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Abstract: We propose an integrated approach straddling the actuarial science and the mathematical
finance approaches to pricing a default-risky catastrophe reinsurance contract. We first apply an
incomplete-market version of the no-arbitrage martingale pricing paradigm to price the reinsurance
contract as a martingale by a measure change, then we apply risk loading to price in—as in the
traditional actuarial practice—market imperfections, the underwriting cycle, and other idiosyncratic
factors identified in the practice and empirical literatures. This integrated approach is theoretically
appealing for its merit of factoring risk premiums into the probability measure, and yet practical
for being applicable to price a contract not traded on financial markets. We numerically study
the catastrophe pricing effects and find that the reinsurance contract is more valuable when the
catastrophe is more severe and the reinsurer’s default risk is lower because of a stronger balance
sheet. We also find that the price is more sensitive to the severity of catastrophes than to the arrival
frequency; implying (re)insurers should focus more on hedging the severity than the arrival frequency
in their risk management programs.

Keywords: mathematical finance; actuarial science; catastrophe arrivals; catastrophe reinsurance;
default risk; Monte Carlo simulation

1. Introduction

Catastrophe (cat hereafter) reinsurance contracts are not traded on financial markets, instead they
are one-shot deals made between reinsurers and insurers. In actuarial science, catastrophe reinsurance
is conventionally priced according to a two-stage process where in the first stage, catastrophe modelers
like RMS (Risk Management Solutions), AIR (AIR Worldwide) and EQE (EQECAT) produce loss
distributions through catastrophe modeling and calibration, and in the second stage insurers and
reinsurers negotiate prices based on the given loss distributions with additional consideration of
non-modeled market factors. This two-stage process is complex as many elements, including input
data quality, catastrophe modeling output, and non-modeled market factors, can affect premiums, and
some of these elements cannot be quantified but require subjective judgements. It is therefore fair
to say that cat reinsurance pricing, as summarized in the following pricing norm, is a mix of art and
science:

Layer premium = Expected layer loss + Risk load factor × Standard Deviation,

where the expected layer loss and standard deviation are obtained from catastrophe models inclusive
of the consideration of the modeled factors of input quality, model errors and output uncertainty,
while the risk load factor is a subjective entry that depends on risk preference, reinsurers’ capital
position, and (re)insurance market conditions, among other considerations.
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Reinsurers may also load non-modeled market factors on top of the modeled factors to increase
the premium. In the academic literature, Froot (2001) and Froot and O’Connell (2008) have
shown that reinsurers’ monopolistic power and the high costs of capital resulted from inefficient
corporate forms1 have led to unusually high risk loadings with spreads at around 5–8 times the
expected loss. Moreover, these multiples tend to jump even higher in the aftermath of a major
cat event due to reinsurers’ “reloading” of balance sheets. In practice, reinsurers may also load
geographic concentration, data quality in capturing exposure characteristics, a cedant’s loss experience,
and reinsurance relationship.

The merit of the traditional actuarial pricing approach is that it works in the imperfect global
reinsurance market, where many reinsurers also ensemble multiple pricing models to reign in model
errors. The drawback is that the pricing norm is ad hoc but not derived from prevailing financial
valuation theories.

In mathematical finance, theoreticians have attempted to price cat reinsurance as if it were traded
on financial markets by using option pricing theory, non-arbitrage martingale pricing theory, and utility
optimization theory. They also take cat losses as exogenously given with a common assumption that
loss arrivals follow a compound Poisson process or its variations as in Bowers et al. (1986), in lieu of
using the loss output from a cat modeler. For example, Chang et al. (1989) value reinsurance in an
option theoretical framework, Dassios and Jang (2003) value cat reinsurance using the Cox process
with shot noise intensity under a no-arbitrage martingale probability measure, and Lee and Yu (2007)
value default-risky cat reinsurance with catastrophe bonds under a no-arbitrage martingale probability
measure. However, the unrealistic perfect-market assumptions, the overly-simplified specification of
the loss arrival process, and the lack of data to calibrate the process have made direct implementation
of these theories in the global reinsurance market impractical.

In this paper, we propose an integrated approach to pricing a default-risky cat reinsurance contract.
First, we apply an incomplete-market version of the no-arbitrage martingale pricing paradigm of
Harrison and Kreps (1979) and Harrison and Pliska (1981)2, which is internally consistent with option
pricing theory, to factor in the modeled risk premiums by means of a measure change. We then add
risk loading/markup (used interchangeably hereafter) to price in the non-modeled market factors
identified in practice and the empirical literature. This integrated approach is theoretically appealing
in being able to factor the risk premiums into the probability measure, and yet applicable to pricing
a contract traded on the global reinsurance market by taking into consideration non-modeled risk
loading. We could have used the equilibrium approach by imposing a preference assumption, however
applying utility functions to resolve problems incurred in incomplete markets is often impractical as
the results become overly complicated to be fully specified by practitioners (see Carr et al. (2001)).
Another problem with the equilibrium approach as documented by many empirical studies is that

1 Traditional reinsurers tend to invest in illiquid and information-intensive financial activities, and so they charge premiums
based on correlations with their own pre-existing portfolios and U.S. nationwide cat risks, rather than with any market
portfolio, resulting in significantly higher cost of capital.

2 A martingale is a stochastic variable with no drift such that the current expectation of the future value of the variable is
always equal to the current value of the variable. The above authors show that the absence of arbitrage is equivalent to
the existence of an equivalent martingale pricing measure Q (or risk-neutral/risk-neutralized pricing measure as used
by some authors) such that all normalized (with respect to a chosen numeraire) security prices are martingales and as
such they can be priced by taking expectations under the measure Q. The beauty of martingale pricing is that it applies
to both complete and incomplete markets as “absence of arbitrage” is the only required assumption. When markets are
complete with the absence of arbitrage, martingale pricing theory guarantees that the equivalent martingale measure is
unique, thus the market price of risk does not explicitly enter into the valuation process. In this context, options can be
priced preference-free as if agents were risk-neutral as in the Black–Scholes model. When markets are incomplete, however,
the absence of arbitrage no longer guarantees a unique martingale measure. In this case, information related to the market
prices of risk that embeds the risk-aversion behavior of agents is needed to uniquely identify the equivalent martingale
measure (see Geman (2005) for a review). The procedure of embedding the market price of risk to obtain such a unique
measure is often called risk-neutralization.
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for a CRRA (Constant Relative Risk Aversion) utility to work, the risk-aversion parameter must be
unreasonably small (e.g., Bollerslev et al. (2011)).

Our integrated approach proceeds as follows:

(1) We first model a default-risky reinsurer by employing Merton (1974) structural approach to
endogenize default.

– On the asset side, since the reinsurer holds a large proportion of fixed-income assets in the
asset portfolio, we model the asset dynamics taking into account explicitly the impact of
stochastic interest rates. We make a measure change from the physical pricing measure to
the equivalent martingale pricing measure Q by embedding the market price of interest
rate risk.

– On the liability side, since the reinsurer’s non-catastrophic liability shocks are idiosyncratic
and small, we apply the law of large numbers to assume away this risk premium. We also
make a measure change from the physical pricing measure to the equivalent martingale
pricing measure Q by embedding the market price of interest rate risk.

(2) We model catastrophe arrivals. We make use of the empirical finding that catastrophe derivatives
are zero-beta assets, and thus both the loss number and the amount of losses have zero
risk premiums.

(3) We proceed to price a default-risky reinsurance contract under the equivalent martingale pricing
measure Q as a martingale.

(4) Finally, we extend the pricing formula to incorporate risk load/markup to account for the
observed empirical characteristics of the (re)insurance market. The interpretation of the markup
is the same as in the traditional actuarial pricing approach except that (1) our expectation is taken
with respect to the risk-neutralized martingale pricing measure, but in the traditional approach
the expectation is taken with respect to the physical pricing measure; and (2) our markup only
needs to account for market imperfections and other idiosyncratic factors, while the markup in
the traditional actuarial approach accounts for both modeled and non-modeled factors.

To load non-modeled market factors, we suggest calibrating the markup using empirical cat
reinsurance data as it has become increasingly available because of the growth of the market.
Although endogenizing the markup could further enrich the analysis and provide more intuition,
it constitutes a major undertaking in an incomplete-market general equilibrium setting encompassing
two heterogeneous agents. Besides considering market imperfections such as “taxes, agency costs,
issuance costs”, risk aversions, and costs of capital associated with bearing the catastrophe risk
of the two counterparties, one may also need to consider the insurance underwriting cycle,
optimum total catastrophe financing, the tradeoff between capital reserve and hedging, reinsurers’
monopolistic/oligopolistic positions in the reinsurance markets, and other idiosyncratic factors
identified in the empirical literature. We will leave this task to a future project.

2. Modeling Reinsurer Default with Asset, Interest Rate, Liability, and Catastrophe Loss

Dynamics

Since the reinsurer’s asset-liability structure and catastrophe loss specification are important
factors in modeling the reinsurer’s default, we begin by employing Merton (1974) structural approach
to model the balance sheet of the reinsurer in a continuous-time no-arbitrage martingale framework.
The Merton approach has the advantage of linking the valuation of financial claims to the firm’s
assets and capital structure. Thus unlike the more recent approach to incorporate jumps and to
integrate with the capital asset pricing model (CAPM) in order to analyze corporate bond spreads
(e.g., Collin-Dufresne et al. (2012) and Coval et al. (2009)), our structural model builds upon the work
of Duan et al. (1995), Duan and Yu (2005), and Lee and Yu (2007) to properly allow for the asset,
liability, interest rate, and cat loss dynamics.
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We employ a one-factor interest rate model assuming the asset price and the instantaneous interest
rate processes are governed by the following correlated general Wiener process with drifts:

dVt

Vt
= µ(Vt, t)dt + σ(Vt, t)dZV,t, (1)

drt = µ(rt, t)dt + σ(rt, t)dZr,t, (2)

where Zv,t and Zr,t are correlated Wiener processes.
Typically, reinsurers hold a large proportion of fixed-income assets in the asset portfolio and issue

catastrophe bonds to lay off catastrophe risk (see Lee and Yu (2007)). To explicitly examine the interest
rate exposure, a further decomposition of the asset process is required to provide a direct interpretation
of interest rate risk. Projecting dZV,t onto dZr,t yields

dZV,t = ϕdZr,t+
√

1− ϕ2dWV,t, (3)

where ϕ =
Cov(dZV,t ,dZr,t)

dt . As a result of this projection, WV,t, denoting the credit risk on the assets
of the reinsurance company, is orthogonal to Zt by construction. As explained in footnote 7 of
Duan et al. (1995), the term credit risk here is used to designate all risks other than the interest
rate risk. To the extent that defaults on fixed income assets are related to interest rates, the credit risk is
considered as part of the interest rate risk, thus WV,t may not strictly correspond to the conventional
definition of credit risk.

Theorem 1. In the one-factor interest rate model, Equation (1) can be risk-neutralized to the following
risk-neutralized asset price process with a measure change, dZ∗t = dZt +

λr
√

rt
ν dt and dW∗V,t = dWV,t, from the

physical measure to the equivalent martingale measure Q:

dVt

Vt
= rtdt + φVv

√
rtdZ∗t + σVdW∗V,t. (4)

Proof.
As shown in Appendix A of Lee and Yu (2007), substituting Equation (3) into Equation (1) yields

dVt

Vt
= µ(Vt, t)dt + σ(Vt, t)ϕdZr,t+σ(Vt, t)

√
1− ϕ2dWV,t, (5)

and further substituting Equation (2) into Equation (5) yields

dVt

Vt
= µVdt + φVdrt + σVdWV,t, (6)

where µV = [µ(Vt, t)− σ(Vt ,t)ϕµ(rt ,t)
σ(rt ,t)

], φV = σ(Vt, t)ϕ/σ(rt, t) is the instantaneous interest rate elasticity

of the assets of the reinsurance company, and σV = σ(Vt, t)
√

1− ϕ2 is the volatility of the credit risk.
Next, we assume the general instantaneous interest rate process, Equation (2), is specified by the

squared-root process of Cox et al. (1985 and CIR hereafter) to avoid negative interest rates:

drt = κ(m− rt)dt + v
√

rtdZt, (7)

where rt denotes the instantaneous interest rate at time t; κ is the mean-reverting force measurement;
m is the long-run mean of the interest rate; and v is the volatility parameter for the interest rate.
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Substituting Equation (7) into Equation (6), the reinsurance company’s asset dynamics can be
described as:

dVt

Vt
= (µV + φVκm− φVκrt)dt + φVv

√
rtdZt + σVdWV,t. (8)

The dynamics for the interest rate process under the risk-neutralized pricing measure, denoted by
Q, can be written as

drt = κ∗(m∗ − rt)dt + v
√

rt dZ∗t , (9)

where κ∗ = κ + λ r; m∗ = κm
κ+λ r

; dZ∗t = dZt +
λr
√

rt
ν dt; λ r, the market price of interest rate risk,

is constant under the assumptions of Cox et al. (1985); and Z∗t is a Wiener process under Q.
As WV,t is orthogonal to Zt by construction and is considered as part of the interest rate risk,

we can risk-neutralize Equation (8) by making use of the market price of the interest rate risk alone
so that µV + φVκm − φVκrt = rt + φVrt, and a measure change from the physical measure to the
equivalent martingale measure Q that dZ∗t = dZt +

λr
√

rt
ν dt and d = dWV,t. Upon rearrangement we

derive the risk-neutralized asset price process. �

On the liability side, the reinsurer faces the liability of providing reinsurance coverage to other
lines of business, plus the liability of providing reinsurance coverage for catastrophes. Since the former
liability represents the present value of future claims related to non-catastrophic policies, its value,
denoted as Lt, can be modeled like Equation (6) as follows:

dLt = µLLtdt + φLLtdrt + σLLtdWL,t, (10)

where µL = [µ(Lt, t)− σ(Lt ,t)ϕµ(rt ,t)
σ(rt ,t)

] and φL = σ(Lt, t)ϕ/σ(rt, t) denote respectively the instantaneous
expected return for the non-catastrophic policies and the interest rate elasticity of the liability of the
reinsurance company; ϕ =

Cov(dZL,t ,dZr,t)
dt ; and σV = σ(Lt, t)

√
1− ϕ2 is the volatility of the credit

risk. This continuous diffusion process reflects the effects of interest rate changes and other small
day-to-day shocks. Since the small day-to-day shocks, denoted as WL,t, pertain to idiosyncratic shocks
to the capital market, we assume a zero risk premium for this risk.

Lemma 1. The liability process, Equation (10), can be risk-neutralized under Q using the market price of
interest rate risk as:

dLt = rtLtdt + φLv
√

rtLtdZ∗t + σLLtdW∗L,t. (11)

Proof.
Substituting Equation (7) into Equation (10), the reinsurance company’s liability dynamics can be

described as:
dLt

Lt
= (µL + φLκm− φLκrt)dt + φLv

√
rtdZt + σLdWL,t. (12)

Next the dynamics for the interest rate process under the risk-neutralized pricing measure Q is
given in Equation (9) as

drt = κ∗(m∗ − rt)dt + v
√

rt dZ∗t ,

where κ∗ = κ + λ r; m∗ = κm
κ+λ r

; dZ∗t = dZt +
λr
√

rt
ν dt; λ r, the market price of interest rate risk,

is constant, and Z∗t is a Wiener process under Q.
As WL,t is orthogonal to Zt by construction and is considered as part of the interest rate risk,

we can risk-neutralize Equation (12) by making use of the market price of interest rate risk alone so that
µL + φLκm− φLκrt = rt + λrφLrt, and a measure change from the physical measure to the equivalent
martingale measure Q that dZ∗t = dZt +

λr
√

rt
ν dt and dW∗L,t = dWL,t. Upon rearrangement we derive

the risk-neutralized liability price process. �
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To model the catastrophic component of the liability, we first model the aggregate catastrophe
loss as a compound Poisson process as in Bowers et al. (1986). The cumulative catastrophe loss at time
t, denoted as Ct, is described as follows:

Ct = ∑N(t)
j=1 cj, (13)

where the loss number process {N(t), t ≥ 0} is assumed to be driven by a Poisson process with
intensity λ. Term cj denotes the amount of loss caused by the jth catastrophe covered by the
reinsurance contract during the specific period, where j = 1, 2, . . . , N(t), and is assumed to be mutually
independent, identical, and lognormally-distributed, and independent of the loss number process;
its logarithmic means and standard deviations are denoted as µc and σc, respectively. We assume the
loss process is exogenously calibrated by a catastrophe modeler, e.g., AIR Worldwide for hurricanes
and windstorms and RMS for earthquakes. We also make the common assumption that catastrophe
derivatives are zero-beta assets, and thus both the loss number process {N(t)} and the amount of losses
(ct have a zero-risk premium3. The loss process, Equation (13), thus retains its original distributional
characteristics after changing from the physical probability measure to the risk-neutralized measure.

3. Pricing a Cat Reinsurance Contract and the Monte Carlo Simulation Results

The reinsurer’s future payoff to the insurer can be specified as:

POR,T =



M− A if CT ≥ M and VT ≥ LT + M− A,

CT − A if M > CT = A and VT ≥ LT + CT − A,(
VT

LT+M−A

)
(M− A) if CT ≥ M and VT < LT + M− A,

( VT
LT+CT−A )(CT − A) if M > CT = A and VT < LT + CT − A,

0 otherwise,

(14)

where VT is the value of the reinsurer’s assets at T; LT is the value of the reinsurer’s liabilities at T;
CT is the catastrophe loss covered by the reinsurance contract; and M and A are respectively the cap
and attachment points arranged in the reinsurance contract. For example, when CT is larger than
the reinsurance cap M and the reinsurer’s total assets are larger than total liability inclusive of the
reinsurance obligation M − A, the payoff is M − A. When the reinsurer’s total assets are smaller than
total liability inclusive of the reinsurance obligation M − A, the reinsurer will default, and the payoff
to the insurer then is only ( VT

LT+M−A )(M− A). The present value of this future payoff determines
the value of the reinsurance contract, computed as a martingale under the risk-neutralized pricing
measure Q as:

PVR,0 = EQ
0 [e−

∫ T
0 rs ds × POR,T ], (15)

where EQ
0 denotes the expectation taken on the issuing date under the risk-neutralized pricing measure

Q. In Appendix A, we demonstrate how to compute PVR,0 via Monte Carlo simulation.
To incorporate the observed empirical characteristics of the (re)insurance market, we let the

sell-side reinsurance pricing be (1 + u)PVR,0, where u denotes the risk loading/price markup that is
higher in a hard market, but lower in a soft market.

To demonstrate the implementation using Monte Carlo simulation, we consider a base case in
which all of the parameter values in the asset, liability, interest rate, and catastrophe loss dynamics are

3 Gürtler et al. (2012) show that this premium can be significant when a mega catastrophe strikes, but we assume this scenario
away in this paper.
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consistent with previous literature4, as summarized in Table 1 below. We also assume the reinsurance
market is still hard with a markup of 40%5. Simulations were run on a monthly basis with 20,000 paths.

Table 1. Parameter Definitions and Base Values.

Asset Parameters

V Reinsurer’s assets V/L = 1.3
µV Drift due to credit risk Irreverent
φV Interest rate elasticity of asset −3
σv Volatility of credit risk 5%

WV,t Wiener process for credit shocks

Liability Parameters

L Reinsurer’s liabilities 100
µL Drift due to idiosyncratic risk 0
φL Interest rate elasticity of liability −3
σL Volatility of idiosyncratic risk 2%

WL,t Wiener process for idiosyncratic shocks

Interest Rate Parameters

r Initial instantaneous interest rate 2%
κ Magnitude of mean-reverting force 0.2
m Long-run mean of interest rate 5%
ν Volatility of interest rate 10%
λr Market price of interest rate risk −0.01
Z Wiener process for interest rate shocks

Catastrophe loss Parameters for Ct

N(t) Poisson process for the arrival of catastrophes
λ Catastrophe arrival intensity 0.5

µC Mean of the logarithm of the losses per arrival 2
σC Standard deviation of the logarithm of the losses per arrival 0.5

Other Parameters

A Attachment level of a reinsurance contract 10~30
M Cap level of loss paid by a reinsurance contract 60~90
T Maturity 3 years
u Reinsurance markup 0.4

Table 2 below summarizes the corresponding reinsurance values across all coverage layers
to form the reinsurer’s sell-side pricing schedule. As expected, as the attachment point increases,
the reinsurance value decreases, while as the cap/detachment point increases, the reinsurance value
increases. We also observe that lower layer coverage is more expensive than higher layer coverage,
e.g., the price for layer (20, 60) is 2.73468 while the price for layer (25, 65) is 1.59048, reflecting that the
lower the layer the higher the probability of penetration.

4 See Lee and Yu (2007) and Duan and Simonato (1999).
5 The size of the markup is an empirical issue, and here we assume a plausible scenario to demonstrate pricing. Zanjani (2002)

states that the marginal capital requirement for catastrophe reinsurance is about five times the premium with a price impact
of about 30%.
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Table 2. Reinsurance Pricing across All Coverage Layers.

Coverage M = 60 M = 65 M = 70 M = 75 M = 80 M = 85 M = 90

A = 10 7.26957 7.28648 7.29306 7.30003 7.30261 7.30284 7.30634
A = 15 4.45191 4.46950 4.47824 4.48331 4.48579 4.48792 4.99274
A = 20 2.73468 2.75143 2.76143 2.76739 2.16897 2.17120 2.17444
A = 25 1.57234 1.59048 1.59951 1.60448 1.60706 1.60929 1.61162
A = 30 0.93787 0.98590 1.05583 1.06080 1.06338 1.06561 1.06740

Next we examine the catastrophe effects by extending the base value scenario in Table 1 to consider
three levels of catastrophe arrival intensity λ = (0.5, 1, 2); three levels of loss volatility: σc = (0.5, 1, 2);
and three leverage scenarios: V/L = (1.1, 1.3, 1.5), with decreasing leverage. Table 3 below shows
that, as expected, as the leverage decreases the default risk decreases such that the reinsurance
contract becomes more valuable. It also shows that increases in both catastrophe arrival intensity
and loss volatility raise the reinsurance value as hedging becomes more desirable. As catastrophe
arrival intensifies and the loss becomes more unpredictable, insurers should increasingly purchase
reinsurances as the expected losses accentuate. We further observe that the loss volatility effect is more
acute than the arrival intensity effect. For example, when V/L is 1.1, doubling the arrival intensity
from 0.5 to 1 increases the reinsurance value from 7.30634 to 13.24426, but doubling the loss volatility
from 0.5 to 1 increases the reinsurance value from 7.30634 to 20.75633. This finding suggests that
insurers should be more concerned with hedging the severity of a catastrophe than with the intensity
of the arrival. Finally, as expected, the reinsurance contract is more valuable when the catastrophe is
more severe and the default risk is lower.

Table 3. Impacts of Catastrophe Intensity and Loss Volatility on Pricing.

(λ, σC) Reinsurance Price (1 + u)PVR,0 for Coverage Payer (90, 10)

V/L = 1.1 V/L = 1.3 V/L = 1.5

(0.5, 0.5) 7.30634 7.40443 7.58688
(1, 0.5) 13.24426 13.78995 14.12347
(2, 0.5) 19.56788 19.98765 20.31452
(0.5, 1) 20.75633 21.24536 21.76542
(1, 1) 24.18776 24.35473 24.87682
(2, 1) 27.78653 28.89672 29.45328

(0.5, 2) 40.28763 41.69782 43.13476
(1, 2) 43.21675 43.87862 44.34724
(2, 2) 48.8976 49.90163 51.27658

4. Concluding Remarks

We have proposed an integrated approach to price a default-risky cat reinsurance contract
by straddling the traditional actuarial science and the mathematical finance approaches. We first
embedded modeled risk premiums by applying an incomplete-market version of the no-arbitrage
martingale pricing paradigm in mathematical finance to price the contract as a martingale by a measure
change, we then added on risk loading as commonly practiced by actuaries to price in non-modeled
market factors such as market imperfections, the underwriting cycle, and other idiosyncratic factors
identified in the empirical reinsurance pricing literature. This integrated approach is theoretically
appealing in being able to factor model risk premiums into the probability measure, and yet applicable
to a contract not traded on financial markets. We demonstrated the catastrophe arrival effects using
simulation and found that the price is more sensitive to catastrophe severity than to arrival frequency;
implying (re)insurers should focus more on hedging the severity than the arrival frequency in their
risk management programs. Finally, as expected, the reinsurance contract is more valuable when the
catastrophe is more severe and the reinsurer’s default risk is lower with a stronger balance sheet.
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Appendix A. Procedures of the Monte Carlo Simulation Method

In this section, we numerically assess the reinsurance value PVR,0 using Equation (15). Because
the premium depends on the values of the reinsurer’s assets and liabilities, we have to specify the
stochastic processes for these variables (Equations (9) and (11)). Applying Ito’s lemma to the logarithm
of the value of a reinsurer’s assets, Equation (9) becomes the following system:

d ln (Vt) =(rt −
1
2

ϕVυ2rt −
1
2

σV
2)dt + ϕVυ

√
rtdZt

∗ + σVdWV,t
∗. (A1)

We can solve the above equation. Its solution, for any 0 ≤ q < 1, is:

Vt+q = Vt exp (σV(WV,t+q
∗ −WV,t

∗)) ∗ exp [(1− 1
2

ϕV
2υ2)

∫ t+q

t
rsds +ϕVυ

∫ t+q

t

√
rsdZs

∗] (A2)

Similarly, by Ito’s lemma, Equation (11) gives rise to:

d ln (Lt) =(rt −
1
2
ϕLυ2rt −

1
2

σL
2)dt +ϕLυ

√
rtdZt

∗ + σLdWL,t
∗. (A3)

Its solution is:

Lt+q = Lt exp (σL(WL,t+q
∗ −WL,t

∗)) ∗ exp [(1− 1
2
ϕL

2υ2)
∫ t+q

t
rsds +ϕLυ

∫ t+q

t

√
rsdZs

∗] (A4)

We set q = 1
52 , say, on a weekly basis, and simulate the risk-neutralized interest rate process per

Equation (8) in order to approximate the whole sample path for the term of reinsurance coverage.
This in turn allows us to compute two quantities of interest:

∫ t+1
t rsds and

∫ t+1
t
√

rsdZs
∗. Second,

we simulate (WV,t+q
∗ −WV,t

∗) and (WL,t+q
∗ −WL,t

∗) using the fact that they are independent of the
path of rt, and the coefficient of correlation between them is chosen to be zero to reflect that the credit
risk shock and the idiosyncratic day-to-day liability shock are likely to be uncorrelated. Combining
(WV,t+q

∗ −WV,t
∗) with

∫ t+1
t rsds and

∫ t+1
t
√

rsdZs
∗ yields a simulated value of Vt+1 as described

in Equation (A2). Similarly, combining (WL,t+q
∗ −WL,t

∗) with
∫ t+1

t rsds and
∫ t+1

t
√

rsdZs
∗ yields a

simulated value of Lt+1 as described in Equation (A4). Third, we generate (Nt+1 − Nt), (ct+1 − ct) and
(cindex,t+1 − cindex,t). Since (Nt+1 − Nt) has a Poisson distribution with intensity parameter λ, it can be
simulated easily. For a given value of (Nt+1 − Nt), we then simulate ∑

Nt+1
j=Nt

ln cj and ∑
Nt+1
j=Nt

ln cindex,j,
knowing that ln cj and ln cindex,j are normal random variables and the coefficient of correlation between
them is ρc. After simulating these processes, PVR,0 can be easily calculated via averaging over the
contingent payoffs corresponding to the simulated values.

We implemented the simulation using MATLAB and below are two snapshots of the code, where
in Figure A1 we display the asset, liability, and interest rate processes, and in Figure A2 the Poisson
catastrophe arrival process.
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Figure A2. MATLAB code for the Poisson catastrophe arrival process. 
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