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Abstract: This paper studies the valuation of real options when the cost of investment jumps at a
random time. Three valuation formulas are derived. The first expresses the value of the project
in terms of a collection of knockout barrier claims. The second identifies the premium relative
to a project with delayed investment right and prices its components. The last one identifies the
premium/discount relative to a project with constant cost equal to the post-jump cost and prices its
components. All formulas are in closed form. The behavior of optimal investment boundaries and
valuation components are examined.
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1. Introduction

Firms contemplating investment projects are often confronted with jump risk affecting the cost
of investment. Randomness taking the form of jumps in costs arises in several economic contexts.
A common example of jump uncertainty is due to changes in government policies and regulations
causing structural changes in economies. Another instance is due to technological progress lowering
the cost of systems for certain types of projects. Jump risk entails unpredictable changes in costs;
therefore, it has the potential for significant effects on optimal investment rules. This paper examines
the issues at stake. It derives explicit valuation formulas when investment costs are subject to jumps
and examines the implications for investment under uncertainty.

Government policies pertaining to the regulatory environment are a common source of jumps in
investment costs. Tax policies, deductibility rules and subsidies are various elements of policies that
are often the subject of political debates and experience sudden changes at certain times. A relevant
example is that of regulations implemented to combat climate change such as those restricting harmful
emissions of fossil fuel plants. Technologies mitigating emissions, such as carbon capture technologies,
add to the cost of investing in a fossil fuel plant. Technological progress is also a source of discontinuous
cost changes. Advances in research and development lead to new discoveries that can revolutionize
industries by driving costs down. An example is the solar panels industry that has witnessed a
sequence of sudden decreases in the cost of panels over the past 20 years. Another example concerns
the manufacture of CPUs, where the cost per MHz of processors is typically subject to sudden changes
when new manufacturing processes are perfected and implemented.

This paper mainly focuses on the case of a single jump in the cost of a project. An investment
project subject to jump uncertainty in cost is identical to a compound American claim with random
time of strike change. It is a compound claim because the option to invest after the strike jump, if still
alive, is an American option. The option to invest before the strike jump is then an American claim on
an American option (More specifically, the contract is an American option to exchange an American
option with strike K2 and delayed exercise right triggered by the jump time, for an immediate exercise
payoff with strike K1.), hence a compound American claim. The main contribution of the paper is to
provide three simple, economically relevant, valuation formulas for this class of contracts (We also
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provide a fourth formula based on the free boundary characterization of the problem. This formula
has a simple structure but is less explicit to the extent that some of its coefficients must be calculated
numerically. It is also less amenable to economic interpretation.). The first formula expresses the
value of the contract as an average of compound knockout options with fixed strike jump times. The
average is over the distribution of jump times. Each knockout option is automatically liquidated at the
first hitting time of a fixed boundary b and has liquidation payoff equal to the exercise payoff. If the
option is still alive at the strike jump time, it converts to an American option with post-jump strike.
All components of this formula are in explicit form in terms of the cumulative normal distribution,
parametrized by the liquidation threshold b.

The second representation formula emphasizes the gains from investing prior to the strike change.
It expresses the value of the investment project as the present value of the post-jump value augmented
by an early investment premium (EIP) given by the present value of the instantaneous gains from
early investment. When the pre-jump cost exceeds the post-jump cost, i.e., K1 > K2, the latter consist
of instantaneous dividends δX collected, reduced by the interest loss on the strike rK1 and by the
expected jump in the strike λ (K1 − K2). These gains accrue in the pre-jump exercise region. In the
opposite case, i.e., K1 < K2, the cost associated with the expected jump in the strike splits in two parts.
The first one is the expected jump in strike which is incurred if the post-jump underlying value X is in
the post-jump investment region. The second one is the expected jump in value which is incurred if
the post-jump underlying value X is below the post-jump investment threshold.

The third representation formula isolates and decomposes the cost associated with a delay in
the strike jump. It takes as benchmark the value of the investment project under cost K2 and splits
the incremental value associated with the option to invest at the cost K1 prior to the jump time in its
fundamental constituents. The incremental value is the delayed jump premium (DJP). When K1 > K2,
the DJP is negative, i.e., it represents a discount. It tallies the net benefit δX− rK1 collected by optimally
investing prior to the jump, the net cost δX − rK2 incurred by foregoing optimal investment at K2

and the expected jump cost λ (K1 − K2) associated with investment at the higher K1. When K1 < K2,
the DJP is positive. As in the previous representation formula, the expected jump cost has now a part
related to the jump in the value of the investment project.

The immediate investment boundary for the post-jump period can be derived using standard
methods. For instance, it can be identified using value matching and smooth pasting conditions
associated with the valuation partial differential equation (PDE). Alternatively, it can be obtained from
the early investment premium representation of the post-jump American option value. The latter gives
an explicit equation for the boundary that does not involve unknown parameters. The immediate
exercise boundary for the pre-jump period can be deduced from the three price representation formulas
described above. The first formula can be optimized with respect to the liquidation threshold, which
can then be calculated numerically. Equating the value of the claim to the exercise payoff on the
boundary gives an integral equation, for each of the other two representation formulas. All the terms
in these integral equations are in closed form, and the common solution can be calculated numerically
by using any root-finding algorithm (e.g., bisection method, Newton–Raphson scheme, etc.).

Our paper relates to several branches of the literature on investment under uncertainty. The first
branch consists of real option models with uncertain costs driven by diffusion processes. Important
contributions in that realm are those of McDonald and Siegel (1986) and Pindyck (1993). The first study
examines the case where cost uncertainty takes the form of a geometric Brownian motion process so
that the project becomes a classic exchange option (See also Margrabe (1978) for European exchange
options and Bjerksund and Stensland (1993); Broadie and Detemple (1997); Rubinstein (1991) for
American exchange options.). The second one allows for more general forms of cost uncertainties,
incorporating technical uncertainty as well as input uncertainty. Both types of uncertainties entail
diffusive cost processes (See also (Jaimungal et al. 2013) for a model where the investment cost and
the underlying value follow correlated mean reverting processes.). The second branch bears a more
direct relation to this study and consists of papers incorporating jump risk, e.g., Hassett and Metcalf
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(1999); Maxwell and Davison (2015); Pawlina and Kort (2005). The first study evaluates the impact of
an investment tax credit modeled as a two-state Markov switching process. The second one examines
the impact of regulatory changes taking the form of jumps in subsidies on the operating policies of an
ethanol producer. It characterizes the value function of the operator using variational inequalities and
examines the decision to invest in an ethanol plant. The last one considers a trigger determined by an
unknown threshold for the underlying project value, where the latter follows a geometric Brownian
motion (GBMP) process. The third branch of related literature deals with cost uncertainty resulting
from the behavior of other market participants, e.g., Cerqueti et al. (2016); Leippold and Stromberg
(2017). The first paper examines optimal R&D expenditures in a competitive setting where competition
takes the form of an exogenous random time of a rival’s success. The second one studies optimal
investment timing and technology choice when the principal faces the potential entry of a competitor.
The last branch consists of financial and real option models with random maturity dates, e.g., Berrada
(1999); Broadie and Detemple (1995); Carr (1998); Lambrecht and Perraudin (2003); Schwartz and Moon
(2000). Models in this area involve various types of contingent claims subject to random liquidation
dates at which contracts are exercised and payoffs collected.

The present paper focuses on unpredictable cost changes, hence those driven by a jump process,
which places it in the realm of the second branch of literature described above. It differs from prior
contributions to the extent that we produce an explicit solution for the compound American claim
price parametrized by the optimal investment threshold. This solution has multiple representations
that have natural economic interpretations. Each of these explicit representation formulas immediately
gives an equation for the optimal investment threshold that can be solved numerically and examined
to uncover relevant price properties.

Section 2 formulates the problem and derives the solution when the timing of strike jump is
known. Sections 3 and 4 consider the case of stochastic jump time and provide the main valuation
formulas. Section 5 examines the case of an infinite number of jumps. The conclusions follow.

2. Formulation of the Problem

1. Let us consider the probability space (Ω,F ,Q), where Q is the risk-neutral measure. We assume
that the present value X of an investment project follows a geometric Brownian motion process:

dXt = (r−δ)Xt dt + σXt dBt (X0 = x > 0) (1)

for t ≥ 0, where the constant r > 0 is the interest rate, δ ≥ 0 is the dividend yield, σ > 0 is the constant
volatility and B is a standard Brownian motion under the risk-neutral measure Q. We first consider the
situation where it is known in advance that the sunk cost K will change at time T in the future

Kt = K1 I(t ≤ T) + K2 I(t > T) (2)

for t > 0. The first problem is then to find the value of the project and the optimal investment strategy

V(t, x) = sup
τ≥t

Et,x

[
e−r(τ−t)(Xτ − Kτ)

+
]

(3)

for t ≥ 0, x > 0, and the supremum is taken over stopping times τ of X with values greater than t (For
some projects, the costs of investment are incurred over a period of time and the proceeds are collected
at future dates. For instance, in the case of power projects, construction costs are usually spread over
time and cash inflows only materialize once the plant operates. Calculating the present value of future
costs gives the sunk cost Kτ at the time of investment. Likewise, calculating the present value of future
proceeds gives the value Xτ of the investment project.).
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The solution to problem (3) is well known when t > T and given by

V(t, x) = V2(x) := Axp I(x < b2) + (x− K2)I(x ≥ b2) (4)

for x > 0, where

b2 = pK2/(p− 1), (5)

A2 = (b2 − K2)/bp
2 , and (6)

p = 0.5− (r− δ)/σ2 +
√
(0.5− (r− δ)/σ2)2 + 2r/σ2 (7)

are given in closed form (see, e.g., Chapter 5 in (Dixit and Pindyck 1994)). We also define the terminal
value at T given by

V̄(x) := max(x− K1, V2(x)) (8)

for x > 0. We then reformulate problem (3) as

V(t, x) = sup
t≤τ≤T

Et,x

[
e−r(τ−t) ((Xτ − K1)I(τ < T) + V̄(XT)I(τ = T))

]
(9)

for t < T and x > 0.

2. Here, we first assume that K1 < K2. It is clear that V2(x) > (x − K1)
+ = 0 for x < K1

and V2(b2) = b2 − K2 < b2 − K1. Thus, there exists x∗ ∈ (K1, b2) such that x∗ − K1 = V2(x∗) and
x− K1 > V2(x) if and only if x > x∗. In this case, the function V̄ can be rewritten as

V̄(x) := Axp I(x < x∗) + (x− K1)I(x ≥ x∗) (10)

for x > 0. We then have the optimal investment boundary b1 : [0, T] → IR such that the
investment region

D = {(t, x) ∈ [0, T]× (0, ∞) : x ≥ b1(t)} (11)

with b1(T−) = max(x∗, K, rK/δ). The value function V(t, x) has the early investment premium
representation (EIP)

V(t, x) = Vw(t, x) + π(t, x; b), (12)

Vw(t, x) = Et,x

[
e−r(T−t)V̄(XT)

]
, (13)

π(t, x; b1) =
∫ T

t
e−r(u−t)Et,x [(δXu − rK1)I(Xu ≥ b1(u))] du, (14)

and the optimal investment boundary b satisfies the integral equation

b1(t)− K1 = Vw(t, b1(t)) + π(t, b1(t); b1) (15)

for t ∈ [0, T). The representation (12)–(14) is standard in the literature on American options.
Although the real option examined here has a more complex payoff than a vanilla option, the
representation formula can be derived using the same arguments as in Carr et al. (1992). We consider
the strategy of waiting until T, with the value Vw, and choosing between XT − K1 and V2(XT).
This strategy is suboptimal and there is an early exercise premium π, described by (14). To obtain (15),
we simply insert S = b1(t) into (12). This integral equation can be solved numerically.

In order to calculate the solution of the integral Equation (15), we proceed as follows. First,
we discretize the time interval [0, T] into n cells {t0, ..., tn}, where t0 = 0 and tn = T. Second, we proceed
recursively to calculate the boundary b1(ti) at each point of the discretization, starting from the known
terminal value b1(T−) = max(x∗, K, rK/δ). For this computation, the integral in the EIP is approximated
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using the trapezoidal rule (see, e.g., Kallast and Kivinukk 2003). The boundary is calculated using either
the bisection method or the Newton–Raphson method. It is well known that, in standard cases, these
methods are convergent, i.e., when n goes to +∞ the approximated option price converges to the true
value. Figure 1 illustrates the shape of b1. Table 1 compares this integral equation (IE) method to the
binomial (B) tree approach for various sets of parameter values. It shows that the IE method is accurate
and convergent. Both methods are comparable in terms of CPU/RMSE (root mean squared error) tradeoff
and this fact was established in the literature (see e.g. Chapter 8 in (Detemple 2006)).
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Figure 1. This figure illustrates the optimal investment boundary (solid) b(t) = b1(t)I(t ≤ T) + b2 I(t > T).
The dashed line represent the investment cost, the dotted line shows x∗. The parameter set is
r = δ = 0.03, σ = 0.3, K1 = 10, K2 = 12. We assume that the jump occurs at T = 5 years. For this set of
parameters, b2 = 38.23 and x∗ = 20.81.

Table 1. This table compares the integral equation (IE) method to the binomial (B) tree approach for
various sets of parameter values. The IE method was computed using 200, 500 and 1000 time steps.
The binomial tree method was compute using 200 time steps. The true value is based on the binomial
tree method with 20,000 steps.

(r, δ, σ, K1, K2, T) X0 IE 200 IE 500 IE 1000 B 200 True Price

(0.05,0.05,0.2,10,11,5)

7 0.9527 0.9527 0.9528 0.9528 0.9528
8 1.2842 1.2844 1.2844 1.2844 1.2844
9 1.6748 1.6751 1.6751 1.6752 1.6751

10 2.1266 2.1269 2.1270 2.1269 2.1270
11 2.6407 2.6412 2.6414 2.6414 2.6413

(0.07,0.03,0.3,10,12,5)

7 2.9421 2.9421 2.9422 2.9424 2.9422
8 3.5093 3.5094 3.5094 3.5097 3.5094
9 4.1017 4.1018 4.1018 4.1024 4.1018

10 4.7177 4.7178 4.7179 4.7186 4.7179
11 5.3559 5.3561 5.3562 5.3570 5.3562

(0.03,0.07,0.3,10,12,3)

7 0.8619 0.8620 0.8621 0.8621 0.8621
8 1.1809 1.1811 1.1812 1.1810 1.1812
9 1.5625 1.5629 1.5630 1.5632 1.5630

10 2.0092 2.0097 2.0099 2.0098 2.0099
11 2.5224 2.5231 2.5234 2.5236 2.5234
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3. Now we suppose that K1 > K2. In this case, V̄(x) = V2(x) for x > 0. The boundary b
explodes at T because the cost of waiting becomes negligible relative to the gain associated with the
cost reduction. The early investment premium representation is given by

V(t, x) = Et,x

[
e−r(T−t)V2(XT)

]
+ π(t, x; b), (16)

π(t, x; b) =
∫ T

t
e−r(u−t)Et,x [(δXu − rK1)I(Xu ≥ b(u))] du, (17)

and the associated integral equation is given by

b(t)− K1 = Et,b(t)

[
e−r(T−t)V2(XT)

]
+ π(t, b(t); b). (18)

3. Random Jump: Direct Approach

1. In this section, we assume that the jump time τ is random and has exponential distribution
with parameter λ. We assume independence of X and λ. The aim is to find the optimal investment
threshold b1 for the initial cost K1. The solution for the future cost K2 is well known and given by the
value function V2(x) and threshold b2

V2(x) = A2xp I(x < b2) + (x− K2)I(x ≥ b2), (19)

b2 = pK2/(p− 1), (20)

A2 = (b2 − K)/bp
2 , (21)

p = 0.5− (r− δ)/σ2 +
√
(0.5− (r− δ)/σ2)2 + 2r/σ2. (22)

We recall that V2 satisfies the smooth fit condition at b2.
Now, we want to find the optimal investment strategy for an uncertain cost K that jumps at τ.

Clearly, the payoff has a standard call-type structure and it is optimal to invest when X is sufficiently
high, i.e., when Xt ≥ b1 for some b1. It is clear that, when K1 > K2, we have that b1 > b2 and that the
reverse is true when K1 < K2. Then, the value function V is given by

V(x) = sup
b

Ex

[
e−r(τ∧τb)

(
(Xτ∧τb − K1)I(τb < τ) + V2(Xτ)I(τb ≥ τ)

)]
(23)

for x > 0, where τb is the first hitting time of b

τb = inf{t > 0 : Xt ≥ b}. (24)

To find the optimal threshold b1 = b∗, first, let us fix some level b and compute the value function
under the corresponding strategy

V(x; b) = Ex
[
e−rτ∧τb

(
(Xτ∧τb − K1)I(τb < τ) + V2(Xτ)I(τb ≥ τ)

)]
, (25)

which can be rewritten as

V(x; b) = λ
∫ ∞

0
e−λTEx

[
e−rτb(b− K1)I(τb < T) + e−rTV2(XT)I(τb ≥ T)

]
dT (26)

for x > 0 as τ and X are independent. Let us fix T and compute the expectation

V0(x; b, T) := Ex

[
e−rτb(b− K1)I(τb < T) + e−rTV2(XT)I(τb ≥ T)

]
(27)

for x > 0. This can be calculated using the known distribution of max X, the joint distribution of
(XT , max X) and the closed form expression for V2.
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Lemma 1. (i) If K1 > K2, we consider only b > b2 and the following expression holds:

V0(x; b, T) = (b− K1)

(( x
b

)2φ/σ2

Φ(d0(T, x, b)) +
( x

b

)2α/σ2

Φ(d0(T, x, b) + 2 f
√

T/σ)

)
+ xe−δT

(
Φ(d1(T, x, b2))−Φ(d1(T, x, b))−

(
b
x

)2+2β/σ2

(Φ(d2(T, x, b))−Φ(d2(T, x, b2/b2)))

)

− K2e−rT

(
Φ(d3(T, x, b2))−Φ(d3(T, x, b))−

(
b
x

)2β/σ2

(Φ(d4(T, x, b))−Φ(d4(T, x, b2/b2)))

)

+ A2xpe−δ̃T

(
1−Φ(d5(T, x, b2))−

(
b
x

)2p−2β/σ2

Φ(d6(T, x, b2/b2))

)
(28)

for b > x > 0 and T > 0, where Φ is the standard normal cdf, β = δ − r + σ2/2, f =
√

β2 + 2rσ2,
φ = (β− f )/2, α = (β + f )/2, δ̃ = r(1− p) + δp + σ2 p(1− p)/2 and

d0(T, x, b) = (log(x/b)− f T)/(σ
√

T),

d1(T, x, b) = (log(x/b) + (r− δ + σ2/2)T)/(σ
√

T),

d2(T, x, b) = (log(x/b)− (r− δ + σ2/2)T)/(σ
√

T),

d3(T, x, b) = (log(x/b) + (r− δ− σ2/2)T)/(σ
√

T),

d4(T, x, b) = (log(x/b)− (r− δ− σ2/2)T)/(σ
√

T),

d5(T, x, b) = (log(x/b) + (r− δ + (p− 1/2)σ2)T)/(σ
√

T),

d6(T, x, b) = (log(x/b)− (r− δ + (p− 1/2)σ2)T)/(σ
√

T).

(ii) If K1 < K2, we consider only b < b2 and the following expression holds:

V0(x; b, T) =(b− K1)

(( x
b

)2φ/σ2

Φ(d0(T, x, b)) +
( x

b

)2α/σ2

Φ(d0(T, x, b) + 2 f
√

T/σ)

)
+ A2xpe−δ̃T

(
1−

(
b
x

)2p−2β/σ2) (29)

for b > x > 0 and T > 0.

Proof. (i) The derivation is similar to the pricing of capped or barrier type options. Taking into account
that b > b2, we rewrite V0(x; b, T) as

Ex

[
e−rτb(b− K1)I(τb < T) + e−rTV2(XT)I(τb ≥ T)

]
=(b− K1)Ex

[
e−rτb I(τb < T)

]
+ Ex

[
e−rT(XT − K2)I(XT ≥ b2, MT ≤ b)

]
+ A2Ex

[
e−rTXp

T I(XT ≤ b2, MT ≤ b)
]

,

(30)

where MT = max0≤t≤T Xt is the maximum of X on [0, T]. The first expectation is well known (see, e.g.,
Broadie and Detemple 1995). The second term can be computed as follows:

Ex

[
e−rT(XT − K2)I(XT ≥ b2, MT ≤ b)

]
= xe−δTP̂x(XT ≥ b2, MT ≤ b)− K2e−rTPx(XT ≥ b2, MT ≤ b), (31)

where the measure P̂ is defined as dP̂ = exp{−σ2T/2 + σBT}dP. Both probabilities on the right-hand
side are known explicitly by using the joint distribution of (XT , MT). Now, for the third term, we have

A2Ex

[
e−rTXp

T I(XT ≤ b2, MT ≤ b)
]
= A2xpe−δ̃TP̃(XT ≤ b2, MT ≤ b), (32)
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where we defined the measure dP̃ = exp{−p2σ2T/2 + pσBT}dP. The latter probability can be also
derived as we know the dynamics of X under P̃.

(ii) This case is even simpler. The first term is the same as in (i) above, the second expectation can
be written as

Ex

[
e−rTV2(XT)I(τb ≥ T)

]
= A2Ex

[
e−rTXp

T I(MT ≤ b)
]

= A2xpe−δ̃TP̃x(MT ≤ b) = A2xpe−δ̃T

(
1−

(
b
x

)2p−2β/σ2)
,

(33)

as we assumed that b < b2 and P̃ was defined above.

To find the optimal exercise boundary b1, we now fix an arbitrary X0 = x and
maximize numerically

V(x; b) = λ
∫ ∞

0
e−λTV0(x; b, T)dT (34)

over all b > b2 when K1 > K2 and all b < b2 when K1 < K2. We note that the solution of this numerical
optimization does not depend on x, i.e., for any x, we obtain the same b1.

Remark 1. Formulas (28) and (29) give the value of a capped contingent claim with automatic exercise at the cap
b, liquidation payoff equal to b− K1 if X reaches b before T and terminal payoff at T in the complementary event
given by an American option price with strike K2. These formulas generalize valuation formulas for capped options
with automatic exercise at the cap in Broadie and Detemple (1995) (see Corollary 2); Rubinstein and Reiner (1991).

2. Another way to find V and b is to solve the corresponding free boundary problem (see, e.g.,
Carr (1998) for the case of American put option with exponentially distributed random maturity)

σ2

2
x2Vxx + (r− δ)xVx − rV = λ(V −V2), x < b1, (35)

V(b1−) = b1 − K1, (36)

Vx(b1−) = 1, (37)

V(0+) = 0, (38)

where we assumed that K1 > K2. As the behavior of V2 changes over subregions of the domain,
we solve the ordinal differential equation (ODE) separately when x < b2 (i.e., V2(x) = A2xp) and
b2 < x < b1 (i.e., V2(x) = x− K2)

V(x) = B1xβ1 + B2xp, x < b2, (39)

V(x) = C1xβ1 + C2xβ2 +
λ

λ + δ
x− λK2

r + λ
, b2 < x < b1, (40)

where

B2 =
λA2

σ2

2 p2 + (r− δ− σ2

2 )p− (r + λ),
(41)

β1 = 0.5− (r− δ)/σ2 +
√
(0.5− (r− δ)/σ2)2 + 2(r + λ)/σ2 > 0, (42)

β2 = 0.5− (r− δ)/σ2 −
√
(0.5− (r− δ)/σ2)2 + 2(r + λ)/σ2 < 0, (43)
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and B1, C1, C2 are unknown constants. To find them along with the optimal threshold b1, we make use
of the smooth and continuous pasting conditions at b2 and b1

B1bβ1
2 + B2bp

2 = C1bβ1
2 + C2bβ2

2 + b2 − C, (44)

B1β1bβ1−1
2 + B2 pbp−1

2 = C1β1bβ1−1
2 + C2β2bβ2−1

2 + 1, (45)

C1bβ1
1 + C2bβ2

1 + b1 − C = b1 − K1, (46)

C1β1bβ1−1
2 + C2β2bβ2−1

2 + 1 = 1. (47)

It can be shown that this system has a unique solution and provides b1 and V(x) for x < b1.

Now, we consider the case K1 < K2, which is in fact easier to solve. As b1 < b2, we have that
V2(x) = A2xp for all x < b1. Therefore, the solution to ODE is given by

V(x) = D1xβ1 + D2xp (48)

in the continuation region, where D2 = B2 from above. Then, to obtain D1 and b1, we exploit the
smooth and continuous pasting conditions at b1

D1bβ1
1 + D2bp

1 = b1 − K1, (49)

D1β1bβ1−1
1 + D2 pbp−1

1 = 1. (50)

This system has the unique solution (D1, b1).
The solution to the free boundary problem has a simple structure, but it is less explicit than (34)

to the extent that some of the coefficients, in addition to the boundary, are evaluated numerically.
Nevertheless, numerical implementation is straightforward and fast.

4. Random Jump and K1 > K2: EIP/DJP Representation Formulas

An alternative approach is to use Ito calculus. Let us recall that the value function V is given by

V(x) = sup
b>b1

Ex

[
e−r(τ∧τb)

(
(Xτ∧τb − K1)I(τb < τ) + V2(Xτ)I(τb ≥ τ)

)]
, (51)

where τb is the first hitting time of b and τ is an exponentially distributed random variable. We know
that V solves the following ODE in the continuation region

σ2

2
x2Vxx + (r− δ)xVx − rV = λ(V −V2) (52)

for x < b1. As usual, we have the smooth pasting condition at b1

Vx(b1−) = Vx(b1+) = 1 (53)

and V(x) = x− K1 for x ≥ b1.

In Theorem 1 below, we provide two representations for the value function V. The first one takes
as benchmark the strategy of waiting until the jump time tau before behaving optimally using the
threshold b2. The value of this suboptimal waiting strategy is

Vw(x) = Ex
[
e−rτV2(Xτ)

]
(54)
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for x > 0. By using Ito’s formula and the smooth fit condition at b2, this value function can be
rewritten as

Vw(x) =V2(x) + Ex

[∫ τ

0
e−rs(rK2 − δXs)I(Xs ≥ b2)ds

]
(55)

=V2(x) + rK2

∫ ∞

0
e−(r+λ)TPx(XT ≥ b2)dT − δx

∫ ∞

0
e−(δ+λ)TP̂x(XT ≥ b2)dT,

where, in the second equality, we used the distribution of τ and integration by parts. As this strategy
is suboptimal, there is an early investment premium. Theorem 4.1 provides a decomposition of
this premium.

The second one takes the value V2(x) as the benchmark, i.e., the investment cost is taken to be K2

from time 0. As the true pre-jump cost K1 is greater than K2, the value function V is smaller than V2.
The discrepancy is a delayed jump discount, also described in the next theorem.

Theorem 1. Given the optimal investment threshold b1, the value function V(x) can be represented as

V(x) =Vw(x) + δx
∫ ∞

0
e−(δ+λ)TP̂x(XT ≥ b1)dT − rK1

∫ ∞

0
e−(r+λ)TPx(XT ≥ b1)dT

− λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPx(XT ≥ b1)dT

(56)

for x > 0. The difference V(x)−Vw(x) is an early investment premium (EIP). Alternatively,

V(x) =V2(x)− δx
∫ ∞

0
e−(δ+λ)T(P̂x(XT ≥ b2)− P̂x(XT ≥ b1))dT

+ r
∫ ∞

0
e−(r+λ)T(K2Px(XT ≥ b2)− K1Px(XT ≥ b1))dT

− λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPx(XT ≥ b1)dT,

(57)

where V(x) − V2(x) represents a delayed jump premium/discount (DJP). The boundary b1 solves the
following equation:

K1 − K2 =δb1

∫ ∞

0
e−(δ+λ)T(P̂b1(XT ≥ b2)− P̂b1(XT ≥ b1))dT

− r
∫ ∞

0
e−(r+λ)T(K2Pb1(XT ≥ b2)− K1Pb1(XT ≥ b1))dT

+ λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPb1(XT ≥ b1)dT.

(58)

The EIP is the difference V(x)−Vw(x). Equation (56) shows that this premium is the net present
value of the local net gains associated with early investment. The latter consist of instantaneous
dividends δX collected, reduced by the interest loss on the strike rK1 and by the expected jump in the
strike λ (K1 − K2). These gains are taken into account in the pre-jump exercise region.

The DJP is the difference V(x)−V2(x). Equation (57) shows that it corresponds to the present
value of the local net losses associated with the delay in the cost jump. The latter consist of the
instantaneous dividend loss on the underlying δX, the net interest saved on the cost of investment rK
and the expected jump in the strike λ(K1 − K2). The dividend loss applies when the underlying is in
between the thresholds b2 and b1. The net interest component captures savings on the opportunity cost
K2 when X exceeds b2, net of payments on K1 when X exceeds b1. As shown in Equation (60) in the
proof below, the first two terms can also be repackaged as a net benefit for investing early at K1 (the
term δX− rK1 in (60)) and a net cost for delaying exercise at K2 (the term δX− rK2 in (60)). The DJP is
negative (i.e., it is a discount) in the case K1 > K2.
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Proof. We apply the Ito–Tanaka’s formula (with jumps) for e−rtV(Xt)

e−rtV(Xt) =V(x) +
∫ t

0
e−rs (rK1 − δXs) I(Xs ≥ b1)ds

− λ
∫ t

0
e−rs(V2(Xs)−V(Xs)I(Xs < b1)ds

+ λ
∫ t

0
e−rs(V2(Xs)−V(Xs))ds + Mt

=V(x) +
∫ t

0
e−rs (rK1 − δXs) I(Xs ≥ b1)ds

+ λ(K1 − K2)
∫ t

0
e−rs I(Xs > b1)ds + Mt

(59)

for t ≤ τ, where we used (53) and that V2(x)− V1(x) = K1−K2 for x > b1. We also note that the
local time term disappears due to the smooth fit condition at b1. Now, by inserting t = τ, taking the
expectation on both sides, using that V(Xτ) = V2(Xτ) and rearranging terms, we obtain

V(x) =Ex
[
e−rτV2(Xτ)

]
− Ex

[∫ τ

0
e−rs (rK1 − δXs) I(Xs ≥ b1)ds

]
− λ(K1 − K2)Ex

[∫ τ

0
e−rs I(Xs > b1)ds

]
=V2(x) + Ex

[∫ τ

0
e−rs(rK2 − δXs)I(Xs ≥ b2)ds

]
− Ex

[∫ τ

0
e−rs (rK1 − δXs) I(Xs ≥ b1)ds

]
− λ(K1 − K2)Ex

[∫ τ

0
e−rs I(Xs > b1)ds

]
=V2(x)− δx

∫ ∞

0
e−(δ+λ)T(P̂x(XT ≥ b2)− P̂x(XT ≥ b1))dT

+ r
∫ ∞

0
e−(r+λ)T(K2Px(XT ≥ b2)− K1Px(XT ≥ b1))dT

− λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPx(XT ≥ b1)dT,

(60)

where we used integration by parts and the probability measure P̂ is under the numeraire X. Then, the
first equality proves (56) and the final one establishes (57).

Now, to find b1, we use continuous pasting at x = b1 and solve the equation

b1 − K1 =V2(b1)− δb1

∫ ∞

0
e−(δ+λ)T(P̂b1(XT ≥ b2)− P̂b1(XT ≥ b1))dT

+ r
∫ ∞

0
e−(r+λ)T(K2Pb1(XT ≥ b2)− K1Pb1(XT ≥ b1))dT

− λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPb1(XT ≥ b1)dT.

(61)

As b1 > b2 and V2(x) = x− K2 for x > b2, we can rewrite it as

K1 − K2 =δb1

∫ ∞

0
e−(δ+λ)T(P̂b1(XT ≥ b2)− P̂b1(XT ≥ b1))dT

− r
∫ ∞

0
e−(r+λ)T(K2Pb1(XT ≥ b2)− K1Pb1(XT ≥ b1))dT

+ λ(K1 − K2)
∫ ∞

0
e−(r+λ)TPb1(XT ≥ b1)dT.

(62)
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Remark 2. For completeness, we recall how to compute the probabilities

P̂x(XT ≥ y) = Φ
(

1
σ
√

T

(
log

x
y
+ (r−δ+σ2/2)T

))
, (63)

Px(XT ≥ y) = Φ
(

1
σ
√

T

(
log

x
y
+ (r−δ−σ2/2)T

))
. (64)

It is then straightforward to solve the Equation (58) numerically.

In the model with K1 > K2, the cost of investment decreases at the random time τ.
Potential economic applications include cases where regulations such as investment tax credits, foreign
investment subsidies and preferential tax treatments matter. Countries seeking to boost employment
opportunities and promote growth are often led to consider those policies in order to attract potential
employers. Cities use similar incentive packages to enhance their attractiveness for new investments
(e.g., the competition for Amazon’s second headquarters). In such situations, firms may be led to
decide whether to invest now or wait until a potential new beneficial policy is implemented.

5. Random Jump and K1 < K2: EIP/DJP Representation Formulas

In the case K1 < K2, we can apply the similar arguments as in the previous section, but with
slight adjustments in the calculations. It is clear that the optimal threshold b1 is below b2. Thus,
V2(x) = x − K2 for x > b2 and V2(x) = A2xp for b1 < x < b2. Thus, if we apply the Ito–Tanaka
formula, we obtain

e−rtV(Xt) =V(x) +
∫ t

0
e−rs (rK1 − δXs) I(Xs ≥ b1)ds

+ λ(K1 − K2)
∫ t

0
e−rs I(Xs > b2)ds

+ λ
∫ t

0
e−rs(A2Xp

s − Xs + K1)I(b1 < Xs < b2)ds + Mt.

Then, if we employ the same arguments in the previous section, we derive the following formulas
for V(x) and b1.

Theorem 2. The value function V(x) can be represented as

V(x) =V2(x) + (δ + λ)x
∫ ∞

0
e−(δ+λ)T(P̂x(XT ≥ b1)− P̂x(XT ≥ b2))dT

− (r + λ)
∫ ∞

0
e−(r+λ)T(K1Px(XT ≥ b1)− K2Px(XT ≥ b2))dT

− λA2xp
∫ ∞

0
e−(δ̃+λ)T(P̃x(XT ≥ b1)− P̃x(XT ≥ b2))dT,

(65)

and the optimal investment threshold b1 solves the equation

b1 − K1 =A2bp
1 + (δ + λ)b1

∫ ∞

0
e−(δ+λ)T(P̂b1(XT ≥ b1)− P̂b1(XT ≥ b2))dT

− (r + λ)
∫ ∞

0
e−(r+λ)T(K2Pb1(XT ≥ b1)− K1Pb1(XT ≥ b2))dT

− λA2bp
1

∫ ∞

0
e−(δ̃+λ)T(P̃b1(XT ≥ b1)− P̃b1(XT ≥ b2))dT.

(66)

The model with K1 < K2 covers applications where the cost of investment can increase at a
random time τ. This situation arises, in particular, when a regulator considers the removal of a subsidy
that provides incentives for investments in a specific sector. The renewable power industry, which has
benefitted from such incentives for many years, is a case in point. It now faces the reverse situation
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where regulators in many countries are considering reducing subsidies, hence increasing investment
costs, due to improvements in the competitiveness of the sector. Another example is when a regulator
imposes a penalty on certain types of industrial activities. Policies designed to combat climate change
illustrate this case. Regulations to curb harmful emissions of fossil fuel power plants increase the cost
of investments in the sector and affect the decisions of operators.

The case K1 < K2 also arises in competitive settings where the opportunities of a firm are affected
by the actions of a rival. For instance, a firm may be considering an investment opportunity with
development cost K1 if it is first to move. However, if the rival moves first, the cost jumps to K2 > K1,
reflecting the need to differentiate the product to be developed. The uncertainty associated with the
emergence of a rival places this project in the framework of this section (In competitive settings with
multiple players, both revenues and costs may be affected in the event of a rival’s move. An extension
of our model to a post-jump payoff αX− K2, where α ∈ (0, 1), can be used to model such situations.).

6. Infinitely Many Jumps: Free-Boundary Approach

In this section, we assume that the initial cost K can jump infinitely many times by the same
fraction γ ∈ (−1, ∞). All jump times are i.i.d. and have exponential distribution. To solve the valuation
problem, let us make the following observation. At time zero, the value function is given by V(x) for
X0 = x. Then, at the time τ of the first jump, the payoff becomes

(x− K(1 + γ))+ = (1 + γ)

(
x

1 + γ
− K

)+

, (67)

and thus the value function equals (1 + γ)V (Xτ/(1 + γ)). Therefore, V(x) can be written as

V(x) = sup
b>0

Ex

[
e−r(τ∧τb)

(
(Xτb − K)I(τb < τ) + (1 + γ)V

(
Xτ

1 + γ

)
I(τb ≥ τ)

)]
, (68)

where τb is the first hitting time of b and τ is an exponentially distributed random variable. The goal
is to find the optimal threshold b and the value function V. First, we can deduce that V solves the

following ODE in the continuation region

σ2

2
x2Vxx + (r− δ)xVx − rV = λ(V − (1 + γ)V (x/(1 + γ))) (69)

for x < b. As usual, we have the smooth pasting condition at the optimal b

Vx(b) = 1, (70)

and V(x) = x− K for x ≥ b.

The ordinary differential Equation (69) can be solved using the power function xp so that we
obtain the equation for p

σ2

2
p(p− 1) + (r− δ)p− r = λ(1− (1 + γ)−p+1) (71)

for p ∈ IR. It can be shown that there are two roots, positive and negative. As V(0) = 0, only the
positive root p+ > 0 is relevant. Thus,

V(x) = Axp+ (72)
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for x < b. Using boundary conditions at b, we find that

b = p+K/(p+ − 1), (73)

A = (b− K)/bp+ . (74)

The model with infinitely many downward jumps captures the case of investments in industries
where technological progress steadily drives down costs. The solar panels industry provides a
prominent example of this phenomenon. Indeed, the cost of US solar photovoltaic (PV) systems
has experienced sustained decreases over the years, at all levels, i.e., residential, commercial and
utility-scale. For Utility-Scale PV systems with One-Axis Tracker (100 MW), cost estimates have
decreased from 5.44 $/W in 2010 to 4.59 in 2011, 3.15 in 2012, 2.39 in 2013, 2.15 in 2014, 1.97 in 2015, 1.54
in 2016 and 1.11 in 2017, as measured in 2017 dollars (see Fu et al. 2017). Moreover, cost decreases are
associated with the (random) emergence of new technologies that have improved efficiency (In practice,
the size of cost improvements varies over time depending on the technology deployed. Our model
with fixed jump size can be used to approximate the true cost process and help the decision-making
process of operators contemplating investments in the sector.).

7. Numerical Results

In this section, we implement the formulas described in previous sections. We choose the following
central set of parameters: r = δ = 0.03, σ = 0.3, K1 = 10 and K2 = K1(1± γ) for γ = 0.2, i.e., K2

becomes in one case 8 and in the other 12. We also take λ = 0.2, i.e., the jump on average occurs in
five years. The figures below examine the dependence of the value function V and the investment
threshold b1 on the jump intensity λ and the jump size γ.

Figure 2 shows that, when K1 > K2 (investment cost jumps down), the value V goes up as λ

increases. This is intuitively clear as the cost K decreases sooner. In contrast when K1 < K2, the value
V decreases as λ increases. Figure 3 explores comparative statics w.r.t. γ or, in other words, w.r.t. K2.
Clearly, V is decreasing in γ. Moreover, the incremental effect of γ weakens as γ increases.

Figures 4 and 5 show the value of waiting W(X0) ≡ V(X0)− (X0 − K1)
+ as a function of x for

different values of λ and γ. The general shape with respect to X0 is always the same. The value of
waiting increases (decreases) when X0 is sufficiently low (high). This is because the value function
V(X0) is strictly increasing, convex, equal to zero at X0 = 0 (due to the GBM behavior of X) and equal
to the payoff for X0 > b1, and the payoff function is null for X0 ≤ K1, then equal to X0 − K1. As a
result, the difference W(X0) initially increases, when the investment payoff is null, and then starts
to decrease when the claim is in the money. The value of waiting always reaches a peak at X0 = K.
Figure 4 shows that the value of waiting is a decreasing function of γ. This is because an increase in
γ raises the post-jump cost of the project, which reduces the post-jump payoff. Figure 5 shows that
the value of waiting is an increasing (decreasing) function of λ when γ is negative (positive). This is
intuitive as a negative (positive) value of γ increases (decreases) the post-jump payoff.

In Figure 6 (upper-left), the delayed jump premium V − Vw is illustrated when K1 < K2 and
K1 > K2. Clearly, it is positive when K1 < K2 and negative in the other case. Figure 6 (upper-right)
displays the early investment premium V − V2. It is always non-negative because it reflects the
optimality of early investment: early investment is only optimal if it creates value. The lower parts
of Figure 6 illustrate the shapes of the components of DJP and EIP. The lower left panel displays the
components of DJP when the post-jump cost decreases. The plot shows the positive benefit δX− rK1

collected by optimally investing at K1, the negative cost δX − rK2 incurred by foregoing optimal
investment at K2 and the negative expected jump cost λ(K1 − K2) associated with investment at the
higher K1. The lower right panel shows the components of EIP when the post-jump cost decreases,
namely the positive dividend component, the negative opportunity cost component and the negative
expected cost jump. The sizes (absolute values) of all components in both panels are increasing
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functions of the underlying project value X. This is because both the likelihood of investment and the
magnitudes of gains and losses increase when X increases.

0 0.5 1
λ

7

7.5

8

V

Figure 2. The value function V w.r.t. λ. The parameter set is r = δ = 0.03, σ = 0.3, X0 = 10, K1 = 10,
K2 = K1(1 + γ), γ = ±0.2, λ ∈ (0, 1). We plot the value function for γ = −0.2 (black upper line) and
γ = 0.2 (blue lower line).

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
γ
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10

V

Figure 3. The value function V w.r.t. γ. The parameter set is r = δ = 0.03, σ = 0.3, K1 = 10,
K2 = K1(1 + γ), γ ∈ (−0.6, 0.6), λ = 0.2. We plot the value function for X0 = 6 (red line), X0 = 10
(black line), X0 = 15 (blue line).
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Figure 4. The value of waiting W(x) = V(x)− (x− K1)
+ w.r.t. x for γ = −0.2 (blue line), γ = 0 (black

line) and γ = 0.2 (red line). The parameter set is r = δ = 0.03, σ = 0.3, K1 = 10, K2 = K1(1 + γ),
λ = 0.2.



Risks 2018, 6, 5 16 of 19

10 20 30

1

2

3

4

W

(a)
10 20 30

1

2

3

4

W

(b)

Figure 5. The value of waiting W(x) = V(x) − (x − K1)
+ w.r.t. x for different values of λ.

The parameter set is r = δ = 0.03, σ = 0.3, K1 = 10, K2 = K1(1 + γ), γ = ±0.2. (a) left: λ = 0 (red
line), λ = 0.2 (black line), λ = 0.4 (blue line) when γ = −0.2; (b) right: λ = 0 (red line), λ = 0.2 (black
line), λ = 0.4 (blue line) when γ = 0.2.
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Figure 6. The values of delayed jump premium (DJP) and early investment premium (EIP) and their
components w.r.t. x. The parameter set is r = δ = 0.03, σ = 0.3, K1 = 10, K2 = K1(1 + γ), γ = ±0.2,
λ = 0.2. (a) upper-left: the value of DJP V(x)−V2(x) when γ = 0.2 (blue) and γ = −0.2 (black); (b)
upper-right: the value of EIP V(x)−Vw(x) when γ = 0.2 (blue) and γ = −0.2 (black); (c) lower-left:
components of DJP (black line) when γ = −0.2: the net benefit (blue line) δX − rK1 collected by
optimally investing prior to the jump, the net cost (red line) δX− rK2 incurred by foregoing optimal
investment at K2 and the expected jump cost (green line) λ(K1 − K2) associated with investment at the
higher K1; (d) lower-right: components of EIP (black line) when γ = −0.2— instantaneous dividends
δX collected (blue), interest loss on the strike rK1 (red), loss associated with expected jump in the strike
λ(K1 − K2) (green).
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Figure 7 displays the behavior of the boundary when λ and γ change. A change in the intensity
of the jump process affects the optimal boundary b1 but not b2. This is intuitive because the boundary
b2 only depends on economic conditions following the jump. In contrast, a change in the size of the
jump has an effect on both the pre- and post-jump boundaries. The size of the jump affects the cost of
investment post-jump, hence is a determinant of the optimal investment policy.

(a) (b)

(c)
0 1 2

t

25

35

45

x

(d)

Figure 7. We plot the optimal investment boundary b(t) = b1 I(t < τ) + b2 I(t ≥ τ) w.r.t. λ and γ. The
parameter set is r = δ = 0.03, σ = 0.3, K1 = 10, K2 = K1(1 + γ). For λ > 0, we assume jump occurs at
τ = 1. (a) upper-left: for λ = 0 (dashed line), λ = 0.2 (black line), λ = 0.4 (red line) when γ = −0.2;
(b) upper-right: for λ = 0 (dashed line), λ = 0.2 (black line), λ = 0.4 (red line) when γ = 0.2; (c)
lower-left: for γ = 0 (dashed line), γ = 0.2 (black line), γ = 0.4 (red line) when λ = 0.2; (d) lower-right:
for γ = 0 (dashed line), γ = 0.2 (black line), γ = 0.4 (red line) when λ = 0.2.

Lastly, Figure 8 displays the case of infinitely many jumps. It focuses on the case of cost reductions
by a constant fraction gamma at each jump time. The plot shows that the incremental effect, beyond
the first reduction, is small. This follows because cost reductions beyond the first one occur at later
dates, hence carry heavier discounts and have decreasing magnitudes.
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Figure 8. The value of V(x) in the case of infinitely many jumps (black) and of single jump (blue
line) w.r.t. x. The parameter set is r = δ = 0.03, σ = 0.3, K1 = 10, K2 = K1(1− γ), λ = 0.2, γ = 0.2.
The dashed line represents the immediate payoff (x− K1)

+.

8. Conclusions

This paper has examined the valuation of real option when the cost of investment jumps at a
random time. Explicit valuation formulas, which identify and decompose the sources of value, were
derived. Numerical results were provided to illustrate the behaviors of the value function, the EIP/DJP
components and the optimal investment boundaries.

The methodologies developed in this paper can be used to study more general claims arising in
real options applications when cost uncertainty takes the form of jumps. Projects with shutdown and
restart options, abandonment options and expansion options are natural candidates for generalizations.
More complex multi-stage claims, such as those involving exclusive opportunities, are also of interest
in this context.
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