw1 + u∆w, uw2)

uκ−1`(u)
≤ C(uw1 + u∆w, uw2)−C(uw1, uw2)

∆wuκ`(u)
≤ C1(uw1, uw2)

uκ−1`(u)
. (12)

Letting u→ 0+ and then ∆w→ 0+ in (12) implies that

lim
∆w→0+

lim inf
u→0+

C1(uw1 + u∆w, uw2)

uκ−1`(u)
≤ Dw1 b(w1, w2) ≤ lim sup

u→0+

C1(uw1, uw2)

uκ−1`(u)
. (13)

Since g(w1, w2) = limu→0+
C1(uw1,uw2)

uκ−1`(u) exists and g(w1, w2) is continuous in w1, (13) implies that
g(w1, w2) = Dw1 b(w1, w2).

For the second part, let c(u, v) := DvC1(u, v), then for any given 0 < u ≤ 1, without loss of
generality, assume that c(u, x) is ultimately nondecreasing as x→ 0+. Then for a small ∆w > 0,

u∆wc(uw1, uw2 + u∆w)

uκ−1`(u)
≤ C1(uw1, uw2 + u∆w)−C1(uw1, uw2)

uκ−1`(u)
≤ u∆wc(uw1, uw2)

uκ−1`(u)
,

which implies that

c(uw1, uw2 + u∆w)

uκ−2`(u)
≤ C1(uw1, uw2 + u∆w)−C1(uw1, uw2)

∆wuκ−1`(u)
≤ c(uw1, uw2)

uκ−2`(u)
. (14)

Letting u→ 0+ and then ∆w→ 0+ in (14) implies that

lim
∆w→0+

lim inf
u→0+

c(uw1, uw2 + u∆w)

uκ−2`(u)
≤ Dw2 Dw1 b(w1, w2) ≤ lim sup

u→0+

c(uw1, uw2)

uκ−2`(u)
. (15)

Since h(w1, w2) = limu→0+
c(uw1,uw2)

uκ−2`(u) exists and h(w1, w2) is continuous in w2, (15) implies that
h(w1, w2) = Dw2 Dw1 b(w1, w2).

Examples for the usual tail dependence are referred to [22]. An intermediate tail dependence case
is given in Example 3.

Example 3 (Lower tail of Gumbel copula). For a bivariate Gumbel copula that has the form C(u, v) =
exp{−A(− log u,− log v)}, where A(x, y) = (xδ + yδ)1/δ, 1 ≤ δ < ∞. Then, based on Example 2 of [7],
C(uw1, uw2) ∼ u21/δ

w21/δ−1

1 w21/δ−1

2 as u→ 0+ for w1, w2 > 0. Note that, C1(x, v) = C(x, v)((− ln(x))δ +

(− ln(v))δ)1/δ−1(− ln(x))δ−1x−1, which is decreasing in x. Moreover, as u→ 0+,

C1(uw1, uw2) ∼ [u21/δ
w21/δ−1

1 w21/δ−1

2 ]× [21/δ−1u−1w−1
1 ] = 21/δ−1u21/δ−1w21/δ−1−1

1 w21/δ−1

2 .
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So, g(w1, w2) corresponding to the one in Proposition 4 is g(w1, w2) = 21/δ−1w21/δ−1−1
1 w21/δ−1

2 .

Similarly, the corresponding h(w1, w2) = 22/δ−2w21/δ−1−1
1 w21/δ−1−1

2 , and the ultimate monotonicity
condition holds. Therefore, the copula density

c(uw1, uw2) ∼ 22/δ−2u21/δ−2w21/δ−1−1
1 w21/δ−1−1

2 , u→ 0+.

When a joint density function for a multivariate model that is used to induce the copula is
relatively easier to work with directly, one can derive the tail order density function of copulas based
on the joint density function of the multivariate model; see [21] for more details. Now, we derive the tail
order density function of Liouville copulas from the joint density functions of Liouville distributions.

Let X be defined as (4), g be the density function of R in the model. Letting ξ+ := ∑d
i=1 ξi,

then the joint density function of X is (see, [2])

f (x) =
Γ(ξ+)
||x||ξ+−1 g(||x||)

d

∏
i=1

xξi−1
i

Γ(ξi)
, x ∈ Rd

+.

Proposition 5. Let a random vector X be defined as (4) with ξi ≡ ξ > 0, and its induced copula C, where the
radial random variable R is supported on (0, ∞) with 1/R ∈ RV−α for 0 < α < ∞. Then, there exists a slowly
varying function ` ∈ RV0(0+), such that, for w1, . . . , wd > 0,

c(uw1, . . . , uwd) ∼
[

α−dΓ(dξ)

||w1/α||dξ−α

d

∏
i=1

wξ/α−1
i
Γ(ξ)

]
uκ−d`(u), u→ 0+,

where κ = max{1, α/ξ}.

Proof. Based on Proposition 2, the lower tail order κ := κL(C) = max{1, α/ξ}. SinceP[1/R ≥ ·] ∈ RV−α,
based on the monotone density theorem, there exists a slowly varying function `1 ∈ RV0, such that,
g(1/s) ∼ s1−α`1(s) as s → ∞; i.e., g(t) ∼ tα−1`1(1/t) as t → 0+. Based on the proof of Proposition 1,
we first note that,

Yi := 1/Xi ∈ RV−(α∧ξ),

and therefore, there exists a slowly varying function `2 ∈ RV0, such that, FYi(t) := P[1/Xi > t] =
t−(α∧ξ)`2(t) ∈ [0, 1]. Based on Propositions 2.1 and 3.8 of [21], write V(t) = tα∧ξ [`1(1/t)]1/κ, then,
clearly, the mapping t 7→ V(t−1) ∈ RV−(α∧ξ). Thus,

λ(x) = lim
t→0+

f (tx)
t−dVκ(t)

= lim
t→0+

{[
Γ(dξ)

||x||dξ−1 g(t||x||)t1−d
d

∏
i=1

xξ−1
i

Γ(ξ)

]
/[tκ(α∧ξ)−d`1(1/t)]

}

=
Γ(dξ)

||x||dξ−α

d

∏
i=1

xξ−1
i

Γ(ξ)
, x ∈ Rd

+.

Then, based on (3.11) of [21], the lower tail order density of copula C is

λL(w) = λ(w1/α)|J(w1/α
1 , . . . , w1/α

d )| = Γ(dξ)

||w1/α||dξ−α

d

∏
i=1

w(ξ−1)/α
i
Γ(ξ)

(α−d
d

∏
i=1

w1/α−1
i )

=
α−dΓ(dξ)

||w1/α||dξ−α

d

∏
i=1

wξ/α−1
i
Γ(ξ)

.

Matching the V(1/t) defined here with (2.8) of [21] leads to,

t−(α∧ξ)[`1(t)]1/κ = [t−(α∧ξ)`2(t)]× [`(t−(α∧ξ)`2(t))]1/κ.
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Let u := FYi(t) = t−(α∧ξ)`2(t), then,

`(u) = `1(F
−1
Yi

(u))[`2(F
−1
Yi

(u))]−κ, (16)

which completes the proof.

Remark 3. Letting ξi ≡ 1 in Proposition 5, λL(w) = α−dΓ(d)
||w1/α||d−α ∏d

i=1 w1/α−1
i , which corresponds to the

case of the Archimedean copula studied in Example 3.9 of [21], where β is replaced by 1.

Example 4. The slowly varying function ` in Proposition 5 depends on the lower tail of R and
thus the upper tail of 1/Xi as well, through their slowly varying functions `1 and `2. For example,
suppose that R follows Gamma(α, 1). Then its density function g(t) ∼ tα−1[Γ(α)]−1 as t→ 0+; that is,
`1(t) ≡ [Γ(α)]−1 as t→ ∞. For `2, if α > ξ, then based on the proof of Proposition 1 and (10),

P[1/Xi > y] ∼ E[Tξ ]P[(1/Si) > y] ∼ E[Tξ ][B(ξ, dξ − ξ)]−1ξy−ξ , y→ ∞,

and therefore, `2(t) ≡ E[Tξ ][B(ξ, dξ − ξ)]−1ξ, as t→ ∞. If α < ξ, then based on (3), (9) and [23],

P[1/Xi > y] ∼ E[(1/Si)
α]P[T > y] ∼ B(ξ − α, dξ − ξ)

B(ξ, dξ − ξ)
P[T > y], y→ ∞,

∼ B(ξ − α, dξ − ξ)

αΓ(α)B(ξ, dξ − ξ)
y−α, y→ ∞,

and therefore, `2(t) ≡ B(ξ−α,dξ−ξ)
αΓ(α)B(ξ,dξ−ξ)

, as t → ∞. If α = ξ, since both E[Tξ ] = ∞ and E[S−α
i ] = ∞,

the Breiman’s theorem does not apply to deriving `2. For such a case, results based on [24] can be
useful in further deriving the slowly varying function.

6. Concluding Remark

We have derived asymptotic approximations of the upper tails of Liouville copulas through the
notion of tail order, tail order functions, and tail order densities. Both asymptotic dependence and
asymptotic independence cases are considered in the paper. Upper tail order for a more general scale
mixture model that covers Liouville copulas is also obtained. Here we should note that the results are
derived under the assumption of tail equivalence of univariate marginals of X in (1), and in particular
for Liouville copulas this means an exchangeable structure. When the univariate marginals are not tail
equivalent, a transform on marginals is required first, and then similar arguments can be applied.

The results developed in the paper contribute to the understanding of different upper tail
dependence patterns of Liouville copulas, and can be relevant in conducting inference on the limiting
measure of hidden regular variation for a random vector that has a Liouville copula and regularly
varying marginals, because the tail order functions of copulas and the limiting measures are closely
related; see [25] and the references therein for details. Moreover, based on Proposition 1, a very wide
range of upper tail order, ranging from positive tail dependence to tail negative dependence, can be
achieved with a mild condition on the random vector S. Therefore, promising future research includes
finding general and convenient structures for S, so that based on which a semi-parametric approach
for statistical inference on tail dependence patterns can be further developed.

Acknowledgments: We thank the two anonymous reviewers for their constructive suggestions and comments,
which are very helpful in improving the presentation of the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. McNeil, A.J.; Nešlehová, J. From Archimedean to Liouville copulas. J. Multivar. Anal. 2010, 101, 1772–1790.



Risks 2016, 4, 40 10 of 10

2. Fang, K.; Kotz, S.; Ng, K. Symmetric Multivariate and Related Distributions, Monographs on Statistics and
Applied Probability; Chapman & Hall: London, UK, 1990; Volume 36.

3. McNeil, A.J.; Nešlehová, J. Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric
distributions. Ann. Stat. 2009, 37, 3059–3097.

4. Larsson, M.; Nešlehová, J. Extremal behavior of Archimedean copulas. Adv. Appl. Probab. 2011, 43, 195–216.
5. Hua, L. Tail negative dependence and its applications for aggregate loss modeling. Insur. Math. Econ. 2015,

61, 135–145.
6. Raymond-Belzile, L. Extremal and Inferential Properties of Liouville Copulas. Master’s Thesis, McGill University,

Montreal, QC, Canada, 2014.
7. Hua, L.; Joe, H. Tail order and intermediate tail dependence of multivariate copulas. J. Multivar. Anal. 2011,

102, 1454–1471.
8. Hua, L.; Joe, H. Intermediate tail dependence: A review and some new results. In Stochastic Orders in

Reliability and Risk: In Honor of Professor Moshe Shaked; Li, H., Li, X., Eds.; Springer: New York, NY, USA, 2013;
Chapter 15, pp. 291–311.

9. Ledford, A.W.; Tawn, J.A. Statistics for near independence in multivariate extreme values. Biometrika 1996,
83, 169–187.

10. Ledford, A.W.; Tawn, J.A. Modelling dependence within joint tail regions. J. R. Stat. Soc. Ser. B Methodol.
1997, 59, 475–499.

11. Coles, S.; Heffernan, J.; Tawn, J. Dependence Measures for Extreme Value Analyses. Extremes 1999, 2, 339–365.
12. Heffernan, J.E. A directory of coefficients of tail dependence. Extremes 2000, 3, 279–290.
13. Ramos, A.; Ledford, A. A new class of models for bivariate joint tails. J. R. Stat. Soc. Ser. B (Stat. Methodol.)

2009, 71, 219–241.
14. Joe, H. Multivariate Models and Dependence Concepts; Monographs on Statistics and Applied Probability;

Chapman & Hall: London, UK, 1997.
15. Hua, L.; Xia, M. Assessing High-Risk Scenarios by Full-Range Tail Dependence Copulas. N. Am. Actuar. J.

2014, 18, 363–378.
16. Breiman, L. On Some Limit Theorems Similar to the Arc-Sin Law. Theory Probab. Appl. 1965, 10, 323–331.
17. Embrechts, P.; Goldie, C.M. On closure and factorization properties of subexponential and related

distributions. J. Aust. Math. Soc. (Ser. A) 1980, 29, 243–256.
18. Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Encyclopedia of Mathematics and Its

Applications; Cambridge University Press: Cambridge, UK, 1987.
19. Jessen, A.H.; Mikosch, T. Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.) 2006, 80, 171–192.
20. Ng, K.W.; Tian, G.L.; Tang, M.L. Dirichlet and Related Distributions: Theory, Methods and Applications;

John Wiley & Sons: New York, NY, USA, 2011.
21. Li, H.; Hua, L. Higher order tail densities of copulas and hidden regular variation. J. Multivar. Anal. 2015,

138, 143–155.
22. Li, H.; Wu, P. Extremal dependence of copulas: A tail density approach. J. Multivar. Anal. 2013, 114, 99–111.
23. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables;

Dover Publications: New York, NY, USA, 1964.
24. Nadarajah, S.; Kotz, S. On the Product and Ratio of Gamma and Beta Random Variables. Allg. Stat. Arch.

2005, 89, 435–449.
25. Hua, L.; Joe, H.; Li, H. Relations between hidden regular variation and tail order of copulas. J. Appl. Probab.

2014, 51, 37–57.

c© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation
	Tail Order of a Scale Mixture Model
	Tail Order Function of Liouville Copulas
	Tail Order Density of Liouville Copulas
	Concluding Remark

