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Abstract: Future stock prices depend on many internal and external factors that are not easy to
evaluate. In this paper, we use the Hidden Markov Model, (HMM), to predict a daily stock price of
three active trading stocks: Apple, Google, and Facebook, based on their historical data. We first
use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to choose the
numbers of states from HMM. We then use the models to predict close prices of these three stocks
using both single observation data and multiple observation data. Finally, we use the predictions as
signals for trading these stocks. The criteria tests’ results showed that HMM with two states worked
the best among two, three and four states for the three stocks. Our results also demonstrate that the
HMM outperformed the naïve method in forecasting stock prices. The results also showed that active
traders using HMM got a higher return than using the naïve forecast for Facebook and Google stocks.
The stock price prediction method has a significant impact on stock trading and derivative hedging.

Keywords: hidden Markov model; stock prices; observations; states; predictions; AIC; BIC;
likelihood; trading

1. Introduction

Stock investments can have a huge return or a significant loss due to the high volatilities of
stock prices. An adaptable stock price prediction model would reduce risk and enhance potential
return in financial derivative trading. Recently, researchers have applied the hidden Markov
model for stock prices’ forecasts. Hassan and Nath (2005) used HMM to predict the stock price
for interrelated markets. Kritzman, Page, and Turkington (Kritzman et al. 2012) applied HMM
with two states to predict regimes in market turbulence, inflation, and industrial production index.
Guidolin and Timmermann (2006) used HMM with four states and multiple observations to study
asset allocation decisions based on regime switching in asset returns. Nguyen (2014) used HMM with
both single and multiple observations to forecast economic regimes and stock prices. Nobakht, Joseph
and Loni (Nobakht et al. 2012) implemented HMM using various observation data (open, close, low,
high) prices of stock to predict its close prices. In our previous work Nguyen and Nguyen (2015),
we used HMM for single observation sequence for the S&P 500 to select stocks for trading based on
performances of these stocks during the predicted regimes. In this study, we use HMM to predict
stock prices and apply the results to trade stocks. We use HMM for multiple independent observation
sequences in this study. Three stocks: Apple Inc., Alphabet Inc., and Facebook, Inc., were chosen
to implement the model. We limit numbers of states of the HMM to a maximum of four states and
use two goodness of fit tests to choose the best HMM model among HMMs with two, three, or four
states. The prediction process is based on the work of Hassan and Nath (2005). The authors use HMM
with the four observations: close, open, high, and low prices of some airline stocks to predict their
future close price using four states. They used HMM to find a day in the past that was similar to
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the recent day and used the price change in date and price of the current day to predict future close
price. However, in the paper, the authors did not explain why they chose HMM with four states.
Our approach is different from their work in the three following modifications. The first difference
is that we use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) to
test the HMM’s performances with numbers of states from two to four to find the best HMM model.
The second modification is that we apply HMM for stock returns to predict future close prices and
compare the results with the naïve forecast method. The modification is based on the assumption of the
HMM’s algorithms presented in this paper: the observation sequences are independent. Applying the
HMM to stock returns, our prediction method is simpler than the method in Hassan and Nath (2005),
which will be explained in Section 3.1. Finally, we use stock prices predicted via the HMM and the
naïve method to trade these three stocks and compare the results.

The paper is organized as follows: Section 2 gives a brief introduction to HMM and its algorithms
for multiple observation sequences. Section 3 describes the HMM model selections and data collections
for stock price prediction. Section 4 presents the results of stock price predictions and stock trading,
and Section 5 gives conclusions.

2. Hidden Markov Model and Its Algorithms

The Hidden Markov Model, HMM, is a signal detection model that was introduced in 1966 by
Baum and Petrie (Baum and Petrie 1966). HMM assumes that an observation sequence was derived
from a hidden state sequence of discrete data and satisfies the first order of a Markov process. HMM
was developed from a model for a single observation variable to a model for multiple observation
variables. The applications of HMM also were expanded to many areas such as speech recognition,
biomathematics, and financial mathematics. In our previous paper Nguyen and Nguyen (2015),
we described HMM for one observation, its algorithms, and applications. In this section, we present
HMM for multiple observations and its corresponding algorithms. We assume that the multiple
observations data are independent and have the same length. The basic elements of an HMM for
multiple observations are:

• Observation data, O = {O(l)
t , t = 1, 2, . . . , T, l = 1, 2, . . . , L}, where l is numbers of independent

observation sequences and T is the length of each sequence,
• Hidden state sequence of O, Q = {qt, t = 1, 2, . . . , T},
• Possible values of each state, {Si, i = 1, 2, . . . , N},
• Possible symbols per state, {vk, k = 1, 2, . . . , M},
• Transition matrix, A = (aij), where aij = P(qt = Sj|qt−1 = Si), i, j = 1, 2, . . . , N,
• Initial probability of being in state (regime) Si at time t = 1, p = (pi), where pi = P(q1 = Si),

i = 1, 2, . . . , N,
• Observation probability matrix, B = {bi(k)}, where

bi(k) ≡ bi(Ot = vk) ≡ P(Ot = vk|qt = Si), i = 1, 2, ..., N, k = 1, 2, . . . , M.

Parameters of an HMM are the matrices A and B and the vector p. For convenience, we use a compact
notation for the parameters, given by

λ ≡ {A, B, p}.

If the observation probability assumes the Gaussian distribution, then we have a continuous HMM
with bi(k) = bi(Ot = vk) = N (vk, µi, σi), where µi and σi are the mean and variance of the distribution
corresponding to the state Si, respectively, and N is Gaussian density function. For convenience,
we write bi(Ot = vk) as bi(Ot). Then, the parameters of HMM are

λ ≡ {A, µ, σ, p},
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where µ and σ are vectors of means and variances of the Gaussian distributions, respectively.
With the assumption that the observations are independent, the probability of observation, denoted by
P(O|λ), is

P(O|λ) =
L

∏
l=1

P(O(l)|λ).

There are three main questions that readers should consider when using the HMM:

1. Given an observation data O and the model parameters λ, can we compute the probabilities of the
observations P(O|λ)?

2. Given the observation data O and the model parameters λ, can we find the best hidden state
sequence of O?

3. Given the observation O, can we find the model’s parameters λ?

The first problem can be solved by using forward or backward algorithms Baum and Egon (1967); Baum
and Sell (1968), the second problem was solved by using Viterbi algorithm Forney (1973); Viterbi (1967)
and the Baum–Welch algorithm Rabiner (1989) was developed to solve the last problem. In the paper,
we only use the algorithms to solve the first and the last problem. We first use the Baum–Welch
algorithm to calibrate parameters for the model and the forward algorithm to calculate the probability
of observation to predict trending signals for stocks. In this section, we introduce the forward algorithm
and the Baum–Welch algorithm for HMM with multiple observations. These algorithms are written
based on Baum and Egon (1967); Baum and Sell (1968); Forney (1973); Petrushin (2000); Rabiner (1989).

2.1. Forward Algorithm

We define the joint probability function as

α
(l)
t (i) = P(O(l)

1 , O(l)
2 , ..., O(l)

t , qt = Si|λ), t = 1, 2, ..., T and l = 1, 2, ..., L.

Then, we calculate α
(l)
t (i) recursively. The probability of observation P(O(l)|λ) is just the sum of

the α
(l)
T (i)′s.

The forward algorithm

1. Initialization P(O|λ) = 1
2. For l = 1, 2, ..., L do

(a) Initialization: for i = 1, 2,..., N
α
(l)
t=1(i) = pibi(O

(l)
1 ).

(b) Recursion: for t = 2, 3, . . . , T, and for j = 1, 2, . . . , N, compute

α
(l)
t (j) =

[
N

∑
i=1

αt−1(i)aij

]
bj(O

(l)
t ).

(c) Calculate:

P(O(l)|λ) =
N

∑
i=1

α
(l)
T (i).

(d) Update:
P(O|λ) = P(O|λ) ∗ P(O(l)|λ).

3. Output: P(O|λ).
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2.2. Baum–Welch Algorithm

The Baum–Welch algorithm is an algorithm to calibrate parameters for the HMM given the
observation data. The algorithm was introduced in 1970 Baum et al. (1970), in order to estimate
the parameters of HMM for a single observation. Then, in 1983, the algorithm was extended to
calibrate HMM’s parameters for multiple independent observations, Levinson et al. (1983). In 2000,
the algorithm was developed for multiple observations without the assumption of independence of
the observations, Li et al. (2000). In this paper, we use HMM for independent observations, so we
will introduce the Baum–Welch algorithm for this case. The Baum–Welch method or the expectation
modification (EM) method is used to find a local maximizer, λ∗, of the probability function P(O|λ).

In order to describe the procedure, we define the conditional probability β
(l)
t (i) =

P(O(l)
t+1, O(l)

t+2, .., O(l)
T |qt = Si, λ), for i = 1, ..., N, l = 1, 2, ..., L. Obviously, for i = 1, 2, ..., N β

(l)
T (i) = 1,

and we have the following backward recursive:

β
(l)
t (i) =

N

∑
j=1

aijbj(O
(l)
t+1)β

(l)
t+1(j), t = T − 1, T − 2, ..., 1.

We then defined γ
(l)
t (i), the probability of being in state Si at time t of the observation O(l),

l = 1, 2, ..., L as:

γ
(l)
t (i) = P(qt = Si|O(l), λ) =

α
(l)
t (i)β

(l)
t (i)

P(O(l)|λ)
=

α
(l)
t (i)β

(l)
t (i)

∑N
i=1 α

(l)
t (i)β

(l)
t (i)

.

The probability of being in state Si at time t and state Sj at time t + 1 of the observation
O(l), l = 1, 2, ..., L as:

ξ
(l)
t (i, j) = P(qt = Si, qt+1 = Sj|O(l), λ) =

α
(l)
t (i)aijbj(O

(l)
t+1)β

(l)
t+1(j)

P(O(l), λ)
.

Clearly,

γ
(l)
t (i) =

N

∑
j=1

ξ
(l)
t (i, j).

Note that the parameter λ∗ was updated in Step 2 of the Baum–Welch algorithm to maximize the
function P(O|λ) so we will have4 = P(O, λ∗)− P(O, λ) > 0.

If the observation probability bi(k)∗, defined in Section 2, is Gaussian, we will use the following
formula to update the model parameter, λ ≡ {A, µ, σ, p}

µ∗i =
∑L

l=1 ∑T−1
t=1 γ

(l)
t (i)O(l)

t

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

σ∗i =
∑L

l=1 ∑T
t=1 γ

(l)
t (i)(O(l)

t − µi)(O
(l)
t − µi)

′

∑L
l=1 ∑T

t=1 γt(i)
.

3. Model Selections and Data Collections

The Hidden Markov Model has been widely used in financial mathematics area to predict
economic regimes (Kritzman et al. 2012; Guidolin and Timmermann 2006; Ang and Bekaert 2002;
Chen 2005; Nguyen 2014) or predict stock prices (Hassan and Nath 2005; Nobakht et al. 2012;
Nguyen 2014). In this paper, we explore a new approach of HMM in predicting stock prices. In this
section, we discuss how to use the Akaike information criterion, AIC, and the Bayesian information
criterion, BIC, to test the HMM’s performances with different numbers of states. We then will present
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how to use HMM to predict stock prices and apply the results to trade stocks. First, we will describe
the chosen data and the AIC and BIC for HMM with selected numbers of states.

Baum–Welch for L independent observations O = (O(1), O(2), ..., O(L)) with the same length T

1. Initialization: input parameters λ, the tolerance tol, and a real number4
2. Repeat until4 < tol

• Calculate P(O, λ) = ΠL
l=1P(O(l)|λ) using the forward algorithm (??)

• Calculate new parameters λ∗ = {A∗, B∗, p∗}, for 1 ≤ i ≤ N

p∗i =
1
L

L

∑
l=1

γ
(l)
1 (i)

a∗ij =
∑L

l=1 ∑T−1
t=1 ξ

(l)
t (i, j)

∑L
l=1 ∑T−1

t=1 γ
(l)
t (i)

, 1 ≤ j ≤ N

bi(k)∗ =
∑L

l=1 ∑T
t=1 |O(l)

t =v(l)k
γ
(l)
t (i)

∑L
l=1 ∑T

t=1 γ
(l)
t (i)

, 1 ≤ k ≤ M

• Calculate4 = P(O, λ∗)− P(O, λ)

• Update
λ = λ∗.

3. Output: parameters λ.

3.1. Overview of Data Selections

We chose three stocks that are actively trading in the stock market to examine our model: Apple Inc.
(AAPL), Alphabet Inc. (GOOGL), and Facebook Inc. (FB). The daily stock prices (open, low, high, close)
of these stocks and information of these companies can be found from finance.yahoo.com. We used
daily historical prices of these stocks from 4 January 2010 to 30 October 2015 in this paper.

3.2. Checking Model Assumptions

The HMM’s algorithms presented in this paper are based on the assumption that the observation
sequences are independent. However, the open, low, high, and close prices of a stock are highly
correlated, which can be since from the matrix of correlation in Figure 1. On the other hand, stock
returns of these four series prices are independent, which are shown in Figure 2.

We use the Autocorrelation function (ACF) to calculate the paired correlation between the series
and plot in Figures 1 and 2. The ACF for the Facebook and Google stocks are presented in Appendix A.
We can see clearly from the figures that the return price series have low correlations while the stock
price series have very high correlations.

Furthermore, we conduct the Ljung–Box test to test the independence of each time series. We use
the test with lag = 1 for returns of the three stocks: AAPL, FB, and GOOGL, from 1 October 2014 to
1 October 2015, and present results in Table 1. Note that the stock prices are not independent, and they
failed the Ljung–Box test at significance level α = 5%, so Table 1 only displays results for stock returns.
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Figure 1. ACF test for correlation between open, low, high, and close of Apple stock daily prices from
1 October 2014 to 1 October 2015.

Figure 2. ACF test for correlation between open, low, high, and close of Apple stock daily return prices
from 1 October 2014 to 1 October 2015.
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Table 1. p-values from the Ljung–Box test for independencies of stock return series: Open, High,
Low, and Close. “*” indicates that the p-value is statistically significant at α = 5%, “**” indicates that
the p-value is statistically significant at α = 1%, and “***” indicates that the p-value is statistically
significant at α = 0.1%.

Stock Open High Low Close

AAPL 0.0010 ∗∗∗ 0.0718 0.6584 0.6566
FB 0.2151 0.0153 ∗ 0.3273 0.0094 ∗∗

GOOGL 0.5378 0.0214 ∗ 0.0010 ∗∗∗ 0.0608

The null hypothesis of the Ljung–Box test is that the data are independently distributed. Thus,
we will accept the null hypothesis if the p-value is bigger than the chosen significant level α.
From Table 1, we can see that most of the stock returns series pass the independent test at the significant
level α = 1%, and the only two series that do not pass the test at the significant level α = 0.1% are
APPL’s open returns and GOOGL’s low returns. The HMM works for dependent observation data
with a modification in calculating probabilities of observations. We will explore the case in our future
study. We will apply HMM for predicting the daily returns and then forecast future stock prices in the
next section.

3.3. Model Selection

Choosing a number of hidden states for the HMM is a critical task. We first use two standard
criteria: the AIC and the BIC to examine the performances of HMM with different numbers of states.
The two measures are suitable for HMM because, in the model training algorithm, the Baum–Welch
algorithm, the EM method was used to maximize the log-likelihood of the model. We limit numbers of
states from two to four to keep the model simple and feasible for stock prediction. The AIC and BIC
are calculated using the following formulas, respectively:

AIC = −2 ln(L) + 2k,

BIC = −2 ln(L) + k ln(M),

where L is the likelihood function for the model, M is the number of observation points, and k is
the number of estimated parameters in the model. In this paper, we assume that the distribution
corresponding to each hidden state is a Gaussian distribution. Therefore, the number of parameters, k,
is formulated as k = N2 + 2N − 1, where N is numbers of states used in the HMM.

To train HMM’s parameters, I use historical observed data of a fixed length T,

O = {O(1)
t , O(2)

t , O(3)
t , O(4)

t , t = 1, 2, ..., T},

where O(i) with i = 1, 2, 3, or 4 represents the daily returns of open, low, high or close price of a stock,
respectively. For the HMM with single observation, we use only the returns of close price data,

O = Ot, t = 1, 2, ..., T,

where Ot is stock’s return of close price at time t. We ran the model calibrations with different time
lengths, T, and saw that the model worked well for T ≥ 80. On the results below, we used blocks of
T = 100 trading days of stock price data, O, to calibrate HMM’s parameters and calculate the AIC and
BIC numbers. Thus, the total number of observation points in each BIC calculation is M = 400 for four
observation data and M = 100 for one observation data. For convenience, we did 100 calibrations
for 100 blocks of data by moving the block of data forward, (we took off the price of the oldest day
on the block and added the price of the following day to the recent day of the block). The calibrated
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parameters of the previous step are used as initial parameters for the new calibration. The training
data set is from 16 January 2015 to 30 October 2015.

The first block of stock prices of 100 trading days from 16 January 2015 to 6 June 2015 was used to
calibrate HMM’s parameters and calculate corresponding AIC and BIC. Let µ(O) and σ(O) be the mean
and standard deviation of observation data, O, respectably. We chose initial parameters for the first
prediction as follows:

A =(aij), aij =
1
N

,

p =(1, 0, .., 0),

µi =µ(O) + Z, Z ∼ N (0, 1),

σi =σ(O),

(1)

where i, j = 1, .., N and N (0, 1) is the standard normal distribution.
The second block of 100 trading day data from 17 January 2015 to 7 June 2015 was used for the

second calibration and so on. The HMM calibrated parameters from the current calibration are used
as initial parameters for the next estimation. We continued the process until we got 100 calibrations.
We plot the AICs and BICs of the 100 calibrations of these three stocks (AAPL, FB, and GOOGL) on
Figures 3–5. On Figures 3–5, the graph of AIC is located on the left and BIC is located on the right.
The lower AIC or BIC is the better model calibration. However, the Baum–Welch algorithm only finds
a local maximizer of the likelihood function. Therefore, we did not expect to have the same AIC or BIC
if we run the calibration twice. The results on Figures 3–5 showed that the calibration performances
of the model with different numbers of states differ from one simulation to others. Based on the AIC
results, the performances of HMM with two, three, or four states are almost the same. However,
based on the BIC, the HMM with two states is the best candidate for all three of the stocks. Therefore,
we choose the HMM with two states to predict prices of the three stocks in the next section.

Figure 3. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Apple, AAPL, stock
daily return prices.
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Figure 4. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Google, GOOGL,
stock daily return prices.

Figure 5. AIC (left) and BIC (right) for 100 parameter calibrations of HMM using Facebook, FB, stock
daily return prices.

4. Stock Price Prediction and Stock Trading

In this section, we will use HMM to predict stock prices and compare the prediction with the real
market prices. We will predict stock prices of GOOGL, APPL, and FB using HMM with two states,
the best model selected from Section 3.3, and calculate the relative errors to the real market prices.
The results will be compared with the naïve none change method. A trading strategy using HMM is
also presented in this section.

4.1. Stock Price Prediction

We first introduce how to predict stock prices using HMM. The prediction process can be divided
into three steps. Step 1: calibrate HMM’s parameters and calculate the likelihood of the model.
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Step 2: find the day in the past that has a similar likelihood to the recent day. Step 3: use the stock
returns on the day after the “similar” day in the history to be the predicted return for tomorrow price.
This prediction approach is based on the work of Hassan and Nath (2005). However, our procedure is
different from their method in that we apply HMM for the returns of open, low, high, and close prices,
which are independent, while the authors used the HMM directly to open, low, high, and close prices,
which are not independent. Due to applying the HMM for stock returns, our method is simpler than
their method in the third step. We use HMM with the returns of the four observation sequences (open,
low, high, close price), as in Hassan and Nath (2005).

Suppose that we want to predict tomorrow’s closing price of stock A, the prediction can be
explained as follows. In the first step, we chose a block of T of the four daily return prices of stock A:
open, low, high, and close, (O = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T− 99, T− 98, ..., T}), to calibrate HMM’s

parameters, λ, of the HMM. We then calculate the probability of observation, P(O|λ). We assumed
that the observation probability bi(k), defined in Section 2, is Gaussian distribution, so the matrix B,
in the parameter λ = {A, B, p}, is a 2 by N matrix of means, µ, and variances, σ, of the N normal
distributions, where N is numbers of states. In the second step, we move the block of data backward
by one day to have new observation data Onew = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T − 100, T − 99, ..., T − 1}

and calculate P(Onew|λ). We keep moving blocks of data backward day by day until we find a data
set O∗, (O∗ = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T∗ − 99, T∗ − 98, ..., T∗}) such that P(T∗|λ) ' P(O|λ). In the

third step, after finding the past “similar” day, T∗, we estimate the return of close price at time T + 1,
by using the following formula:

O(4)
T+1 = O(4)

T∗+1 . (2)

After the first prediction for stock return of day T + 1 we update data window, O, by moving it forward
one day, O = {O(1)

t , O(2)
t , O(3)

t , O(4)
t , t = T − 98, T − 97, ..., T + 1}, to predict stock return for the day

T + 2. The calibrated HMM’s parameters in the first prediction were used as the initial parameters for
the second prediction. We repeat the prediction process as mentioned in the first prediction for the
second prediction and so on. For HMM with a single observation sequence, we use O = O(4)

t , where
O(4) is the return of close price.

The predicted close price at time T + 1, PT+1, is calculated by the predicted stock returns:

PT+1 = PT ∗ (O
(4)
T+1 + 1), (3)

where PT is close price at time T and O(4)
T+1 is the return of close price calculated in (2).

The naïve none change method is applied for returns of the three stocks’ close prices. The model
simply takes the return of the close price today to use as the return of the tomorrow’s close price

O(4)
T+1 = O(4)

T .

After forecasting O(4)
T+1, we predict the next day’s close price by using Equation (3). We use the naïve

method for stock returns instead of stock prices because, for trading purposes, if we assume no change
in future stock prices, then there is no trade. We present results of using the HMM to predict these
three stocks’—AAPL, GOOGL, and FB—closing prices for one year trading, 252 days, in Figures 6– 8.
The results indicate that the HMM captures the trends of the three stocks well, while the naïve forecasts
often go to the opposite directions of the real market trends. We can see from Figure 7 that the naïve
forecast method had a few huge errors in predicting stock prices in February. The naïve model also
showed its weakness when predicted prices of Google stock at the end of July 2015 are far from the
actual prices.
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Figure 6. HMM prediction of Apple stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.

Figure 7. HMM prediction of Facebook stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.

Figure 8. HMM prediction of Google stock daily close prices from 15 August 2016 to 11 August 2017
using two-states HMM and the naïve model.
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We also compare the forecasting results of using the two-state HMM and the naïve method
numerically by calculating the mean absolute percentage error, MAPE, of the estimations.

MAPE =
1
N

N

∑
i=1

|Mi − Pi|
Mi

,

where N is number of predicted points, M is market price, and P is predicted price of a stock.
The results were shown in Table 2. In Table 2, the “Price Std.” and “Return Std.” are the standard
deviation of the stock prices and stock returns, respectively, and the efficiencies are calculated by
taking the errors of the naïve method divided by the errors of the HMM. All efficiencies in the table
are bigger than one, showing that the HMM outperformed the naïve in forecasting stock prices.

Table 2. Comparison of MAPE of stock price predictions of Apple, Google, and Facebook from 15
August 2016 to 11 August 2017, between the HMM and the naïve forecast model.

Stock Price Std. Return Std. HMM’s MAPE Naïve’s MAPE Efficiency

AAPL 17.0934 0.0113 0.0113 0.0133 1.1770
FB 14.4879 0.0111 0.0116 0.0213 1.8362

GOOGL 69.9839 0.0098 0.0107 0.0137 1.2804

Among these three stocks, GOOGL’s prices have the highest volatility, but its returns have the
lowest volatility. These factors will affect stock trading results so that we will present the results in the
next section.

4.2. Stock Trading

In this section, we will use the predicted returns to trade these three stocks: AAPL, FB, and
GOOGL. The trading strategy is: if HMM predicts that the stock price of AAPL will move up tomorrow,
or its return is positive, we will buy this stock today and sell it tomorrow, assuming that we buy and
sell with close prices. If the HMM predicts that the stock price will not increase tomorrow, then we will
do nothing. We also assume that there is no trading cost. For each trade, we will buy or sell 100 shares
of each of these three stocks. Based on the AIC and BIC results, we only use HMM with two states for
the stock trading. Again, we will use a block of 252 trading days, one year, from 15 August 2016 to
11 August 2017 for model testing. We present the results of one year trading in the Table 3.

Table 3. Stock trading results from 15 August 2016 to 11 August 2017.

Stock Models Investment $ Earning $ Profit %

AAPL HMM 10,908 3481 31.91
Naïve 10,818 3513 32.47

FB HMM 12,490 2939 23.53
Naïve 12,488 2565 20.54

GOOGL HMM 80,596 20,039 24.86
Naïve 79,965 2715 3.40

In Table 3, the “Investment” is the price that we bought 100 shares of the stocks the first time.
The “Earning” is the money gained, and the “Profit” is the percentage of return of the one-year
trading. The results show that the HMM worked better than the naïve in trading the Facebook and
Google stocks. Especially in the one year trading period, the GOOGL stock yielded a much higher
return compared to the naïve forecast method. However, the results are reversed for AAPL stock.
From Figures 6–8 and Table 2, we can see that, in the one period, the GOOGL prices have the highest
volatility and lowest risk of returns among the three stocks. The naïve results are consistent with the
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risk of return levels, the “Return Std.” in Table 2: the higher the risk, the better the return. The HMM
followed close to the risk level theoretical. Based on the results in Table 3, using an HMM model,
traders had returns of 32.00%, 24%, and 25% for AAPL, FB, GOOGL, respectively. Trading using HMM
gave much higher returns than using the naïve for two stocks FB and GOOGL, but a likely lower
return for the AAPL stock compare to the naïve.

5. Conclusions

Stock’s performances are an essential indicator of the strength or weakness of the stock’s
corporation and economic viability in general. Many factors will drive stock prices up or down.
In this paper, we use a Hidden Markov Model, HMM, to predict prices of three stocks: AAPL, GOOGL,
and FB. We first use the AIC and BIC criterions to examine the performances of HMM numbers of
states from two to four. The results showed that the HMM with two states is the best model among
the two, three and four states. We then use the models to predict stock prices and compare the
predictions with the naïve forecast results by plotting the forecasted prices versus the market prices
and evaluating the mean absolute percentage error, MAPE. The prediction errors show that HMM
worked better in predicting prices of the three stocks—AAPL, FB, and GOOGL—compared with the
naïve method. In stock trading, the HMM outperformed the naïve for two stocks: FB and GOOGL.
The graphs indicate that the HMM is the potential model for stock trading since it captures the trends
of stock prices well.
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Appendix A

Figure A1. ACF test for correlation between open, low, high, and close of Facebook daily stock prices
from 1 October 2014 to 1 October 2015.



Risks 2017, 5, 62 14 of 16

Figure A2. ACF test for correlation between open, low, high, and close of Facebook stock daily returns
from 1 October 2014 to 1 October 2015.

Figure A3. ACF test for correlation between open, low, high, and close of Google daily stock prices
from 1 October 2014 to 1 October 2015.
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Figure A4. ACF test for correlation between open, low, high, and close of Google stock daily returns
from 1 October 2014 to 1 October 2015.
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