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Abstract: The application of stochastic volatility (SV) models in the option pricing literature usually
assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters.
When option data are insufficient or unavailable, market practitioners must estimate the model
from the historical returns of the underlying asset and then transform the resulting model into its
risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a
high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian
approach has been the classical way to estimate SV models under the data-generating (physical)
probability measure, but the transformation from the estimated physical dynamic into its risk-neutral
counterpart has not been addressed. Inspired by the generalized autoregressive conditional
heteroskedasticity (GARCH) option pricing approach by Duan in 1995, we propose an SV model that
enables us to simultaneously and conveniently perform Bayesian inference and transformation into
risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return
and volatility processes, and our empirical study shows that the estimated option prices generate
realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike
prices, so adding a few option data to the historical time series of the underlying asset can greatly
improve the estimation of option prices.

Keywords: option pricing; volatility smile; Student-t; variance gamma; Markov chain Monte
Carlo (MCMC)

1. Introduction

The constant volatility assumption in the original Black–Scholes model has been criticized over the
years for its failure to produce the implied volatility smile. Time varying volatility offers a promising
remedy to capture the smile. For instance, the autoregressive conditional heteroskedasticity (ARCH)
models of [1] and the generalised ARCH (GARCH) models of [2] offer the possibility of capturing
many stylized time-varying volatility facts in a time series perspective. However, they were mainly
used in the investigation of economic series, until Duan ([3]) proposed a GARCH option pricing
framework that enabled the GARCH model estimated from asset return series to be conveniently
transformed into a risk-neutral process for option pricing purposes. More precisely, the concept of
the locally risk-neutral valuation relationship (LRNVR) was established by [3]. Although this option
pricing model successfully captures the volatility skewness of the equity option market, it is inadequate
to generate the U-shaped volatility smiles in other option markets, such as commodity and foreign
exchange (FX) markets.

Two major drawbacks of the GARCH-type models were pointed out by [4]. First, the constraints
imposed on the parameters of these models to ensure a positive conditional variance are often violated
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during estimation. Second, a random oscillatory behaviour of the conditional variance process is ruled
out. For the purpose of option pricing, Hull and White [5] proposed the stochastic volatility (SV)
model, which contains an additional unobserved random process in the volatility. Heston [6] extended
the SV model to allow for a non-zero correlation between the asset return and its volatility, which
is called the leverage effect in financial econometrics. Although SV models are often calibrated to
observed option data under the risk-neutral measure, option data are not always available for certain
underlying assets. When option data are unavailable, market practitioners must resort to estimating
the model under the physical measure using historical asset returns, and then transforming the model
into its risk-neutral counterpart for derivative pricing.

Unlike GARCH models, SV models do not admit a computable likelihood function, which makes
the estimation a highly challenging task. While the maximum likelihood estimation (MLE) method is
infeasible, Cordis and Korby [7] introduced discrete stochastic autoregressive volatility (DSARV)
models, in which volatilities only take discrete random values. These models greatly reduce
computational costs, because the MLE method can be applied. However, most SV models assume
a continuous stochastic volatility, and the Bayesian framework has become a useful alternative for
statistical inference. The implementation of Bayesian methods usually requires the construction of
a Markov chain Monte Carlo (MCMC) simulation from the intractable joint posterior distribution.
Jacquier et al. [8] analysed SV models with a leverage effect by adopting the Gibbs sampling scheme.
Shephard and Pitt [9] employed the Metropolis–Hastings scheme for the same problem. Other
generalizations include the work of [10–12], among others. Choy et al. [13] analysed various
FX data using different heavy-tailed SV models and found that there were no leverage effects.
Wang et al. [14] considered SV models with leverage (SVL) and a bivariate Student-t error distribution.
The t-distribution is expressed in a scale mixture of normal (SMN) representation, which significantly
simplifies the Gibbs sampler and dramatically reduces computational time. All of the methods
presented above are useful in the estimation of the SV model under the physical measure, but the
transformation into the risk-neutral process for option pricing can be a highly non-trivial task.

The risk-neutral valuation for derivative pricing is concerned with the appropriate drift term of
the asset return process under the pricing (risk-neutral) measure. However, most SV estimation ignores
the drift term, speculating that it can be well estimated by sample mean. An exceptional case is the
work by [15], but their drift specification cannot be effectively transformed into a risk-neutral process
for option pricing purposes. Bates [16] considered the transformation between the two measures and
allowed the parameters of the volatility process to change, but he did not set up the locally risk-neutral
valuation formula for option pricing with stochastic volatility.

Inspired by the concept of LRNVR in [3], we propose an SV model that enables a convenient
transformation into the risk-neutral process. Our model permits the innovations of the return and
volatility processes to have different heavy-tailed SMN distributions. Specifically, we choose a variance
gamma (VG) error distribution in the return process and a Student-t error distribution in the volatility
process. We shall refer to this SV model as the VG-t SV model. For modelling FX data, no leverage
effect is assumed. The use of SMN distributions permits an efficient Bayesian inference using MCMC
algorithms, and provides a better fit to FX data. The VG distribution ([17]) has thicker tails than the
Gaussian distribution, retains finite moments for all orders, and offers a good empirical fit to the
data. Assuming a constant volatility, Madan et al. [18] applied the VG process to option pricing and
showed that the VG model fitted the volatility smile well. In this paper, we allow the volatility to
have a stochastic process. We derive the physical process that can be efficiently transformed into a
risk-neutral process for the derivative pricing of FX rates.

This paper also contributes to the literature by the use of the Bayesian framework in option pricing
with empirical data. We perform the estimation on an FX rate and then simulate option prices based
on the proposed model. We find evidence that heavy-tailed distributions for the FX return and its
volatility have important implications. When both the FX return and its volatility marginally follow
SMN distributions, the generated implied volatility smile matches the shape of the market observed
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implied volatility very well. The small gap between the model and market implied volatility smile
is almost flat across strike prices. The difference between the model and market implied volatility is
often known as the volatility premium, and can be managed if a few option data are available. This is
because the volatility premium is quite flat across strike prices.

The remainder of this paper is organized as follows. Section 2 presents the model and problem
formulation. Section 3 discusses the Bayesian estimation framework using SMN representations and
MCMC methods. The simulations of option prices are also detailed. An empirical study on FX options
is shown to justify the potential use of the framework. Specifically, the out-of-sample fit from our
framework outperforms the standard Black–Scholes model when compared with market option data.
We also discuss how to further improve our framework by considering the volatility premium once
some (but not necessarily many) option data are available. Finally, concluding remarks are made in
Section 4.

2. Stochastic Volatility Model and Option Pricing

2.1. Problem Formulation

Consider a fixed filtered complete probability space (Ω,F ,P,Ft≥0), where Ft is the filtration
generated by independent processes {εt} and {ηt}, augmented by the null sets of the data-generating
(physical) probability measure P. In addition, EP[εt] = EP[ηt] = 0 for all t ∈ N. Let St be the underlying
asset price at time t. We construct the following discrete-time SV model under P:

yt = f
(

σ2
t

)
+ σtεt, (1)

ht = µ + φ(ht−1 − µ) + τηt, (2)

where yt = ln St − ln St−1 is the geometric return of an asset at time t, σ2
t = eht and ht are the volatility

and log-volatility at time t, and f (σ2
t ) is the drift of the return process, which is a function of the

volatility in general. For the log-volatilities, the conditional mean and conditional variance of ht are
given by

E[ht|ht−1] = µ + φ(ht−1 − µ), and V[ht|ht−1] = τ2,

while the unconditional mean and unconditional variance can be derived as

E[ht] = µ, and V[ht] =
τ2

1− φ2 .

Obviously, µ is the unconditional mean of ht, and τ is the conditional standard deviation of ht.
We assume that the persistence φ in the volatility equation satisfies |φ| < 1 to ensure that ht is stationary.

It remains to specify the drift function f (σ2
t ) to complete the entire SV model for the asset return

process. We choose the drift function that meets the following three requirements.

1. It should be a simple model that enables us to apply the standard Bayesian inference via MCMC;
2. It should be convenient to transform the model under P to the model under Q,

the risk-neutral probability;
3. The resulting Q-process should generate option prices close to market prices.

While the third requirement is justified empirically in a later section, we focus on the former
two requirements.

We use SMN distributions to model εt and ηt so that the Bayesian inference for SV models reported
in the literature can be easily applied. For the second requirement, our model is developed using the
concept of LRNVR [3], which requires the following properties.
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(P1) Equivalent probability measures: P(A) = 0 iff Q(A) = 0 for any event A;
(P2) Martingale property: EQ [St+1| Ft] = Ster, where r is the one-step continuously compounded

interest rate;
(P3) Equivalent local variance: VQ (yt+1| Ft) = VP (yt+1| Ft) ,

where Ft is the information accumulated up to time t, and V(·) denotes the variance. Duan [3]
offered a sound economic interpretation of these requirements, and showed that they ruled out the
local arbitrage opportunities within the GARCH models. In fact, (P1) is a compatibility condition
that preserves unlikely events to remain unlikely in both probability measures. (P2) ensures that
forward contracts—the simplest derivative contracts—are correctly priced so that no arbitrage
opportunity exists in the risk-neutral measure Q, consistent with standard financial econometric theory.
(P3) maintains the conditional risk level so that no additional risk is generated or reduced from issuing
a derivative.

Inspired by the Girsanov theorem on Itô’s processes, we consider the change of measure by
linearly shifting the drift term in the asset return process (1) so that it guarantees (P1) and does not
affect the Bayesian inference for SV models. The (P2) of LRNVR implies that the drift term contains the
interest rate r under Q. Combining these two considerations, we have

yt = r + βσt + Φ(σ2
t ) + σtεt,

ht = µ + φ(ht−1 − µ) + τηt,

where r is the one-period continuously compounded risk-free interest rate, β is a constant, and Φ(σ2)

is the compensator function enforcing (P2) to hold. In addition, (P3) is satisfied, as the conditional
variance is evaluated as σ2 after the mean shift.

To illustrate our idea, we consider the Gaussian innovations for both return and conditional
volatility processes. Set Φ = −σ2

t /2. The unconditional distribution of ht remains Gaussian. Under P,

yt = r + βσt −
σ2

t
2

+ σtεt,

ht = µ + φ(ht−1 − µ) + τηt,
(3)

and a pair of Q-processes (ε∗t , η∗t ) satisfying the LRNVR can then be identified. Specifically, ε∗t = εt + β

and η∗t = ηt. Clearly, P and Q are equivalent. The SV model under Q is deduced as

y∗t = r− σ2
t

2
+ σtε

∗
t , (4)

h∗t = µ∗ + φ(h∗t−1 − µ) + τη∗t . (5)

It is easy to verify that

EQ [St+1|Ft] = EQ [Steyt+1 | Ft] = SterEQ
[

e−
1
2 σ2

t +σtε
∗
t

∣∣∣Ft

]
= Ster;

VQ [yt+1|Ft] = σ2
t = VP [yt+1|Ft] .

The following theorem presents a more general result.

Theorem 1. Consider the SV model in (1)–(2). Let ε∗t = εt + β and η∗t = ηt for any fixed constant β.
If there exists an equivalent measure Q under which EQ[ε∗t ] = EQ[η∗t ] = 0 and M(s) = EQ[esε∗t ] < ∞ for all
s > 0, t ∈ N is the moment generating function (MGF) of ε∗t , then the SV model under P:

yt = r + βσt − ln M(σt) + σtεt,

ht = µ + φ(ht−1 − µ) + τηt,
(6)
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admits an SV model under Q satisfying the LRNVR:

y∗t = r− ln M(σt) + σtε
∗
t ,

h∗t = µ + φ(h∗t−1 − µ) + τη∗t .
(7)

Proof of Theorem 1. As the theorem assumes that there is an equivalent probability measure Q,
we only need to prove for the second and third conditions of LRNVR. Using the transformation
ε∗t = εt + β and η∗t = ηt, the SV model in (6) becomes

yt = r− ln M(σt) + σtε
∗
t ,

ht = µ− τβρ + φ(ht−1 − µ) + τη∗t .

As ht ∈ Ft−1, it is easy to check that

EQ [St+1|Ft] = EQ [Steyt+1 | Ft] = Ster
EQ
[

eσtε
∗
t

∣∣∣Ft

]
M(σt)

= Ster;

VQ [yt+1|Ft] = σ2
t = VP [yt+1|Ft] .

(8)

The SV model in (6) has a plausible economic interpretation. A simple consideration may assume
a constant drift term m so that

yt = m + σtεt.

When a constant expected geometric return is assumed, it violates the economic belief on the
return–risk trade off. In terms of the number of model parameters, both the constant drift SV model
and that in (6) contain five basic parameters, and other parameters associated with the distributions
of εt and ηt. Without increasing the number of parameters, the SV model shows that the higher the
volatility, the higher the expected geometric return for a positive β. In fact, the β can be viewed as the
Sharpe ratio: the excess return over volatility. Thus, our model can be interpreted as a constant Sharpe
ratio model in a financial econometrics. Badescu et al. [19] reported that the constant drift model
needs a subtle Esscher transform to obtain the Q process under GARCH models, and the computation
of option price could be less straightforward. We find that the constant drift SV model also admits
implementation difficulties.

For (6) to be well defined, we must ensure that there is an equivalent probability measure Q under
which the Q moment-generating function of ε∗t is well defined. Although it is not necessarily true
for arbitrary distributions of εt and ηt, many implementable SV models which are consistent with
Theorem 1 can be developed via SMN distributions.

2.2. The SV Model with VG and t Error Distributions

The examples of SMN distributions include the Student-t, VG distributions, and many others.
See [20]. Analyses of models with both Student-t innovations on returns and volatility processes have
already been conducted, making it a relatively mature field. However, we do not model εt using a t
distribution, because Theorem 1 requires a finite MGF. To allow heavy-tailed distributions for asset
return and its volatility, we consider a standard VG distribution with the shape parameter α for εt,
and a standard Student-t distribution with ν degrees of freedom for ηt. Using the MGF of the VG
distribution, Theorem 1 brings us the following SV model under P.

yt = r + βσt + α ln
(

1− σ2
t

2α

)
+ σtεt, (9)

ht = µ + φ(ht−1 − µ) + τηt, (10)
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where

M (σt) =

(
1− σ2

t
2α

)−α

.

The probability density function (PDF) of the VG distribution and its moments are given in
Appendix A.

2.3. Bayesian Framework

Bayesian inference combines expert opinions with observational evidence, supplementing
classical statistical inference or the frequentist approach once the likelihood is not trivial to obtain,
and is performed via the joint posterior distribution of all model parameters. In this context, unlike the
GARCH models, the SV models contain an additional random process in the volatility equation,
resulting in an additional latent variable for each observation and an intractable likelihood function
which involves very high dimensional integrals. Suppose that N asset returns, y ∈ RN , are collected
for statistical analysis. Then, there are N + 1 latent volatility variables, h = (h0, h1, ..., hN), in the model.
Let θ = (µ, φ, τ2, α, ν, β) be the vector of parameters of the VG-t SV model. The likelihood function is
an analytically intractable N-dimensional integral of the form:

L (θ) =
∫

ΠN
t=1 f (yt|h1, ..., hN) f (h0, ..., hN |θ) dh0...dhN .

The parameters spaces of θ and h together can be viewed as an augmented parameter space.
In the Bayesian paradigm, a full Bayesian approach for performing Bayesian inference is via the
simulation-based MCMC algorithms, which iteratively sample posterior realisations from the joint
posterior distribution

f (θ, h|y) ∝ f (y|θ, h) f (h|θ) f (θ) ,

where f (θ) is the PDF of the joint prior distributions of θ.
Since the VG and Student-t distributions belong to the class of SMN distributions, we can facilitate

an efficient MCMC algorithm for Bayesian inference using a data augmentation technique. Choy and
Chan [20] demonstrated Bayesian inference using univariate SMN distributions, including the VG
and Student-t distributions. Therefore, our VG-t SV model under the P measure can be expressed
hierarchically as

yt|ht, µ, φ, τ2, λyt ∼ N
(
Q, λyt σt

)
, (11)

ht|ht−1, yt, µ, φ, τ2, λht ∼ N
(

µ + φ(ht−1 − µ), λ−1
ht

τ2
)

, (12)

h0|µ, φ, τ2, λh0 ∼ N
(

µ,
τ2

λh0(1− φ2)

)
, (13)

λyt |α ∼ Ga
(α

2
,

α

2

)
, t = 1, 2, ...T, (14)

λht |ν ∼ Ga
(ν

2
,

ν

2

)
, t = 0, 1, ...T, (15)

where Ga(c, d) is the gamma distribution with mean c/d. See [20] for Bayesian implementation of SMN
distributions and [13] for the SV models. In this setup, λht and λyt are scale mixture variables which
can be used as a global diagnostic of potential outliers ([20]) in the return and volatility equations,
respectively. The shape parameters ν and α capture the heavy-tailed features of the innovations in
the return and volatility processes. This representation of the VG-t SV model enables a simple Gibbs
sampler for posterior inference, because the full conditional distributions of the log-volatilities and the
scale mixture variables will be the univariate Gaussian and gamma distributions.

To complete the Bayesian framework, we adopt the following prior distributions for model
parameters. µ ∼ N(aµ, bµ), β ∼ N(aβ, bβ), τ2 ∼ IG(aτ , bτ), φ∗ ∼ Be(aφ, bφ), ν ∼ Exp(aν), α ∼ Exp(aα),
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where φ∗ = φ+1
2 and N(·, ·), IG(·, ·), Be(·, ·) and Exp(·) are the Gaussian, inverse gamma, beta,

and exponential distributions. In the empirical study in Section 3, vague and non-informative
prior distributions are assigned to µ, β, τ2, and α, respectively. For φ∗, an informative beta prior
distribution is assumed. To ensure the existence of the mean and variance for the Student-t distribution,
the exponential prior distribution of the degrees of freedom ν is restricted to the range (2.01, 40).
To implement the Bayesian VG-t SV model, one can easily program the Gibbs sampling scheme
to obtain posterior samples of the model parameters and the scale mixtures variables for Bayesian
inference. Alternatively, we can use the user-friendly WinBUGS software, which just requires the
specification of the model and the prior distributions.

2.4. Option Pricing

Our primary interest is option pricing. We use Figure 1 to explain the valuation procedure.
Consider the option with maturity T days after today, when we are standing at time 0 in the perspective
of pricing, but time N in the perspective of parameter estimation. Figure 1 shows 375 historical prices
of the underlying asset, namely S1, ..., SN , depicted as a random path on the left side. The estimation
conducted using the Bayesian approach is carried out based on that path, and the estimated model
is defined under P. On the right, five sample paths are generated according to the model under Q
measure for valuing the option numerically. For each generated path, we get S∗T at the end. As we
consider the European call option in this paper, the payoff would be max(S∗T − K, 0), where K is the
strike price. With all the simulated sample paths, the option price at time-0 state for pricing (after
discounted) can be obtained through the equation

C = e−rTEQ {max(S∗T − K, 0)} . (16)

Figure 1. Historical asset price movement and simulated asset prices.
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To simulate the Q-process, the posterior mean of each parameter is regarded as the point estimate
of the parameter value under P. We transform the model into its risk-neutral equivalent using
Theorem 1. The detailed algorithm is summarized in the algorithm below.

Posterior means of the model parameters θ = (µ, φ, β, τ2, α, ν), and log-volatilities h = (h1, ..., hT)

denoted by θ̂ and ĥ, are obtained from WinBUGS output, and are used in a process to simulate
realisations of the return and log-volatilities under the Q-process. We perform the algorithm as follows.

• Step A: For j = 1:J where J is the number of simulated stock price paths,
A1: Set h∗1 = hN ;
A2: Set S∗0 = SN ;
A3: Sample λ∗h1

, ..., λ∗hT
from Ga

(
ν̂
2 , ν̂

2
)
;

A4: Sample λ∗y1
, ..., λ∗yT

from Ga
(

α̂
2 , α̂

2
)
;

• Step B: For i = 1:T,
B1: Sample y∗i (j) from N

(
r + β̂eh∗i (j)/2, λ∗yi(j)e

h∗i (j)
)

;
B2: Sample h∗i (j) from

N
(

µ̂ + φ̂
(
h∗i−1(j)− µ̂

)
, (λ∗hi(j))

−1τ̂2
)

;

B3: Set S∗i (j) = S∗i−1(j)ey∗i (j);
• Step C: By (16), set

C ∼=
e−rT

J

J

∑
j=1

max (S∗T(j)− K, 0) . (17)

As each simulated path starts the day that the observations end, hN+1—the volatility right after
the last point of the observations—is needed as the simulation’s initial volatility. More specifically,
Step A shows that the posterior means of hN+1 is fixed for all simulated paths. S∗0 represents the
initial price in the simulation part. The rest of the volatilities and mixing parameters are randomly
drawn from their posterior distribution, with the hyperparamter values obtained from the estimation.
Once hN+1 is fixed, the risk-neutral return at (N + j), denoted as y∗j , is generated, as shown in Step B.
Note that h∗1 is used in the simulation, where h∗1 and hN+1 are related through Theorem 1. Then, option
price is obtained through Step C.

3. Empirical Studies

This section examines the empirical performance of the proposed approach in FX option pricing.
We collect the daily returns of an FX rate, estimate the VG-t SV model parameters with the proposed
Bayesian framework, and simulate option prices under the risk-neutral measure. The empirical
performance is based on the out-of-sample comparison between the estimated option prices and the
market-observed option prices. We pretend that the market option prices are unavailable during our
implementation. The option prices evaluated by the Black-Scholes (BS) formula are also reported
as a benchmark. Although it is known that GARCH option pricing models perform well in the FX
market, they fail to capture the U-shaped volatility smile. By fitting our proposed VG-t SV model to
the FX market data, we empirically show that our model overcomes this problem by providing a set of
implied volatilities within the bid-ask spread of the market-observed implied volatility smile.

Specifically, the estimation is implemented using the WinBUGS package (http://www.mrc-
bsu.cam.ac.uk/bugs/) in R. We implement a Gibbs sampler by running a single Markov chain for
20,000 iterations and discarding the first 3000 iterations as the burn-in period to better guarantee the
convergence of the estimation result. Sampling procedures and prior distributions are chosen according
to Section 2.3. After estimation, simulation for option pricing starts at the last value of observation.
From this starting point, we generate J = 8000 FX rates under the risk-neutral measure according to
Section 2.4. Based on the simulated option prices across different strike prices, we calculate the implied
volatility and make a comparison with BS formula and the market-observed volatility smile.

http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
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3.1. FX Market Data

The empirical study uses one year of data points on the YEN–USD exchange rate from 1 March
2012 to 28 February 2013. To confirm that the VG-t SV model is the best model, the FX data is also fitted
by the basic SV models ([13]) with N-N (normal-normal), t-t, VG-VG and t-VG error distributions in
the innovations terms. The Deviance Information Criterion (DIC) and Bayesian Information Criterion
(BIC) values of the five models are displayed in Table 1. It is obvious that all models with heavy-tailed
error distributions are superior to the model with Gaussian errors. Moreover, the models with VG
innovation in the return equation outperform the models with Student-t innovation, and in particular,
the VG-t SV model is chosen to be the best amongst the five models, according to both DIC and
BIC values.

Table 1. Deviance information criterion (DIC) and Bayesian information criterion (BIC) of stochastic
volatility (SV) models with different error distributions. N-N: normal-normal; VG: variance gamma.

Model N-N t-t t-VG VG-t VG-VG

DIC 383.3 379.9 378.6 353.3 360.2
BIC 386.6 376.9 379.7 370.9 371.0

European calls on the YEN–USD exchange rate with different strike prices are collected for
out-of-sample comparison, with the strike price ranging from 87.94 to 99.79. Half of the options are
in-the-money, while the others are out-of-the-money. We use the one-month Libor rates as the constant
interest rate for both the estimation and option simulations. Table 2 presents the summary statistics for
the source data on the YEN–USD exchange rate. Implied volatilities against different strike prices are
given in Table 3, in which the market option price is calculated from these market volatilities through
the BS formula.

Table 2. Summary statistics of return data on the foreign exchange (FX) rate.

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd.

−0.0188 −0.0027 −0.0003 0.0002 0.0031 0.0310 0.0052

Table 3. Implied volatilities of 1-month option data on the FX rate.

K = 87.94 K = 89.28 K = 90.15 K = 91.37 K = 92.32 K = 93.53

Mid 0.1318 0.1281 0.1258 0.1229 0.1213 0.1205
Bid 0.1154 0.1184 0.1185 0.1176 0.1167 0.1163
Ask 0.1483 0.1377 0.1331 0.1283 0.1259 0.1247

K = 93.84 K = 95.88 K = 97.24 K = 98.23 K = 99.79

Mid 0.1219 0.1241 0.1274 0.1301 0.1343
Bid 0.1175 0.1189 0.1203 0.1206 0.1182
Ask 0.1264 0.1293 0.1345 0.1395 0.1503

Table 4 summarizes the estimation results from WinBUGS using the historical FX rates. The small
value of ν supports the adoption of a heavy-tailed innovation in the volatility process. The initial spot
FX rate for the option simulation was 93.59, on 1 March 2013. The estimated option prices against
different strike prices are presented in Table 5. It can also be seen from Figure 2 that our model greatly
outperforms the BS model, because the model prices (crosses in the graph) are far over the straight
line of the implied volatility from the BS model, and very close to the volatilities implied by market
mid-prices. In addition, all implied volatilities from our model are between the market bid and ask
volatilities. As actual transactions take place within the bid-ask prices rather than the mid-price,
our model offers a reliable tool for practical option prices when the market lacks liquid option data.
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Furthermore, our VG-t SV model captures the volatility smile very well, and this is in consistent with
the U-shaped smile of the market-implied volatility. On the contrary, the BS model only offers an
unrealistic constant volatility. Although not presented in the figure, the standard GARCH option
pricing models also fail to produce such a U-shaped volatility smile for FX options.

Table 4. Summary statistics of parameters: option on the YEN–USD FX rate from WinBUGS.

Par. Mean Sd 95% CI

β 0.078 0.064 (−0.046 , 0.203)
τ 0.225 0.067 (0.128 , 0.361)
µ −10.420 0.351 (−10.950, −9.585)
φ 0.873 0.088 (0.687 , 0.988)
ν 8.176 4.155 (2.531 , 18.114)
α 15.622 8.582 (4.290 , 34.868)

Table 5. Results of option prices on the YEN–USD FX rate from the Black-Scholes (BS) model, the SV
model, and the market.

Model K = 87.94 K = 89.28 K = 90.15 K = 91.37 K = 92.32 K = 93.53

Mkt 5.728 4.480 3.711 2.712 2.040 1.335
BS 5.658 4.339 3.507 2.410 1.676 0.934
SV 5.679 4.372 3.555 2.480 1.759 1.020

Model K = 94.84 K = 95.88 K = 97.24 K = 98.23 K = 99.79

Mkt 0.049 0.509 0.272 0.169 0.077
BS 0.414 0.189 0.054 0.019 0.003
SV 0.497 0.259 0.104 0.055 0.022
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Figure 2. Comparison of volatility smile on the YEN–USD FX rate from the Black-Scholes (BS) model,
VG-t SV model, and the market.

Figure 3 plots volatility premium across strike price, which is the difference between the implied
volatilities of the market mid-price and the model. The volatility premium is generally flat across strike
prices, and the implied volatility from our model can be shifted up to approach the market price if a
massive amount of option data is available.
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Figure 3. Volatility premium on the 1-month YEN–USD option

4. Conclusions

In this paper, we propose an SV option pricing model inspired by Duan’s GARCH option
pricing model, and extend our model by allowing return and volatility to have VG and Student-t
innovations, respectively. The result is an alternative way to price European options when calibration
is not applicable. This model enjoys simplicity, reduces simulation inaccuracy, provides an easy and
convenient way of transforming the model between physical and risk-neutral measures, and allows
the Bayesian inference to apply in the estimation procedure with the benefit of the SMN representation
in the MCMC method. In the empirical study, our SV pricing model outperforms its competitive
models in the out-of-the-sample test using European call option data, as the model prices are close to
the market option prices compared with the BS formula. Furthermore, the model implemented with a
Bayesian framework effectively captures the volatility smile in the FX option market, whereas standard
GARCH option pricing models only produce a volatility skew.

Future research can focus on alternative specifications of the drift term in the return process,
such as the mean reversion process considered by [21]. The proposed Bayesian pricing framework can
be generalized to other SV models such as the DSARV model by [7], and to incorporate information
for the Volatility Index (VIX) data as suggested by [22].
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Appendix A

Definition A1. A univariate random variable X is said to be distributed as a symmetric variance gamma
VG(µ, σ2, α) distribution if its PDF is given by

f (x) =
2αα+1/2 |z|α−1/2

σπ1/2Γ(α)
Kα−1/2

(
(2α)1/2 |z|

)
, x ∈ R,
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where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, α ∈ R+ is the shape parameter,
z = σ−1(x− µ) and Kα(·) is a modified Bessel function of the second kind. The mean, variance and kurtosis are
given by E(X) = µ, V(X) = σ2 and Kur(X) = 3α(α− 1), α > 1, and the moment generating function is

MX(t) =
(

1− σ2t2

2α

)−α

eµt.
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