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Abstract: We consider the well-known stochastic reserve estimation methods on the basis of
generalized linear models, such as the (over-dispersed) Poisson model, the gamma model and
the log-normal model. For the likely variability of the claims reserve, bootstrap method is considered.
In the bootstrapping framework, we discuss the choice of residuals, namely the Pearson residuals,
the deviance residuals and the Anscombe residuals. In addition, several possible residual adjustments
are discussed and compared in a case study. We carry out a practical implementation and comparison
of methods using real-life insurance data to estimate reserves and their prediction errors. We propose
to consider proper scoring rules for model validation, and the assessments will be drawn from
an extensive case study.

Keywords: chain-ladder; claim reserving; bootstrap; generalized linear model; model validation

1. Introduction

Every non-life insurance company is obligated to compensate its policy holders for claims that
meet the terms of the policy. In order to meet and administer its contractual obligations to policyholders,
the insurance company has to set up loss reserves. Since loss events with the number and amount of
claims are random, it is important to calculate the claims reserve carefully, as underestimation would
lead to solvency problems, and overestimation unnecessarily holds the excess capital instead of using
it for other purposes. The claims estimation is one of the basic actuarial tasks in the insurance industry,
because it gives the certainty to be solvent at any time moment in the future. There is a variety of
methods for the actuary to choose amongst for reserving purposes. The focus has mainly been on
aggregate reserving techniques, where models perform analysis with aggregate claims data. In recent
years, considerable attention has been given to stochastic micro-level models, which use claims-related
data on an individual basis, rather than aggregating by underwriting year and development period
(for a reference, see [1–3]). Despite the fact that stochastic micro-level models have emerged in
an increasing steam of academic literature, these models are not substantially used by practitioners.

The most widely-used models are non-stochastic macro-level models, which are merely
deterministic algorithms using aggregate claims data. The basic chain-ladder model is the flagship
of macro-level models (see for details [4,5]). The simplest assumption of chain-ladder method is
that payments will emerge in a similar way in each accident year. The proportionate increases
in the known cumulative payments from one development year to the next can then be used to
calculate the expected cumulative payments for future development years. Despite its well-known
limitations, the chain-ladder remains as the most widely-applied claim reserving method, and several
extensions of the model have been developed, for example the double chain-ladder method ([6]),
which simultaneously uses a triangle of paid losses and a triangle of incurred claim counts, and the
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continuous chain-ladder method ([7]), which reformulates the triangular data as a histogram and
proposes a continuous chain-ladder model through the use of a kernel smoother.

The chain-ladder method gives a point estimate, but the interest arises in developing estimates
of the likely variability of the claims reserve. Stochastic macro-level models were first introduced
in order to answer this question. An overview of stochastic macro-level models is given by [8,9].
A more thorough and detailed review is provided by [10]. Stochastic claims reserving starts with
constructing a model that produces the actuary’s best estimate and then using this model for estimating
the prediction error of the model. Moreover, there is a tendency to find a model under which the best
estimate is the one given by the chain-ladder. Within this group of models, the (over-dispersed) Poisson
(ODP) model ([11]), gamma model ([12]), negative binomial model ([13]), log-normal model ([14])
and Mack’s model ([15]) have received considerable attention. The first four models specify the
distribution of the incremental losses, while the last is a distribution-free model that only specifies the
first two moments.

The mean square error of prediction (MSEP), also known as the prediction error, has been used
as the precision measure for the reserve estimates in most literature. It can be decomposed into two
components: parameter uncertainty and process uncertainty (see, e.g., [8,16]). The former comes from
the uncertainty in the estimation of parameters of the reserving model due to the limited sample
size, whereas the latter comes from the intrinsic randomness of the claims development in the future.
However, obtaining estimates for the standard error of prediction can be a difficult task. There are
several analytical results for computing the prediction error (see [17]), but those estimates can be
difficult to calculate or are only approximate values. For that reason, the advantage of the bootstrap
technique can be taken. In addition, calculating the MSEP certainly provides great insight into the
performance of reserve estimates, but other information such as the cash flow or risk measures are
also of interest. Thus, for the full predictive distribution of reserve estimates, bootstrapping can be
used for the solution. The bootstrap technique has been extensively studied in the claims reserving
framework by various authors, such as [17–19]. The chain-ladder is still the benchmark for evaluating
new models in the majority of the reserving literature. However, there is a need for more proper
tools to validate and assess the quality of predictions when comparing different reserving methods.
In order to validate the reserving method and identify any needed modifications, we need to rank
the competing predictive models. We propose to consider scoring rules to measure the accuracy of
probabilistic predictions.

The main purpose of this paper is to discuss different reserving methods on the basis of
the chain-ladder method in combination with the bootstrap method in a case study approach.
The definition of the proper residuals to base the bootstrap technique on is definitely an open subject
when bootstrapping. We extend the work of [19] by using another useful type of residual with
bootstrapping, and we carry out a comparative study among several stochastic models like the
(over-dispersed) Poisson, the gamma and the log-normal model. We will use claims data from
an Estonian insurance company for the case study, where we discuss the impact of the chosen models
and the residuals on the reserve estimates and prediction errors. To evaluate the goodness of fit of the
models, we carry out a model assessment.

The paper is set out as follows. In Section 2, we present a brief review of generalized linear models
and their application to claim reserving, while in Section 3, we discuss some aspects linked to the
bootstrap methodology. Section 4 is devoted to the application of the different methods to the real-life
dataset. In Section 5, the comparative analysis for model validation with the Schedule P database is
carried out. It is followed by the discussion in Section 6.

2. Chain-Ladder Method as a Generalized Linear Model

In this section, we introduce briefly the basic chain-ladder method, recall how the chain-ladder
method is reformulated in the context of generalized linear models (GLM) and give a brief review of
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stochastic macro-level models, which will be used in the analysis. For a general introduction to GLM,
we refer to [20].

Stochastic macro-level models use aggregate claims data, and some of the main advantages over
non-stochastic macro-level models are the possibilities to obtain first two moments or the predictive
distribution of the reserve estimate. Several often-used and traditional actuarial methods to complete
a run-off triangle can be described by GLM. The actuarial literature has also shown a close connection
between the chain-ladder method and the multiplicative Poisson model.

Without loss of generality, we assume that the data that have been collected for i = 1, ..., n and
j = 1, ..., n consist of a triangle of incremental claims:{

Cij : i = 1, ..., n; j = 1, ..., n− i + 1
}

,

where the row index i refers to the year of origin and, depending on a particular situation, indicates
the accident year, reporting year or underwriting year. The column index j refers to the development
year, indicating the delay, more precisely loss disbursal, reporting year or accident year. Claims data
are given as a run-off triangle as shown in Table 1.

Table 1. Run-off triangle with incremental claim amounts.

Development Period j

Year of Origin i 1 2 3 . . . n

1 C11 C12 C13 . . . C1n
2 C21 C22 . . .
3 C31 . . .
...

...
n Cn1

The cumulative claim amounts with accident year index i reported up to, and including, the delay
index j are defined as:

Dij =
j

∑
k=1

Cik.

Thus, Dij is the total claims amount of accident year i, i = 1, . . . , n, either paid or incurred
up to development year j, j = 1, . . . , n. The development factors of the chain-ladder technique are
estimated as:

λ̂j =
∑

n−j
i=1 Di,j+1

∑
n−j
i=1 Dij

, j = 1, . . . , n− 1.

Generalized linear modeling is a methodology for modeling the relationships between variables.
It generalizes the classical normal linear model, by relaxing some of its restrictive assumptions, and
provides methods for the analysis of non-normal data. GLM is important in the analysis of insurance
data, because with insurance data, the assumptions of the normal model are often not applicable.
See [21] for a detailed description of generalized linear models for insurance data.

Following [11,19], the structure of the stochastic models for claim reserving in the terminology of
GLM can be given by:

(1) incremental claim amounts Cij belong to the exponential family,
(2) E(Cij) = µij,
(3) ηij = g(µij), where g(·) is the link function,
(4) linear predictor ηij = c + α̃i + β̃ j with an intercept c and factor effects α̃i and β̃ j.
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The given structure of GLM can be used to describe several often used actuarial methods.
We consider the following multiplicative model ([9]), with a parameter for each row i, each column j
and each diagonal k = i + j− 1:

Cij ≈ αi · β j · γk, (1)

where parameter αi describes the effect of year of origin i, parameter β j corresponds to development
year j and γk describes the effect of calendar year k = i + j− 1. The approximation sign in Equation (1)
expresses a difference caused by a chance, i.e., there is a possible deviation of the observation on the
left-hand side from its mean value on the right-hand side. The model involves three time scales, which
give rise to the well-known identification problem. Parametrization using three time scales has been
introduced for instance by [22]. The identification problem has been revisited by several authors;
see, for example, [23,24], who have proposed a canonical parametrization that is uniquely identified.
In the framework of three time scales, we also face a problem with extrapolating the calendar estimates.
Namely, we have no data on the values of γk for the future calendar years, e.g., if k > n. This can be
overcome by assuming that the γk have a geometric pattern, with γk ∝ γk for some real number γ.
Typically, the model (1) is simplified by taking γk ≡ 1, and the condition ∑n

j=1 β j = 1 is imposed. If the
parameters αi > 0 and β j are estimated by using the maximum likelihood method, then the simplified
model is a multiplicative GLM with log-link.

In the terminology of GLM, to linearize the multiplicative model (1), the logarithm is chosen as
a link function (log-link). Hence:

E(Cij) = µij = αi · β j · γk

= exp(ln αi + ln β j + ln γk),

or, equivalently,
ln E(Cij) = ln αi + ln β j + ln γk. (2)

Parameters of the given model are estimated by using the maximum likelihood method.
After obtaining the estimates of the parameters, it is easy to complete the run-off triangle,
simply by taking:

Ĉij := α̂i · β̂ j · γ̂k. (3)

This simple model allows one to generate quite a few reserving techniques, depending on the
assumptions set on the distribution of Cij. It is common in claim reserving to consider the Poisson,
gamma or log-normal distribution for the variable Cij. We proceed with reviewing the following
methods from Model (1).

The (over-dispersed) Poisson model: Already in 1975, a stochastic model corresponding to the Poisson
model, which leads to the chain-ladder technique, was proposed. This model works on the incremental
amounts Cij from a Poisson distribution, where E(Cij) = αiβ j with unknown parameters αi and β j.
Here, αi is the expected ultimate claims amount (up to the latest development year so far observed),
and β j is the proportion of ultimate claims to emerge in each development year with the restriction
∑n

k=1 βk = 1. The restriction immediately follows from the fact that β j is interpreted as the proportion
of claims reported in development year j. Obviously, the aggregate proportion over all periods has to
be one.

We estimate the unknown parameters αi and β j from the triangle of known data with the
maximum likelihood method. In the following, we use the notation ∆ for the triangle of known
data, i.e., the set of all (i, j), where Cij is known. We also distinguish ∆i = {j : (i, j) ∈ ∆} and
∆j = {i : (i, j) ∈ ∆}. The estimation procedure and results are given in the following lemma. The initial
idea of the lemma is attributed to [12].
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Lemma 1. Assume that all Cij are independent with a Poisson distribution, and E(Cij) = αiβ j holds. Then,
the maximum likelihood estimators α̂i and β̂ j are given by:

α̂i =
∑j∈∆i

Cij

∑j∈∆i
β j

, i = 1, . . . , n (4)

and:

β̂ j =
∑i∈∆j Cij

∑i∈∆j αi
, j = 1, . . . , n. (5)

Proof of Lemma 1. We derive the maximum likelihood estimates for the unknown parameters αi and
β j with the likelihood function:

L = ∏
i,j∈∆

(αiβ j)
Cij

Cij!
exp(−αiβ j).

Therefore, the log likelihood function is:

` = ln(L) = − ∑
i,j∈∆

αiβ j + ∑
i,j∈∆

Cij ln(αiβ j)− ∑
i,j∈∆

ln(Cij!),

where the summation is for all i, j where Cij is known. The maximum likelihood estimator consists of
values of αi, β j, which maximize L or equivalently ln(L). They are given by the equations:

0 =
∂`

∂αi
= − ∑

j∈∆i

β j + ∑
j∈∆i

Cij
1
αi

, i = 1, . . . , n

and:
0 =

∂`

∂β j
= − ∑

i∈∆j

αi + ∑
i∈∆j

Cij
1
β j

, j = 1, . . . , n.

Thus, the likelihood estimator αi and β j is given, respectively, by Formulas (4) and (5), and the
lemma is proven.

Thus, the proportion factors β j express the ratio of the sum of observed incremental values for
certain development year j with respect to certain ultimate claims, i.e., βi denotes the proportion of
claims reported in development year j. The parameters αi refer to the ratio of the sum of observed
incremental values for a certain origin year i to corresponding proportion factors. In other words,
if the incremental claim amounts and respective proportions factors are known, it is simple to derive
the corresponding ultimate claim αi for origin year i. One can note the principal similarities with the
chain-ladder technique, where development factors are also the outcomes of certain ratios.

The Poisson model can be cast into the form of a GLM, and to linearize the multiplicative model,
we need to choose the logarithm as a link function, ηij = ln(µij), so that:

E(Cij) = µij = exp(ln(αi) + ln(β j))

or, equivalently,
ln(E(Cij)) = ln(αi) + ln(β j) (6)

where the structure of linear predictor (6) is still a chain-ladder type, because parameters for each row
i and each column j are given. Hence, the structure (6) is defined as a GLM in which the incremental
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values Cij are modeled as Poisson random variables with a log-link. Reparametrizing (6) gives us
a structure of Property (4) defined in a GLM setting, i.e., we obtain a linear predictor:

ηij = c + α̃i + β̃ j, (7)

where parameter c can be considered as an intercept, which corresponds to the incremental amount in
the cell (1, 1). This is obtained by taking:

α̃1 = β̃1 = 0

to avoid over-parametrization. The Poisson model was studied in further detail by [25], where also
a new canonical parametrization was proposed.

We recall that the only distributional assumptions used in GLMs are the functional mean-variance
relationship and the fact that the distribution belongs to the exponential family. When defining a GLM,
we can omit the distribution of Cij’s and use only the most elementary information about the response
variable, namely the relationship between variance and mean. This introduces a quasi-likelihood as
an alternative, and using this elementary information alone can be often sufficient to stay close to
the full efficiency of maximum likelihood estimators. Therefore, we can estimate the parameters by
the maximum quasi-likelihood ([20]) instead of the maximum likelihood, and the estimators remain
consistent. However, it is necessary to impose the constraint that the sum of the incremental claims in
every row and column has to be non-negative. This means that quasi-likelihood could not be used,
for instance, when modeling incurred data with a large number of negative incremental claims in the
later development periods.

In the case of the Poisson distribution, the mentioned relationship is Var(Cij) = E(Cij), and
allowing for more or less dispersion in the data can be generalized to Var(Cij) = φE(Cij) without any
change in form and solution of the likelihood equations. This kind of generalization allows for more
dispersion in the data, and one speaks of an over-dispersed Poisson (ODP) model. It is shown ([26])
that every ODP model can be transformed into the Poisson model by dividing all incremental claims
by a certain parameter. The general form for the ODP model can be given as follows:

E(Cij) = µij = αiβ j, (8)

Var(Cij) = φαiβ j, (9)

where:
n

∑
k=1

βk = 1.

The over-dispersion is introduced through the parameter φ, which is unknown and estimated
from the data. Considering a single incremental payment Cij with the origin year i and claim payments
in development year j (yet to be observed), we obtain the estimates of future payments from the
parameter estimates by inserting them into Equation (6) and exponentiating, resulting as:

Ĉij = α̂i β̂ j = exp(η̂ij). (10)

Given Equation (10), the reserve estimates for any origin year can be derived by:

R̂i = α̂i β̂n+2−i + . . . + α̂i β̂n, i = 2, . . . , n, (11)

and the reserve estimate for the total amount can be easily derived by summation:

R̂ =
n

∑
i=2

R̂i =
n

∑
i=2

(α̂i β̂n+2−i + . . . + α̂i β̂n), i = 2, . . . , n. (12)
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The negative binomial model can be derived from the Poisson model, and thus, these models
are very closely related, but with a different parameterization. The model was first derived by [13],
by integrating out the row parameters from the Poisson model. The predictive distributions of both
models are basically the same and give identical predicted values.

Log-normal model: When considering the log-normal distribution to describe claim amounts (see for
a reference [14]), we can still continue to use GLM for the logs of the incremental claim amounts. The
log-normal class of models are given as:

ln(Cij) ∼ N(µij, σ2),

i.e.,
E(ln(Cij)) = µij and Var(ln(Cij)) = σ2.

Now, the identity link function is used, and the normal responses ln(Cij) are assumed to
decompose (additively) into a deterministic non-random component with mean µij = ηij and
normally-distributed random error components with zero mean.

Following [8], the fitted values on a log scale, given the estimates for the parameters in the linear
predictor ηij and the process variance σ2, are obtained by forming the appropriate sum of estimates.
Obtaining the estimates for the mean on the untransformed scale is not that simple. We cannot just
exponentiate the linear predictor, since that would give an estimate of the median. Therefore, the fitted
values on the untransformed scale are given by:

Ĉij = exp(η̂ij +
1
2

σ̂2
ij), (13)

which is in the standard form of the expected value of a log-normal distribution and where:

σ̂2
ij = Var(η̂ij) + σ̂2

are the prediction variance of the linear predictor. With already familiar notation (from the ODP
subsection), we denote the triangle of predicted claims contributing to the reserve estimates by
O. The reserve estimate in origin year i is given by summing the predicted values in row i of O,
i.e., R̂i = ∑j∈Oi

Ĉij, and the total reserve estimate, summing the predicted values in row i and in
column j of O, is given by R̂ = ∑i,j∈O Ĉij. The log-normal model is also referred to as the geometric
chain-ladder model; see this additional analysis in [27].

Gamma model: A further model was proposed by [12] with a multiplicative parametric structure for
the mean incremental claims amounts, which are modeled as gamma response variables. As noted
in [11], the same model can be fitted using the GLM described in over-dispersed Poisson model,
but in which the incremental claim amounts are modeled as independent gamma response variables
with a logarithmic link function and the same linear predictor and require a change in (9). As with
the log-normal model, the predicted values provided by the gamma model are usually close to the
chain-ladder estimates, but it cannot be guaranteed. The gamma model implemented as a generalized
linear model gives exactly the same reserve estimates as the gamma model implemented by [12].
The gamma model is given with the mean:

E(Cij) = µij = αiβ j,

and with the variance:
Var(Cij) = φ(E(Cij))

2 = φµ2
ij.
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To obtain reserve estimates with the gamma model for any origin year or for the overall amount,
the same formulas as defined in the ODP model, (11) and (12), respectively, can be used. The limitation
of both the gamma and ODP model is that each incremental value should be nonnegative.

3. The Bootstrap Technique

Bootstrapping is a popular technique in stochastic claims reserving because of the simplicity
and flexibility of the approach. We are using bootstrapping to estimate the prediction error and to
approximate the predictive distribution. An analytical derivation of the prediction error of the total
reserve estimate may be preferable from a theoretical perspective, but it is often impracticable due to
complex reserve estimators. For the classical chain-ladder method, [15] derived an analytical expression
of the MSEP within an autoregressive formulation of the claims development using a second-moment
assumption. The first order Taylor approximation of the corresponding MSEP within the GLM
framework was derived by [17]. As said, known theoretical estimators are difficult to calculate and are
still merely approximate values.

For both the classical and generalized linear model, it is common to adopt either a paired bootstrap
where resampling is done directly from the observations or the residuals bootstrap where resampling is
applied to the residuals of the model. The paired bootstrap is more robust than the residual bootstrap,
but only the residual bootstrap can be implemented in the context of the claim reserving, given the
dependence between some observations and the parameter estimates. If the type of residuals adopted
is the same, then mixing GLMs with bootstrapping is similar to combining the chain-ladder method
with bootstrapping. The residuals obtained from applying a GLM to the past claims data are used
in the resampling process of bootstrapping. With each re-sampled set of residuals, an upper triangle
can be constructed, and the stochastic chain-ladder can be applied again. The lower triangle is then
simulated from the assumed distribution with the first two moments determined by the stochastic
chain-ladder. Thereafter, an empirical distribution is formed, from which the required inferences can
be drawn.

3.1. Residuals

The process of creating a distribution for the reserve can be done by bootstrapping,
either parametric bootstrapping or non-parametric. It is common to use the residuals to bootstrap
a claims reserves distribution, which is a non-parametric bootstrapping method. For GLMs, the main
reason for not simply examining the raw residuals is the difficulty of checking the validity of the
assumed mean-variance relationship from the raw residuals.

One of the most used residuals in model diagnostics are the Pearson residuals and the deviance
residuals. Furthermore another residual, the Anscombe residual, is often mentioned as a possible
residual to consider, but is rarely applied in further work due to being known as a less commonly-used
residual. However, following [21], the Anscombe and the deviance residuals are mathematically
different, but numerically, they give similar results. The Anscombe residual tries to make the residuals
“as close to normal as possible”, and given that the response distribution has been correctly specified,
the deviance residuals are also approximately normally distributed. Thus, contrary to the usual
practice, we explore in the following the use of the Anscombe residuals. A version of the deletion
residual is also available under the GLM setting, which is related to the Pearson residual, but their
forms are rather complicated and, thus, omitted.

The Pearson residuals are just rescaled versions of the raw or response residuals and are defined as:

rP
ij =

Cij − µ̂ij√
V(µ̂ij)

,
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where V(·) is a variance function. The Pearson residuals need to be adjusted in order to obtain
(approximately) equal variance, and there are different adjustments suggested by several authors.
It was proposed by [8,17] to adjust the residuals by multiplying them by a correction factor:

rPE
ij =

√
n

n− p
rP

ij ,

where n is the sample size and p is the number of estimated parameters. In correspondence with the
classical linear model, often the “hat” matrix of the model is used to standardize the Pearson residuals,
which are given as:

rP∗
ij =

rP
ij√

φ̂(1− hij)
, (14)

where φ̂ is a scale parameter estimated from the data, and the factor hij is the corresponding element of
the diagonal of the “hat” matrix. This matrix is given for classical linear models by H = X(XTX)−1XT,
and it can be generalized for GLM as follows:

H = X(XTWX)−1XTW,

where X is a design matrix and W is a diagonal matrix with elements:

wii =

V(µij)

(
∂ηij

∂µij

)2
−1

on the diagonal (see [20] for details).
The distribution of Pearson residuals for non-normal distributions is often markedly skewed and,

thus, may fail to have properties similar to those of a normal-theory residual. Then, the Anscombe
residual can be a good alternative to the Pearson residual. The Anscombe residuals do not use the
variable Cij directly, but instead a transformation A(Cij). The function A(·) is chosen to make the
distribution of A(Cij) as normal as possible and in the context of GLM the Anscombe residual is
defined as

rA
ij =

A(Cij)− A(µ̂ij)

A′(µ̂ij) ·
√

V(µ̂ij)
,

where A′(µ) is the derivative of A(µ) and V(t) is the variance function. For the Poisson model,
the Anscombe residuals are defined by:

rA
ij =

3
2

(
C

2
3
ij − µ̂

2
3
ij

)
µ̂

1
6
ij

and for the gamma model the residuals are defined as:

rA
ij = 3

(Cij

µ̂ij

) 1
3

− 1

 .

It is easy to see that in case of the normal model, the Anscombe residuals are equivalent to the
classical residuals, and thus, for the log-normal model the residuals are defined as:

rA
ij = ln(Cij)− µ̂ij
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since V(µij) = 1. For a detailed overview of residuals, see [21].
Prediction errors with the bootstrapping method are compared based on the type of residuals

used and if or how we have adjusted the residuals. It is important to notice that the residuals of
the calculated values of the first column in the last row and of the first row in the last column are
always equal to zero, i.e., µ̂1n − C1n = 0 and µ̂n1 − Cn1 = 0. These are zeros due to the defined linear
structure adopted in the models implying the estimates for some of the parameters depend on one
observation only. The reason for the correction of zeros is that the bootstrap method assumes the
random variables (in this case, residuals) to be i.i.d. random variables, but in this case, there are two
non-random residuals, which are always fixed as zeros. Thus, we remove zero-residuals and replace
them with residuals resampled from the remaining ones. In this paper, we consider the Pearson and
Anscombe residuals first without corrections, then with the zeros corrected and lastly standardized
versions of residuals.

3.2. Prediction Error and Confidence Limits

A commonly-used measure of variability is the prediction error. In this context, we use the
expected value as the prediction. The prediction error consists of two parts: the process variance and
the estimation variance. The mean squared error of the prediction (MSEP) Ĉij is given by:

MSEP(Ĉij) = E((Cij − Ĉij)
2)

≈ (E(Cij)− E(Ĉij))
2 + Var(Cij − Ĉij)

= Var(Cij) + Var(Ĉij), (15)

where Var(Cij) denotes the process variance and Var(Ĉij) denotes the estimation variance.
Equation (15) is valid for the over-dispersed Poisson, the gamma and the log-normal reserving
models. Both terms have explicit expressions depending on which prediction model is used; see for
instance [17,28]. The reserve estimate for origin year i is given by the sum of the predicted values
in row i of ∆, i.e., R̂i = ∑j∈∆i

Ĉij, and for the estimate of the total, reserve Formula (12) can be used.
The calculation of prediction errors for origin year reserve estimates and overall reserve estimates
require more effort. Predicted values in each row are based on the same parameters, and predicted
values in the same column are based on the same parameters; thus, we need to handle dependency.
The variance of the sum of predicted values is considered, taking into account any covariances between
predicted values. Under certain assumptions, we need to consider only covariances arising in the
estimation variance. For detailed derivations of prediction errors for different models, we refer to [17].
All of these components can be rather difficult to calculate analytically, whereas the bootstrap procedure
is practically prudent and does not require the summation of a large collection of terms, unlike the
analytic and distribution-free approaches.

One possible bootstrap prediction approach takes the advantage of the central limit theorem by
approximating the distribution of the reserve by means of a normal distribution with the expected value
given by the initial forecast (with the original data) and the standard deviation given by the standard
error of prediction, which is an estimate of the square root of the estimation variance. However,
it cannot be compared directly with the analytic equivalent since the bootstrap standard error does not
take into account the number of parameters used in fitting the model, i.e., the bootstrap process simply
uses the residuals with no regard as to how they are obtained. As suggested by [17], the appropriate
adjustment to the bootstrap estimation variance to take account of the number of parameters estimated
is to multiply the bootstrap estimation variance by n

n−p .



Risks 2017, 5, 2 11 of 21

The analytic estimates of the estimation variance involve variance and covariance terms, which
implicitly include the scale parameter φ in their calculation. The scale parameter can be estimated,
for example, as the Pearson chi-squared statistic divided by the degrees of freedom:

φP =
∑(rP

ij)
2

n− p
,

where n is the number of data points in the sample and p is the number of parameters estimated, and
the summation is over the number of residuals. The bootstrap prediction error is the square root of the
sum of the squares of estimation variance and process variance,

SEPbs(R) =
√

Var(Cij) +
n

n− p
(SEbs(R))2,

where R stands for the total reserve (but the formula can be applied analogously in case of origin
year reserves). SEbs(R) is the bootstrap standard error of the reserve estimate, and process variance
Var(Cij) has an explicit form depending on the considered model. In the case of the ODP model and
gamma model, the process variance would be:

∑
i,j∈∆

φPµij = φP ∑
i,j∈∆

µij = φPR,

and:

∑
i,j∈∆

φPµ2
ij = φP ∑

i,j∈∆
µ2

ij,

respectively. In the case of the log-normal model, the process variance is simply σ2.
Following [19,29], we consider an alternative bootstrapping procedure to obtain an upper

confidence limit for the forecasts of the aggregate values. This approach (in the following named
the PPE-method) includes two resampling procedures in the same bootstrap “iteration”, but the
results should be more robust against deviations from the hypothesis of the model. The idea is to
define an adequate prediction error as a function of the bootstrap estimate and a bootstrap simulation
of the future reality and to record the value of this prediction error for each bootstrap “iteration”.
Then, use the desired percentile of this prediction error, and combine it with the initial prediction
to obtain the upper limit of the prediction interval. See [19] for the step-by-step explanation of this
alternative approach.

4. Case Study

To enable a comparison with previously-discussed methods in the framework of bootstrapping
with defined residuals, we use the real-life dataset from an Estonian insurance company. The data
considered describe the paid out claims and are shown here in incremental form. We are interested
in the impact of the choice of the models and, mainly, in the effect of the choice of residuals and
its adjustments.

We use both the Pearson and the Anscombe residuals first without corrections, then with the
zeros corrected and lastly standardized residuals together with the zero correction. It is clear that
using just standardized residuals will lead to the same results as obtained with the zero-corrected
residuals; thus, we do not consider standardized residuals independently in the comparative study.
In addition, we compare the obtained prediction errors and obtain the upper limits using both
bootstrap approaches, i.e., the regular SEP-method based on the standard error of prediction and the
alternative (using pseudo-reality) PPE method. We present PPE prediction errors only for the total
reserve. When comparing SEP and PPE prediction errors, we have to take into account that different
units are used: SEP prediction error equals one standard deviation, and PPE prediction error equals
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(approximately) 1.645 standard deviations (95%-quantile of normal distribution). This means that we
have to multiply the prediction error obtained with SEP method by 1.645 and add it to the reserve
estimate to obtain an upper confidence limit for the total reserve with the SEP method. In the case of
the PPE method, we simply sum the prediction error and the mean to obtain the upper limit.

Reserve estimates provided by the over-dispersed Poisson model, the gamma model and
log-normal model using the GLM implementation in the framework of bootstrapping with residuals
outlined in this paper are shown in Tables 3–7 below. As one can see, the data considered are rather
inconvenient (see Table 2), i.e., the large fluctuation of the values in the triangle is obvious: the
smallest incremental value is 1022, and the largest one is 10,660,074, which is a 10,430-fold difference.
The second column in Tables 3–7 shows a point estimate for the reserve. These estimates are obtained
directly from the defined model (not depending on the bootstrap procedure), and the point estimates
do not depend on the choice of residual or on its correction.

The most problematic stage in the bootstrap method is the formation of the pseudo-data. If the
magnitudes of the incremental values differ significantly, it is quite likely that the values of simulated
residuals (simulated from the initial set of residuals) are sufficiently high compared to the predicted
incremental values to cause the negative values to appear in the (pseudo-)data due to the use of
the inverse function. Most of the probability distributions used in loss reserving are non-negative
(or positive) valued; thus, the problem with negative values in the (pseudo-)data can often appear.
For example, in the case of the Poisson distribution, the negative incremental values are often replaced
by zeros in practice. Since incremental values in Table 2 have a high volatility, we experienced
some negative incremental values in the pseudo-data when using the gamma model with the
Pearson residuals. We also tried to replace the appearing negative values with ones, but that caused
non-convergence of the parameters. Thus, we could not present the results of the gamma model and
the Pearson residuals with the given dataset. There were no problems in the case of the Anscombe
residuals. See Table 8 for an overview of the experienced negative values in the pseudo-data for each
considered model and residual adjustment with the given dataset in Table 2.

Table 2. Full run-off triangle for paid out claims.

1 2 3 4 5 6 7 8 9 10

2000 4,734,994 1,885,305 281,240 504,341 524,449 365,049 100,761 32,449 3697 56,901
2001 4,344,093 1,783,774 243,849 339,985 49,482 178,961 508,272 78,125 1022
2002 5,288,867 1,795,855 303,246 351,320 316,038 33,501 88,774 31,102
2003 5,357,617 2,548,383 336,749 403,501 348,378 236,017 12,982
2004 5,737,732 2,574,724 971,320 280,140 226,212 152,127
2005 5,635,064 2,758,392 241,734 268,113 429,503
2006 6,629,504 3,045,252 356,119 200,420
2007 6,824,829 2,669,579 166,400
2008 8,116,439 3,428,535
2009 10,660,074

We first have a look at the results obtained by ODP model with using the Pearson residuals
(see Table 3) and the Anscombe residuals (Table 4). The tables present the point estimates along
with the standard errors of prediction for the three situations considered, as well as the upper limits
for a confidence level of 95%. The standard errors of prediction grow up if we introduce the zero
corrections, and consequently, the same happens to the upper limits, but the same estimates drop if we
use the standardization (see Formula (14)) with zero correction. The prediction errors (SEP) in the case
of the Poisson model with Pearson residuals are varying from 1.6 million–1.94 million, depending on
the residual adjustment, whereas in the case of the Anscombe residuals (see Table 4), the prediction
errors vary from 1.47 million–1.76 million. This means that the 95% confidence limits for the total
reserve prediction are between 16 million and 16.6 million in the case of the Pearson residuals and
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15.8 million and 16.3 million in the case of the Anscombe residuals, given the Poisson model and
residual adjustments.

Table 3. Over-dispersed Poisson model with Pearson residuals.

Year Est. Reserve
Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 50,796 90,377 199,466 89,795 198,509 69,858 165,713
3 57,837 97,791 218,702 97,051 217,485 74,943 181,117
4 120,029 135,467 342,872 135,571 343,043 115,039 309,268
5 348,993 220,918 712,403 225,328 719,658 207,318 690,031
6 552,215 271,860 999,425 270,829 997,728 259,708 979,434
7 1,024,516 374,459 1,640,501 381,686 1,652,389 361,525 1,619,225
8 1,406,290 441,811 2,133,069 444,127 2,136,879 421,587 2,099,800
9 2,283,616 576,547 3,232,037 578,861 3,235,843 549,794 3,188,028
10 7,560,816 1,264,024 9,640,136 1,249,066 9,615,530 979,054 9,171,360
Total 13,405,108 1,944,083 16,603,125 1,944,997 16,604,628 1,603,405 16,042,710
PPE 3,182,150 16,587,258 3,082,305 16,487,413 1,625,348 15,030,456
PPE/SEP 1.637 0.999 1.585 0.993 1.014 0.937

Table 4. Over-dispersed Poisson model with Anscombe residuals.

Year Est. Reserve
Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 50,796 85,484 191,418 87,509 194,748 69,751 165,536
3 57,837 91,878 208,975 94,369 213,073 75,139 181,440
4 120,029 129,886 333,690 133,400 339,471 114,032 307,612
5 348,993 211,456 696,839 216,857 705,723 200,673 679,101
6 552,215 260,652 980,988 262,344 983,771 250,894 964,937
7 1,024,516 357,010 1,611,798 364,678 1,624,412 347,598 1,596,314
8 1,406,290 415,877 2,090,406 421,084 2,098,972 406,742 2,075,380
9 2,283,616 542,459 3,175,961 544,458 3,179,249 522,033 3,142,361
10 7,560,816 1,124,403 9,410,459 1,109,368 9,385,726 934,009 9,097,261
Total 13,405,108 1,727,161 16,246,288 1,758,340 16,297,578 1,469,680 15,822,732
PPE 2,029,479 15,434,588 2,004,348 15,409,456 1,275,538 14,680,646
PPE/SEP 1.175 0.950 1.140 0.946 0.868 0.928

Using the Anscombe residuals, the same pattern of changes of prediction errors (and also upper
limits) can be seen, but the prediction errors, as previously said, are smaller than the Pearson residuals.
We see that the zero corrections do not effect the prediction errors significantly. The prediction errors
without any corrections with the Anscombe residuals are 13% smaller than with the Pearson residuals.
The corresponding numbers with zero correction and zero correction with standardization are 10%
and 8%, respectively.

To compare the behavior of two bootstrapping approaches, we have the last two lines of each
table presenting the prediction errors and the upper confidence limits of the total reserve obtained by
the PPE method and the ratio of the results by the PPE method and SEP method. We can see that the
upper confidence limits for the total reserve are lower with the PPE method (all of the ratios PPE

SEP are
smaller than one). On the other hand, the prediction errors (depending on the residual adjustments)
obtained by the PPE method are higher than the estimates obtained by the SEP method. However, the
ratios seem to decrease if we correct the residuals. In the case of Pearson residuals with zero correction
and standardization, the corresponding ratio is slightly over one, and in the case of the Anscombe
residuals, it is slightly below one.

Fitting the gamma model gives similar, but not identical, reserve estimates (see Table 5) compared
to the results obtained by ODP. The point estimate for the total reserve with the gamma model is
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12.1 million, whereas with the Poisson model it was 13.4, which is 10.7% higher. If we compare the
reserve estimates by origin year, then the biggest difference can be seen on the third year, where the
difference is 55.8%. In the case of the gamma model and the Anscombe residuals, the prediction errors
for the total reserve vary from 3.35 million–5.04 million. The upper limit for the total reserve in the case
of the gamma model reaches 20.43 million. In a nutshell, when comparing the Poisson and the gamma
model in this particular dataset, the latter gives us a smaller total reserve estimate, but higher prediction
errors and, thus, higher upper limits for the reserve. In the case of both models, the PPE method tends
to give higher prediction errors, except the case when the residuals are zero-corrected and standardized.

Table 5. Gamma model with Anscombe residuals.

Year Est. Reserve
Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 50,012 38,160 112,785 39,008 114,180 30,965 100,950
3 37,119 26,904 81,376 27,827 82,895 22,081 73,442
4 93,433 48,396 173,045 49,667 175,135 44,190 166,126
5 332,152 159,500 594,530 162,956 600,215 161,306 597,501
6 454,013 193,496 772,314 197,412 778,756 198,066 779,831
7 782,169 329,614 1,324,384 324,932 1,316,682 324,997 1,316,788
8 1,031,664 423,941 1,729,046 438,924 1,753,693 429,318 1,737,892
9 2,090,955 945,444 3,646,210 974,441 3,693,911 879,649 3,537,977
10 7,270,705 4,520,261 14,706,534 4,810,081 15,183,288 3,060,442 12,305,132
Total 12,142,220 4,692,325 19,861,095 5,038,337 20,430,285 3,356,603 17,663,832
PPE 7,586,523 19,728,743 6,993,945 19,136,166 2,839,397 14,981,617
PPE/SEP 1.617 0.993 1.388 0.937 0.846 0.848

From Tables 6 and 7, we can see the results of the log-normal model. The point estimate among
all of the considered models is the lowest with the log-normal model, namely 10.8 million. However,
we note a high increase in the prediction errors, especially in the case of residual’s zero correction.

Table 6. Log-normal model with Pearson residuals.

Year Est. Reserve
Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 42,904 52,003 128,449 51,823 128,152 15,151 67,827
3 36,824 39,224 101,347 47,523 114,999 13,957 59,783
4 80,170 57,605 174,930 63,622 184,828 31,949 132,726
5 215,413 107,603 391,661 120,549 413,716 94,383 370,673
6 351,163 166,083 624,369 172,026 634,146 162,592 618,626
7 600,400 290,000 1,077,450 288,431 1,074,868 281,236 1,063,033
8 819,029 422,285 1,513,687 431,693 1,529,163 406,269 1,487,341
9 1,790,227 1,254,931 3,854,588 1,437,501 4,154,916 1,092,042 3,586,636
10 6,871,745 8,625,252 21,060,284 10,534,588 24,201,142 2,188,477 10,471,789
Total 10,807,874 8,751,120 25,203,481 10,741,298 28,477,309 2,696,996 15,244,432
PPE 6,591,299 17,399,173 6,084,858 16,892,732 3,153,855 13,961,729
PPE/SEP 0.753 0.690 0.566 0.593 1.169 0.916
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Table 7. Log-normal model with Anscombe residuals.

Year Est. Reserve
Without Corrections Zero-Correction Zero-Correction & Stand.

SEP Upper 95% SEP Upper 95% SEP Upper 95%

2 42,904 34,201 99,164 34,575 99,779 11,889 62,461
3 36,824 26,572 80,534 31,038 87,881 10,885 54,729
4 80,170 39,629 145,359 43,036 150,964 24,827 121,010
5 215,413 79,247 345,774 86,722 358,152 72,523 334,713
6 351,163 124,969 556,737 128,456 562,473 124,209 555,486
7 600,400 221,705 965,104 220,991 963,930 217,118 957,559
8 819,029 321,006 1,347,083 328,293 1,359,070 311,412 1,331,301
9 1,790,227 924,401 3,310,866 1,014,638 3,459,306 804,123 3,113,009
10 6,871,745 5,677,582 16,211,367 6,631,999 17,781,383 1,712,612 9,688,991
Total 10,807,874 5,782,386 20,319,898 6,793,931 21,983,890 2,082,248 14,233,171
PPE 5,934,922 16,742,796 5,279,051 16,086,925 2,693,775 13,501,649
PPE/SEP 1.026 0.824 0.0.777 0.731 1.294 0.949

The prediction errors for the total reserve with the log-normal model with the Pearson residuals
vary from 2.7 million–10.7 million, depending on the residual’s adjustments. The upper limits for
the total reserve with the Pearson residuals vary from 15.2 million–28.47 million; this shows a great
fluctuation of the estimates. The prediction errors with the Anscombe residuals are between two
million and 6.8 million; thus, the 95% confidence limit for the total reserve is between 14.2 million
and 22 million, depending on the residual’s adjustments. However, higher values of the prediction
errors should not be surprising, as the log-normal model is a more “conservative” model than,
for example, the Poisson model or the gamma model. The prediction errors as the % of the total
reserve estimates obtained by the Pearson residuals without corrections, with zeros corrected and then
with zero correction with standardization are 81%, 99% and 25%, respectively. The corresponding
% of prediction errors in the case of the Anscombe residuals are 53%, 63% and 19%, respectively.
We see that the same pattern follows as before; if we use zero correction, then the prediction errors
(and consequently, the upper limits, as well) are the highest. The lowest prediction errors are obtained
by the zero correction together with using standardization. Furthermore, in case of the log-normal
model, we see that the PPE method gives smaller upper limits than the SEP method for the total
reserve. Note that when it comes to the prediction errors, the PPE method does not continue to give
higher prediction estimates than the SEP method, which was the case with the Poisson and the gamma
models. We see from the Tables 3–7 that on the 10th year, the estimated reserve is the highest and
is approximately three-times higher than the estimated reserve on the previous year. The reserve
estimate on the 10th year makes nearly 56.4% of the total reserve estimate in the case of the Poisson
model, 59.9% in the case of the gamma model and 63.4% in the case of the log-normal model, which
is the highest percentage. This high proportion of the reserve estimate on one particular year can be
explained by having a look at the initial dataset, Table 2, where we see that on the last year, 2009, we
have the largest value in the whole dataset.

We can draw four main conclusions from analyzing this dataset:

1. The over-dispersed Poisson model produces the highest estimated claim reserve, and the
log-normal model produces the smallest estimated claim reserves. The figures of the gamma
model are not that different from the ODP model.

2. The standard errors of prediction are quite different and consequently the estimated upper limits.
These differences tend to be greater especially on the first years, since estimations are based on
few predictions. The highest prediction errors are produced by the log-normal model, and the
lowest prediction errors were obtained by the over-dispersed Poisson model.
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3. With this particular dataset, the prediction errors are the lowest with the Anscombe residuals.
Furthermore, no matter which residual of the two is used, the lowest prediction errors are obtained
by using the zero correction with standardization.

4. When comparing the two bootstrap procedures, we can conclude that using the (alternative) PPE
method, the upper confidence limits for the total reserve are lower with each considered model.

As we mentioned beforehand the possible problem associated with the negative values in the
pseudo-data, we present Table 8, which gives an overview of the amount of the negative values
appearing in the procedure of creating a pseudo-data in the case of 1000 iterations. Roughly speaking,
we observe that with the Poisson Models 1–2, negative pseudo-incremental values appeared with
every iteration step. This is rather expected since the incremental values in the data differ largely.
Note that using the Pearson residual caused more negative values than using the Anscombe residuals.
There were no negative values in the pseudo-data in the case of the gamma, nor the log-normal model.

Table 8. Amount of negative values appearing in the pseudo-data during 1000 iterations.

Type of Adjustment
Poisson Model Log-Normal Model Gamma Model

Pearson Anscombe Pearson Anscombe Anscombe

Without corrections 2281 1132 0 0 0
Zero-correction 2314 1172 0 0 0
Zero-correction & Stand. 2207 912 0 0 0

The presented prediction errors in the Tables 3–7 above helped us to compare the variability of
the mean of the total reserve. However, it can be also helpful to have an idea of the upper limit of the
total reserve in general. The quantiles for a random total reserve and for the mean of the total reserve
in the case of the Poisson model are presented in the tables below, Tables 9 and 10.

Table 9. The upper confidence limits for the total reserve and for the mean of the total reserve by the
Poisson model and Pearson residuals.

The Quantile
The Adjustment Type

Without Corrections Zero-Correction Zero-Correction & Stand.

90% Reserve 16,189,247 16,284,477 15,903,554
Mean 15,893,535 15,894,705 15,457,467

95% Reserve 17,046,324 17,712,940 17,141,555
Mean 16,603,125 16,604,628 16,042,710

99% Reserve 18,476,692 18,570,018 17,712,940
Mean 17,934,822 17,936,951 17,141,042

As expected, the upper limits of the mean of the total reserve are lower than the upper limit of the
random total payment (reserve). The adjustments of the residual have a great influence on the results:
standardized residuals with zero corrections tend to lower the estimates.
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Table 10. The upper confidence limits for the total reserve and for the mean of the total reserve by the
Poisson model and the Anscombe residuals.

The Quantile
The Adjustment Type

Without Corrections Zero-Correction Zero-Correction & Stand.

90% Reserve 15,903,554 16,189,247 15,617,861
Mean 15,615,874 15,655,784 15,286,299

95% Reserve 17,427,248 17,332,017 16,760,632
Mean 16,246,288 16,297,578 15,822,732

99% Reserve 18,094,816 18,285,278 17,143,460
Mean 17,429,394 17,502,041 16,829,463

5. Comparative Analysis with the Schedule P Database

In the previous section, we carried out a case study with different reserving methods in the
bootstrap framework where we assessed the impact of the considered predictive models and residuals.
Apart from the analytical perspective of the methods, it is also essential to compare and rank competing
forecasting methods. One of the main weak points of the comparative studies in the published
actuarial science-related papers is the lack of actual knowledge for which considered model is the
most precise. In most of the comparative studies, to our knowledge, the chain-ladder mean is often
kept as a benchmark, but in the end, this should not be the only requirement when deciding which
model is the best (or the most precise). There are enough statistical tools and methods to measure the
prediction accuracy.

5.1. Schedule P Database

We apply the defined models, residuals and their adjustments to the run-off triangles from
practice. We extracted 10 real datasets from the Schedule P – Analysis of Losses and Loss Expenses
in the National Association of Insurance Commissioners (NAIC) database, which is available on the
website of the Casualty Actuarial Society. The data include major personal and commercial lines of
business from U.S. property and casualty insurers. The database contains data on six lines of business,
and we chose to use the workers’ compensation. The triangle data correspond to the claims of the
accident years 1988–1997 with a 10-year development lag. Not all of the datasets there were applicable;
some of them contained too many negative values in the upper triangle, which lead to a problem in the
parameter estimation procedure with the given models, and many triangles contained a high number
of zeros both in the upper and the lower triangle. Thus, we had to carefully extract the datasets,
which would fulfill the requirements of the models’ assumptions. Both upper and lower triangles
are included, so that we can use the data to test the models’ performance retrospectively, i.e., the
validation process is based on the back-testing idea, and all of the methods provide reserve estimates
by predicting in the same lower triangle. We used the full triangles with the identifiers 337; 1767;
2135; 2712; 7080; 8672; 34,576; 21,172; 18,767; 14,176. Anyone interested could easily find these chosen
datasets from the corresponding website.

5.2. Model Validation

This subsection describes the validation process for the three methods discussed in Section 2 in
combination with the possible residual definitions in the bootstrap procedure discussed in Section 3.
We consider the scoring rule to measure the accuracy of probabilistic predictions. There are many
scoring rules available to apply, including entire parametrized families of proper scoring rules.
In accordance with the [30] prequential principle, the evaluation of probabilistic forecasts is required
to be based only on the predictive distributions and the observations.

Scoring rules provide summary measures of predictive performances, by assigning numerical
scores to the probabilistic forecasts and on the value that materializes. Sharpness and calibration are
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combined here in one measure. Sharpness refers to the concentration of the predictive distributions
and is a property of the forecasts only. The less variability in the predictions, the more concentrated the
predictive distributions are. Consequently, forecasts will be more sharper, and subject to the calibration,
the sharper the forecasts are the better. Following [31], we denote s(P, x) as the assigned score for the
issued predictive distribution P and materialized observation x drawn from Q. We take scores to be
penalties that the forecaster wishes to minimize. A scoring rule is proper if the expected value of the
penalty s(P, x) for an observation x is minimized if P = Q. We talk about a strictly proper scoring rule
if the minimum is unique. For an introduction to scoring rules, we refer to [32,33].

We consider scoring rule that depends on first and second moments only. This type of proper
scoring rule was studied by [34]. In this paper, we use the Dawid–Sebastiani scoring rule (DSS), which
is defined as:

DSS =

(
x− µP

σP

)2
+ 2 ln(σP),

where x is the observation that realizes, µP is the mean and σP is the standard deviation of the predictive
distribution. To assess the predictive performance of each model with different residual adjustments
discussed in this paper, we obtain an overall performance measure by averaging the DSS scores over
all of the cells in the lower triangle and over each considered dataset. Let k = 1, . . . , m denote the
number of datasets used. Then, the DDS scoring rule specifies to:

DSS =
1
m

m

∑
k=1

 ∑
i,j∈O

(
(Cij)

k − (µ̂ij)
k

(σ̂ij)k

)2

+ 2 ln((σ̂ij)
k)

 , (16)

where Cij, i, j ∈ O denote the cells in the lower triangle, i.e., the observation that realizes
(true observation in the lower triangle), µ̂ij is the estimate of the corresponding mean obtained
by the predictive model and σ̂ij is the estimate of the corresponding standard deviation obtained by
bootstrapping. The first term focuses on calibration and the second term on sharpness. As the goal is
to maximize the sharpness, we look for the model that would minimize the penalty.

5.3. Results

In this section, we present the model assessment results obtained by the scoring rule (16).
In Table 11 below, we present the overall performance measure for the over-dispersed Poisson
model, the gamma model and the log-normal model with the considered residuals adjustments,
i.e., using residuals without corrections, zero correction and zero correction with taking into account
the influence of the observation (i.e., using the standardized residuals). Thus, we have 18 different
setups and combinations.

Table 11. Model validation using the Dawid–Sebastiani scoring rule (DSS). The three lowest scores are
indicated in bold.

Model Residual
Type of Adjustment

Without Corrections 0’s Corrected 0’s Corrected & Stand.

Poisson Pearson 36.7 33.9 396.8
Anscombe 46.2 44.2 598.4

Gamma Pearson 112.3 106.6 256.9
Anscombe 168.7 159.1 401.6

Log-normal Pearson 103.1 98.2 251.6
Anscombe 158.0 149.9 383.7
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As we are interested in which model minimizes the score the most, we pointed out in bold three
setups with the smallest numerical value; see Table 11. In general, we can draw five main conclusions
from validating the considered models:

1. The over-dispersed Poisson model fits the data best. This confirms the results obtained in the
previous section, where we obtained the smallest prediction errors precisely with the ODP model.

2. The gamma model and the log-normal model are behaving rather similarly, but the log-normal
model is fitting the data slightly better.

3. The lowest values of the measures are obtained with the zero-corrected residuals and with the
non-corrected residuals.

4. The smallest score was obtained by the zero correction with the Pearson residuals.
5. If comparing just the choice of residuals, we see that the Anscombe residuals perform more

poorly than the Pearson residuals.

In Section 4, the results showed that the lowest prediction errors were obtained with the
Anscombe residual; thus, we can suspect that the Anscombe residual suffered from a considerable
underestimation. The highest values of the measures are obtained strictly with the standardized
residuals adjusted by zero correction. Recall that in the previous section with the given particular
dataset, we saw that the lowest prediction errors were obtained by the zero-corrected and standardized
residuals. This is a good example to show that in the comparative study, the focus should not be only
on which model gives the lowest errors, but which method actually fits the data the best. An the
actuary has to be always ready to use his/her own expertise and experience in addition to well-known
or most-used models in the estimation problems, as every dataset is different, we considered 18
different setups in the model validation, and as we wanted to rank the models, then we rank the
first three models based on the used scoring rule: the ODP model with the Pearson residual without
the correction; the ODP model with the Pearson residuals with the zero correction; and the ODP
model with the Anscombe residual with the zero correction. This also shows that in some situations,
the Anscombe residuals could be considered as an alternative to the Pearson residuals.

According to this case study and comparative analysis, we can say that given the obtained results
in Sections 4 and 5, the method that gives the lowest prediction errors should not be confused with
being the best model. Like in our case study, methods that result in the lowest variability may be,
for instance, strongly suffering from the underestimation and do not fit the data after all. We considered
only one scoring rule, but more investigation is required in the model validation part.

6. Discussion

In this paper, we studied the impact of the methods and the residuals on the reserve estimates
and their predictive distributions. Caution is necessary when dealing with the latest development
periods of the earlier accident years. The residuals of the tail are often volatile, and adjustment is hence
required if they are used in the bootstrapping process. Therefore, we implemented and compared
the (over-dispersed) Poisson, the gamma and the log-normal distributions in combination with the
residual adjustments in the bootstrapping framework. We saw that the (over-dispersed) Poisson model
and the gamma model tend to give similar point estimates, as expected, but there are bigger differences
in the estimates of the prediction errors. In our case study (Section 4), we obtained the smallest errors
using standardized residuals with the zero correction, but in the model validation (Section 5), we saw
the methods performing somewhat contrary to the results obtained in the case study. In general, based
on the case study and the model validation part, we could conclude that the over-dispersed Poisson
model with the Pearson residual fits the data the best, and it looks that the best option would be to
consider zero correction for the residuals. The Poisson model with the Pearson residuals appears to be
a good choice in the sense that it yields the most reliable results, based on the scoring rule, whereas the
Anscombe residuals with the zero correction and standardization leading to the lowest prediction
errors in the first case study showed the poorest fit with the data in the model assessment section.
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We can conclude that there are many different possibilities that we have to take into account before
applying the bootstrap method as the prediction errors obtained by using different combinations of
possible options are quite different. It is up to an actuary which result should be taken into account
when making decisions in setting up the fund for reserves. The choice of a particular model remains
the main struggle, but based on our research, we can draw the following conclusions:

• The large fluctuation of the values in the data substantiates the use of the over-dispersed
Poisson model. The gamma model and the ODP model tend to give similar point estimates,
whereas the log-normal model produces the smallest estimated claim reserves. Here, the expertise
of an actuary would help to finalize a decision in model selection, depending on the company’s
balance of hazard and conservatism.

• When the emphasis is on prediction errors, then the ODP model should be used for the lowest
prediction errors. The log-normal model tends to give irrationally high errors.

• The choice of residuals matters in bootstrapping. The Pearson residual should be preferred,
but in some cases (see Table 11), the Anscombe residual could be considered.

• The adjustment of residuals is not less important than the choice of the residual; the most precise
predictions are obtained with either zero-corrected residuals or without any corrections.

• The proposed model validation and assessment ideas are generic and do not depend on
a particular dataset, thus constituting a useful tool in reserve estimation.

The analysis between the estimates and the actual future payments has to be carried out by the
expert in the long run, in order to validate the functionality of a reserving method and identify any
needed modifications. It is contended in [8] that the effectiveness of a particular reserving method
and modeling can be completely tested only with an extensive case study with data from various lines
of business and companies. Then, the estimated results are compared with how the claims develop
over time, and only then, we can get closer to the best choice of the reserving models. Comparative
studies could have a higher value when the model validation is included in the analysis. The model
assessment should become a default procedure when deciding on (reserving) models. In this paper,
we considered only one scoring rule, but other statistical approaches for the model assessment could
be considered in the future.
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