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Abstract: The precise large deviations asymptotics for the sums of independent identical random
variables when the distribution of the summand belongs to the class S∗ of heavy tailed distributions
is studied. Under mild conditions, we extend the previous results from the paper Denisov et al. (2010)
to asymptotics that are valid uniformly over some time interval. Finally, we apply the main result on
the multi-risk model introduced by Wang and Wang (2007).
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1. Introduction

In this paper, the precise large deviations for a random walk whose steps represent random
variables with distribution F from a subclass S∗ of the subexponential class S is studied. What that
means is F has heavy tail and is regular enough in order to exist the limit

lim
x→∞

1
F(x)

∫ x

0
F(x− y) F(y) dy .

Hence, the most popular distributions with heavy tails belong to the class S∗, among others Pareto,
Burr, Cauchy, Lognormal and Weibull. The inclusion of the class S∗ in the class of subexponential
distribution is proved proper, namely have been found subexponential distributions that do not belong
to S∗ (see Denisov et al. (2004)).

The topic of large deviations of non-random sums has already been well studied. Overviews
are given in Nagaev (1973), Cline and Hsing (1991), Nagaev (1979). More insight in the field for
non-random sums can be found in Heyde (1967a), Heyde (1967b), Heyde (1968), Nagaev (1969a),
Nagaev (1969b), Wang et al. (2006). A general treatment of large deviations for subexponential
distributions was presented in Pinelis (1985). Other contributions on precise large deviations are
Konstantinides and Loukissas (2010), Loukissas (2012), Wang and Wang (2012). Papers Klüppelberg
and Mikosch (1997), Tang et al. (2001) are studying large deviations of random sums. A review on large
deviations for random sums is given in Mikosch and Nagaev (1998) and Mikosch and Nagaev (2001).

In case of independent r.v.’s, the large deviation has been established in Paulauskas and Skučaitė (2003)
and Skučaitė (2004). Due to its importance in applications (see for example Issaka and SenGupta (2017),
Habtemicael and SenGupta (2014)) this issue became very popular recently. Recent contributions in
the topic are found in Baltrunas et al. (2004), Borovkov and Mogulskii (2006), Hult et al. (2005),
Jelenkovic and Momcilovic (2004), Konstantinides and Mikosc (2005), Ng et al. (2004), Tang (2006),
Chen et al. (2011), Yang et al. (2012), Gao et al. (2018), Zhang and Cheng (2017), Yang and Sha (2016).

Let us denote by Sn the sum of n independent identically distributed random variables X1 + · · ·+
Xn, with common distribution F. In the principle of one big jump, we get the intuition that indicates in
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the case of heavy tails, the most probable way that the event {Sn > x} happens. Namely, only one
of the random variables X1, . . . , Xn becomes large while the others remain small. Asymptotically,
as x → ∞, we get P [Sn > x] ∼ n F(x), where by F is denoted the tail of the distribution F.

The multi-risk model was firstly introduced in Wang and Wang (2007) and has arisen from the
following construction: Let {Xi,j, j ≥ 1}, i = 1, 2, . . . , k be i.i.d. non-negative random variables with
common distribution function Fi(x) and finite mean. Taking into account the notations

Sni =
ni

∑
j=1

Xi,j, i = 1, 2, . . . , k ,

and

S(n1, n2, . . . , nk) =
k

∑
i=1

Sni =
k

∑
i=1

ni

∑
j=1

Xij ,

found in Wang and Wang (2007), we formulate the following result:
Let {Xi,j, j ≥ 1} be i.i.d. non-negative random variables with common distribution function Fi(x)

and finite mean µi for any i = 1, . . . , k and let ni, for any i = 1, . . . , k be a sequence of integers. Let us
assume that {Xi,j, j ≥ 1}, i = 1, . . . , k are mutually independent. If the distributions Fi are consistently
varying (Fi ∈ C, for the definition see below) for any i = 1, . . . , k then for any γ > 0

P

[
S(n1, n2, . . . , nk)−

k

∑
i=1

ni µi > x

]
∼

k

∑
i=1

ni Fi(x) ,

holds, as ni → ∞, for any i = 1, . . . , k, uniformly for all x ≥ max{γn1, γn2, . . . , γnk}.

2. Preliminary Concepts

In this paper some sequence {Xn, n ≥ 1} of i.i.d. r.v.’s is considered, which represent claims
in a risk model with common distribution function F and finite mean µ. Let us suppose that this
sequence is independent from the integer counting process {N(t), t ≥ 0}, representing the claim
arrival process and denote by λ(t) = EN(t) < ∞ its mean value for any 0 ≤ t < ∞. We assume that
λ(t)→ ∞, as t→ ∞. All limit relationships, unless otherwise stated, are for n→ ∞ or t→ ∞.

Let us call a distribution function F as heavy-tailed distribution, if it has no exponential moments,
that means E

[
eεX] = ∞, ∀ ε > 0. Next, we recall some useful facts from the following subclasses of

heavy tailed distributions:
A distribution function F with support on [0, ∞) belongs to C if the following asymptotic relation holds

C =
{

F : lim
y↘1

lim inf
x→∞

F(xy)
F(x)

= 1
}

or equivalently

C =
{

F : lim
y↗1

lim sup
x→∞

F(xy)
F(x)

= 1
}

.

For such a distribution function F, it is said to have a consistently varying tail.
A distribution function F with support on [0, ∞) belongs to S , if the following asymptotic formulas

are valid

S =

{
F : lim

x→∞

Fn∗(x)
F(x)

= n , ∀ n ≥ 2
}

.

For such a distribution function F, it is said to have a subexponential tail.
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Let us denote by S∗ the subclass of the subexponential distributions, which contains distributions
with finite mean µ and the next limit exists

S∗ =
{

F : lim
x→∞

∫ x

0

F(x− y)
F(x)

F(y) = 2µ

}
.

This class was firstly introduced by Klüppelberg (1988).
A distribution function F with support on [0, ∞) belongs to L if the following asymptotic holds

L =

{
F : lim

x→∞

F(x− y)
F(x)

= 1 , ∀ y > 0
}

.

In this case the distribution function F is said to have long tail. For any long tail distribution there
exist an non-decreasing function h(x) such that h(x) → ∞ as x → ∞ and the following asymptotic
relation holds

F [x± h(x)] ∼ F(x) . (1)

as x → ∞ (see for example (Konstantinides 2017, Lemma 8.1)). It is well known the inclusions

C ⊆ S∗ ⊆ S ⊆ L.

Remark 1. In (Foss et al. 2011, Lemma 2.19) was established the following assertion: For any long tailed
distribution F we can find an increasing function l(x) < h(x) such that l(x)→ ∞, as x → ∞, for which the
following holds

F [x± l(x)] ∼ F(x) , (2)

as x → ∞. Let us denote by l← the inverse function of l, which represents an increasing function and the limit
relation l←(x)→ ∞, as x→ ∞, holds.

In case of distribution function with regularly varying tail, when limx→∞ F(t x)/F(x) = t−α,
for some α > 0, a possible choice of the function l is l(x) = o(x). From (Denisov et al. 2008, Section 8)
we obtain that for distribution with zero mean and finite variance, is possible the choice l(x) =

√
x.

Further information related with heavy-tailed distributions can be found in Embrecht et al. (1997),
Borovkov and Borovkov (2008), Foss et al. (2011), Konstantinides (2017).

Let us remind the following notations: for two positive functions a(·) and b(·) we write

a(x) . b(x) i f lim sup
x→∞

a(x)
b(x)

≤ 1 ,

a(x) & b(x) i f lim inf
x→∞

a(x)
b(x)

≥ 1 ,

a(x) ∼ b(x) i f lim
x→∞

a(x)
b(x)

= 1.

In the large deviations set-up, the asymptotic relation has the form:

P [Sn > x] ∼ n F(x) ,

and in the precise large deviations the corresponding asymptotic relation is the following:

P [Sn − nµ > x] ∼ n F(x) .
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Both relations, hold uniformly for any x ≥ αn where αn represents some non-negative sequence that
tends to infinity.

3. Main result

The crucial step in our approach, comes from the following result by (Deniso et al. 2010, Theorem 5).
For the sake of convenience we refer its short proof.

Theorem 1. Let {Xk, k ≥ 1} be a non-negative independent and identically distributed sequence of random
variables following the common distribution function F ∈ S∗ with finite mean µ > 0. Then the following
asymptotic relation holds

P [Sn > x] ∼ n F(x) , (3)

as n→ ∞, uniformly for any x ≥ l←(n).

Proof. The uniformity in (3) is understood in the following sense

lim
x→∞

sup
n≤l(x)

∣∣∣∣P [Sn > x]
n F(x)

− 1
∣∣∣∣ = 0 .

that means ∀ε > 0 and ∀n ≤ l(x) there exists some x(ε) < ∞ such that, if x > x(ε) the inequality∣∣∣∣P [Sn > x])
n F(x)

− 1
∣∣∣∣ < ε ,

holds, or equivalently ∀ε > 0 and ∀x ≥ l←(n) there exists some x′(ε) = bx(ε)c, where bαc denotes
the integer part of α, such that for any n = bxc > x′(ε), the inequality∣∣∣∣P [Sn > x]

n F(x)
− 1
∣∣∣∣ < ε

holds and so by the arbitrariness of the choice of ε > 0 we find

lim
n→∞

sup
x≥l←(n)

∣∣∣∣P [Sn > x]
n F(x)

− 1
∣∣∣∣ = 0 .

Now, we can examine the asymptotic relation of precise large deviations for a distribution F ∈ S∗.

Theorem 2. Let {Xk, k ≥ 1} be a non-negative, independent and identically distributed sequence of random
variables with common distribution function F ∈ S∗ with finite mean µ > 1. Then holds

P [Sn − n µ > x] ∼ n F(x) , (4)

uniformly for x ≥ l←(n µ).

Proof. From relation (3) we get

P [Sn − n µ > x] < P [Sn > x] ∼ n F(x) .

On the other hand for x ≥ l←(n µ) and from relations (3) and (1) we obtain

P [Sn − n µ > x) ∼ n F(x + n µ] > n F[x + l(x)] ∼ n F(x) .
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The precise large deviations refers to a random walk of the type

SN(t) =
N(t)

∑
k=1

Xk, t > 0 (5)

where the asymptotic relation of precise large deviations is formulated as

P[SN(t) − µ λ(t) > x] ∼ λ(t) F(x) , (6)

as t→ ∞, uniformly for x ≥ f (t), with f (t) representing a non-negative function, that tends to infinity.
Therefore, Let us consider the asymptotic relation (6) for random sums, when F ∈ S∗ under the

following conditions on N(t):

Assumption N1:
N(t)
λ(t)

P→ 1.

Assumption N2: For any ε > 0 and for any δ > 0 the following asymptotic relation holds

∑
k>(1+δ)λ(t)

(1 + ε)k P[N(t) = k] = o(1) .

Remark 2. From Klüppelberg (1988) we see that Assumption N1 permits the following equivalent formulation.
There exists some positive function ε(t), with ε(t)→ 0, such that

P [|N(t)− λ(t)| ≤ ε(t) λ(t)] = o(1) .

Theorem 3. Let {Xk, k ≥ 1} be a non-negative, independent and identically distributed sequence of random
variables with common distribution function F ∈ S∗ with finite mean µ > 1. Let {N(t), t ≥ 0} be
a non-negative and integer valued counting process. We assume that {Xk, k ≥ 1} and {N(t), t ≥ 0} are
mutually independent. If N(t) satisfies both assumptions N1 and N2 then the following asymptotic relation holds

P[SN(t) − µλ(t) > x] ∼ λ(t) F(x) , (7)

as t→ ∞, uniformly for any x ≥ l←[µλ(t)].

Proof. Let us use the decomposition, proposed in the proof of (Klüppelberg and Mikosch 1997,
Theorem 3.1). We can state

P[SN(t) − µλ(t) > x] =
∞

∑
k=1

P[Sk > x + µλ(t)] P[N(t) = k] .

Further, let us split the sum in three parts

= ∑
k<(1−δ)λ(t)

+ ∑
(1−δ)λ(t)≤k≤(1+δ)λ(t)

+ ∑
k>(1+δ)λ(t)

:= I1 + I2 + I3. (8)

Now, we can see that

I1 = ∑
k<(1−δ)λ(t)

P[Sk > x + µλ(t)] P[N(t) = k]

≤ P
[
S(1−δ)λ(t) > x + µλ(t)

]
∑

k<(1−δ)λ(t)
P[N(t) = k] .



Risks 2018, 6, 27 6 of 13

Let us observe that l[x + µ λ(t)] ≥ l(x) ≥ µ λ(t) ≥ (1 − δ) λ(t), hence using relation (3) and (2)
we obtain

I1 . (1− δ) λ(t) F[x + µλ(t)] P[N(t) < (1− δ)λ(t]

. (1− δ) λ(t) F(x) P [N(t)− λ(t) < −δλ(t)] ,

so by Assumption N1 and taking into account the Remark 2 it follows

I1 = o[λ(t)F(x)] , (9)

as x ≥ l←(µλ(t)).
Next, we deal with term I2. Let us write

I2 = ∑
(1−δ)λ(t)≤k≤(1+δ)λ(t)

P[Sk > x + µλ(t)] P[N(t) = k]

≥ P[S(1−δ)λ(t) > x + µλ(t)] P
[

1− δ ≤ N(t)
λ(t)

≤ 1 + δ

]
,

and by Assumption N1 follows

I2 & P
[
S(1−δ)λ(t) > x + µλ(t)

]
,

since holds the inequality x ≥ l←(µλ(t)). Further by relation (3) we find

I2 & (1− δ) λ(t) F[x + µλ(t)] > (1− δ) λ(t) F[x + l(x)] .

Thus, relation (1) implies

I2 & (1− δ) λ(t) F(x) .

Similarly we find the upper bound

I2 = ∑
(1+δ)λ(t)≤k≤(1+δ)λ(t)

P[Sk > x] P[N(t) = k]

≤ P
[
S(1+δ)λ(t) > x + µλ(t)

]
P
[

1− δ ≤ N(t)
λ(t)

≤ 1 + δ

]
,

and Assumption N1 implies

I2 . P
[
S(1+δ)λ(t) > x + µλ(t)

]
,

as t→ ∞. From relations (3) and (2) and for small enough δ > 0 we obtain the inequality l[x+µ λ(t)] ≥
(1 + δ) λ(t) and hence we find

I2 . (1 + δ) λ(t) F(x) .

Letting δ→ 0 we get

I2 ∼ λ(t) F(x) , (10)

as t→ ∞, for any x ≥ l←[µ λ(t)].
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At last, on

I3 = ∑
k>(1+δ)λ(t)

P[Sk > x + µλ(t)] P[N(t) = k] ,

we apply Kesten’s inequality (see for example (Konstantinides 2017, Theorem 6.2)) for F ∈ S . For any
ε > 0 there exists some constant K = K(ε) such that

P[Sn > x] ≤ K (1 + ε)n F(x) ,

hence, we obtain

I3 ≤ ∑
k>(1+δ)λ(t)

K (1 + ε)n F(x) P[N(t) = k] ,

and by Assumption N2 we get

I3 ∼ o
[
λ(t)F(x)

]
(11)

as t→ ∞, uniformly for any x ≥ l←(µλ(t)).
Putting relations (9)–(11) in (8) we find the final result.

Remark 3. Lemma 2.1 from Klüppelberg and Mikosch (1997) implies that the Poisson counting process satisfies
both Assumptions N1 and N2. Also, the renewal counting process satisfies both Assumptions N1 and N2 under
certain condition.

4. The Multi-Risk Model

Recent works on the multi-risk model are found in Wang and Wang (2013), Liu (2010) and
Wang et al. (2014). We examine these results for the case Xi ∈ S∗.

Theorem 4. Let {Xi,j, j ≥ 1} be i.i.d., non-negative random variables with common distribution function
Fi(x) and finite mean µi, for i = 1, 2, . . . , k. Let ni, i = 1, 2, . . . , k be a positive integer sequence and
assume {Xi,j, j ≥ 1}, i = 1, 2, . . . , k are independent of {ni}. If Fi ∈ S∗ for any i = 1, 2, . . . , k then the
asymptotic relation

P

[
S(n1, n2, ..., nk)−

k

∑
i=1

niµi

]
∼

k

∑
i=1

niFi(x) (12)

holds, as ni → ∞, for i = 1, 2, . . . , k, uniformly for all x satisfying the inequality x ≥
max{l←1 (n1µ1), l←2 (n2µ2), ..., lk

←(nkµk)}.

Proof. Let us employ mathematical induction: In case k = 2 we can see:

P [S(n1, n2)− n1µ1 − n2µ2 > x] = P [Sn1 + Sn2 − n1µ1 − n2µ2 > x]

≥ P[{Sn1 − n1µ1 > x + l1(x), Sn2 − n2µ2 > −l1(x)}

∪{Sn2 − n2µ2 > x + l2(x), Sn1 − n1µ1 > −l2(x)}]

≥ P[Sn1 − n1µ1 > x + l1(x)] P[Sn2 − n2µ2 > −l1(x)]

+P[Sn2 − n2µ2 > x + l2(x)] P[Sn1 − n1µ1 > −l2(x)]

−P[Sn1 − n1µ1 > x + l1(x)] P[Sn2 − n2µ2 > x + l2(x)] ,
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and relations (4) and (1) imply the asymptotic relations

P[Sn1 − n1µ1 > x + l1(x)] ∼ n1 F1(x) ,

and

P [Sn2 − n2µ2 > x + l2(x)] ∼ n2 F2(x) .

Further, through the strong law of large numbers we find

P[Sn1 − n1 µ1 > −l2(x)] = 1 ,

and

P[Sn2 − n2µ2 > −l1(x)] = 1 ,

so we obtain the asymptotic inequalities

P[S(n1, n2) > x] & n1 F1(x) + n2 F2(x)− n1 F1(x) n2 F2(x)

& n1 F1(x) + n2 F2(x)− o[n1 F1(x) + n2 F2(x)] , (13)

as n→ ∞, uniformly for all x ≥ max{l←1 (n1µ1), l←2 (n2µ2)}.
On the other hand for any fixed 0 < ε < 1/2 we find

P [S(n1, n2)− n1µ1 − n2µ2 > x] ≤ P [Sn1 + Sn2 > x]

≤ P [{Sn1 > a1} ∪ {Sn2 > a2} ∪ {Sn1 > εx− l1(εx), Sn2 > εx− l2(εx)}]

≤ P[Sn1 > a1] + P[Sn2 > a2] + P[Sn1 > εx− l1(εx)] P[Sn2 > εx− l2(εx)] ,

with a1 := x− l1(x), a2 := x− l2(x), and from relations (3) and Fi ∈ S∗ ⊆ L, i = 1, 2 we see that the
distribution of the sum S(n1, n2) belongs to L. Therefore we have

P[S(n1, n2) > x] ∼ P[S(n1, n2) > x + n1µ1 + n2µ2] . n1 P[X1 > x− l1(x)]

+n2 P[X2 > x− l2(x)] + n1 P[X1 > εx− l1(εx)] n2 P[X2 > εx− l2(εx)]

. n1 F1[x− l1(x)] + n2 F2[x− l2(x)] + n1 F1[εx− l1(εx)] n2 F2[εx− l2(εx)]

. n1 F1(x) + n2 F2(x) + n1 F1(εx) n2 F2(εx) .

But now, we can note that the following equality

n1 F1(εx) n2 F2(εx)
n1 F1(x) + n2 F2(x)

=
1

1
n1F1(εx)

· F2(x)
F2(εx)

+ 1
n2F2(x)

· F1(x)
F1(εx)

holds, since

Fi(x)
Fi(εx)

≤
(

Fi[x + li(x)]
Fi(x)

)−1

∼ 1 ,
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and niFi(εx)→ 0 as ni → ∞ i = 1, 2, for all x ≥ max{l←1 (n1µ1), l←2 (n2µ2)}. Hence, we conclude

P[S(n1, n2)− n1µ1 − n2µ2 > x]

. n1 F1(x) + n2 F2(x) + o[n1 F1(x) + n2 F2(x)] , (14)

uniformly for all x ≥ max{l←1 (n1µ1), l←2 (n2µ2)}. Relations (13) and (14) show that (12) holds for
k = 2.

Next, wet suppose that (12) holds for some k− 1 and we show that then it is valid for k too.

P

[
S(n1, n2, ..., nk)−

k

∑
i=1

niµi > x

]

≥ P

[
Sn1 + Sn2 + ... + Snk−1 −

k−1

∑
i=1

niµi > x + min
1≤i≤k−1

{li(x)}
]

P
[

Snk − nkµk > − min
1≤i≤k−1

{li(x)}
]

+P

[
Sn1 + Sn2 + ... + Snk−1 −

k−1

∑
i=1

niµi > x− lk(x)

]
P
[
Snk − nkµk > x + lk(x)

]

−P

[
Sn1 + Sn2 + ... + Snk−1 −

k−1

∑
i=1

niµi > x + min
1≤i≤k−1

{li(x)}
]

× P
[
Snk − nkµk > x + lk(k)

]
.

From the induction assumption and relations (4) and (1) follow the asymptotic relations

P

[
Sn1 + Sn2 + ... + Snk−1 −

k−1

∑
i=1

niµi > x + min
1≤i≤k−1

{li(x)}
]
∼

k−1

∑
i=1

ni Fi

[
x + min

1≤i≤k−1
{li(x)}

]
&

k−1

∑
i=1

ni Fi[x + li(x)] ∼
k−1

∑
i=1

niFi(x) ,

and

P
[
Snk − nkµk > x + lk(x)

]
∼ nkFk(x) .

Hence, the following asymptotic inequality

P

[
S(n1, n2, ..., nk)−

k

∑
i=1

niµi > x

]
&

k

∑
i=1

niFi(x)− o

(
k

∑
i=1

niFi(x)

)
, (15)

holds, uniformly for any x ≥ max{l←1 (n1µ1), l←2 (n2µ2), ..., lk
←(nkµk)}.
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On the other hand for any 0 < ε < 1
2 we obtain

P

[
S(n1, n2, ..., nk)−

k

∑
i=1

niµi > x

]
≤ P

[
Sn1 + Sn2 + ... + Snk > x

]
≤ P

[
Sn1 + Sn2 + ... + Snk−1 > x− max

1≤i≤k−1
{li(x)}

]
+ P

[
Snk > x− lk(x)

]
+P

[
Sn1 + Sn2 + ... + Snk−1 > εx− max

1≤i≤k−1
{li(εx)}

]
P
[
Snk > εx− lk(εx)

]
.

Now, by the induction assumption and through relations (3) and (1) we get

P
(

Sn1 + Sn2 + ... + Snk−1 > x− max
1≤i≤k−1

{li(x)}
)

∼
k−1

∑
i=1

niFi

(
x− max

1≤i≤k−1
{li(x)}

)
&

k−1

∑
i=1

ni Fi[x− li(x)] ∼
k−1

∑
i=1

ni Fi(x) .

Thus we find the inverse asymptotic relation

P[S(n1, n2, ..., nk) > x] .
k

∑
i=1

niFi(x) + o

(
k

∑
i=1

niFi(x)

)
, (16)

as ni → ∞, for i = 1, 2, . . . , k uniformly for x ≥ max{l←1 (n1µ1), l←2 (n2µ2), ..., lk
←(nkµk)} .

Further, we show the corresponding asymptotic relation for the case of random sums. Let us
recall the notation

SNi(t) =
Ni(t)

∑
j=1

Xij, i = 1, 2, 3, ..., k ,

and

S(k, t) =
k

∑
i=1

SNi(t).

Corollary 1. Let {Xi,j, j ≥ 1}, i = 1, 2, . . . , k be i.i.d. non-negative random variables with common
distribution function Fi(x) and finite mean µi. Let Ni(t) be a sequence of stochastic processes and assume
that {Xi,j, j ≥ 1} and Ni(t) i = 1, 2, . . . , k are mutually independent. If Fi ∈ S∗ and Ni(t) satisfy the
assumptions N1 and N2 for all i = 1, 2, . . . , k then holds

P

[
S(k, t)−

k

∑
i=1

µiλi(t)

]
∼

k

∑
i=1

λi(t)Fi(x) (17)

as t→ ∞, uniformly for any x ≥ max{l←1 [µ1λ1(t)], l←2 [µ2λ2(t)], . . . , lk
←[µkλk(t)]}.

Proof. We establish relation (17) by using Theorem 3 and employing mathematical induction as was
done in the Theorem 4. In case k = 2 we see that
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P
[
SN1(t) + SN2(t) − µ1λ1(t)− µ2λ2(t) > x

]
≥ P

[
{SN1(t) − µ1λ1(t) > x + l1(x), SN2(t) − µ2λ2(t) > −l1(x)} ∪

{SN2(t) − µ2λ2(t) > x + l2(x), SN1(t) − µ1λ1(t) > −l2(x)}
]

≥ P
[
SN1(t) − µ1λ1(t) > x + l1(x)

]
P
[
SN2(t) − µ2λ2(t) > −l1(x)

]
+P

[
SN2(t) − µ2λ2(t) > x + l2(x)

]
P
[
SN1(t) − µ1λ1(t) > −l2(x)

]
−P

[
SN1(t) > x + l1(x)

]
P
[
SN2(t) > x + l2(x)

]
.

From relations (7) and (1) follows the asymptotics

P
[
SN1(t) − µ1λ1(t) > x + l1(x)

]
∼ λ1(t)F1(x) ,

and

P
[
SN2(t) − µ2λ2(t) > x + l1(x)

]
∼ λ2(t)F2(x) .

Hence, by the strong law of large numbers for random sums we find that

P
[
SN1(t) − µ1λ1(t) > −l2(x)

]
= 1 ,

and

P
[
SN2(t) − µ2λ2(t) > −l1(x)

]
= 1.

So we obtain

P
[
SN1(t) + SN2(t) − µ1λ1(t)− µ2λ2(t) > x

]
&

λ1(t)F1(x) + λ2(t)F2(x)− o[λ1(t)F1(x) + λ2(t)F2(x)] (18)

as t → ∞, uniformly for any x ≥ max{l←1 [µ1λ1(t)], l←2 [µ2λ2(t)]}. On the other hand, for any
0 < ε < 1/2 the following inequality holds

P[SN1(t) + SN2(t) − µ1λ1 − µ2λ2 > x]

≤ {P[SN1(t) > x− l1(x)] + P[SN2(t) > x− l2(x)]

+P[SN1(t) > εx + l1(εx)] P[SN2(t) > εx− l2(εx)] .

By relations (7) and (1) we find

P(SN1(t) + SN2(t) > x) .

λ1(t)F1(x) + λ2(t)F2(x) + o[λ1(t)F1(x) + λ2(t)F2(x)] (19)

as t → ∞, uniformly for any x ≥ max{l←1 [µ1λ1(t)], l←2 [µ2λ2(t)]}. From (18) and (19) we get the
required result (17) for the case k = 2. Next, we continue the induction following the same lines from
the proof of Theorem 4.
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Jelenković, Predrag R., and Petar Momčilović. 2004. Large deviations of a square root insensitive random walks.
Mathematics of Operations Research 29: 398–406.

Klüppelberg, Claudia. 1988. Subexponential distributions and integrated tails. Journal of Applied Probability 25:
132–41.

Klüppelberg, Claudia, and Thomas Mikosch. 1997. Large deviation probabilities of heavy-tailed random sums
with applications in insurance and finance. Journal of Applied Probability 34: 293–308.

Konstantinides, Dimitrios G. 2017. Risk Theory: A Heavy Tail Approach. New Jersey: World Scientific.
Konstantinides, Dimitrios G., and Fotis Loukissas. 2010. Precise large deviations for consistently varying-tailed

distributions in the compound renewal risk model. Lithuanian Mathematical Journal 50: 391–400.
Konstantinides, Dimitrios G., and Thomas Mikosch. 2005. Large deviations and ruin probabilities for solutions of

stochastic recurrence equations with heavy-tailed innovations. Annals of Probability 33: 1992–2035.



Risks 2018, 6, 27 13 of 13

Loukissas, Fotis. 2012. Precise large deviations for long-tailed distributions. Journal of Theoretical Probability 25:
913–24.

Lu, Dawei. 2012. Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model.
Statistics & Probability Letters 82: 1242–50.

Mikosch, Thomas, and Aleksandr V. Nagaev. 1998. Large deviation of heavy-tailed sums with applications in
insurance. Extremes 1: 81–110.

Mikosch, Thomas, and Aleksandr V. Nagaev. 2001. Rates in Approximations to Ruin Probabilities for Heavy-Tailed
Distributions. Extremes 4: 67–78.

Nagaev, Aleksandr V. 1969a. Integral limit theorems for large deviations when Cramer’s condition is not fulfilled
I. Theory of Probability & Its Applications 14: 51–64.

Nagaev, Aleksandr V. 1969b. Integral limit theorems for large deviations when Cramer’s condition is not fulfilled
II. Theory of Probability & Its Applications 14: 193–208.

Nagaev, Sergey V. 1973. Large deviations for sums of independent random variables. In Transactions of the Sixth
Prague Conference on Information Theory, Random Processes and Statistical Decision Functions. Academia Prague:
Chechoslovakia, pp. 657–74.

Nagaev, Sergey V. 1979. Large deviation of sums of independent random variables. Annals of Probability 7: 745–89.
Ng, Kai W., Qihe Tang, Jia-An Yan, and Hailing Yang. 2004. Precise large deviations for sums of random variables

with consistently varying tails. Journal of Applied Probability 41: 93–107.
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