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Abstract:



We derive a closed form expression for the probability that a non-decreasing, pure jump stochastic risk process with the order statistics (OS) property will not exit the strip between two non-decreasing, possibly discontinuous, time-dependent boundaries, within a finite time interval. The result yields new expressions for the ruin probability in the insurance and the dual risk models with dependence between the claim severities or capital gains respectively.
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1. Introduction


The probability that a stochastic process stays between two boundaries is of significant importance in many areas among which: statistics, for constructing confidence intervals for distribution functions, (see Wald and Wolfovitz 1939; Steck 1971) or in sequential analysis; finance, for pricing double-barrier options, (see Borovkov and Novikov 2005); actuarial science, in modelling the surplus of an insurance company (see Teunen and Goovaerts 1994), and also in probability (see e.g., Potzelberger and Wang 2001; Lotov 1996; Buonocore et al. 1990) and other areas.



The double-boundary crossing problem we are concerned with in this paper is as follows. We consider a stochastic process [image: there is no content], constructed by the two independent sequences of random variables [image: there is no content] and [image: there is no content], with the assumption that at each instant [image: there is no content] the process jumps at the level [image: there is no content], [image: there is no content]. It is assumed that the instants [image: there is no content], model the arrival of certain events, e.g., insurance claims, or capital gains or some other events in a particular application. The jumps, [image: there is no content], could be interpreted as reflecting the current level of some process of interest, e.g., the aggregate claims to an insurance company, or the accumulation of reserves of a bank. It is further assumed that the instants, [image: there is no content] form a point process [image: there is no content], on [image: there is no content], with a cumulative intensity function [image: there is no content], such that, [image: there is no content], [image: there is no content], [image: there is no content], where [image: there is no content] denotes the number of arrivals in [image: there is no content].



In summary, we consider a pure-jump stochastic process [image: there is no content] with right-continuous, non-decreasing trajectories and are interested in the probability, [image: there is no content] that within a fixed time interval, [image: there is no content], the process [image: there is no content] stays between an upper and a lower deterministic, non-decreasing time-dependent boundaries, [image: there is no content] and [image: there is no content]. The interpretation of the boundaries is also dependent on the application. For example, [image: there is no content] and [image: there is no content] could model the cumulative insurance premium income and expense outgo, respectively in the insurance and dual risk models considered in the context of ruin theory. Or these could be interpreted as correspondingly, the maximum and minimum recommended bounds for a bank’s loan-to-deposit ratio so that the bank maximizes its returns while at the same time remains liquid. Formal specification of the boundaries, [image: there is no content] and [image: there is no content], is provided in Section 2.



We shall make the following assumptions regarding the (risk) process [image: there is no content]. It will be assumed that the point process, [image: there is no content], is a process with the so called order statistics (OS) property, or simply OS point process. The latter is characterized by the property that, given j arrivals in a finite interval [image: there is no content], [image: there is no content], the successive arrival times coincide in distribution with the order statistics of j independent and identically distributed random variables with a cumulative distribution function, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



OS processes with unit jumps at the arrival times [image: there is no content], i.e., for which [image: there is no content] is assumed continuous, have been thoroughly studied (see e.g., Nawrotzki 1962; Crump 1975; Feigin 1979; Puri 1982) and have also been applied in risk and ruin theory by (Willmot 1989; De Vylder and Goovaerts 1999, 2000; Lefevre and Picard 2011, 2014; Sendova and Zitikis 2012), to model insurance claim arrivals. Such OS processes are Markovian (see e.g., Thompson 1988) and include the (mixed) Poisson process, the Pólya-Lundberg process, and the linear birth process with immigration, equivalent to negative binomial processes and the linear death process (see e.g., Crump (1975), and more recently Goffard and Lefevre (2017) for details).



As noted by Lefevre and Picard (2011), OS processes are particularly suitable for modelling claim arrivals with dependence as they capture situations where the arrival of a claim increases the likelihood of more claim-arrivals leading to non-overlapping clustering, see e.g., the birth process considered in Bühlmann (1970). In contrast, in a death point process the arrival of a claim decreases the likelihood of arrival of more claims, as is the case in modelling the arrival of claims from a group life policy covering a closed group of individuals. It should also be mentioned that OS processes are appealing in modelling population growth where (OS) birth and death processes are a key modelling tool (see e.g., Kendall. 1949; Haccou et al. 2005).



Recently, Dimitrova et al. (2014) considered more general OS point processes by allowing [image: there is no content] to be discontinuous at some fixed instants, i.e, [image: there is no content] to be discontinuous at these instants, since as shown by Crump (1975), for an OS process, [image: there is no content]. This extends further the flexibility of the OS risk process, [image: there is no content], allowing risk events to arrive not only at random moments but also at fixed instants with non-zero probability, possibly forming clusters. This is an appealing feature, e.g., in life and non-life insurance applications, see Section 4 and Dimitrova et al. (2014) for particular examples in the special case of ruin by exceeding an upper boundary.



Our aim in the present paper is to derive, under this more general definition of an OS risk process, [image: there is no content], closed-form expressions for the non-exit probability [image: there is no content], under reasonably general assumptions on the boundaries, [image: there is no content] and [image: there is no content], allowing them to have jump discontinuities (see Theorem 1). Its proof is based on extending two results of Steck (1971), which give the probability that the order statistics from a sample of j uniform r.v.s all lie in a j-dimensional rectangle. We show also how Theorem 1 directly yields new ruin probability formulas in the insurance and the dual risk models under reasonably general assumptions, which have recently attracted considerable amount of research (see e.g., Ignatov and Kaishev 2000, 2004; Lefevre and Picard 2011, 2014; Dimitrova et al. (2015)). We further note that our paper (see also an earlier version Dimitrova et al. (2015)) covers and extends the non-crossing probability results for parallel boundaries of Xu (2012), Goffard and Lefevre (2017), Goffard (2017).



The paper is organized as follows. In Section 2, we prove our main result given by Theorem 1 and its discrete version, (see Corollary 2). In Section 3 we give Corollaries 3, 4, which establish new ruin probability formulas for the two important special cases, the insurance and the dual risk models with dependence between the claim severities or capital gains respectively. In Section 4, we consider the numerical implementation of the results of Theorem 1 and Corollary 2 and illustrate these results for some special cases of OS claim arrival processes, (see 1 and 2).




2. A Formula for the Non-Exit Probability [image: there is no content]


We assume that the two functions [image: there is no content] and [image: there is no content], [image: there is no content], have the following properties: [image: there is no content] and [image: there is no content] are non-decreasing functions, such that [image: there is no content] and [image: there is no content]; [image: there is no content], [image: there is no content]; [image: there is no content] and [image: there is no content] may have jump-discontinuities, and we assume that [image: there is no content] is right-continuous and [image: there is no content] is left-continuous. We will define the inverse functions, [image: there is no content], [image: there is no content], [image: there is no content], so that [image: there is no content] is left-continuous and [image: there is no content] is right-continuous. We will further consider restrictions of [image: there is no content] and [image: there is no content] on [image: there is no content], [image: there is no content], denoted by [image: there is no content] and [image: there is no content], and define the corresponding restrictions of the inverse functions as [image: there is no content] and [image: there is no content]. In view of these definitions, we will assume that the process [image: there is no content] does not exit if its trajectory touches either one of the two boundaries.



As noted, here we will adopt the more general definition of an OS arrival process, recently considered by Dimitrova et al. (2014). We assume that, [image: there is no content] has an arbitrary cumulative intensity function [image: there is no content], such that [image: there is no content], [image: there is no content], [image: there is no content], and cumulative distribution function


Fz(t)=0ift<0Λ(t)/Λ(z)if0≤t<z1ift≥z,



(1)




where [image: there is no content]. If [image: there is no content] are independent and identically distributed random variables with distribution function [image: there is no content] and if, [image: there is no content] denote their order statistics, then the process [image: there is no content] is said to have the OS property if, given j arrivals in a finite interval [image: there is no content], (i.e., given [image: there is no content]),[image: there is no content], the successive points, [image: there is no content] of the process [image: there is no content], have a conditional joint distribution which coincides with the joint distribution of the order statistics [image: there is no content].



From the definition of [image: there is no content] it can be seen that it is right-continuous and hence, [image: there is no content], with possible jumps, [image: there is no content], where [image: there is no content] and [image: there is no content]. Let [image: there is no content] be a realization of the sequence [image: there is no content], with joint cdf, [image: there is no content]. We can now state our main result.



Theorem 1.

The non-exit probability [image: there is no content], [image: there is no content], for an OS arrival process, ξ with an arbitrary distribution function, [image: there is no content] defined as in (1), is given by:


Pgz(t)≤St≤hz(t),0≤t≤z=∑j=0∞j!P(ξ[0,z]=j)∫…∫Cj1gz(z)(yj)detδm,l(j)1≤m,l≤jdFy1,…,yj,



(2)




where [image: there is no content], 1gz(z)(yj)=1ifyj≥gz(z)0ifyj<gz(z), and [image: there is no content] is the determinant of an [image: there is no content] matrix with elements:


[image: there is no content]



(3)




[image: there is no content], where [image: there is no content], δm,l(j)=0ifl−m+1<01ifl−m+1=0, and where for [image: there is no content] we assume that the multiple integral in (2) is equal to 0 if [image: there is no content] or is equal to 1 if [image: there is no content]. Alternatively,


Pgz(t)≤St≤hz(t),0≤t≤z=∑j=0∞P(ξ[0,z]=j)∫…∫Cj1gz(z)(yj)detρm,l(j)1≤m,l≤jdFy1,…,yj,



(4)




where


[image: there is no content]



(5)




for [image: there is no content] and ρm,l(j)=0ifl−m+1<01ifl−m+1=0, and where for [image: there is no content] we assume that the multiple integral in (4) is equal to 0 if [image: there is no content] or is equal to 1 if [image: there is no content].





Remark 1.

From (3) and (5), it follows that [image: there is no content] and [image: there is no content] are lower Hessenberg matrix. A matrix whose elements above or below the first subdiagonal are equal to zero (i.e., all elements, [image: there is no content] if [image: there is no content] or if [image: there is no content]) are called Hessenberg matrixes. The determinants of the latter are computed using a straightforward recurrence relation established by Lemma 2. For properties of Hessenberg matrixes and their determinants we refer to, e.g., Vein and Dale (1999).



Since Appell polynomials and other types of Appell structures are also expressed as Hessenberg determinants (see e.g., Vein and Dale (1999), Ignatov and Kaishev 2000, 2016, and Dimitrova et al. (2014)), here we will interchangeably refer to [image: there is no content] and [image: there is no content] as Appell-Hessenberg functions.





In order to prove Theorem 1, we will need an auxiliary result, stated as Lemma 1 bellow. Let [image: there is no content] be independent and identically distributed random variables with distribution function [image: there is no content], [image: there is no content] denote their order statistics and let, [image: there is no content] be independent uniformly on [image: there is no content] distributed random variables with order statistics, [image: there is no content]. Let us also define


Fz−1(u)=inf{t:Fz(t)≥u},0≤u≤1.



(6)







Lemma 1.

If [image: there is no content] is a right continuous cdf then, for [image: there is no content] and [image: there is no content] such that [image: there is no content], [image: there is no content] and j, a natural number, we have


[image: there is no content]



(7)









For a proof of Lemma 1, see Appendix A.



Let us introduce the shorter notation [image: there is no content]. The following Lemma gives a recurrence expression for the probability [image: there is no content], obtained by Epanechnikov (1968), which directly follows, expanding the determinant in (11), with respect to the last column, with [image: there is no content] and [image: there is no content].



Lemma 2.

For [image: there is no content] and [image: there is no content] such that [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content], we have


dk=−∑i=0k−1kiFzβi+1−Fzαk−+k−i(−1)k−idi,k=1,…,j,



(8)




where [image: there is no content].





We will also need the following two results, due to Steck (1971).



Theorem 2. 

(G.P. Steck). Let [image: there is no content] and [image: there is no content] be such that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Then,


[image: there is no content]



(9)




where [image: there is no content] is the determinant of an [image: there is no content] matrix with element on the m-th row and the l-th column defined as:


δ˜m,l(j)=vm−ul+l−m+1/l−m+1!ifl−m+1≥0,0ifl−m+1<0.



(10)









Corollary 1. 

(G.P. Steck). Under the conditions of Theorem 2, we have


[image: there is no content]



(11)




where


[image: there is no content]



(12)









We are now ready to prove Theorem 1.



Proof of Theorem 1. 

Recall that, since [image: there is no content] is restricted to the interval [image: there is no content] and [image: there is no content], two cases need to be considered, [image: there is no content] and [image: there is no content]. In the case of [image: there is no content], applying the formula of total probability, we have


Pgz(t)≤St≤hz(t),0≤t≤z=∑j=1∞Pξ0,z=jPgz(t)≤St≤hz(t),0≤t≤z∣ξ0,z=j,



(13)




where the summation starts from, [image: there is no content], since for [image: there is no content] the conditional probability is 0 when [image: there is no content]. For the conditional probability on the right-hand side of (13), we have


Pgz(t)≤St≤hz(t),0≤t≤z∣ξ0,z=j=Phz(z)≥Yj≥gz(z)⋂ji=1hz−1Yi−≤Ti≤gz−1Yi−1=∫…∫Cj1gz(z)(yj)P⋂ji=1hz−1yi−≤Ti≤gz−1yi−1dFy1,…,yj=∫…∫Cj1gz(z)(yj)P⋂ji=1Fzhz−1yi−≤Ui,j≤Fzgz−1yi−1dFy1,…,yj,



(14)




where the last equality follows from Lemma 1, with [image: there is no content], [image: there is no content], noting that, [image: there is no content] coincide in distribution with the order statistics, [image: there is no content]. The asserted equalities (2) and (4) now follow substituting, [image: there is no content], expressed by the last equality in (14), back in (13) and applying Theorem 2 and Corollary 1 to express [image: there is no content], with [image: there is no content] and [image: there is no content].



In the case of [image: there is no content], for [image: there is no content], the conditional probability is 1 and the term [image: there is no content] should be added to the sum on the right-hand side of (13). This completes the proof of the assertion of Theorem 1. ☐





It can directly be seen that Theorem 1 is also valid for discrete [image: there is no content] in which case multiple integration is replaced by appropriate multiple summation, and (2) and (4) become exact, closed form expressions more appealing for numerical implementation. This is illustrated by Corollary 2 given next, where formula (15) is a discrete version of (4).



Corollary 2.

The non-exit probability [image: there is no content], [image: there is no content], for an OS arrival process, ξ, with an arbitrary distribution function, [image: there is no content] defined as in (1), and arbitrarily distributed (possibly dependent) discrete integer-valued [image: there is no content] with joint probability mass function [image: there is no content], is given by:


Pgz(t)≤St≤hz(t),0≤t≤z=∑j=0⌊hz(z)⌋P(ξ[0,z]=j)∑1≤y1<y2<…<yj≤⌊hz(z)⌋⌈gz(z)⌉≤yjdetρm,l(j)1≤m,l≤jpy1,…,yj,=∑j=0⌊hz(z)⌋P(ξ[0,z]=j)∑y1=1⌊hz(z)⌋−(j−1)∑y2=y1+1⌊hz(z)⌋−(j−2)…∑yj−1=yj−2+1⌊hz(z)⌋−1∑yj=max(yj−1,⌈gz(z)⌉)⌊hz(z)⌋detρm,l(j)1≤m,l≤j×py1,…,yj,



(15)




where [image: there is no content] is the integer part of [image: there is no content], [image: there is no content] is the least integer [image: there is no content], [image: there is no content] is the determinant of an [image: there is no content] matrix with elements, [image: there is no content] defined as in (5) and where for [image: there is no content] we assume that the multiple summation in (15) is equal to 0 if [image: there is no content] or is equal to 1 if [image: there is no content].





Proof of Corollary 2.

The proof directly follows the lines of the proof of Theorem 1, replacing multiple integration with the corresponding multiple summation. ☐






3. Application to Ruin Probability


In this section we will consider two corollaries of Theorem 1, which yield new explicit formulas for the probability of non-ruin in the insurance and dual risk models.



3.1. Ruin in the Insurance Risk Model


Ruin under the insurance risk model has been thoroughly investigated, but very few closed form expressions have been established. See e.g., Picard and Lefevre (1997), Ignatov and Kaishev 2000, 2004; Ignatov et al. (2001); Lefevre and Loisel (2009) and Dimitrova et al. (2016) for finite-time ruin formulas under Poisson claim arrivals, involving Appell polynomials. Ruin formulas under more general arrival processes have been recently established: by Ignatov and Kaishev (2016) for the case when the claim arrival process [image: there is no content] is a process with independent increments; and by Lefevre and Picard 2011, 2014 and Dimitrova et al. (2014) for the case when [image: there is no content] is a process with the OS property.



In the insurance risk model, the upper boundary, [image: there is no content] models the cumulative premium income of an insurance company up to time t, and [image: there is no content] is interpreted as its aggregate claim amount process with partial sums of the individual claims, [image: there is no content], arriving at the instants, [image: there is no content]. Denote by [image: there is no content] the insurance company’s risk process and define the instant of ruin, T as [image: there is no content] or [image: there is no content] if [image: there is no content] for all [image: there is no content]. It is not difficult to see that the probability of non-ruin in [image: there is no content], [image: there is no content] coincides with the non-exit probability [image: there is no content], where the lower boundary, [image: there is no content] for every [image: there is no content], i.e., is such that, [image: there is no content], [image: there is no content]. We can now give the following.



Corollary 3.

The finite-time non-ruin probability [image: there is no content], [image: there is no content], for an OS claim arrival process, ξ with an arbitrary distribution function, [image: there is no content], defined as in (1), is given by (2) with (3) replaced by:


δm,l(j)=1−Fzhz−1yl−l−m+1l−m+1!,1≤m,l≤j,



(16)




where [image: there is no content] if [image: there is no content]; or as (4) with (5) replaced by


ρm,l(j)=ll−m+11−Fzhz−1yl−l−m+1,1≤m,l≤j,



(17)




where [image: there is no content] if [image: there is no content].





Proof of Corollary 3.

The asserted equalities (16) and (17) follow from (3) and (5) noting that since, [image: there is no content], [image: there is no content], then [image: there is no content], [image: there is no content]. ☐






3.2. Ruin in the Dual Risk Model


The dual risk model has been intensively studied in the ruin probability literature which is summarized in Dimitrova et al. (2015), where an instructive link between the insurance and the dual risk models is established and exploited to obtain new ruin formulas, for the dual model.



In the dual model, the lower boundary, [image: there is no content] models the cumulative expense outgo of a company up to time t, and [image: there is no content] is interpreted as its aggregate capital gain process with partial sums of the individual capital gains, [image: there is no content], arriving at the instants, [image: there is no content]. Such companies could typically, be mineral exploration companies or companies specializing in research and development, where capital gains occur at random instants of e.g., mineral finds or technological breakthroughs.



It is not difficult to see that the probability of non-ruin of the company, [image: there is no content] coincides with the non-exit probability [image: there is no content], where the upper boundary, [image: there is no content] for every [image: there is no content], i.e., is such that, [image: there is no content], [image: there is no content]. We can now give the following.



Corollary 4.

The finite-time non-ruin probability [image: there is no content], [image: there is no content], for an OS claim arrival process, ξ with an arbitrary distribution function, [image: there is no content], defined as in (1), is given by (2) with (3) replaced by:


δm,l(j)=Fzgz−1ym−1l−m+1l−m+1!,1≤m,l≤j,



(18)




where [image: there is no content] if [image: there is no content]; or as (4) with (5) replaced by


ρm,l(j)=ll−m+1Fzgz−1ym−1l−m+1,1≤m,l≤j,



(19)




where [image: there is no content] if [image: there is no content].





Proof of Corollary 4.

The asserted equalities (18) and (19) follow from (3) and (5) noting that since, [image: there is no content], [image: there is no content], then [image: there is no content], [image: there is no content]. ☐







4. Numerical Considerations and Examples


In this section, we give details on how our main result established by Theorem 1 can be implemented numerically and illustrate it based on two particular examples of OS point processes modelling insurance claim arrivals.



It should be noted that for the efficient evaluation of [image: there is no content], following (2), or (4), it is essential to be able to:

	
appropriately truncate the infinite summation;



	
compute the underlying (multiple) j-dimensional integrals, for possibly large values of j;



	
efficiently compute the integrand functions [image: there is no content], or equivalently [image: there is no content].








We will address items 1–3 as follows.

	
It should be mentioned that explicit expressions for the probability [image: there is no content] exist for the well-established OS point processes in the literature (see e.g., the four cases discussed in Goffard and Lefevre (2017)), and it can directly be substituted in either (2), or (4). This allows for truncating the infinite sum with respect to j up to a maximum value say [image: there is no content] above which the probability [image: there is no content] is negligibly small leading to negligibly small sum of the product terms in (13)), hence in (2), or (4). Similar approach has been exploited in Section 4 of Dimitrova et al. (2016) for the Poisson special case. If an expression for [image: there is no content] is not available for an OS point process, one could view (2), or (4), as an expectation with respect to [image: there is no content] and apply Monte Carlo simulation, generating [image: there is no content], calculating the multiple integral of dimension [image: there is no content] and then averaging over the number of simulations.



	
In order to compute the j-dimensional integral in (2), or (4), one can view it as an appropriate expectation with respect to the order statistics [image: there is no content] of j independent uniformly distributed on [image: there is no content] random variables and apply a Monte Carlo approach (employing only order statistics of uniforms) to compute the integral. This approach has been applied and thoroughly investigated in Section 5 of Dimitrova et al. (2016) for computing similar multiple integrals. More precisely, following Dimitrova et al. (2016), one can rewrite (4) as


Pgz(t)≤St≤hz(t),0≤t≤z=∑j=0∞P(ξ[0,z]=j)Vj∫0hz(z)∫y1hz(z)…∫yj−1hz(z)1gz(z)(yj)detρm,l(j)1≤m,l≤j×f(y1,…,yj)×1Vjdyj…dy1,








where


[image: there is no content]








As is well known, [image: there is no content] can be viewed as the joint probability density function of the order statistics, [image: there is no content], of j independent uniformly distributed on [image: there is no content] random variables. Therefore, the multiple integrals in (2), or (4), can be interpreted as expectations with respect to the order statistics [image: there is no content] and so, a Monte-Carlo simulation approach can be used to evaluate these. Thus, one may simulate, say [image: there is no content], samples from the j-tuples [image: there is no content] and utilizing the method for truncating the infinite sum so that a prescribed accuracy is achieved, as outlined in item 1 above (see also section 4 of Dimitrova et al. (2016) , we arrive at


Pgz(t)≤St≤hz(t),0≤t≤z≈(P(ξ[0,z]=0)+∑k=1N∑j=1jϵ*P(ξ[0,z]=j)Vjc1gz(z)(yj,j)×detρm,l(j)1≤m,l≤j×f(y1,jk,…,yj,jk))/N



(20)




It should be noted that this Monte Carlo approach can be applied also when the [image: there is no content]’s are discrete, i.e., with respect to (15), since although it is exact, its evaluation may still be prohibitively time consuming for very large values of [image: there is no content]. See Dimitrova et al. (2016) for numerical details and comparison with the direct Monte Carlo approach.



	
Finally, as noted in Remark 1, the determinants in (2) and (4) are of a Appell-Hessenberg type, they can be efficiently evaluated using recurrence formula (8), noting that


j!detδm,l(j)1≤m,l≤j=detρm,l(j)1≤m,l≤j=P⋂ji=1Fzhz−1yi−≤Ui,j≤Fzgz−1yi−1=dj,



(21)




with [image: there is no content] and [image: there is no content].








Next for illustrative purposes we specify formula (4), for the case of two particular OS arrival processes, the non-homogeneous linear birth process, known also as the Pólya-Lundberg process for which [image: there is no content] is continuous, and an (OS) Poisson process with Poisson clusters at fixed instants, where [image: there is no content] has jump discontinuities.



First we consider a double boundary non-crossing problem equivalent to a non-ruin probability model, as described in Section 3.1. We assume the arrival of insurance claims is modelled by a Pólya- Lundberg process with parameters [image: there is no content] and [image: there is no content]. The latter is a non-homogeneous linear birth process for which [image: there is no content] has a negative binomial distribution, i.e.,


[image: there is no content]



(22)







As known, the Pólya-Lundberg process has cdf [image: there is no content] for [image: there is no content] with [image: there is no content] for [image: there is no content]. It admits representation as a mixed poisson Process, i.e., [image: there is no content], where [image: there is no content] is a homogeneous Poisson process with unit rate and W is Gamma distributed with shape parameter [image: there is no content] and scale parameter [image: there is no content], i.e., [image: there is no content]. Assuming such an OS process for the claim arrivals, we specify the remaining parameters of the underlying OS risk model as follows.



Example 1.

Consider a double boundary non-crossing problem equivalent to a non-ruin probability model as described in Section 3.1, where the arrival of claim amounts is modelled by a Pólya- Lundberg process with parameters [image: there is no content] and [image: there is no content]. Assume the upper boundary equivalent to the premium income function is [image: there is no content], the time horizon [image: there is no content], the lower boundary function [image: there is no content], [image: there is no content] and the partial claim sums, [image: there is no content] to be the integers [image: there is no content], respectively. Utilizing expression (4) of Theorem 1, and more precisely Corollary 2, for the non-ruin probability we have


P0≤St≤hz(t),0≤t≤z=P(T>z)=∑j=05j−1+1/bjλbz1+λbzj11+λbz1/bdetρm,l(j)1≤m,l≤j=1/2+∑j=151×45j151detρm,l(j)1≤m,l≤j=0.568265



(23)




where we have used that [image: there is no content], [image: there is no content] and where the number 0.568265 is computed using the recurrence formula (8) to evaluate the determinants, following (21) and using (17) substituting in it [image: there is no content] for [image: there is no content] or zero otherwise.



Let us note that this example has been considered by Goffard and Lefevre (2017) and our result of [image: there is no content] coincides with theirs.





Second, to demonstrate the generality and flexibility of our model, consider an OS point process, [image: there is no content], with a continuous component and a pure jump component in the underlying cdf, [image: there is no content], i.e., [image: there is no content], where [image: there is no content] is a Poisson process with unit rate, defined on [image: there is no content] and independent of the Poisson random variables, [image: there is no content], [image: there is no content], [image: there is no content], assumed also mutually independent. By construction, [image: there is no content] is an OS process with independent increments. It could be particularly suitable for applications, especially when data comes from two (or more) independent insurance portfolios (lines of business), among which one with claim frequency data at fixed instants [image: there is no content] (e.g., annual observations) and a second one with data at policy level of the instants of claiming. In view of the Solvency II requirements, it would be instructive to be able to evaluate the probability of non-ruin in a finite time interval, [image: there is no content], due to claims coming from all lines of business. Without loss of generality, we will illustrate this, based on the following example.



Example 2.

Let [image: there is no content]. Then, the cumulative intensity function, [image: there is no content] is


Λ(x)=xfor0<x<t1,x+μ1fort1≤x<t2,x+μ1+μ2fort2≤x≤z,








and the related cdf


Fz(x)=0for−∞<x<0,x/(z+μ1+μ2)for0≤x<t1,(x+μ1)/(z+μ1+μ2)fort1≤x<t2,(x+μ1+μ2)/(z+μ1+μ2)fort2≤x≤z,1forz<x<+∞.








Take the upper boundary (premium income) function [image: there is no content] to be,


hz(x)=0.5forx<t1,1.5fort1≤x<t2,2.5fort2≤x,



(24)




the lower boundary function to be [image: there is no content], [image: there is no content] and the partial claim sums, [image: there is no content] to be the integers [image: there is no content], respectively. Applying Equation (4) of Theorem 1, and more precisely Corollary 3, for the finite-time non-ruin probability we have


P0≤St≤hz(t),0≤t≤z=P(T>z)=P(ξ(0,z]=0)+∑j=1⌊hz(z)⌋P(ξ(0,z]=j)detρm,l(j)1≤m,l≤j=exp(−(z+μ1+μ2))+(z+μ1+μ2)exp(−(z+μ1+μ2)))ρ1,1(1)+(z+μ1+μ2)22!exp(−(z+μ1+μ2))detρm,l(2)1≤m,l≤2=exp(−(z+μ1+μ2))1+z(1+μ1+μ2+z2−t1)+t1t2−t222−μ1t2+μ1μ2+μ222−μ2t1+μ1+μ2−t1,



(25)




where we have used that [image: there is no content] and where the last equality follows expanding the determinants, following (17) and performing some straightforward algebra.





Remark 2. 

The last expression in (25), can be verified through direct but tedious calculations, see Dimitrova et al. (2014).
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Appendix A. Proof of Lemma 1


From David and Nagaraja (2003), (see p. 15 therein) we have


[image: there is no content]



(A1)




where [image: there is no content] stands for equality in distribution.



From (A1), we have


P⋂ji=1αi<Xi,j≤βi=P⋂ji=1αi<Fz−1(Ui,j)≤βi=P⋂ji=1{Fz−1(Ui,j)≤βi}∖{Fz−1(Ui,j)≤αi}=P⋂ji=1{Ui,j≤Fz(βi)}∖{Ui,j≤Fz(αi)}=P⋂ji=1Fz(αi)<Ui,j≤Fz(βi).



(A2)







The third equality in (A2) follows since, for a right-continuous cdf [image: there is no content] the inequality [image: there is no content] holds iff [image: there is no content] (see e.g., David and Nagaraja (2003)), where one can replace u with [image: there is no content]. Consider now the probability on the left-hand side of (7). We have


P⋂ji=1αi≤Xi,j≤βi=limϵ→0P⋂ji=1(αi−ϵ)<Xi,j≤βi=limϵ→0P⋂ji=1Fz(αi−ϵ)<Ui,j≤Fz(βi)=P⋂ji=1Fz(αi−)<Ui,j≤Fz(βi)=P⋂ji=1Fz(αi−)≤Ui,j≤Fz(βi),



(A3)




where in the second equality of (A3) we have used (A2) and the last equality follows since [image: there is no content], [image: there is no content] are absolutely continuous. ☐
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