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Abstract: In this paper, the multivariate fractional trading ansatz of money management from Vince
(Vince 1990) is discussed. In particular, we prove existence and uniqueness of an “optimal f ” of the
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1. Introduction

Risk and money management for investment issues has always been at the heart of finance.
Going back to the 1950s, Markowitz (1991) invented the “modern portfolio theory”, where the additive
expectation of a portfolio of different investments was maximized subject to a given risk expressed by
volatility of the portfolio.

When the returns of the portfolio are no longer calculated additive, but multiplicative in order
to respect the needs of compound interest, the resulting optimization problem is known as “fixed
fractional trading”. In fixed fractional trading strategies an investor always wants to risk a fixed
percentage of his current capital for future investments given some distribution of historic trades of his
trading strategy.

A first example of factional trading was established in the 1950s by (Kelly 1956) who found
a criterion for an asymptotically optimal investment strategy for one investment instrument. Similarly,
Vince in the 1990s (see (Vince 1990, 1992)) used the fractional trading ansatz to optimize his position
sizing. Although at first glance these two methods look quite different, they are in fact closely related
as could be shown in (Maier-Paape 2016). However, only recently (Vince 2009) extended the fractional
trading ansatz to portfolios of different investment instruments. The situation with M investment
instruments (systems) and N coincident realizations of absolute returns of these M systems results in a
trade return matrix T described in detail in (2). Given this trade return matrix, the “Terminal Wealth
Relative” (TWR) can be constructed (see (4)) measuring the multiplicative gain of a portfolio resulting
from a fixed vector ϕ = (ϕ1, . . . , ϕM) of fractional investments into the M systems. In order to find an
optimal investment among all fractions ϕ the TWR has to be maximized

maximize
ϕ∈G

TWR(ϕ), (1)

where G is the definition set of the TWR (see Definition 1 and (8)).
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Whereas (Vince 2009) only stated this optimization problem and illustrated it with examples,
in Section 3 we give as our main result the necessary analysis. In particular, we investigate the definition
set G of the TWR and fix reasonable assumptions (Assumption 1) under which (1) has a unique solution.

This unique solution may lie in
◦
G or on ∂G as different examples in Section 4 show. Our result extend

the results of (Maier-Paape 2013; Zhu 2007) (M = 1 case only) and parts of the PhD of (Hermes 2016) on
the discrete multivariate TWR. One of the main ingredients to show the uniqueness of the maximum of
(1) is the concavity of the function [TWR(·)]1/N (see Lemma 5). Uniqueness and concavity furthermore
guarantee that the solution of (1) can always be found numerically by simply following steepest ascent.

Before we start our analysis, some more remarks on related papers are in order.
In (Maier-Paape 2015) showed that the fractional trading ansatz on one investment instrument leads
to tremendous drawdowns, but that effect can be reduced largely when several stochastic independent
trading systems are used coincidentally. Under which conditions this diversification effect works out in
the here considered multivariate TWR situation is still an open question. Furthermore, several papers
investigated risk measures in the context of fractional trading with one investment instrument (M = 1;
see (De Prado et al. 2013; Maier-Paape 2013, 2016; Vince and Zhu 2013)). Related investigations for the
multivariate TWR using the drawdown can be found in (Vince 2009).

In the following sections, we analyse the multivariate case of a discrete Terminal Wealth Relative.
That means we consider multiple investment strategies where every strategy generates multiple
trading returns. As noted before this situation can be seen as a portfolio approach of a discrete
Terminal Wealth Relative (cf. (Vince 2009)). For example, one could consider an investment strategy
applied to several assets, the strategy producing trading returns on each asset. However, in an even
broader sense, one could also consider several distinct investment strategies applied to several distinct
assets or even classes of assets.

2. Definition of a Terminal Wealth Relative

The subject of consideration in this paper is the multivariate case of the discrete Terminal Wealth
Relative for several trading systems analogous to the definition of Ralph Vince in (Vince 2009).
For 1 ≤ k ≤ M, M ∈ N, we denote the k-th trading system by (system k). A trading system is an
investment strategy applied to a financial instrument. Each system generates periodic trade returns,
e.g., monthly, daily or the like. The absolute trade return of the i-th period of the k-th system is denoted
by ti,k, 1 ≤ i ≤ N, 1 ≤ k ≤ M. Thus, we have the joint return matrix

period (system 1) (system 2) · · · (system M)
1 t1,1 t1,2 · · · t1,M
2 t2,1 t2,2 · · · t2,M
...

...
...

. . .
...

N tN,1 tN,2 · · · tN,M

and define

T :=
(

ti,k

)
1≤i≤N
1≤k≤M

∈ RN×M. (2)

Just as in the univariate case (cf. (Maier-Paape 2013) or (Vince 1990)), we assume that each system
produced at least one loss within the N periods. That means

∀ k ∈ {1, . . . , M} ∃ i0 = i0(k) ∈ {1, . . . , N} such that ti0,k < 0 . (3)

Thus, we can define the biggest loss of each system as

t̂k := max
1≤i≤N

{|ti,k| | ti,k < 0} > 0, 1 ≤ k ≤ M.
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For better readability, we define the rows of the given return matrix, i.e., the return of the i-th
period, as

ti· := (ti,1, . . . , ti,M) ∈ R1×M

and the vector of all biggest losses as

t̂ := (t̂1, . . . , t̂M) ∈ R1×M.

Having the biggest loses at hand, it is possible to “normalize” the k-th column of T by 1/t̂k such
that each system has a maximal loss of −1. Using the componentwise quotient, the normalized trade
matrix return then has the rows

(ti·/t̂) :=
(

ti,1

t̂1
, . . . ,

ti,M

t̂M

)
∈ R1×M, 1 ≤ i ≤ N .

For ϕ := (ϕ1, . . . , ϕM)>, ϕk ∈ [0, 1], we define the Holding Period Return (HPR) of the i-th
period as

HPRi(ϕ) := 1 +
M

∑
k=1

ϕk
ti,k

t̂k
= 1 + 〈(ti·/t̂)>, ϕ〉RM , (4)

where 〈·, ·〉RM denotes the standard scalar product on RM. To shorten the notation, the marking of
the vector space RM at the scalar product is omitted, if the dimension of the vectors is clear. Similar to
the univariate case, the gain (or loss) in each system is scaled by its biggest loss. Therefore the HPR
represents the gain (loss) of one period, when investing a fraction of ϕk/t̂k of the capital in (system k)
for all 1 ≤ k ≤ M, thus risking a maximal loss of ϕk in the k-th trading system.

The Terminal Wealth Relative (TWR) as the gain (or loss) after the given N periods, when the
fraction ϕk is invested in (system k) over all periods, is then given as

TWRN(ϕ) : =
N

∏
i=1

HPRi(ϕ)

=
N

∏
i=1

(
1 +

M

∑
k=1

ϕk
ti,k

t̂k

)
=

N

∏
i=1

(
1 + 〈(ti·/t̂)>, ϕ〉

)
.

(5)

Note that in the M = 1–dimensional case a risk of a full loss of our capital corresponds to a fraction
of ϕ = 1 ∈ R. Here in the multivariate case we have a loss of 100% of our capital every time there
exists an i0 ∈ {1, . . . , N} such that HPRi0(ϕ) = 0. That is for example if we risk a maximal loss of
ϕk0 = 1 in the k0-th trading system (for some k0 ∈ {1, . . . , M}) and simultaneously letting ϕk = 0 for
all other k ∈ {1, . . . , M}. However these degenerate vectors of fractions are not the only examples that
produce a Terminal Wealth Relative (TWR) of zero. Since we would like to risk at most 100% of our
capital (which is quite a meaningful limitation), we restrict TWRN : G→ R to the domain G given by
the following definition:

Definition 1. A vector of fractions ϕ ∈ RM
≥0 is called admissible if ϕ ∈ G holds, where

G : = {ϕ ∈ RM
≥0 | HPRi(ϕ) ≥ 0, ∀ 1 ≤ i ≤ N}

= {ϕ ∈ RM
≥0 | 〈(ti·/t̂)>, ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ N}.

Furthermore, we define

R := {ϕ ∈ G | ∃ 1 ≤ i0 ≤ N s.t. HPRi0(ϕ) = 0}.
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With this definition we now have a risk of 100% for each vector of fractions ϕ ∈ R and a risk of
less than 100% for each vector of fractions ϕ ∈ G \R. Since

HPRi(0) = 1 for all 1 ≤ i ≤ N

we can find an ε > 0 such that

Λε := {ϕ ∈ RM
≥0 | ‖ϕ‖ ≤ ε} ⊂ G,

and thus in particular G 6= ∅ holds. ‖·‖ = √〈·, ·〉 denotes the Euclidean norm on RM.
Observe that the i-th period results in a loss if HPRi(ϕ) < 1, that means

〈(ti·/t̂)>, ϕ〉 = HPRi(ϕ)− 1 < 0. Hence the biggest loss over all periods for an investment with
a given vector of fractions ϕ ∈ G is

r(ϕ) := max
{
− min

1≤i≤N
{〈(ti·/t̂)>, ϕ〉}, 0

}
. (6)

Consequently, we have a biggest loss of

r(ϕ) = 1 ∀ϕ ∈ R

and

r(ϕ) ∈ [0, 1) ∀ϕ ∈ G \R.

Note that for ϕ ∈ G we do not have an a priori bound for the fractions ϕk, k = 1, . . . , M. Thus it
may happen that there are ϕ ∈ G \R with ϕk > 1 for some (or even for all) k ∈ {1, . . . , M}, or at

least
M
∑

k=1
ϕk > 1, indicating a risk of more than 100% for the individual trading systems, but the

combined risk of all trading systems r(ϕ) can still be less than 100%. So the individual risks can
potentially be eliminated to some extent through diversification. As a drawback of this favorable effect
the optimization in the multivariate case may result in vectors of fractions ϕ ∈ G that require a high
capitalization of the individual trading systems. Thus, we assume leveraged financial instruments and
ignore margin calls or other regulatory issues.

Before we continue with the TWR analysis, let us state a first auxiliary lemma for G.

Lemma 1. The set G in Definition 1 is convex, as is G \R.

Proof. All the conditions ϕk ≥ 0, k = 1, . . . , M and

HPRi(ϕ) ≥ 0 ⇔ 〈(ti·/t̂)>, ϕ〉 ≥ −1, i = 1, . . . , N

define half spaces (which are convex). Since G is the intersection of a finite set of half spaces, it is
itself convex.

A similar reasoning yields that G \R is convex, too.

3. Optimal Fraction of the Discrete Terminal Wealth Relative

If we develop this line of thought a little further a necessary condition for the return matrix T for
the optimization of the Terminal Wealth Relative gets clear:

Lemma 2. Assume there is a vector ϕ0 ∈ Λε with r(ϕ0) = 0 then

{s ·ϕ0 | s ∈ R≥0} ⊂ G \R.
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If in addition there is an 1 ≤ i0 ≤ N such that HPRi0(ϕ0) > 1 then

TWRN(s ·ϕ0) −−−→s→∞
∞.

Proof. If

r(ϕ0) = max
{
− min

1≤i≤N
{〈(ti·/t̂)>, ϕ0〉}, 0

}
= 0,

it follows that
HPRi(ϕ0) ≥ 1 for all 1 ≤ i ≤ N. (7)

For arbitrary s ∈ R≥0 the function

s 7→ HPRi(sϕ0) = 1 + 〈(ti·/t̂)>, sϕ0〉 = 1 + s 〈(ti·/t̂)>, ϕ0〉︸ ︷︷ ︸
≥0

≥ 1

is monotonically increasing in s for all i = 1, . . . , N and by that we have

sϕ0 ∈ G \R .

Moreover, if there is an i0 with HPRi0(ϕ0) > 1 then

HPRi0(sϕ0) −−−→s→∞
∞

and by that

TWRN(s ·ϕ0) −−−→s→∞
∞.

An investment where the holding period returns are greater than or equal to 1 for all periods
denotes a “risk free” investment (r(ϕ) = 0) and considering the possibility of an unbounded leverage,
it is clear that the overall profit can be maximized by investing an infinite quantity. Assuming arbitrage
free investment instruments, any risk free investment can only be of short duration, hence by increasing
N ∈ N the condition HPRi(ϕ0) ≥ 1 will eventually burst, cf. (7). Thus, when optimizing the Terminal
Wealth Relative , we are interested in settings that fulfill the following assumption

∀ϕ ∈ ∂Bε(0) ∩Λε ∃ i0 = i0(ϕ) such that 〈(ti0·/t̂)>, ϕ〉 < 0,

always yielding r(ϕ) > 0.
With that at hand, we can formulate the optimization problem for the multivariate discrete

Terminal Wealth Relative

maximize
ϕ∈G

TWRN(ϕ) (8)

and analyze the existence and uniqueness of an optimal vector of fractions for the problem under
the assumption

Assumption 1. We assume that each of the trading systems in (2) produced at least one loss (cf. (3))
and furthermore

∀ϕ ∈ ∂Bε(0) ∩Λε ∃ i0 = i0(ϕ) ∈ {1, . . . , N}
such that 〈(ti0·/t̂)>, ϕ〉 < 0 (no risk free investment)

(a)

1
N

N

∑
i=1

ti,k > 0 ∀ k = 1, . . . , M (each trading system is profitable)(b)
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ker(T) = {0} (linear independent trading systems)(c)

Assumption 1(a) ensures that, no matter how we allocate our portfolio (i.e., no matter what
direction ϕ ∈ G we choose), there is always at least one period that realizes a loss, i.e., there exists
an i0 with HPRi0(ϕ) < 1. Or in other words, not only are the investment systems all fraught with risk
(cf. (3)), but there is also no possible risk free allocation of the systems.

The matrix T from (2) can be viewed as a linear mapping

T : RM → RM,

“ker(T)” denotes the kernel of the matrix T in Assumption 1(c). Thus, this assumption is the linear
independence of the trading systems, i.e., the linear independence of the columns

t·k ∈ RN , k ∈ {1, . . . , M}

of the matrix T. Hence with Assumption 1(c) it is not possible that there exists an 1 ≤ k0 ≤ M and
a ψ ∈ RM \ {0} such that

(−ψk0)

 t1,k0
...

tN,k0

 =
M

∑
k=1
k 6=k0

ψk

 t1,k
...

tN,k

 ,

which would make (system k0) obsolete. So Assumption 1(c) is no actual restriction of the
optimization problem.

Now we point out a first property of the Terminal Wealth Relative .

Lemma 3. Let the return matrix T ∈ RN×M (as in (2)) satisfy Assumption 1(a) then, for all ϕ ∈ G \ {0},
there exists an s0 = s0(ϕ) > 0 such that TWRN(s0ϕ) = 0. In fact s0ϕ ∈ R.

Proof. For some arbitrary ϕ ∈ G \ {0} we have ε
‖ϕ‖ ·ϕ ∈ ∂Bε(0) ∩Λε. Then Assumption 1(a) yields

the existence of an i0 ∈ {1, . . . , N} with 〈(ti0·/t̂)>, ϕ〉 < 0. With

j0 := argmin
1≤i≤N

{〈(ti·/t̂)>, ϕ〉} ∈ {1, . . . , N}

and
s0 := − 1

〈(tj0·/t̂)>, ϕ〉
> 0

we get that
HPRj0(s0ϕ) = 1 + 〈(tj0·/t̂)>, s0ϕ〉 = 1 + s0〈(tj0·/t̂)>, ϕ〉 = 0

and HPRi(s0ϕ) ≥ 0 for all i 6= j0. Hence TWRN(s0ϕ) = 0 and clearly soϕ ∈ R (cf. Definition 1).

Furthermore, the following holds.

Lemma 4. Let the return matrix T ∈ RN×M (as in (2)) satisfy Assumption 1(a) then the set G is compact.

Proof. For all ϕ ∈ ∂Bε(0) ∩ Λε Assumption 1(a) yields an i0(ϕ) ∈ {1, . . . , N} such that
〈(ti0·/t̂)>, ϕ〉 < 0. With that we define

m : ∂Bε(0) ∩Λε → R,ϕ 7→ m(ϕ) := min
1≤i≤N

{〈(ti·/t̂)>, ϕ〉} < 0.
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This function is continuous on the compact support ∂Bε(0) ∩Λε. Thus, the maximum exists

M := max
ϕ∈∂Bε(0)∩Λε

m(ϕ) < 0.

Consequently the function

g : ∂Bε(0) ∩Λε → RM
≥0,ϕ 7→ 1

|m(ϕ)| ·ϕ

is well defined and continuous. Since for all ϕ ∈ ∂Bε(0) ∩Λε

〈(ti·/t̂)>,
1

|m(ϕ)|ϕ〉 =
〈(ti·/t̂)>, ϕ〉

| min
1≤i≤N

{〈(ti·/t̂)>, ϕ〉}|
≥ −1 ∀ 1 ≤ i ≤ N

with equality for at least one index ĩ0 ∈ {1, . . . , N}, we have

HPRi

(
1

|m(ϕ)|ϕ
)
≥ 0 ∀1 ≤ i ≤ N

and

HPRĩ0

(
1

|m(ϕ)|ϕ
)
= 0,

hence
1

|m(ϕ)|ϕ ∈ R.

Altogether we see that

g (∂Bε(0) ∩Λε) =

{
1

|m(ϕ)| ·ϕ | ϕ ∈ ∂Bε(0) ∩Λε

}
= R,

thus the set R is bounded and connected as image of the compact set ∂Bε ∩Λε under the continuous
function g and by that the set G is compact.

Now we take a closer look at the third assumption for the optimization problem.

Lemma 5. Let the return matrix T ∈ RN×M (as in (2)) satisfy Assumption 1(c) then TWR1/N
N is concave on

G \R. Moreover if there is a ϕ0 ∈ G \R with ∇TWRN(ϕ) = 0, then TWR1/N
N is even strictly concave in ϕ0.

Proof. For ϕ ∈ G \R the gradient of TWR1/N
N is given by the column vector

∇TWR1/N
N (ϕ) = TWR1/N

N (ϕ) · 1
N

N

∑
i=1

1

1 +
M
∑

k=1
ϕk

ti,k
t̂k

·


ti,1/t̂1

ti,2/t̂2

...
ti,M/t̂M


= TWR1/N

N (ϕ) · 1
N

N

∑
i=1

1
1 + 〈(ti·/t̂)>, ϕ〉

· (ti·/t̂)> ∈ RM×1, (9)

where TWR1/N
N (ϕ) > 0. The Hessian-matrix is then given by

Hess
TWR1/N

N
(ϕ) = ∇

[(
∇TWR1/N

N (ϕ)
)>]

= ∇
[

TWR1/N
N (ϕ) · 1

N

N

∑
i=1

1
1 + 〈(ti·/t̂)>, ϕ〉

(ti·/t̂)

]
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= ∇TWR1/N
N (ϕ) · 1

N

N

∑
i=1

1
1 + 〈(ti·/t̂)>, ϕ〉

(ti·/t̂)

+TWR1/N
N (ϕ)

1
N

N

∑
i=1

(
− 1
(1 + 〈(ti·/t̂)>, ϕ〉)2 (

ti·/t̂)> · (ti·/t̂)

)

= TWR1/N
N (ϕ)

[
1

N2

N

∑
i=1

y>i
N

∑
i=1

yi −
1
N

N

∑
i=1

y>i yi︸ ︷︷ ︸
=:−1/N·B(ϕ)∈RM×M

]

where yi := 1
1+〈(ti·/t̂)> , ϕ〉 (

ti·/t̂) ∈ R1×M is a row vector. The matrix B(ϕ) can be rearranged as

B(ϕ) =
N

∑
i=1

y>i yi −
1
N

(
N

∑
i=1

y>i

)(
N

∑
i=1

yi

)

=
N

∑
i=1

y>i yi −
1
N

[
N

∑
i=1

y>i

(
N

∑
u=1

yu

)]
− 1

N

[
N

∑
i=1

(
N

∑
v=1

y>v

)
yi

]

+
1

N2

(
N

∑
i=1

1

)(
N

∑
v=1

y>v

)(
N

∑
u=1

yu

)

=
N

∑
i=1

[
y>i yi − y>i

1
N

(
N

∑
u=1

yu

)
− 1

N

(
N

∑
v=1

y>v

)
yi

+
1

N2

(
N

∑
v=1

y>v

)(
N

∑
u=1

yu

)]

=
N

∑
i=1

[
y>i

(
yi −

1
N

N

∑
u=1

yu

)
− 1

N

(
N

∑
v=1

y>v

)(
yi −

1
N

N

∑
u=1

yu

)]

=
N

∑
i=1

[(
y>i −

1
N

N

∑
v=1

y>v

)(
yi −

1
N

N

∑
u=1

yu︸ ︷︷ ︸
:=wi∈R1×M

)]

=
N

∑
i=1

w>i wi.

Since the matrices w>i wi are positive semi-definite for all i = 1, . . . , N, the same holds for B(ϕ)
and therefore TWR1/N

N is concave. Furthermore, if there is a ϕ0 ∈ G \R with

∇TWRN(ϕ0) = 0

TWRN(ϕ0)>0⇔
N

∑
i=1

1
1 + 〈(ti·/t̂)>, ϕ0〉

(ti·/t̂) = 0

⇔
N

∑
i=1

yi = 0,

where yi = yi(ϕ0), the matrix B(ϕ0) further reduces to

B(ϕ0) =
N

∑
i=1

y>i yi.
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If B(ϕ0) is not strictly positive definite there is a ψ = (ψ1, . . . , ψM)> ∈ RM \ {0} such that

0 = ψ>B(ϕ0)ψ =
N

∑
i=1

ψ>y>i yiψ =
N

∑
i=1
〈y>i , ψ〉2︸ ︷︷ ︸
≥0

and we get that

〈y>i , ψ〉 = 1
1 + 〈(ti·/t̂)>, ϕ0〉

〈(ti·/t̂)>, ψ〉 = 0 ∀ 1 ≤ i ≤ N

⇔ 〈(ti·/t̂)>, ψ〉 = 0 ∀ 1 ≤ i ≤ N,

yielding a non trivial element in ker(T) and thus contradicting Assumption 1(c). Hence matrix B(ϕ0)

is strictly positive definite and TWR1/N
N is strictly concave in ϕ0.

With this at hand we can state an existence and uniqueness result for the multivariate
optimization problem.

Theorem 2. (optimal f existence) Given a return matrix T =

(
ti,k

)
1≤i≤N
1≤k≤M

as in (2) that fulfills

Assumption 1, then there exists a solution ϕ
opt
N ∈ G of the optimization problem (8)

maximize
ϕ∈G

TWRN(ϕ). (10)

Furthermore, one of the following statements holds:

(a) ϕ
opt
N is unique, or

(b) ϕ
opt
N ∈ ∂G.

For both cases ϕ
opt
N 6= 0, ϕ

opt
N /∈ R and TWRN(ϕ

opt
N ) > 1 hold true.

Proof. We show existence and partly uniqueness of a maximum of the N-th root of TWRN , yielding
existence and partly uniqueness of a solution ϕ

opt
N of (10) with the claimed properties.

With Lemmas 1 and 4, the support G of the Terminal Wealth Relative is convex and compact.
Hence the continuous function TWR1/N

N attains its maximum on G. For ϕ = 0 we get from (9)

∇TWR1/N
N (0) = TWR1/N

N (0)︸ ︷︷ ︸
=1

· 1
N

N

∑
i=1

(ti·/t̂)>,

which is a vector whose components are strictly positive due to Assumption 1(b). Therefore 0 ∈ G is
not a maximum of TWR1/N

N and a global maximum reaches a value greater than

TWR1/N
N (0) = 1.

Since for all ϕ ∈ R

TWR1/N
N (ϕ) = 0

holds, a maximum can not be attained in R either.
Now if there is a maximum on ∂G, assertion (b) holds together with the claimed properties.

Alternatively, a maximum ϕ0 is attained in the interior G̊. In this case, Lemma 5 yields the strict
concavity of TWR1/N

N at ϕ0. Suppose there is another maximum ϕ∗ ∈ G \R then the straight line
connecting both maxima

L := {t ·ϕ0 + (1− t) ·ϕ∗ | t ∈ [0, 1]}
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is fully contained in the convex set G \R (cf. Lemma 1). Because of the concavity of TWR1/N
N all points

of L have to be maxima, which is a contradiction to the strict concavity of TWR1/N
N in ϕ0. Thus, the

maximum is unique and assertion (a) holds together with the claimed properties.

In the remainder of this section, we will further discuss case (b) in Theorem 2. We aim to show
that the maximum ϕ

opt
N ∈ ∂G is unique either, but we proof this using a completely different idea.

In order to lay the grounds for this, first, we give a lemma:

Lemma 6. If T ∈ RN×M from (2) is a return map satisfying Assumption 1 and if M ≥ 2, then each
return map T̃ ∈ RN×(M−1), which results from T after eliminating one of its columns, is also a return map
satisfying Assumption 1.

Proof. Since each of the M trading systems of the return matrix T ∈ RN×M has a biggest loss t̂k,
1 ≤ k ≤ M, the same holds for the (M− 1) trading systems of the reduced matrix T̃ ∈ RN×(M−1).

For T̃, Assumption 1(b),(c) follow straight from the respective properties of the matrix T.
Now let, without loss of generality, T̃ be the matrix that results from T by eliminating the last

column, i.e., the M-th trading system is omitted. Let t(M−1)
i· ∈ RM−1, i = 1, . . . , N, denote the rows of

T̃ and t̂(M−1) ∈ RM−1 the vector of biggest losses of T̃. Then for Assumption 1(a) we have to show that

∀ϕ(M−1) ∈ ∂B(M−1)
ε (0) ∩Λ(M−1)

ε ∃ i0 = i0(ϕ(M−1)) ∈ {1, . . . , N},

such that
〈(t(M−1)

i0· /t̂(M−1))>, ϕ(M−1)〉 < 0. (11)

Using Assumption 1(a) for matrix T and

ϕM :=


ϕ
(M−1)
1

...

ϕ
(M−1)
M−1

0

 ∈ ∂B(M)
ε (0) ∩Λ(M)

ε ,

the inequality

〈(ti0·/t̂)>, ϕ(M)〉 < 0,

holds true. Thus, (11) holds likewise.

Having this at hand, we can now extend Theorem 2.

Corollary 1. (optimal f uniqueness) In the situation of Theorem 2 the uniqueness also holds for case (b), i.e.,
a maximum ϕ

opt
N ∈ ∂G is also a unique maximum of TWRN(ϕ) in G.

Proof. Assume that the optimal solution ϕ0 := ϕ
opt
N ∈ ∂G is not unique, then there exists an additional

optimal solution ϕ∗ ∈ ∂G with ϕ∗ 6= ϕ0. Since G \R is convex (c.f. Lemma 1), the line connecting
both solutions

L := {t ·ϕ0 + (1− t) ·ϕ∗ | t ∈ [0, 1]}

is fully contained in G \R. Because of the concavity of TWR1/N
N on G \R (c.f. Lemma 5), all points on

L are optimal solutions. Therefore L must be a subset of ∂G \R, since we have seen that an optimal
solution in the interior G̊ would be unique. Hence, there is (at least) one k0 ∈ {1, . . . , M} such that,
for all investment vectors in L, the trading system (system k0) is not invested. i.e., the k0-th component
of ϕ0, of ϕ∗ and of all vectors in L is zero.
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Without loss of generality, let k0 = M. Then

ϕ0 =


ϕ1
...

ϕM−1

0

 6=


ϕ∗1
...

ϕ∗M−1
0

 = ϕ∗

are two optimal solutions for

TWRN(ϕ)
!
= max

However, with that, the (M− 1)-dimensional investment vectors ϕ
(M−1)
0 := (ϕ̃1, . . . , ϕ̃M−1)

> and
ϕ∗,(M−1) := (ϕ∗1 , . . . , ϕ∗M−1)

> are two distinct optimal solutions for

TWR(M−1)
N (

 ϕ1
...

ϕM−1

) :=
N

∏
i=1

(
1 +

M−1

∑
k=1

ϕk
ti,k

t̂

)
!
= max .

With Lemma 6 the return map T̃ ∈ RN×(M−1), which results from T after eliminating the
M-th column (i.e., (system M)) satisfies Assumption 1. Applying Theorem 2 to the sub-dimensional
optimization problem, yields that ϕ

(M−1)
0 and ϕ∗,(M−1) again lie at the boundary of the admissible set

of investment vectors G(M−1) ⊂ RM−1.
Hence, we have two distinct optimal solutions on the boundary ∂G(M−1) for the optimization

problem with (M − 1) investment systems. By induction this reasoning leads to the existence of
two distinct optimal solutions for an optimization problem with just one single trading system.
However, for that type of problem, we already know that the solution is unique (see for example
(Maier-Paape 2013)), which causes a contradiction to our assumption. Thus, also for case (b) we have
the uniqueness of the solution ϕ

opt
N ∈ ∂G.

Remark 1. Note that Assumption 1(c) is necessary for uniqueness. To give a counterexample imagine a return
matrix T with two equal columns, meaning the same trading system is used twice. Let ϕopt be the optimal f
for this one dimensional trading system. Then it is easy to see that (ϕopt, 0), (0, ϕopt) and the straight line
connecting these two points yield TWR optimal solutions for the return matrix T.

4. Examples

As an example we fix the joint return matrix T := (ti,k)1≤i≤6
1≤k≤4

for M = 4 trading systems and the

returns from N = 6 periods given through the following table.

period (system 1) (system 2) (system 3) (system 4)
1 2 1 −1 1
2 2 −1/2 2 −1
3 −1/2 1 -1 2
4 1 2 2 −1
5 −1/2 −1/2 2 1
6 −1 −1 −1 −1

(12)

Obviously every system produced at least one loss within the 6 periods, thus the vector
t̂ = (t̂1, t̂2, t̂3, t̂4)

> with
t̂k = max

1≤i≤6
{|ti,k| | ti,k < 0} = 1, k = 1, . . . , 4,
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is well-defined. For ϕ ∈ G \R the TWR6 takes the form

TWR6(ϕ) =(1 + 2ϕ1 + ϕ2 − ϕ3 + ϕ4)(1 + 2ϕ1 − 1
2 ϕ2 + 2ϕ3 − ϕ4)

(1− 1
2 ϕ1 + ϕ2 − 1ϕ3 + 2ϕ4)(1 + ϕ1 + 2ϕ2 + 2ϕ3 − ϕ4)

(1− 1
2 ϕ1 − 1

2 ϕ2 + 2ϕ3 + 1ϕ4)(1− ϕ1 − ϕ2 − ϕ3 − ϕ4),

where the set of admissible vectors is given by

G = {ϕ ∈ R4
≥0 | 〈(ti·/t̂)>, ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ 6}

= {ϕ ∈ R4
≥0 | 〈(t6·/t̂)>, ϕ〉 = min

i=1,...,6
〈(ti·/t̂)>, ϕ〉 ≥ −1}

= {ϕ ∈ [0, 1]4 | ϕ1 + ϕ2 + ϕ3 + ϕ4 ≤ 1}.

Since for all ϕ ∈ G

〈(ti·/t̂)>, ϕ〉 ≥ 〈(t6·/t̂), ϕ〉 ≥ −1 ∀ i = 1, . . . , 6

we have
〈(ti·/t̂)>, ϕ〉 = −1 for some i ∈ {1, . . . , 6} ⇒ 〈(t6·/t̂)>, ϕ〉 = −1.

Accordingly we get

R = {ϕ ∈ G | ∃ 1 ≤ i0 ≤ 6 s.t. 〈(ti·/t̂)>, ϕ〉 = −1}
= {ϕ ∈ [0, 1]4 | ϕ1 + ϕ2 + ϕ3 + ϕ4 = 1}.

When examining the 6-th row t6· = (−1,−1,−1,−1) of the matrix T we observe that
Assumption 1(a) is fulfilled with i0 = 6. To see that let, for some ε > 0, ϕ ∈ ∂Bε ∩Λε, then

〈(t6·/t̂)>, ϕ〉 = −ϕ1 − ϕ2 − ϕ3 − ϕ4 < 0.

For Assumption 1(b) one can easily check that all four systems are “profitable”, since the mean
values of all four columns in (12) are strictly positive. Lastly, for Assumption 1(c) we check that the
rows of matrix T are linearly independent

det

∣∣∣∣∣∣∣∣∣
t1·
t2·
t3·
t4·

∣∣∣∣∣∣∣∣∣ = det

∣∣∣∣∣∣∣∣∣
2 1 −1 1
2 −1/2 2 −1
−1/2 1 −1 2

1 2 2 −1

∣∣∣∣∣∣∣∣∣ = 22.75 6= 0.

Thus, Theorem 2 yields the existence and uniqueness of an optimal investment fraction ϕ
opt
6 ∈ G

with ϕ
opt
6 6= 0, ϕ

opt
6 /∈ R and TWR6(ϕ

opt
6 ) > 1, which can numerically be computed

ϕ
opt
6 ≈


0.2362
0.0570
0.1685
0.1012

 .

In the above example, a crucial point is that there is one row in the return matrix where the k-th
entry is the biggest loss of (system k), k = 1, . . . , 4. Such a row in the return matrix implies, that all
trading systems realized their biggest loss simultaneously, which can be seen as a strong evidence
against a sufficient diversification of the systems. Hence we analyze Assumption 1(a) a little closer to
see what happens if this is not the case.
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With the help of Assumption 1(a), for all ϕ ∈ ∂Bε(0) ∩Λε, there is a row of the return matrix ti0·,
i0 ∈ {1, . . . , N} such that 〈(ti0·/t̂)>, ϕ〉 < 0. The sets

{ϕ ∈ RM | 〈(ti·/t̂)>, ϕ〉 = 0}, i = 1, . . . , N

describe the hyperplanes generated by the normal direction (ti·/t̂)> ∈ RM, i = 1, . . . , N. Thus, each ϕ

from the set ∂Bε(0) ∩Λε has to be an element of one of the half spaces

Hi := {ϕ ∈ RM | 〈(ti·/t̂)>, ϕ〉 < 0}, i = 1, . . . , N.

In other words the set ∂Bε(0) ∩Λε has to be a subset of a union of half spaces

(∂Bε(0) ∩Λε) ⊂
N⋃

i=1

Hi.

If there exists an index i0 such that ti0,k = −t̂k for all 1 ≤ k ≤ M, then the normal direction of the
corresponding hyperplane is

(ti0·/t̂)> =


−1
−1

...
−1

 ∈ RM, (13)

hence
(∂Bε(0) ∩Λε) ⊂ RM

≥0 ⊂ Hi0

and therefore Assumption 1(a) is fulfilled. Figure 1 shows a hyperplane for M = 2 and a row of
the return matrix where all entries are the biggest losses, that means the normal direction of this
hyperplane is the vector −t̂1

−t̂2

/
t̂1

t̂2

 =

(
−1
−1

)
.

ϕ2

ϕ1

Figure 1. Hyperplane for a return vector consisting of “biggest losses”.

However, it is not necessary for Assumption 1(a) that the set ∂Bε(0) ∩Λε is covered by just one
hyperplane. Again for M = 2 an illustration of possible hyperplanes can be seen in Figure 2. The figure
on the left shows a case where Assumption 1(a) is violated and the figure on the right a case where it
is satisfied.
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ϕ2

ϕ1

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

ϕ2

ϕ1

Figure 2. Two hyperplanes and the set ∂Bε(0) ∩Λε.

Remark 2. Following our arguments concerning the example in (12) the question arises whether or not

a trading system where biggest losses are realized simultaneously always implies insufficient diversification.

In (12) this seems to be the case, but is this true in general? One way diversification is often measured in the

literature is volatility or variance/standard deviation of the portfolio returns. In terms of modern portfolio theory

where portfolios are searched for which either

minimize risk for a given chance/utility level
or maximize chance/utility for a given risk level,

the volatility stands for the risk part. Transferring this setup for a trade–off between risk and utility to the TWR

“utility function” would result in an optimization problem like

maximize
ϕ∈G

TWR1/N
N (ϕ)

subject to r(ϕ) := ϕTΣϕ≤ c,
(14)

where c ≥ 0 is a constant restricting the risk (or volatility) level and Σ ∈ RM×M is a symmetric positive

definite covariance matrix stemming from a trading game with trade returns as in (2). The optimization problem

in (14) is quite similar to the Markowitz portfolio optimization. The only difference is that the Markowitz utility

function “expected portfolio return” is exchanged by the concave function TWR1/N
N .

Since ϕ
opt
N of Theorem 2 solves (10) it is clear that ϕ = ϕ

opt
N will solve (14) for all c ≥ r(ϕopt

N ). On the

other hand, for c ∈ [0, r(ϕopt
N )) solutions of (14) will also be “efficient” in this utility/risk setting. However,

the volatility decreases as c↘ 0 and therefore diversification certainly increases. As a matter of fact, among all

efficient portfolios, ϕ
opt
N has the highest volatility and thus the worst diversification. In that sense diversification

of ϕ
opt
N is not to be expected.

For the next example we fix the return matrix T as

T :=
1
5


−3 3
9 12
6 −3
−6 3/2

3 −15/2

 , (15)
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with N = 5 and M = 2. Thus, the biggest losses of the two systems are

t̂1 =
6
5

and t̂2 =
3
2

.

To determine the set of admissible investments (and to check Assumption 1) we examine the
vectors (ti·/t̂) for i = 1, . . . , 5

A :=


−1/2 2/5

3/2 8/5

1 −2/5

−1 1/5

1/2 −1

 (16)

and solve the linear equations

〈(ti·/t̂)>, ϕ〉 = −1, i = 1, . . . , 5. (17)

The solutions for i = 1, . . . , 5 are shown in Figure 3.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

ϕ2

ϕ1

Figure 3. Solutions of the linear equations from (17).

Each solution corresponds to a “cyan” line. The area where the inequality 〈(ti·/t̂)>, ϕ〉 ≥ −1
holds for some i ∈ {1, . . . , 5} is shaded in “light blue”. The set where the inequalities hold for all
i = 1, . . . , 5 is the section where all shaded areas overlap, thus the “dark blue” section. Therefore the
set of admissible investments is given by

G = {ϕ ∈ R2
≥0 | 〈(ti·/t̂)>, ϕ〉 ≥ −1, ∀ 1 ≤ i ≤ 5}

= {ϕ ∈ R2
≥0 | ϕ2 ≤ 1 + 1

2 ϕ1 and ϕ1 ≤ 1 + 1
5 ϕ2},
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with

R = {ϕ ∈ G | ∃ 1 ≤ i0 ≤ 5 s.t. 〈(ti·/t̂)>, ϕ〉 = −1}
= {ϕ ∈ R2

≥0 | ϕ2 = 1 + 1
2 ϕ1 or ϕ1 = 1 + 1

5 ϕ2}.

Assumption 1 is fulfilled, since

(a) the half spaces for rows 4 and 5 of the return matrix cover the whole set R2
≥0 (cf. Figure 2b),

(b) 1
5

5
∑

i=1
ti,1 = 9

5 > 0 and 1
5

5
∑

i=1
ti,2 = 6

5 > 0 and

(c) obviously, the columns of the return matrix are linearly independent.

A plot of the Terminal Wealth Relative for the return matrix T from (15) can be seen in
Figures 4 and 5 with a maximum at

ϕ
opt
5 ≈

(
0.4109
0.3425

)
. (18)

ϕ2

ϕ1

TWR5(ϕ1, ϕ2)

Figure 4. The Terminal Wealth Relative for T from (15).

Therefore the maximum is clearly attained in the interior G̊.
The following example will show that the unique maximum ϕ

opt
N of Theorem 2 can indeed be

attained on ∂G, i.e., the case discussed in Corollary 1. For that we add a third investment system to
our last example (16) with the new returns

t1,3, t2,3, t3,3 = 1 and t4,3, t5,3 = −1 (hence t̂3 = 1)

such that the vectors (ti·/t̂), i = 1, . . . , 5, form the matrix

Ã := (ai,k) i=1,...,5
k=1,...,3

=


−1/2 2/5 1

3/2 8/5 1
1 −2/5 1
−1 1/5 −1
1/2 −1 −1

 ∈ R5×3. (19)
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ϕ2

ϕ1

Figure 5. The Terminal Wealth Relative from Figure 4, view from above.

This set of trading systems fulfills Assumption 1(b) since
N=5
∑

i=1
ti,3 = 1 > 0.

Assumption 1(c) is satisfied as well, because the three columns of Ã are linearly independent.
For Assumption 1(a) we have to show that

∀ϕ ∈ ∂Bε(0) ∩Λε ∃ i0 = i0(ϕ), with 〈(ti0·/t̂)>, ϕ〉 < 0 (20)

holds. If not, we would have an investment vector

ϕ̂ =
(

ϕ̂1, ϕ̂2, f̂
)
∈ ∂Bε(0) ∩Λε,

such that (20) is not true for all rows of the matrix Ã. In particular if we look at lines 4 and 5

−ϕ̂1 +
1
5

ϕ̂2 − f̂ ≥ 0

1
2

ϕ̂1 − ϕ̂2 − f̂ ≥ 0,

the sum of both inequalities still has to be true

−1
2

ϕ̂1 −
4
5

ϕ̂2 − 2 f̂ ≥ 0,

which is a contradiction to ϕ̂ being an element of ∂Bε(0) ∩Λε ⊂ R3
≥0.

Now we examine the following vector of investments

ϕ∗ =

ϕ∗1
ϕ∗2
f ∗

 :=

ϕ∗1
ϕ∗2
0
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with (ϕ∗1 , ϕ∗2)
> ≈ (0.4109, 0.3425)> the unique maximum of the optimization problem of the reduced

set of trading systems from the last example (cf. (18)).
The first derivative of the Terminal Wealth Relative in the direction of the third component at ϕ∗

is given by
∂

∂ f
TWR5(ϕ

∗) = TWR5(ϕ
∗)︸ ︷︷ ︸

>0

·
N=5

∑
i=1

ai,3

1 + 〈(ti·/t̂)>, ϕ∗〉
≈ −0.359 < 0

Moreover with ϕ∗ being the optimal solution of the last example in two variables we have

∂

∂ϕ1
TWR5(ϕ∗1 , ϕ∗2 , 0) = 0 =

∂

∂ϕ2
TWR5(ϕ∗1 , ϕ∗2 , 0)

and
∂2/∂ϕ2

i TWR5(ϕ∗1 , ϕ∗2 , 0) < 0, i = 1, 2.

Thus, ϕ∗ is indeed a local maximal point on the boundary of G for TWR5 with the three trading
systems in (19). Corollary 1 yields the uniqueness of this maximal solution for

maximize
ϕ∈G

TWR5(ϕ).

5. Conclusions

With our main theorems, Theorem 2 and Corollary 1, we were able give a complete existence and
uniqueness theory for the optimization problem (8) of a multivariate Terminal Wealth Relative under
reasonable assumptions. Furthermore, due to the convexity of the domain G (Lemma 1), the concavity
of [TWR(·)]1/N (see Lemma 5) and the uniqueness of the “optimal f ” solution, it is always guaranteed
that simple numerical methods like steepest ascent will find the maximum.
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