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Abstract: Panel data of our interest consist of a moderate number of panels, while the panels contain
a small number of observations. An estimator of common breaks in panel means without a boundary
issue for this kind of scenario is proposed. In particular, the novel estimator is able to detect a common
break point even when the change happens immediately after the first time point or just before the last
observation period. Another advantage of the elaborated change point estimator is that it results in the
last observation in situations with no structural breaks. The consistency of the change point estimator
in panel data is established. The results are illustrated through a simulation study. As a by-product
of the developed estimation technique, a theoretical utilization for correlation structure estimation,
hypothesis testing and bootstrapping in panel data is demonstrated. A practical application to
non-life insurance is presented, as well.
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1. Introduction and Main Aims

The problem of an unknown common change in means of the panels is studied, where the panel
data consist of N panels, and each panel contains T observations over time. Various values of the
change are possible for each panel at some unknown common time τ = 1, . . . , T. The panels are
considered to be independent, although this restriction can be weakened. On the other hand, within
the panels, the observations are generally not assumed to be independent. This is in accordance with
typical assumptions that one can make about real data. A common dependence structure is supposed
to be present over the panels. Our main goal is to construct an estimator of a possible change point,
which is consistent even in the case of no structural break.

1.1. Current State of the Art

Tests for change point detection in panel data have been proposed by [1] for sufficiently large
panel sizes T, i.e., the limiting results were derived under the assumption that T increases over all
limits. Testing procedures for the change in panel means with T fixed, which can be relatively small
or moderate, were considered in [2]. The change point estimation in panel data for fixed, as well as
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for unbounded T was studied by [3]. However, the panel change point estimator in [3] is derived
only for a situation, where one knows for sure that the change in means occurred within the given
time period. This restriction can become insurmountable for some further utilization of the change
point estimator, as will be demonstrated later in this paper. In [4], a consistent change point estimator
was introduced, requiring no definite knowledge about the existence of the change point in the given
panel data. In the case of no change being present, the estimator picks the last observation, which
means that no structural break is identified. However, this estimator has several disadvantages.
It assumes a certain kind of homoscedasticity in the panels. Further, it does not take into account the
possibility that the change may occur right after the first time point. It also assumes conditions that
may be viewed as too complicated with regard to verification and model checking. The remaining
task is, therefore, to develop a change point estimator that is consistent regardless of the change’s
presence/absence. Moreover, such an estimator would gain from allowing heteroscedasticity in the
panels, having a broader scope of applications. Besides that, the applicability of the estimator is
enhanced by simple consistency conditions and no boundary issue. The boundary issue means that
the change point can neither be detected nor estimated when being close to the beginning or to the end
of the observation regime.

Further on, Kim [5,6] dealt with the change point estimator under cross-sectional dependence in
the panels modeled by a common factor and expanded the estimation problem for more complicated
types of structural changes. The first and second order asymptotics that can be used to derive consistent
confidence intervals for the time of change in panel data were established by [7]. The panel length T
was considered as unbounded and depending on the number of panels N. However, there is some
literature on the short panel change point framework where also weighting functions, as we employ
later on, are suggested, cf. [8].

1.2. Motivation in Non-Life Insurance

Structural changes in panel data, especially common breaks in means, are wide-spread
phenomena. Our primary motivation comes from the non-life insurance business, where associations
in many countries uniting several insurance companies collect claim amounts paid by every insurance
company each year. Such a database of cumulative claim payments can be viewed as panel data, where
insurance company i = 1, . . . , N provides the total claim amount Yi,t paid in year t = 1, . . . , T into the
common database. The members of the association can consequently profit from the joint database.

For the whole association, it is important to know whether a possible change in the claim amounts
occurred during the observed time horizon. Usually, the time period is relatively short, e.g., 10–15 years.
To be more specific, a widely-used and very standard actuarial method for predicting future claim
amounts, called chain ladder, assumes a kind of stability of the historical claim amounts. The formal
necessary and sufficient condition is derived in [9]. This paper shows a way to detect a possible
historical instability.

1.3. Structure of the Paper

The remainder of the paper is organized as follows. Section 2 introduces an abrupt change point
model together with stochastic assumptions. An estimator for the change point in panel means is
proposed in Section 3. Consequently, the consistency of the considered change point estimator is
derived, which covers the first main theoretical contribution. Section 4 contains a simulation study that
illustrates the finite sample performance of the estimator. It numerically emphasizes the advantages
and disadvantages of the proposed approach. The second main theoretical contribution lies in the
panel correlation structure estimation and in the bootstrap add-on justification for hypothesis testing,
all provided in Section 5. A practical application of the developed approach to an actuarial problem is
presented in Section 6. Proofs are given in the Appendix.
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2. Abrupt Change in Panel Data

Let us consider the panel change point model

Yi,t = µi + δiI{t > τ}+ σiεi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T; (1)

where σi > 0 are unknown variance-scaling panel-specific parameters and T is fixed, not depending
on N. The possible common change point time is denoted by τ ∈ {1, . . . , T}. A situation where τ = T
corresponds to no change in means of the panels. The means µi are panel individual. The amount of
the break in the mean, which can also differ for every panel, is denoted by δi. There is at most one
change per panel in Model (1), and the type of change in the panel mean is abrupt.

Furthermore, it is assumed that the sequences of panel disturbances {εi,t}t are independent.
At the same time, the errors within each panel form a weakly-stationary sequence with a common
correlation structure. This can be formalized in the following assumption.

Assumption 1. The vectors [εi,1, . . . , εi,T ]
> existing on a probability space (Ω,F ,P) are iid for i = 1, . . . , N

with Eεi,t = 0 and Var εi,t = 1, having the autocorrelation function

ρt = Corr (εi,s, εi,s+t) = Cov (εi,s, εi,s+t) , ∀s ∈ {1, . . . , T − t},

which is independent of the lag s, the cumulative autocorrelation function

r(t) = Var
t

∑
s=1

εi,s = ∑
|s|<t

(t− |s|)ρs,

and the shifted cumulative correlation function

R(t, v) = Cov

(
t

∑
s=1

εi,s,
v

∑
u=t+1

εi,u

)
=

t

∑
s=1

v

∑
u=t+1

ρu−s, t < v

for all i = 1, . . . , N and t, v = 1, . . . , T. The covariance matrix Λ := Var
[
∑1

s=1 ε1,s, . . . , ∑T
s=1 ε1,s

]>
is non-singular.

The sequence {εi,t}T
t=1 can be viewed as a part of a weakly-stationary process. Note that the

within-panel dependent errors do not necessarily need to be linear processes. GARCH processes are
a plausible alternative, for instance.

The assumption of independent panels can be relaxed. It would, however, make the setup much
more complex, cf. [5]. Consequently, probabilistic tools for dependent data need to be used (e.g.,
suitable versions of the central limit theorem). Nevertheless, assuming that the claim amounts for
different insurance companies are independent is reasonable with regard to real-life experience.

Assumption 2. There exist constants σ, σ > 0 not depending on N, such that

σ ≤ σi ≤ σ, 1 ≤ i ≤ N.

The assumption of the bounded panel variances from both below and above allows for
heteroscedasticity between the panels. In the case when the equiboundedness cannot be satisfied,
the panel model can be generalized by introducing weights wi,t, which are supposed to be known.
Subsequently, claim ratios Yi,t/wi,t can be modeled. Being particular in actuarial practice, it would
mean normalizing the total claim amount by the premium received (considered as the weight), since
bigger insurance companies are expected to have higher variability in total claim amounts paid.
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3. Change Point Estimator

A consistent estimator of the change point in panel data is proposed in [3], but under circumstances
that the change occurred for sure. In our situation, we do not know whether a change has occurred
or not. Therefore, we modify the estimate proposed by [3] in the following way. If the panel means
change somewhere inside {1, . . . , T− 1}, let the estimate select this break point. If there is no change
in panel means, the estimator points out the very last time point T with the probability going to one.
In other words, the value of the change point estimate can be T, meaning no change. This is in contrast
to [3], where T is not reachable.

Our estimator of the time of change τ in panel data is defined as

τ̂N := arg min
t=1,...,T

N

∑
i=1

{
1

w(t)

t

∑
s=1

(Yi,s − sYi,t)
2 +

1
w(T − t)

T

∑
s=t+1

(Yi,s − Ỹi,t)
2

}
, (2)

where sYi,t is the average of the first t observations in panel i and Ỹi,t is the average of the last T − t
observations in panel i, i.e.,

sYi,t =
1
t

t

∑
s=1

Yi,s and Ỹi,t =
1

T − t

T

∑
s=t+1

Yi,s.

By convention, the value of an empty sum is zero. A sequence of positive weights {w(t)}T
t=0 is specified

later on.

3.1. Consistency

We postulate additional assumptions on the panel change point model (1) in order to derive the
estimator’s consistency. The following conditions take into account that the length T of the observation
regime is fixed; that the length T does not depend on the number of panels N; and that the length T
can even be relatively small.

Assumption 3. Let g(t) := t
w(t)

(
1− r(t)

t2

)
for t ∈ {1, . . . , T}, g(0) ≡ 0, and

lim
N→∞

1√
N

{
τ

τ + 1

N

∑
i=1

δ2
i − (g(τ) + g(T − τ)) max

t=1,...,T
w(t)

N

∑
i=1

σ2
i

}
= ∞,

lim
N→∞

1√
N

{
T − τ

T − τ + 1

N

∑
i=1

δ2
i − (g(τ) + g(T − τ)) max

t=1,...,T
w(t)

N

∑
i=1

σ2
i

}
= ∞.

Assumption 4. limN→∞
1

N2 ∑N
i=1 δ2

i = 0.

Assumption 5. Eε4
1,t < ∞, t ∈ {1, . . . , T}.

Theorem 1 (Change point estimator consistency). Under Assumptions 1–5,

lim
N→∞

P[τ̂N = τ] = 1.

The formally-postulated estimator’s consistency in Theorem 1 can be practically interpreted: as
one observes more and more panels, the probability that the proposed estimator is different from the
true unknown change point gets smaller and smaller.

Assumption 3 is not restrictive at all, although it may be seen as a complicated one. For example
in the case of independent observations within the panel (i.e., r(t) = t) and the weight function
w(t) = tq, q ≥ 2 for t ∈ {1, . . . , T}, w(0) = 1, the sequence {g(t)}T

t=2 becomes {t1−q − t−q}T
t=2 and is
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non-increasing. Then, Assumption 3 is automatically fulfilled, if q = 2 and 1√
N ∑N

i=1
(
δ2

i − T2σ2
i
)
→ ∞

as N → ∞. This also gives us an idea how to choose the weights w(t). Condition Assumptions 1 and 3,
which we impose on the model errors, only pertain to the correlation structure. Hence, our results
hold for nearly all stationary time series models of interest, including nonlinear time series, like the
ARCH and GARCH processes. Moreover, Assumption 3 controls the trade-off between the size of
breaks and the variability of errors. It may be considered as a detectability assumption, because it
specifies the value of the signal-to-noise ratio for finding the consistent estimator.

Assumptions 3 and 4 are satisfied, for instance, if 0 < δ ≤ δi ≤ ∆ for all i’s (a common lower and
upper threshold for the means’ shifts), δ2 = O

(
Nζ
)
, ζ > 0 and ∆2/N → 0 as N → ∞ (bearing in mind

Assumption 2). Another suitable example of δi’s for the conditions in Assumptions 3 and 4 can be
δi = Kiη for some K > 0 and 0 < η < 1/2. Condition Assumptions 3 and 4 do not require each panel
to have a break. Sometimes, a more restrictive assumption can be assumed instead of Assumptions 3
and 4, e.g.,

lim
N→∞

1
N

N

∑
i=1

δ2
i = ∞. (3)

On the one hand, this assumption might be considered as too strong, because a common fixed (not
depending on N) value of δ = δi for all i’s does not fulfill (3). On the other hand, (3) is satisfied when
δ2

j /N → ∞ as N → ∞ for some j ∈ N and δi = 0 for all i 6= j. This stands for a situation when all of the
panels do not change in mean, except one panel having a sufficiently large change in mean with respect
to the number of panels. Let us notice that one could replace Assumption 3 with a stronger assumption
from (3), but it would mean the detectability relation disappearing between the size of breaks and
the variability of errors. One would also lose an idea of how to choose the weights. Furthermore,
Assumptions E1 and E2 from [4] are more restrictive than Assumption 3, which makes the presented
approach even more general.

Various competing consistent estimators of a possible change point can be suggested, e.g., the
maximizer of ∑N

i=1
[
∑t

s=1(Yi,s − t sYi,T)
]2, as in [7]. To show the consistency of this estimator, one

needs to postulate different assumptions on the cumulative autocorrelation function, and this may be
rather complex.

In our opinion, it is erroneously assumed in [3] that only the second moment of the errors is
sufficient to prove the consistency result. In particular, Lemma A.1 from [3] has to require the finite
fourth errors’ moments, which coincides with Assumption 5.

4. Simulation Study

A simulation experiment was performed to study the finite sample properties of the change point
estimator for a common abrupt change in panel means. In particular, the interest lies in the empirical
distributions of the proposed estimator visualized via histograms. Random samples of panel data
(2000 each time) are generated from the panel change point model (1). The panel size is set to T = 10 in
order to demonstrate the performance of the estimator in the case of small panel length. The number
of panels considered is N = 2, 5, 10, 20, 50.

The correlation structure within each panel is modeled via random vectors generated from iid,
AR(1) and GARCH(1,1) sequences. The considered AR(1) process has coefficient φ = 0.3. In the case of
the GARCH(1,1) process, we use coefficients α0 = 1, α1 = 0.1 and β1 = 0.2, which, according to ([10],
Example 1), give a strictly stationary process. In all three sequences, the innovations are obtained as iid
random variables from a standard normal N(0, 1) or Student t5 distribution multiplied by a suitable
constant so that the errors possess unit variance (see Assumption 1). The variance-scaling parameters
are kept constant for all panels, i.e., σi = σ for all i. The sequence of weights is chosen as {w(t) = t2}10

t=1
and w(0) = 1. Monte Carlo simulation scenarios are produced as all possible combinations of the
above-mentioned settings, and a selection of the results is listed below.
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Firstly, we examine the impact of the errors’ distribution and the correlation structure on the
change point estimator. Figure 1 contains six different structures of model disturbances, where τ = 8
(depicted by the dotted vertical line), N = 20, σ = 0.2, and all of the panels are subject to the break of
value δi ∼ U[0, 2] (i.e., the breaks are independently and uniformly distributed on [0, 2]).

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

(a) iid, N(0, 1)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

(b) iid, t5

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

(c) AR(1), N(0, 1)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7 8 9 10

(d) AR(1), t5
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(e) GARCH(1,1), N(0, 1)
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Figure 1. Histograms of the estimated change points τ̂N for various structures and distributions of
the panel disturbances (τ = 8, T = 10, N = 20, σ = 0.2; all of the panels are subject to a break of size
δi ∼ U[0, 2]).

It can be concluded that the precision of our change point estimator is satisfactory even for a
relatively small number of panels regardless of the errors’ structure. Furthermore, innovations with
heavier tails yield less precise estimators than innovations with lighter tails (i.e., compare Figure 1a,c,e,
versus Figure 1b,d,f). One may notice that the AR(1) errors’ model gives the best estimator’s precision
from three correlation structures. This should not be considered as a surprise, because our chosen
AR(1) model has a positive autoregression coefficient (φ = 0.3), and therefore, the values of g(τ)
and g(T− τ) from Assumption 3 are larger than the values corresponding to the iid errors’ structure.
Hence, one can say that the detectability Assumption 3 is satisfied more easily. Loosely speaking,
the stronger the positive correlations within the panel, the more “deterministic the behavior” of the
random noise and the better the estimator’s precision.
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Figure 2 demonstrates that the proposed estimator works reasonably for various locations of
the unknown change point. Particularly, six values of the common change point (again, depicted by
the dotted vertical line) are chosen (τ = 1, 2, 5, 8, 9, 10) with N = 20, σ = 0.2; 75% of the panels have
a break δi ∼ U[0, 2], and the panel disturbances come from AR(1) with N(0, 1) innovations. Recall
that τ = 10 corresponds to the ‘no change’ situation, and the empirical distribution of the estimator
concentrates mainly at the last time point, which is in coherence with the change point formulation
from (1).
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(f) τ = 10

Figure 2. Histograms of the estimated change points τ̂N for various values of the change point τ

(T = 10, N = 20, σ = 0.2, 75% of the panels are subject to a break of size δi ∼ U[0, 2] panel disturbances
from AR(1) with N(0, 1) innovations).

In Figure 3, the impact of the number of panels (N = 2, 5, 10, 20) is investigated when τ = 9,
σ = 0.2; 50% of the panels have a break δi ∼ U[0, 2], and the panel disturbances are AR(1) with t5

innovations. It is clear that the precision of τ̂N improves markedly as N increases. A higher number of
panels, i.e., N = 50, were also taken into account, and then, 100% precision was achieved. Moreover,
longer panels were also simulated (e.g., T = 25), but these results are not presented here. This is due
to the simple reason that the precision of the estimator increases as the panel size gets bigger, which is
straightforward and expected.
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(d) N = 20

Figure 3. Histograms of the estimated change points τ̂N for various values of N (τ = 9, T = 10,
σ = 0.2, 50% of the panels are subject to a break of size δi ∼ U[0, 2], panel disturbances from AR(1)
with t5 innovations).

Figure 4 shows the effect of panel variability on the estimator’s performance. In particular, various
values of the variance-scaling parameter are considered (σ = 0.1, 0.2, 0.5, 1.0), where τ = 1, N = 10;
all of the panels have a break δi ∼ U[0, 2], and the panel disturbances come from GARCH(1,1) with
N(0, 1) innovations. It can be seen that the less volatile the observations, the more precise the change
point estimate. The panel’s variability under the considered dependency can be too high compared
to the change size. Then, it would be rather difficult to detect a possible change, as for instance in
Figure 4d, which corresponds to σ = 1.0.

In Figure 5, we examine how different portions of the panels with a change in mean influence
the estimator’s precision. Four cases were considered: 25%, 50%, 75%; and all of the panels have
a break δi ∼ U[0, 2]. Here, τ = 5, N = 20, σ = 0.2; and the panel disturbances are GARCH(1,1) with t5

innovations. One can conclude that higher precision is obtained when a larger portion of panels is
subject to change in the mean. If a small number of panels contain a break (for example, Figure 5a),
then the change point estimator does not perform well.
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Figure 4. Histograms of the estimated change points τ̂N for various values of σ (τ = 1, T = 10, N = 10,
all of the panels are subject to a break of size δi ∼ U[0, 2], panel disturbances from GARCH(1,1) with
N(0, 1) innovations).
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Figure 5. Histograms of the estimated change points τ̂N when various portion of the panels are subject
to a break of size δi ∼ U[0, 2] (τ = 5, T = 10, N = 20, σ = 0.2, panel disturbances from GARCH(1,1)
with t5 innovations).
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5. Theoretical Usage in Hypothesis Testing

Estimation of structural breaks can become an important mid-step in many statistical procedures,
e.g., estimation of the panel correlation structure or bootstrapping in hypothesis testing for the
change point.

A possible theoretical application of the change point estimation can be motivated as follows. It is
required to test the null hypothesis of no change in the means:

H0 : τ = T

against the alternative that at least one panel has a change in mean:

H1 : τ < T and ∃i ∈ {1, . . . , N} : δi 6= 0.

Generally, a test statistic SN,T for the change point detection may be constructed as a continuous
function of the sums of cumulative residuals, cf. [2]. In particular,

SN,T ≡ S

{ 1√
N

N

∑
i=1

s

∑
r=1

(Yi,r − sYi,t)

}t−1,T

s=1,t=2

,

{
1√
N

N

∑
i=1

T

∑
r=s+1

(Yi,r − Ỹi,t)

}T−1,T−1

s=t,t=1

 ,

where S(·, ·) : RT×(T−1)/2 ×RT×(T−1)/2 → R is continuous. To illustrate, a ratio type test statistic,
discussed in [11],

SN,T = max
t=2,...,T−2

maxs=1,...,t−1

∣∣∣∑N
i=1 ∑s

r=1(Yi,r − sYi,t)
∣∣∣

maxs=t,...,T−1

∣∣∣∑N
i=1 ∑T

r=s+1(Yi,r − Ỹi,t)
∣∣∣

is generated by the continuous function

S
(
{as,t}t−1,T

s=1,t=2 , {bs,t}T−1,T−1
s=t,t=1

)
= max

t=2,...,T−2

maxs=1,...,t−1 |as,t|
maxs=t,...,T−1 |bs,t|

.

The test statistic under the null would typically have a known limiting distribution (up to some
unknown parameters), which is a function of a Gaussian vector or process. However, its correlation
structure is unknown and needs to be estimated. Alternatively, one can avoid the estimation of
the correlation structure (which may be considered as a nuisance parameter) by applying a suitable
bootstrap procedure. The consistent change point estimator plays also an important role in the validity
of the bootstrap algorithm.

5.1. Estimation of Correlation Structure

Since the panels are considered to be independent and the number of panels may be sufficiently
large, one can estimate the correlation structure of the errors [ε1,1, . . . , ε1,T ]

> empirically. We base the
errors’ estimates on residuals

êi,t :=

{
Yi,t − sYi,τ̂N

, t ≤ τ̂N ,
Yi,t − Ỹi,τ̂N

, t > τ̂N .
(4)

One may notice that the estimators that cannot result in the last time point are less suitable in the
calculation of residuals.

Then, the empirical version of the autocorrelation function is

ρ̂t :=
1

N(T − t)

N

∑
i=1

1
σ̂2

i

T−t

∑
s=1

êi,s êi,s+t,
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where σ̂2
i := 1

T ∑T
s=1 ê2

i,s is the estimate of the variance parameter σ2
i . Consequently, the cumulative

autocorrelation function and shifted cumulative correlation function are estimated by

r̂(t) = ∑
|s|<t

(t− |s|)ρ̂s and R̂(t, v) =
t

∑
s=1

v

∑
u=t+1

ρ̂u−s, t < v.

5.2. Bootstrapping

A wide range of literature has been published on bootstrapping in the change point problem,
e.g., [2,12,13]. We build up the bootstrap test on the resampling with the replacement of row
vectors {[êi,1, . . . , êi,T ]}i=1,...,N corresponding to the individual panels. This provides bootstrapped row
vectors {[ê∗i,1, . . . , ê∗i,T ]}i=1,...,N . Then, the bootstrapped residuals ê∗i,t are centered by their conditional
expectation 1

N ∑N
i=1 êi,t, yielding

Ŷ∗i,t := ê∗i,t −
1
N

N

∑
i=1

êi,t.

The bootstrap test statistic is just a modification of the original statistic SN,T , where the original
observations Yi,t are replaced by their bootstrap counterparts Ŷ∗i,t:

S∗N,T ≡ S

{ 1√
N

N

∑
i=1

s

∑
r=1

(Ŷ∗i,r −
sŶ
∗
i,t)

}t−1,T

s=1,t=2

,

{
1√
N

N

∑
i=1

T

∑
r=s+1

(Ŷ∗i,r −
˜̂Y∗i,t)

}T−1,T−1

s=t,t=1

 ,

such that
sŶ
∗
i,t =

1
t

t

∑
s=1

Ŷ∗i,s and ˜̂Y∗i,t = 1
T − t

T

∑
s=t+1

Ŷ∗i,s.

The idea behind bootstrapping is to mimic the original distribution of the test statistic by the
distribution of the bootstrap test statistic, conditionally on the original data denoted by Y ≡ {Yi,t}N,T

i,t=1.
Recall that it is not known whether some common change in panel means occurred or not. In other
words, one does not know whether the data come from the null or the alternative hypothesis.

Theorem 2 (Bootstrap justification). Suppose that Assumptions 1, 2 and 5 hold. Then,

(i) under H0,

SN,T
D−−−→

N→∞
L;

(ii) under additional Assumptions 3, 4 and under H0, as well as under H1,

S∗N,T |Y
D−−−→

N→∞
L∗ in probability P;

(iii) under additional Assumptions 3, 4 and under H0, L and L∗ coincide.

The validity of the bootstrap test is assured by Theorem 2. Indeed, the conditional asymptotic
distribution of the bootstrap test statistic does not converge to infinity (in probability) under the
alternative. In other words, the second part of Theorem 2 holds under H0, as well as H1. In contrast to
the bootstrap version of the test statistics, the original test statistic typically explodes over all bounds
under the alternative. That is why the bootstrap test statistic can be used correctly to reject the null in
favor of the alternative, having sufficiently large N. Moreover, Theorem 2 states that the conditional
distribution of the bootstrap test statistic and the unconditional distribution of the original test statistic
coincide under the null. Additionally, that is the reason why the bootstrap test approximately keeps
the same level as the original test based on the asymptotics (i.e., the test based on the asymptotic
distribution of SN,T).
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A practical choice of the test statistic SN,T can be obtained from, e.g., [14]:

SN,T = max
t=2,...,T−2

∑t−1
s=1

[
∑N

i=1 ∑s
r=1(Yi,r − sYi,t)

]2

∑T−1
s=t

[
∑N

i=1 ∑T
r=s+1(Yi,r − Ỹi,t)

]2

or

SN,T = max
t=2,...,T−2

maxs=1,...,t−1 ∑N
i=1 ∑s

r=1(Yi,r − sYi,t)−mins=1,...,t−1 ∑N
i=1 ∑s

r=1(Yi,r − sYi,t)

maxs=t,...,T−1 ∑N
i=1 ∑T

r=s+1(Yi,r − Ỹi,t)−mins=t,...,T−1 ∑N
i=1 ∑T

r=s+1(Yi,r − Ỹi,t)
.

Theorem 2 assures that the previously-described bootstrap algorithm can be used in hypothesis
testing (change point detection) for the above-mentioned test statistics. Now, the simulated (empirical)
distribution of the bootstrap test statistic can be used to calculate the bootstrap critical value, which
will be compared to the value of the original test statistic in order to reject the null or not.

6. Practical Application in Non-Life Insurance

As mentioned in the Introduction, our primary motivation for the change point estimation in
panel data comes from the non-life insurance business. The dataset is provided by the National
Association of Insurance Commissioners (NAIC) database; see [15]. We concentrate on the ‘private
passenger auto liability/medical’ insurance line of business. The data collect records from N = 146
insurance companies. Each insurance company provides T = 10 yearly total claim amounts starting
from year 1988 up to year 1997. One can consider normalizing the claim amounts by the premium
received by company i in year t. That is thinking of panel data Yi,t/pi,t, where pi,t is the mentioned
premium. This may yield a stabilization of series’ variability, which corresponds to Assumption 2 of
bounded variances. Figure 6 graphically shows series of the normalized claim amounts.
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Figure 6. Development of the yearly total claim amounts normalized by the earned premium together
with the estimated change point τ̂146 = 9 (corresponding to year 1996).

The data are considered as panel data in the way that each insurance company corresponds to
one panel, which is formed by the company’s yearly total claim amounts normalized by the earned
premium. The length of the panel is quite short. This is very typical in insurance business, because
considering longer panels may invoke incomparability between the early and the late claim amounts
due to changing market or policies’ conditions over time.
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We want to estimate a possible change in the normalized claim amounts occurring in a common
year, assuming that the normalized claim amounts are approximately constant in the years before and
after the possible change for every insurance company. Our change point estimator gives τ̂146 = 9 (i.e.,
year 1996) using the sequence of weights {t2}10

t=1 and w(0) = 1, which corresponds to the increased
values for the last observed year 1997 shown in Figure 6.

An interesting finding comes out, when one concentrates only on the second half of the observation
period; see Figure 7. The shortening of the time window up to years 1993–1997 yields the same change
position, i.e., year 1996.
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Figure 7. Development of the yearly total claim amounts normalized by the earned premium together
for the second half of the original observation period with the estimated change point τ̂146 = 4
(corresponding to year 1996).

Furthermore, the empirical cumulative autocorrelation function can be obtained. The correlation
matrix is estimated as proposed in Section 5.1. The subsequence from the empirical cumulative
autocorrelation function is obtained {r̂(t)}10

t=1 = {1.0, 2.5, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6, 9.6, 10.6}.
Dependent panels may be taken into account, and the presented work might be generalized

for some kind of asymptotic independence over the panels or prescribed dependence among the
panels. Nevertheless, our incentive is determined by a problem from non-life insurance, where the
association of insurance companies consists of a relatively high number of insurance companies. Thus,
the portfolio of yearly claims is so diversified, that the panels corresponding to insurance companies’
yearly claims may be viewed as independent, and neither natural ordering, nor clustering has to be
assumed.

7. Results and Conclusions

The change point problem in panel data with a fixed panel size is considered in this paper.
A possible occurrence of common breaks in panel means is estimated. We introduce the change
point estimator without the boundary issue, meaning that it can estimate the change close to the
extremities of the studied time interval. The consistency of the estimator is proven regardless of the
presence/absence of the change in panel means under relatively simple conditions.

The simulation study illustrates that the proposed change point estimator behaves sufficiently
well for small panel sizes, a relatively moderate number of panels and various errors’ dependence
structures. The theoretical usage of the change point estimator is outlined for the estimation of the
within-panel correlation structure and for the validity of the bootstrap procedures in hypothesis testing.
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Finally, the proposed method is applied to an actuarial problem, for which the change point analysis
in panel data provides an appealing approach.
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would like to thank three anonymous referees for careful reading of the paper and for providing suggestions that
improved this paper.

Author Contributions: Both authors equally contributed to invention of the proposed change point estimator,
to the derivation of its consistency, to designing and programming the simulation study and to showing its
theoretical and practical applications.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Proof of Theorem 1. Let us define

S(i,L)
N (t) :=

1
w(t)

t

∑
s=1

(Yi,s − sYi,t)
2, S(i,R)

N (t) :=
1

w(T − t)

T

∑
s=t+1

(Yi,s − Ỹi,t)
2

and, consequently, SN(t) := 1
N ∑N

i=1

{
S(i,L)

N (t) + S(i,R)
N (t)

}
. Then,

S(i,L)
N (t) =


σ2

i
w(t) ∑t

s=1(εi,s − sεi,t)
2, t ≤ τ,

1
w(t)

[
∑τ

s=1(σiεi,s − σisεi,t − t−τ
t δi)

2 + ∑t
s=τ+1(σiεi,s − σisεi,t +

τ
t δi)

2] , t > τ;

where sεi,t =
1
t ∑t

s=1 εi,s. Similarly,

S(i,R)
N (t)

=


σ2

i
w(T−t) ∑T

s=t+1(εi,s − ε̃i,t)
2, t > τ,

1
w(T−t)

[
∑τ

s=t+1(σiεi,s − σi ε̃i,t − T−τ
T−t δi)

2 + ∑T
s=τ+1(σiεi,s − σi ε̃i,t +

τ−t
T−t δi)

2
]

, t ≤ τ < T,
σ2

i
w(T−t) ∑T

s=t+1(εi,s − ε̃i,t)
2, t ≤ τ = T;

where ε̃i,t =
1

T−t ∑T
s=t+1 εi,s for t < T and ε̃i,T ≡ 0. By the definition of the cumulative autocorrelation

function, we have for 2 ≤ t ≤ τ:

ES(i,L)
N (t) =

σ2
i

w(t)

t

∑
s=1

E(εi,s − sεi,t)
2 =

σ2
i

w(t)

t

∑
s=1

[
1− 2

t

t

∑
r=1

Eεi,sεi,r +
1
t2 r(t)

]
=

σ2
i

w(t)

(
t− r(t)

t

)
.

Clearly, S(i,L)
N (1) = 0. In the remaining case when t > τ, one can calculate

ES(i,L)
N (t) =

σ2
i

w(t)

(
t− r(t)

t

)
+

τ

w(t)

(
t− τ

t

)2
δ2

i +
t− τ

w(t)

(τ

t

)2
δ2

i

=
σ2

i t
w(t)

(
1− r(t)

t2

)
+

τ(t− τ)

tw(t)
δ2

i .

By the definition of an empty sum, S(i,R)
N (T) = 0 and, moreover, S(i,R)

N (T − 1) = 0. For T − 1 > t > τ,

ES(i,R)
N (t) =

σ2
i

w(T − t)

T

∑
s=t+1

E(εi,s − ε̃i,t)
2

=
σ2

i
w(T − t)

T

∑
s=t+1

[
1− 2

T − t

T

∑
r=t+1

Eεi,sεi,r +
1

(T − t)2 r(T − t)

]
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=
σ2

i
w(T − t)

(
T − t− r(T − t)

T − t

)
.

The same result is obtained for T = τ > t. In the remaining case T − 1 ≥ τ ≥ t, such that T − 1 > t,

ES(i,R)
N (t) =

σ2
i

w(T − t)

(
T − t− r(T − t)

T − t

)
+

τ − t
w(T − t)

(
T − τ

T − t

)2
δ2

i +
T − τ

w(T − t)

(
τ − t
T − t

)2
δ2

i

=
σ2

i (T − t)
w(T − t)

(
1− r(T − t)

(T − t)2

)
+

(τ − t)(T − τ)

(T − t)w(T − t)
δ2

i .

Realize that S(i,L)
N (t) + S(i,R)

N (t)− ES(i,L)
N (t)− ES(i,R)

N (t) are independent with zero mean for fixed
t and i = 1, . . . , N, but they are not identically distributed. Due to Assumption 5 and the stochastic
Cauchy–Schwarz inequality, for t ≤ τ < T, it holds

Var SN(t) =
1

N2

N

∑
i=1

{
σ4

i
w2(t)

Var

[
t

∑
s=1

(εi,s − sεi,t)
2

]

+
1

w2(T − t)
Var

[
σ2

i

τ

∑
s=t+1

(εi,s − ε̃i,t)
2 − 2

T − τ

T − t
σiδi

τ

∑
s=t+1

(εi,s − ε̃i,t) +

(
T − τ

T − t

)2
δ2

i

+ σ2
i

T

∑
s=τ+1

(εi,s − ε̃i,t)
2 + 2

τ − t
T − t

σiδi

T

∑
s=τ+1

(εi,s − ε̃i,t) +

(
τ − t
T − t

)2
δ2

i

]

+
2σ2

i
w(t)w(T − t)

Cov

[
t

∑
s=1

(εi,s − sεi,t)
2, σ2

i

τ

∑
s=t+1

(εi,s − ε̃i,t)
2 − 2

T − τ

T − t
σiδi

τ

∑
s=t+1

(εi,s − ε̃i,t)

+

(
T − τ

T − t

)2
δ2

i + σ2
i

T

∑
s=τ+1

(εi,s − ε̃i,t)
2 + 2

τ − t
T − t

σiδi

T

∑
s=τ+1

(εi,s − ε̃i,t) +

(
τ − t
T − t

)2
δ2

i

]}

≤ 1
N

C1(t, τ, σ, σ) +
1

N2 C2(t, τ, σ, σ)
N

∑
i=1

δ2
i +

1
N2 C3(t, τ, σ, σ)

∣∣∣∣∣ N

∑
i=1

δi

∣∣∣∣∣ ,

where C1(t, τ, σ, σ) > 0, C2(t, τ, σ, σ) ≥ 0 and C3(t, τ, σ, σ) ≥ 0 are some constants not depending
on N. If t < τ = T, then

Var SN(t) =
1

N2

N

∑
i=1

{
σ4

i
w2(t)

Var

[
t

∑
s=1

(εi,s − sεi,t)
2

]
+

σ4
i

w2(T − t)
Var

[
T

∑
s=t+1

(εi,s − ε̃i,t)
2

]

+
2σ4

i
w(t)w(T − t)

Cov

[
t

∑
s=1

(εi,s − sεi,t)
2,

T

∑
s=t+1

(εi,s − ε̃i,t)
2

]}
≤ 1

N
C4(t, τ, σ, σ),

where C4(t, τ, σ, σ) > 0 does not depend on N. In the case of t = τ = T, we also have
Var SN(T) ≤ 1

N C5(T, τ, σ, σ), where C5(T, τ, σ, σ) > 0 does not depend on N. Finally, if t > τ, then

Var SN(t) =
1

N2

N

∑
i=1

{
σ4

i
w2(T − t)

Var

[
T

∑
s=t+1

(εi,s − ε̃i,t)
2

]
+

1
w2(t)

Var

[
σ2

i

τ

∑
s=1

(εi,s − sεi,t)
2

− 2
t− τ

t
σiδi

τ

∑
s=1

(εi,s − sεi,t) +

(
t− τ

t

)2
δ2

i + σ2
i

t

∑
s=τ+1

(εi,s − sεi,t)
2

+ 2
τ

t
σiδi

t

∑
s=τ+1

(εi,s − sεi,t) +
(τ

t

)2
δ2

i

]
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+
2σ2

i
w(T − t)w(t)

Cov

[
T

∑
s=t+1

(εi,s − ε̃i,t)
2, σ2

i

τ

∑
s=1

(εi,s − sεi,t)
2 − 2

t− τ

t
σiδi

τ

∑
s=1

(εi,s − sεi,t)

+

(
t− τ

t

)2
δ2

i + σ2
i

t

∑
s=τ+1

(εi,s − sεi,t)
2 + 2

τ

t
σiδi

t

∑
s=τ+1

(εi,s − sεi,t) +
(τ

t

)2
δ2

i

]}

≤ 1
N

D1(t, τ, σ, σ) +
1

N2 D2(t, τ, σ, σ)
N

∑
i=1

δ2
i +

1
N2 D3(t, τ, σ, σ)

∣∣∣∣∣ N

∑
i=1

δi

∣∣∣∣∣ ,

where D1(t, τ, σ, σ) > 0, D2(t, τ, σ, σ) ≥ 0 and D3(t, τ, σ, σ) ≥ 0 do not depend on N. The Chebyshev
inequality provides SN(t)− ESN(t) = OP

(√
Var SN(t)

)
as N → ∞. According to Assumption 4 and

the Cauchy–Schwarz inequality, we have

1
N2

∣∣∣∣∣ N

∑
i=1

δi

∣∣∣∣∣ ≤ 1
N

√√√√ 1
N

N

∑
i=1

δ2
i → 0, N → ∞.

Since the index set {1, . . . , T} is finite and τ is finite, as well, then

max
1≤t≤T

Var SN(t) ≤
1
N

K1(σ, σ) + K2(σ, σ)
1

N2

N

∑
i=1

δ2
i + K3(σ, σ)

1
N2

∣∣∣∣∣ N

∑
i=1

δi

∣∣∣∣∣ ≤ 1
N

K4(σ, σ),

where K1(σ, σ) > 0, K2(σ, σ) ≥ 0, K3(σ, σ) ≥ 0 and K4(σ, σ) > 0 are constants not depending on N.
Thus, we also have uniform stochastic boundedness, i.e.,

max
1≤t≤T

|SN(t)− ESN(t)| = OP
(

1√
N

)
, N → ∞.

Adding and subtracting, one has

SN(t)− SN(τ) = SN(t)− ESN(t)− [SN(τ)− ESN(τ)] + ESN(t)− ESN(τ)

≥ −2 max
1≤r≤T

|SN(r)− ESN(r)|+ ESN(t)− ESN(τ)

= −2 max
1≤r≤T

|SN(r)− ESN(r)|+
1
N

(
N

∑
i=1

σ2
i

)[
t

w(t)

(
1− r(t)

t2

)
− τ

w(τ)

(
1− r(τ)

τ2

)

+ I{t < T} T − t
w(T − t)

(
1− r(T − t)

(T − t)2

)
− I{τ < T} T − τ

w(T − τ)

(
1− r(T − τ)

(T − τ)2

)]

+
1
N

(
N

∑
i=1

δ2
i

)[
I{t > τ}τ(t− τ)

tw(t)
+ I{t < τ} (τ − t)(T − τ)

(T − t)w(T − t)

]
(A1)

for each t ∈ {1, . . . , T}. Particularly, Inequality (A1) holds for τ̂N . Note that τ̂N = arg mint SN(t).
Hence, SN(τ̂N)− SN(τ) ≤ 0. Therefore,

2
√

N max
1≤r≤T

|SN(r)− ESN(r)| (A2)

≥
[
I{τ̂N > τ}τ(τ̂N − τ)

τ̂Nw(τ̂N)
+ I{τ̂N < τ} (τ − τ̂N)(T − τ)

(T − τ̂N)w(T − τ̂N)

]
1√
N

N

∑
i=1

δ2
i

+

[
τ̂N

w(τ̂N)

(
1− r(τ̂N)

τ̂2
N

)
− τ

w(τ)

(
1− r(τ)

τ2

)

+ I{τ̂N < T} T − τ̂N
w(T − τ̂N)

(
1− r(T − τ̂N)

(T − τ̂N)2

)
− I{τ < T} T − τ

w(T − τ)

(
1− r(T − τ)

(T − τ)2

)]
1√
N

N

∑
i=1

σ2
i
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= I{τ̂N > τ} 1√
N

{
τ(τ̂N − τ)

τ̂Nw(τ̂N)

N

∑
i=1

δ2
i + [g(τ̂N)− g(τ) + g(T − τ̂N)− g(T − τ)]

N

∑
i=1

σ2
i

}

+ I{τ̂N < τ} 1√
N

{
(τ − τ̂N)(T − τ)

(T − τ̂N)w(T − τ̂N)

N

∑
i=1

δ2
i + [g(τ̂N)− g(τ) + g(T − τ̂N)− g(T − τ)]

N

∑
i=1

σ2
i

}

≥ I{τ̂N > τ} 1√
N

{
τ

w(τ̂N)

(
1− τ

τ̂N

) N

∑
i=1

δ2
i − [g(τ) + g(T − τ)]

N

∑
i=1

σ2
i

}

+ I{τ̂N < τ} 1√
N

{
T − τ

w(T − τ̂N)

(
1− T − τ

T − τ̂N

) N

∑
i=1

δ2
i − [g(τ) + g(T − τ)]

N

∑
i=1

σ2
i

}

≥ I{τ̂N > τ} 1√
N

{
τ

(τ + 1)maxt=1,...,T w(t)

N

∑
i=1

δ2
i − [g(τ) + g(T − τ)]

N

∑
i=1

σ2
i

}
(A3)

+ I{τ̂N < τ} 1√
N

{
T − τ

(T − τ + 1)maxt=1,...,T w(t)

N

∑
i=1

δ2
i − [g(τ) + g(T − τ)]

N

∑
i=1

σ2
i

}
, (A4)

where g(t) = t
w(t)

(
1− r(t)

t2

)
≥ 0 for t ∈ {1, . . . , T} and g(0) ≡ 0. Since the expression in (A2) isOP (1)

as N → ∞, we have I{τ̂N > τ} P→ 0, as well as I{τ̂N < τ} P→ 0, due to Assumption 3 applied in (A3)
and (A4). Hence, P[τ̂N = τ]→ 1 as N → ∞.

Proof of Theorem 2. (i) Let us define

UN(t) :=
N

∑
i=1

t

∑
s=1

(Yi,s − µi).

Using the multivariate Lyapunov CLT for a sequence of T-dimensional independent random vectors{
σi

[
∑1

s=1 εi,s, . . . , ∑T
s=1 εi,s

]>}
i∈N

, we have under H0:

Σ−1/2
N [UN(1), . . . , UN(T)]>

D−−−→
N→∞

[X1, . . . , XT ]
>,

such that

ΣN =
N

∑
i=1

σ2
i Var

[
1

∑
s=1

εi,s, . . . ,
T

∑
s=1

εi,s

]>
= ς2

NΛ,

where Λ = Var
[
∑1

s=1 ε1,s, . . . , ∑T
s=1 ε1,s

]>
is the positive definite covariance matrix with respect to

Assumption 1 and 0 < Nσ2 ≤ ς2
N := ∑N

i=1 σ2
i ≤ Nσ2 according to Assumption 2. The limiting

T-dimensional random vector [X1, . . . , XT ]
> has a multivariate normal distribution with zero mean

and the identity covariance matrix. The Lyapunov condition is satisfied due to the Jensen inequality,
the Cramér–Wold theorem and Assumption 5, i.e.,

(
a>ΣNa

)− 2+χ
2

N

∑
i=1

E

∣∣∣∣∣∣a>σi

[
1

∑
s=1

εi,s, . . . ,
T

∑
s=1

εi,s

]>∣∣∣∣∣∣
2+χ

= ς
−2−χ
N

(
a>Λa

)− 2+χ
2

N

∑
i=1

σ
2+χ
i E

∣∣∣∣∣ T

∑
t=1

at

t

∑
s=1

εi,s

∣∣∣∣∣
2+χ

≤ T1+χς
−2−χ
N

(
a>Λa

)− 2+χ
2

N

∑
i=1

σ
2+χ
i

T

∑
t=1

E

(
at

t

∑
s=1

εi,s

)2+χ
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≤ T1+χς
−2−χ
N

(
a>Λa

)− 2+χ
2

N

∑
i=1

σ
2+χ
i

T

∑
t=1
|at|2+χt1+χ

t

∑
s=1

E|εi,s|2+χ

≤ $ς
−2−χ
N

N

∑
i=1

σ
2+χ
i ≤ $

(
Nσ2

)− 2+χ
2 Nσ2+χ = $σ−2−χσ2+χN−

χ
2 → 0, N → ∞ (A5)

for arbitrary fixed 0 6= a = [a1, . . . , aT ]
> ∈ RT and some 0 < χ ≤ 2, where

$ = T1+χ
(

a>Λa
)− 2+χ

2
T

∑
t=1
|at|2+χt1+χ

t

∑
s=1

E|ε1,s|2+χ

is a positive constant not depending on N. The t-th diagonal element of the covariance matrix Λ is

Var
t

∑
s=1

ε1,s = r(t)

and the upper off-diagonal element on position (t, v) is

Cov

(
t

∑
s=1

ε1,s,
v

∑
u=1

ε1,u

)
= Var

t

∑
s=1

ε1,s + Cov

(
t

∑
s=1

ε1,s,
v

∑
u=t+1

ε1,u

)
= r(t) + R(t, v), t < v.

Moreover, let us define the reverse analogue of UN(t), i.e.,

VN(t) :=
N

∑
i=1

T

∑
s=t+1

(Yi,s − µi) = UN(T)−UN(t).

Hence,

UN(s)−
s
t
UN(t) =

N

∑
i=1

{
s

∑
r=1

[
(Yi,r − µi)−

1
t

t

∑
v=1

(Yi,v − µi)

]}
=

N

∑
i=1

s

∑
r=1

(
Yi,r − sYi,t

)
and, consequently,

VN(s)−
T − s
T − t

VN(t) =
N

∑
i=1

{
T

∑
r=s+1

[
(Yi,r − µi)−

1
T − t

T

∑
v=t+1

(Yi,v − µi)

]}
=

N

∑
i=1

T

∑
r=s+1

(
Yi,r − Ỹi,t

)
,

for t < T. Then, under H0:

Σ̃
−1/2
N [VN(1), . . . , VN(T − 1)]> D−−−→

N→∞
[Z1, . . . , ZT−1]

>,

where Zt := XT − Xt and

Σ̃N =
N

∑
i=1

σ2
i Var

[
T

∑
s=2

εi,s, . . . ,
T

∑
s=T

εi,s

]>
= ς2

NΛ̃

for Λ̃ = Var
[
∑T

s=2 ε1,s, . . . , ∑T
s=T ε1,s

]>
. Using the continuous mapping theorem, we end up with

SN,T
D−−−→

N→∞
L
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such that the law L corresponds to the distribution of

S
({

Xs −
s
t

Xt

}t−1,T

s=1,t=1
,
{

Zs −
T − s
T − t

Zt

}T−1,T−1

s=t,t=1

)
.

(ii) Let us define ε̂i,t := ∑t
s=1 êi,s, ε̂∗i,t := ∑t

s=1 ê∗i,s,

ÛN(t) :=
N

∑
i=1

t

∑
s=1

êi,s =
N

∑
i=1

ε̂i,t,

and

Û∗N(t) :=
N

∑
i=1

t

∑
s=1

Ŷ∗i,s =
N

∑
i=1

t

∑
s=1

(
ê∗i,s −

1
N

N

∑
i=1

êi,s

)
=

N

∑
i=1

t

∑
s=1

(
ê∗i,s − êi,s

)
=

N

∑
i=1

(
ε̂∗i,t − ε̂i,t

)
.

Realize that ε̂i,t depends on τ̂N , and hence, it depends on N.
Let us calculate limN→∞ Γi,N , where Γi,N = Var [ε̂i,1, . . . , ε̂i,T ]

>. Using the law of total variance,

Var ε̂i,t = E[Var {ε̂i,t|τ̂N}] + Var [E{ε̂i,t|τ̂N}] =
T

∑
π=1

P[τ̂N = π]Var [ε̂i,t|τ̂N = π]

+
T

∑
π=1

P[τ̂N = π]{E[ε̂i,t|τ̂N = π]}2 −
{

T

∑
π=1

P[τ̂N = π]E[ε̂i,t|τ̂N = π]

}2

.

Since limN→∞ P[τ̂N = τ] = 1 and E[êi,t|τ̂N = τ] = 0, then

lim
N→∞

Var ε̂i,t = lim
N→∞

Var [ε̂i,t|τ̂N = τ].

Similarly with the covariance, i.e., after applying the law of total covariance, we have

lim
N→∞

Cov (ε̂i,t, ε̂i,v) = lim
N→∞

Cov (ε̂i,t, ε̂i,v|τ̂N = τ) .

Note that

(êi,t|τ̂N = τ) =

{
σi(εi,t − sεi,τ), t ≤ τ;
σi(εi,t − ε̃i,τ), t > τ;

where sεi,t = 1
t ∑t

s=1 εi,s and ε̃i,t = 1
T−t ∑T

s=t+1 εi,s. Taking into account the definitions of r(t)
and R(t, v) together with some simple algebra, we obtain that Var [ε̂i,s|τ̂N = τ] = σ2

i γt,t(τ) and
Cov (ε̂i,t, ε̂i,v|τ̂N = τ) = σ2

i γt,v(τ) for t < v, such that

γt,t(τ) =


r(t) + t2

τ2 r(τ)− 2t
τ [r(t) + R(t, τ)], t < τ;

0, t = τ;

r(t− τ) + (t−τ)2

(T−τ)2 r(T − τ)− 2(t−τ)
T−τ [r(t− τ) + R(t− τ, T − τ)] , t > τ;

and

γt,v(τ) =



0, t = τ or v = τ,
r(t) + R(t, v) + tv

τ2 r(τ)− v
τ [r(t) + R(t, τ)]− t

τ [r(v) + R(v, τ)], t < v < τ;

S(t, v, τ + 1− t) + t(v−τ)
τ(T−τ)

R(τ, T)− v−τ
T−τ S(t, T, τ + 1− t)− t

τ R(τ, v), t < τ < v;

r(t− τ) + R(t− τ, v− τ) + (t−τ)(v−τ)
(T−τ)2 r(T − τ)− v−τ

T−τ [r(t− τ) + R(t− τ, T − τ)]

− t−τ
T−τ [r(v− τ) + R(v− τ, T − τ)], τ < t < v;
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where

S(t, v, d) = Cov

(
t

∑
s=1

εi,s,
v

∑
u=t+d

εi,u

)
=

t

∑
s=1

v

∑
u=t+d

ρu−s, ∀i ∈ N.

Thus, limN→∞ Γi,N = σ2
i Γ(τ), where the matrix Γ(τ) = {γt,v(τ)}T,T

t,v=1 is symmetric and does not
depend on i. The matrix Γ(τ) is singular. Nevertheless, omitting the τ-th row and the τ-th column
from Γ(τ), one obtains matrix Γ̃(τ), i.e., Γ̃(τ) := Γ−τ,−τ(τ), which has a full rank of T − 1 due to
Assumption 1 and

(ε̂i,t|τ̂N = τ) =


σi
(
∑t

s=1 εi,s − tsεi,τ
)

, t < τ;
0, t = τ;
σi
(
∑t

s=τ+1 εi,s − (t− τ)ε̃i,τ
)

, t > τ.

Let us define random vectors

UN := [UN(1), . . . , UN(τ̂N − 1), UN(τ̂N + 1), . . . , UN(T)]>,

ÛN := [ÛN(1), . . . , ÛN(τ̂N − 1), ÛN(τ̂N + 1), . . . , ÛN(T)]>,

Û∗N := [Û∗N(1), . . . , Û∗N(τ̂N − 1), Û∗N(τ̂N + 1), . . . , Û∗N(T)]
>,

i.e., they do not contain elements with argument τ̂N . The law of total probability provides

P
[
ς−1

N Γ̃
−1/2

(τ)Û∗N ≤ x
∣∣Y]− P

[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
]

=
T

∑
π=1

{
P
[
ς−1

N Γ̃
−1/2

(τ)Û∗N ≤ x
∣∣Y, τ̂N = π

]
− P

[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
∣∣τ̂N = π

]}
P[τ̂N = π] (A6)

for all x ∈ RT−1. Since Assumption 5 holds, then according to the bootstrap multivariate CLT
by [16] (Theorem 2.4) for (conditionally) independent and not identically distributed zero mean
(T − 1)-dimensional random vectors ξN =

[
[ε̂i,1, . . . , ε̂i,τ̂N−1, ε̂i,τ̂N+1, . . . , ε̂i,T ]

>∣∣τ̂N = τ
]
, we have

P
[
ς−1

N Γ̃
−1/2

(τ)Û∗N ≤ x
∣∣Y, τ̂N = τ

]
− P

[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
∣∣τ̂N = τ

]
P−−−→

N→∞
0 (A7)

for all x ∈ RT−1. Theorem 1, Relations (A6) and (A7) imply

P
[
ς−1

N Γ̃
−1/2

(τ)Û∗N ≤ x
∣∣Y]− P

[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
]

P−−−→
N→∞

0 (A8)

for all x ∈ RT−1.
Using the law of total probability again, we obtain

P
[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
]
=

T

∑
π=1

P
[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
∣∣τ̂N = π

]
P[τ̂N = π]. (A9)

The consistency result limN→∞ P[τ̂N = τ] = 1 from Theorem 1 and Equation (A9) give

P
[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
]
− P

[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
∣∣τ̂N = τ

]
P−−−→

N→∞
0. (A10)

Since the Lyapunov CLT provides that
[
ς−1

N Γ̃
−1/2

(τ)ÛN ≤ x
∣∣τ̂N = τ

]
has an approximate multivariate

normal distribution with zero mean and identity covariance matrix, Relation (A10) gives that
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the limiting distribution of ς−1
N Γ̃

−1/2
(τ)ÛN is the same. Note that the Lyapunov condition for[

ς−1
N Γ̃

−1/2
(τ)ÛN ≤ x

∣∣τ̂N = τ
]

can be checked in a similar manner as in (A5), i.e.,

ς
−2−χ
N

(
b>Γ̃(τ)b

)− 2+χ
2

×
N

∑
i=1

E

∣∣∣∣∣∣b>σi

[
1

∑
s=1

(εi,s − sεi,τ) , . . . ,
τ−1

∑
s=1

(εi,s − sεi,τ) ,
τ+1

∑
s=τ+1

(εi,s − ε̃i,τ) , . . . ,
T

∑
s=τ+1

(εi,s − ε̃i,τ)

]>∣∣∣∣∣∣
2+χ

≤ $̃ς
−2−χ
N

N

∑
i=1

σ
2+χ
i ≤ $̃

(
Nσ2

)− 2+χ
2 Nσ2+χ = $̃σ−2−χσ2+χN−

χ
2 → 0, N → ∞

for arbitrary fixed 0 6= b = [b1, . . . , bT−1]
> ∈ RT−1, some 0 < χ ≤ 2 and some positive constant $̃ not

depending on N.
Bear in mind that

N

∑
i=1

s

∑
r=1

(
Ŷ∗i,r −

sŶ
∗
i,t

)
=

N

∑
i=1

{[
s

∑
r=1

Ŷ∗i,r

]
− s

t

t

∑
v=1

Ŷ∗i,v

}
= Û∗N(s)−

s
t
Û∗N(t)

and
N

∑
i=1

T

∑
r=s+1

(
Ŷ∗i,r −

˜̂Y∗i,t) = V̂∗N(s)−
T − s
T − t

V̂∗N(t).

Applying the continuous mapping theorem completes the second part of the proof.
(iii) Under H0, Theorem 1 provides

lim
N→∞

P[τ̂N = T] = 1.

Then, in view of (4),

lim
N→∞

P
[
ÛN(s)−

s
t
ÛN(t) = UN(s)−

s
t
UN(t)

]
= 1, 1 ≤ s ≤ t ≤ T.

Finally, it is sufficient to realize the definition of SN,T and S∗N,T together with (A8).
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