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Abstract: The aim of this project is to develop a stochastic simulation machine that generates
individual claims histories of non-life insurance claims. This simulation machine is based on neural
networks to incorporate individual claims feature information. We provide a fully calibrated stochastic
scenario generator that is based on real non-life insurance data. This stochastic simulation machine
allows everyone to simulate their own synthetic insurance portfolio of individual claims histories
and back-test thier preferred claims reserving method.
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1. Introduction

The aim of this project is to develop a stochastic simulation machine that generates individual
claims histories of non-life insurance claims. These individual claims histories should depend on
individual claims feature information such as the line of business concerned, the claims code involved
or the age of the injured. This feature information should influence the reporting delay of the
individual claim, the claim amount paid, its individual cash flow pattern as well as its settlement delay.
The resulting (simulated) individual claims histories should be as ‘realistic’ as possible so that they
may reflect a real insurance claims portfolio. These simulated claims then allow us to back-test
classical aggregate claims reserving methods—such as the chain-ladder method—as well as to
develop new claims reserving methods which are based on individual claims histories. The latter has
become increasingly popular in actuarial science, see Antonio and Plat (2014), Hiabu et al. (2016),
Jessen et al. (2011), Martínez-Miranda et al. (2015), Pigeon et al. (2013), Taylor et al. (2008), Verrall and
Wüthrich (2016) and Wüthrich (2018a) for recent developments. A main shortcoming in this field of
research is that there is no publicly available individual claims history data. Therefore, there is no
possibility to back-test the proposed individual claims reserving methods. For this reason, we believe
that this project is very beneficial to the actuarial community because it provides a common ground
and publicly available (synthetic) data for research in the field of individual claims reserving.

This paper is divided into four sections. In this first section we describe the general idea of the
simulation machine as well as the chosen data used for model calibration. In Section 2 we describe the
design of our individual claims history simulation machine using neural networks. Section 3 focuses
on the calibration of these neural networks. In Section 4 we carry out a use test by comparing the
real data to the synthetically generated data in a chain-ladder claims reserving analysis. Appendix A
presents descriptive statistics of the real data. Since the real insurance portfolio is confidential, we also
design an algorithm to generate synthetic insurance portfolios of a similar structure as the real one,
see Appendix B. Finally, in Appendix C we provide sensitivity plots of selected neural networks.
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1.1. Description of the Simulation Machine

The simulation machine is programmed in the language R. The corresponding .zip-folder can be
downloaded from the website:

https://people.math.ethz.ch/~wmario/simulation.html

This .zip-folder contains all parameters, a file readme.pdf which describes the use of our
R-functions, as well as the two R-files Functions.V1 and Simulation.Machine.V1. The first
R-file Functions.V1 contains the two R-functions Feature.Generation and Simulation.Machine.
The former is used to generate synthetic insurance portfolios (this is described in more detail in
Appendix B) and the latter to simulate the corresponding individual claims histories (this is described
in the main body of this manuscript). The R-file Simulation.Machine.V1 demonstrates the use of
these two R-functions, also providing a short chain-ladder claims reserving analysis.

1.2. Procedure of Developing the Simulation Machine

In recent years, neural networks have become increasingly popular in all fields of machine
learning. They have proved to be very powerful tools in classification and regression problems.
Their drawbacks are that they are rather difficult to calibrate and, once calibrated, they act almost like
black boxes between inputs and outputs. Of course, this is a major disadvantage in interpretation and
getting deeper insight. However, the missing interpretation is not necessarily a disadvantage in our
project because it implies—in back-testing other methods—that the true data generating mechanism
cannot easily be guessed.

To construct our individual claims history simulation machine, we design a neural network
architecture. This architecture is calibrated to real insurance data consisting of n = 9,977,298 individual
claims that have occurred between 1994 and 2005. For each of these individual claims, we have full
information of 12 years of claims development as well as the relevant feature information. Together
with a portfolio generating algorithm (see Appendix B), one can then use the calibrated simulation
machine to simulate as many individual claims development histories as desired.

1.3. The Chosen Data

The chosen data has been preprocessed correcting for wrong entries—for instance, an accident
date that is bigger than the reporting date, etc. Moreover, we have dropped claims with missing feature
components—for instance, if the age of the injured was missing. However, this was a negligible number
of claims that we had to drop, and this does not distort the general calibration. The final (cleaned) data
set consists of n = 9,977,298 individual claims histories. The following feature information is available
for each individual claim:

• the claims number ClNr, which serves as a distinct claims identifier;
• the line of business LoB, which is categorical with labels in {1, . . . , 4};
• the claims code cc, which is categorical with labels in {1, . . . , 53} and denotes the labor sector of

the injured;
• the accident year AY, which is in {1994, . . . , 2005};
• the accident quarter AQ, which is in {1, . . . , 4};
• the age of the injured age (in 5 years age buckets), which is in {15, 20, . . . , 70};
• the injured part inj_part, which is categorical with labels in {10, . . . , 99} and denotes the part of

the body injured;
• the reporting year RY, which is in {1994, . . . , 2016}.

Not all values in {10, . . . , 99} are needed for the labeling of the categorical classes of the feature
component inj_part. In fact, only 46 different values are attained, but for simplicity, we have decided
to keep the original labeling received from the insurance company. 46 different labels may still seem to

https://people.math.ethz.ch/~wmario/simulation.html
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be a lot and a preliminary classification could allow to reduce this number, here we refrain from doing
so because each label has sufficient volume.

For all claims i = 1, . . . , n, we are given the individual claims cash flow (C(j)
i )0≤j≤11, where C(j)

i
is the payment for claim i in calendar year AYi + j—and where AYi denotes the accident year of
claim i. Note that we only consider yearly payments, i.e., multiple payments and recovery payments
within calendar year AYi + j are aggregated into a single, annual payment C(j)

i . This single, annual
payment can either be positive or negative, depending on having either more claim payments or more
recovery payments in that year. The sum over all yearly payments ∑j C(j)

i of a given claim i has to be
non-negative because recoveries cannot exceed payments (this is always the case in the considered
data). Remark that our simulation machine will allow for recoveries.

Finally, for claims i = 1, . . . , n, we are given the claim status process (I(j)
i )0≤j≤11 determining

whether claim i is open or closed at the end of each accounting year. More precisely, if I(j)
i = 1, claim i is

open at the end of accounting year AYi + j, and if I(j)
i = 0, claim i is closed at the end of that accounting

year. Our simulation machine also allows for re-opening of claims, which is quite common in our real
data. More description of the data is given in Appendix A.

2. Design of the Simulation Machine Using Neural Networks

In this section we describe the architecture of our individual claims history simulation machine.
It consists of eight modeling steps: (1) reporting delay T simulation; (2) payment indicator Z simulation;
(3) number of payments K simulation; (4) total claim size Y simulation; (5) number of recovery
payments K− simulation; (6) recovery size Y− simulation; (7) cash flow (C(j)

i )0≤j≤11 simulation and (8)

claim status (I(j)
i )0≤j≤11 simulation. Each of these eight modeling steps is based on one or several

feed-forward neural networks. We introduce the precise setup of such a neural network in Section 2.1
for the simulation of the reporting delay T. Before, we present a global overview of the architecture of
our simulation machine. Afterwards, in Sections 2.1–2.8, each single step is described in detail.

To start with, we define the initial feature space X1 consisting of the original six feature
components as

X1 = {(LoB, cc, AY, AQ, age, inj_part)}. (1)

Observe that we drop the claims number ClNr because it does not have explanatory power. Apart
from these six feature values, the only other model-dependent input parameters of our simulation
machine are the standard deviations for the total individual claim sizes and the total individual
recoveries, see Sections 2.4 and 2.6 below. During the simulation procedure, not all of the subsequent
steps (1)–(8) may be necessary—e.g., if we do not have any payments, then there is no need to simulate
the claim size or the cash flow pattern. We briefly describe the eight modeling steps (1)–(8).

(1) In the first step, we use the initial feature space X1 to model the reporting delay T indicating
the annualized difference between the reporting year and the accident year.

(2) For the second step, we extend the initial feature space X1 by including the additional
information of the reporting delay T, i.e., we set

X2 = {(LoB, cc, AY, AQ, age, inj_part, T)}. (2)

We use X2 to model the payment indicator Z determining whether we have a payment or not.
(3) For the third step, we set X3 = X2 and model the number of (yearly) payments K.
(4) In the fourth step, we extend the feature space X3 by including the additional information of

the number of payments K, i.e., we set

X4 = {(LoB, cc, AY, AQ, age, inj_part, T, K)}, (3)

which is used to model the total individual claim size Y.
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(5) In the fifth step, we model the number of recovery payments K−. We therefore work on the
extended feature space

X5 = {(LoB, cc, AY, AQ, age, inj_part, T, K, Y)} . (4)

(6) In the sixth step, we model the total individual recovery Y−. To this end, we set X6 = X5.
We understand the total individual claim size Y to be net of recovery Y−. Thus, the total payment from
the insurance company to the insured is Y + Y−, paid in K− K− yearly payments. The total recovery
from the insured to the insurance company is Y−, paid in K− yearly payments.

(7) In the seventh step, the task is to generate the cash flows (C(j)
i )0≤j≤11. Therefore, we have to

split the total gross claim amount Y + Y− into K− K− positive payments and the total recovery Y−

into K− negative payments and distribute these K payments among the 12 development years. For this
modeling step, we use different feature spaces X7a, . . . ,X7g, all being a subset of

X7 =
{(

LoB, cc, AY, AQ, age, inj_part, T, K, Y, K−, Y−
)}

, (5)

see Section 2.7 below for more details.
(8) In the last step, we model the claim status process (I(j)

i )0≤j≤11, where we use the feature space

X8 =

{(
LoB, AQ, T,

(
C(j)

)
0≤j≤11

)}
.

Each of these eight modeling steps (1)–(8) consists of one or even multiple feature-response
problems, for which we design neural networks. In the end, the full individual claims history simulation
machine consists of 35 neural networks. We are going to describe this neural network architecture in
more detail next. We remark that some of these networks are rather similar. Therefore, we present the
first neural network in full detail, and for the remaining neural networks we focus on the differences
to the previous ones.

2.1. Reporting Delay Modeling

To model the reporting delay, we work with the initial feature space X1 given in (1).
Let n1 = n = 9,977,298 be the number of individual claims in our data. We consider the (annualized)
reporting delays Ti, for i = 1, . . . , n1, given by

Ti = RYi − AYi ∈ T = {0, . . . , 11},

where AYi is the accident year and RYi the reporting year of claim i. For confidentiality reasons, we have
only received data on a yearly time scale (with the additional information of the accident quarter AQ).
A more accurate modeling would use a finer time scale.

The three feature components LoB, cc and inj_part are categorical. For neural network modeling,
we need to transform these categorical feature components to continuous ones. This could be done by
dummy coding, but we prefer the following version because it leads to less parameters. We replace,
for instance, the claims code cc by the sample mean of the reporting delay restricted to the
corresponding feature label, i.e., for claims code cc = a, we set

a 7→ a∗ = a∗(a) =
∑n1

i=1 Ti 1{cci=a}

∑n1
i=1 1{cci=a}

∈ R, (6)

where cc1, . . . , ccn1 are the observed claims codes. By slight abuse of notation, we obtain a d = 6
dimensional feature space X1 where we may assume that all feature components of X1 are continuous.
Such feature pre-processing as in (6) will be necessary throughout this section for the components LoB,
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cc and inj_part: we just replace Ti in (6) by the respective response variable. Note that from now on
this will be done without any further reference.

The above procedure equips us with the data

D1 = {(x1, T1), . . . , (xn1 , Tn1)} ,

with x1, . . . , xn1 ∈ X1 being the observed features and T1, . . . , Tn1 ∈ T the observed responses.
For an insurance claim with feature x ∈ X1, the corresponding reporting delay T(x) is modeled
by a categorical distribution

P [T(x) = t] = πt(x), for t ∈ T .

This requires that we model probability functions of the form

πt : X1 → [0, 1], x 7→ πt(x),

satisfying normalization ∑t∈T πt(x) = 1, for all x ∈ X1. We design a neural network for the modeling
of these probability functions and we estimate the corresponding network parameters from the
observations D1.

We choose a classical feed-forward neural network with multiple layers. Each layer consists of
several neurons, and weights connect all neurons of a given layer to all neurons of the next layer.
Moreover, we use a non-linear activation function to pass the signals from one layer to the next. The first
layer—consisting of the components x1, . . . , xd of a feature x = (x1, . . . , xd) ∈ X1—is called input layer
(blue circles in Figure 1). In our case, we have d = 6 neurons in this input layer. The last layer is called
output layer (red circles in Figure 1) and it contains the categorical probabilities π0(x), . . . , π11(x).
In between these two layers, we choose two hidden layers having q1 and q2 hidden neurons,
respectively (black circles in Figure 1 with q1 = 11 and q2 = 15).

input layer

hidden layer

hidden layer

output layer

Figure 1. Deep neural network with two hidden layers: the first column (blue circles) illustrates the
d = 6 dimensional feature vector x (input layer), the second column gives the first hidden layer with
q1 = 11 neurons, the third column gives the second hidden layer with q2 = 15 neurons and the fourth
column gives the output layer (red circle) with 12 neurons.

More formally, we choose the q1 hidden neurons z(1)1 , . . . , z(1)q1 in the first hidden layer as follows

z(1)j = z(1)j (x) = φ

(
w(1)

j,0 +
d

∑
l=1

w(1)
j,l xl

)
, for all j = 1, . . . , q1,
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for given weights (w(m)
j,l )j,l,m and for the hyperbolic tangent activation function

φ(x) = tanh(x).

This is a centered version of the sigmoid activation function, with range (−1, 1). Moreover, we have
φ′ = 1− φ2, which is a useful property in the gradient descent method described in Section 3, below.

The activation is then propagated in an analogous fashion to the q2 hidden neurons z(2)1 , . . . , z(2)q2

in the second hidden layer, that is, we set

z(2)j = z(2)j (x) = φ

(
w(2)

j,0 +
q1

∑
l=1

w(2)
j,l z(1)l (x)

)
, for all j = 1, . . . , q2.

For the 12 neurons π0(x), . . . , π11(x) in the output layer, we use the multinomial logistic
regression assumption

πt(x) =
exp {µt(x)}

∑s∈T exp {µs(x)} , for all t ∈ T , (7)

with regression functions x 7→ µt(x) for all t ∈ T given by

µt(x) = β
(t)
0 +

q2

∑
j=1

β
(t)
j z(2)j (x),

for given weights (β
(t)
j )j,t. We define the network parameter α of all involved parameters by

α =
(

w(1)
1,0 , . . . , w(2)

q2,q1 , β
(0)
0 , . . . , β

(11)
q2

)′
∈ Rq1(d+1)+q2(q1+1)+12(q2+1).

The classification model for the tuples (x, T(x))x∈X1 is now fully defined and there remains the
calibration of the network parameter α and the choice of the hyperparameters q1 and q2. Assume for
the moment that q1 and q2 are given. In order to fit α to our data D1, we aim to minimize a given loss
function α 7→ L(α). Therefore, we assume that (x1, T1), . . . , (xn1 , Tn1) are drawn independently from
the joint distribution of (x, T(x)). The corresponding deviance statistics loss function of the categorical
distribution of our data D1 is then given by

L(α) = LD1(α) = − 2 log

(
n1

∏
i=1

∑
t∈T

1{Ti=t}πt(xi)

)
= − 2

n1

∑
i=1

∑
t∈T

1{Ti=t} log πt(xi). (8)

The optimal network parameter α is found by minimizing this deviance statistics loss function.
We come back to this problem in Section 3.2.1, below. Since for different hyperparameters q1 and q2 we
get different network structures, every pair (q1, q2) corresponds to a separate model. The choice of
appropriate hyperparameters q1 and q2 is discussed in Section 3.3, below.

After the calibration of q1, q2 and α to our data D1, we can simulate the reporting delay T(x)
of a claim with given feature x ∈ X1 by using the resulting categorical distribution given by (7).
This simulated value will then allow us to go to the next modeling step (2), see (2).

We close this first part with the following remark: Our choice to work with two hidden layers
may seem arbitrary since we could also have chosen more hidden layers or just one of them. From
a theoretical point of view, one hidden layer would be sufficient to approximate a vast collection
of regression functions to any desired degree of accuracy, provided that we have sufficiently many
hidden neurons in that layer, see Cybenko (1989) and Hornik et al. (1989). However, these models
with large-scale numbers of hidden neurons are known to be difficult to calibrate, and it is often
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more efficient to use fewer neurons but more hidden layers to get an appropriate complexity in the
regression function.

2.2. Payment Indicator Modeling

In our real data, we observe that roughly 29% of all claims can be settled without any payment.
For this reason, we model the claim sizes by compound distributions. First, we model a payment
indicator Z that determines whether we have a payment or not. Then, conditionally on having
a payment, we determine the exact number of payments K. Finally, we model the total individual
claim size Y for claims with at least one payment.

In order to model the payment indicator, we work with the d = 7 dimensional feature space
X2 introduced in (2). Let n2 = n1 and x1, . . . , xn2 ∈ X2 be the observed features, where this time the
reporting delay T is also included. For all i = 1, . . . , n2, we define the number of payments Ki and the
payments indicator Zi by

Ki =
11

∑
j=0

1{
C(j)

i 6=0
} and Zi = 1{Ki>0}. (9)

This provides us with the data

D2 = {(x1, Z1), . . . , (xn2 , Zn2)} .

For a claim with feature x = (x1, . . . , xd) ∈ X2, the corresponding payment indicator Z(x) is
a Bernoulli random variable with

P [Z(x) = 1] = π(x),

for a given (but unknown) probability function

π : X2 → [0, 1], x 7→ π(x).

Note that this Bernoulli model is a special case of the categorical model of Section 2.1. Therefore,
it can be calibrated completely analogously, as described above. However, we emphasize that instead
of working with two probability functions π0 and π1 for the two categories {0, 1}, we set π(·) = π1(·),
which implies 1− π(·) = 1− π1(·) = π0(·). Moreover, the multinomial probabilities (7) simplify to
the binomial case

π(x) =
exp{µ1(x)}

exp{µ0(x)}+ exp{µ1(x)} =
1

1 + exp{−(µ1(x)− µ0(x))} =
1

1 + exp{−µ(x)} ,

with regression function

µ : X2 → R, x 7→ µ(x) = β0 +
q2

∑
j=1

β jz
(2)
j (x) (10)

for a neural network with two hidden layers and network parameter α given by

α =
(

w(1)
1,0 , . . . , w(2)

q2,q1 , β0, . . . , βq2

)′
∈ Rq1(d+1)+q2(q1+1)+(q2+1).

Finally, the corresponding deviance statistics loss function to be minimized is given by

L(α) = LD2(α) = − 2
n2

∑
i=1

Zi log π(xi) + (1− Zi) log(1− π(xi)). (11)
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From this calibrated model, we simulate the payment indicator Z(x), which then allows us to go
to the next modeling step. If this indicator is equal to one, we move to step (3), see Section 2.3; if this
indicator is equal to zero, we directly go to step (8), see Section 2.8.

2.3. Number of Payments Modeling

We use the d = 7 dimensional feature space X3 = X2 to model the number of payments,
conditioned on the event that the payment indicator Z is equal to one. We define n3 ≤ n2 to be the
number of claims with payment indicator equal to one and order the claims appropriately in i such that
Zi = 1 for all i = 1, . . . , n3. Then, we define the number of payments Ki as in (9), for all i = 1, . . . , n3.
This gives us the data

D3 = {(x1, K1), . . . , (xn3 , Kn3)} .

For a claim with feature x ∈ X3 and payment indicator Z = 1, we could now proceed as in
Section 2.1 in order to model the number of payments K(x). However, the claims with Ki = 1 are so
dominant in the data that a good calibration of the categorical model (7) becomes difficult. For this
reason, we choose a different approach: in a first step, we model the events {K(x) = 1} and {K(x) > 1},
conditioned on {Z = 1}, and, in a second step, we consider the conditional distribution of K(x), given
K(x) > 1. In particular, in the first step we have a Bernoulli classification problem that is modeled
completely analogously to Section 2.2, only replacing the data D2 by

D3a =
{(

x1,1{K1=1}

)
, . . . ,

(
xn3 ,1{Kn3=1}

)}
.

The case K(x) > 1 is then modeled analogously to the categorical case of Section 2.1, with
11 categories and data D3b ⊂ D3 only considering the claims with more than one payment.

The simulation of the number of payments K(x) for a claim with feature x ∈ X3, reporting delay T
and payment indicator Z = 1 needs more care than the corresponding task in Section 2.1: here we have
the restriction T + K(x) ≤ 12. If T = 11, then we automatically need to have K(x) = 1. For T < 11 and
if the first neural network leads to 1{K(x)=1} = 0, then the categorical conditional distribution for K(x),
given K(x) > 1, can only take the values k ∈ {2, . . . , 12− T}. For this reason, instead of using the
original conditional probabilities π2(x), . . . , π12(x) resulting from the second neural network, we use
in that case the modified conditional probabilities π∗k (x), for k ∈ {2, . . . , 12− T}, given by

π∗k (x) =
πk(x)

∑12−T
l=2 πl(x)

. (12)

2.4. Total Individual Claim Size Modeling

For the modeling of the total individual claim size, we add the number of payments K to the
previous feature space and work with X4 given in (3). Let n4 = n3 and consider the same ordering of
the claims as in Section 2.3. Then, we define the total individual claim size Yi of claim i as

Yi =
11

∑
j=0

C(j)
i > 0,

for all i = 1, . . . , n4. In particular, the total individual claim size Yi is always to be understood net of
recoveries. This leads us to the data

D4 = {(x1, Y1), . . . , (xn4 , Yn4)} .

For a claim with feature x ∈ X4 and payment indicator Z = 1, we model the total individual
claim size Y(x) with a log-normal distribution. We therefore choose a regression function

µ : X4 → R
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of type (10) for a neural network with two hidden layers. This regression function is used to model the
mean parameter of the total individual claim sizes, i.e., we make the model assumption

Y(x) | Z = 1 ∼ LN
(

µ(x), σ2
+

)
, (13)

for given variance parameter σ2
+ > 0. This choice implies

E [ log Y(x) | Z = 1] = µ(x) and Var ( log Y(x) | Z = 1) = σ2
+.

The density of log Y(x) | Z = 1 then motivates the choice of the square loss function (deviance
statistics loss function)

L(α) = LD4(α) =
n4

∑
i=1

(log Yi − µ(xi))
2 , (14)

with network parameter α. The optimal model for the total individual claim size is then found by
minimizing the loss function (14), which does not depend on σ2

+.
This calibrated model together with the input parameter σ+ > 0 can be used to simulate the

total individual claim size Y(x) from (13). Note that the expected claim amount is increasing in σ2
+,

as we have

E [Y(x) | Z = 1] = exp

{
µ(x) +

σ2
+

2

}
.

2.5. Number of Recovery Payments Modeling

For the modeling of the number of recovery payments, we use the d = 9 dimensional feature
space X5 introduced in (4). Furthermore, we only consider claims i with Ki > 1, because recoveries
may only happen if we have at least one positive payment. We define n5 ≤ n4 to be the number of
claims with more than one payment and order the claims appropriately in i such that Ki > 1 for all
i = 1, . . . , n5. Then, we define the number of recovery payments K−i of claim i as

K−i = min

(
11

∑
j=0

1{
C(j)

i <0
}, 2

)
, (15)

for all i = 1, . . . , n5. In particular, for all observed claims i with more than two recovery payments, we
set K−i = 2. This reduces combinatorial complexity in simulations (without much loss of accuracy)
and provides us with the data

D5 =
{(

x1, K−1 ), . . . , (xn5 , K−n5

)}
.

For a claim with feature x ∈ X5 and K > 1 payments, the corresponding number of recovery
payments K−(x), conditioned on the event {K > 1}, is a categorical random variable taking values
in {0, 1, 2}, i.e., we are in the same setup as in Section 2.1—with only three categorical classes. Thus,
the calibration is done analogously.

This model then allows us to simulate the number of recovery payments K−(x). Note that also
this simulation step needs additional care: if K = 2, then we can have at most one recovery payment.
Thus, we have to apply a similar modification as given in (12) in this case.

2.6. Total Individual Recovery Size Modeling

The modeling of the total individual recovery size is based on the feature space X6 = X5, given in
(4), and we restrict to claims with K−i > 0. The number of these claims is denoted by n6 ≤ n5.
Appropriate ordering provides us with the total individual recovery Y−i of claim i as
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Y−i = −
11

∑
j=0

C(j)
i 1{

C(j)
i <0

},

for all i = 1, . . . , n6. This gives us the data

D6 =
{(

x1, Y−1 ), . . . , (xn6 , Y−n6

)}
.

The remaining part is completely analogous to Section 2.4, we only need to replace the standard
deviation parameter σ+ by a given σ− > 0.

2.7. Cash Flow Pattern Modeling

The modeling of the cash flow pattern is more involved, and we need to distinguish different
cases. This distinction is done according to the total number of payments K = 1, . . . , 12, the number of
positive payments K+ = K− K− = 1, . . . , 12 as well as the number of recovery payments K− = 0, 1, 2.

2.7.1. Cash Flow for Single Payments K = 1

The simplest case is the one of having exactly one payment K = K+ = 1. In this case, we consider
the payment delay after the reporting date. We define n7a ≤ n3 to be the number of claims with exactly
one payment and order the claims appropriately in i such that Ki = 1 for all i = 1, . . . , n7a. Then,
we define the payment delay Si of claim i as

Si =
11

∑
j=0

j1{
C(j)

i >0
} − Ti ≥ 0,

for all i = 1, . . . , n7a. In other words, we simply subtract the reporting year from the year in which the
unique payment occurs. This provides us with the data

D7a = {(x1, S1), . . . , (xn7a , Sn7a)} ,

with x1, . . . , xn7a ∈ X7a being the observed features, where we use

X7a = {(LoB, cc, AY, AQ, age, inj_part, T, Y)} (16)

as d = 8 dimensional feature space. For a claim with feature x ∈ X7a and K = 1 payment,
the corresponding payment delay S(x) is a categorical random variable assuming values in {0, . . . , 11}.
Similarly as for the number of payments, the claims with Si = 0 are rather dominant. Therefore,
we apply the same two-step modeling approach as in Section 2.3.

This calibrated model then allows us to simulate the payment delay S(x). For given reporting
delay T, we have the restriction T + S(x) ≤ 11, which is treated in the same way as in (12). Finally,
the cash flow is given by (C(j)(x))0≤j≤11 with

C(j)(x) =

{
Y, if j = T + S(x),
0, else.

2.7.2. Cash Flow for Two Payments K = 2

Now we consider claims with exactly two payments. Here we distinguish further between the
two cases: (1) both payments are positive, and (2) one payment is positive and the other one negative.
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(a) Two Positive Payments

We first consider the case where both payments are positive, i.e., K = K+ = 2 and K− = 0.
In this case, we have to model the time points of the two payments as well as the split of the total
individual claim size to the two payments. For both models, we use the d = 8 dimensional feature
space X7b = X7a, see (16). We define n7b ≤ n3 to be the number of claims with exactly two positive
payments and no recovery and order them appropriately in i such that Ki = 2 and K−i = 0 for all

i = 1, . . . , n7b. The time points R(1)
i and R(2)

i of the two payments are given by

R(1)
i = min

{
0 ≤ j ≤ 11

∣∣∣∣C(j)
i 6= 0

}
and R(2)

i = max
{

0 ≤ j ≤ 11
∣∣∣∣C(j)

i 6= 0
}

,

for all i = 1, . . . , n7b. Then, we modify the two-dimensional vector (R(1)
i , R(2)

i ) to a one-dimensional
categorical variable Ri by setting

Ri =

 R(2)
i , if R(1)

i = 0,

R(2)
i − R(1)

i + ∑11
k=12−R(1)

i
k, else,

(17)

for all i = 1, . . . , n7b. This leads us to the data

D7b =
{(

x1, R1), . . . , (xn7b , Rn7b

)}
.

Note that Ri is categorical with (12
2 ) = 66 possible values. That is, we are in the same setup as

in Section 2.1—with 66 different classes. Once again, the calibration is done in an analogous fashion
as above.

Next, we model the split of the total individual claim size for claims with K = K+ = 2.
Let n7c = n7b, X7c = X7a, see (16), and define the proportion Pi of the total individual claim size
Yi that is paid in the first payment by

Pi =
C

(
R(1)

i

)
i
Yi

,

for all i ∈ 1, . . . , n7c. This gives us the data

D7c = {(x1, P1), . . . , (xn7c , Pn7c)} .

For a claim with feature x ∈ X7c and K = K+ = 2, the corresponding proportion of its total
individual claim size Y that is paid in the first payment is for simplicity modeled by a deterministic
function P(x). Note that one could easily randomize P(x) using a Dirichlet distribution. However,
at this modeling stage, the resulting differences would be of smaller magnitude. Hence, we directly fit
the proportion function

P : X7c → [0, 1], x 7→ P(x).

Similarly to the calibration in Section 2.2, we assume a regression function µ : X7c → R of type
(10) for a neural network with two hidden layers. Then, for the output layer, we use

P(x) =
1

1 + exp {−µ(x)} (18)

and as loss function the cross entropy function, see also (11),

L(α) = LD7c(α) = − 2
n7c

∑
i=1

Pi log P(xi) + (1− Pi) log(1− P(xi)), (19)



Risks 2018, 6, 29 12 of 32

where α is the network parameter containing all the weights of the neural network.
From this model, we can then simulate the cash flow for a claim with K = K+ = 2. First,

we simulate R(x). If R(x) ∈ {1, . . . , 11}, we have R(1)(x) = 0 and R(2)(x) = R(x). If R(x) > 11,
we have

R(1)(x) = max

{
1 ≤ k ≤ 10

∣∣∣∣∣ R(x) >
11

∑
u=12−k

u

}
and R(2)(x) = R(x) + R(1)(x)−

11

∑
k=12−R(1)(x)

k.

The cash flow is given by (C(j)(x))0≤j≤11 with

C(j)(x) =


P(x)Y, if j = R(1)(x),
(1− P(x))Y, if j = R(2)(x),
0, else.

(b) One Positive Payment, One Recovery Payment

Now we focus on the case where we have K+ = 1 positive and K− = 1 negative payment.
Here we only have to model the time points of the two payments, since we know the total individual
claim size as well as the total individual recovery and we assume that the positive payment precedes
the recovery payment. The modeling of the time points of the two payments is done as above, except
that this time we use the d = 9 dimensional feature space

X7d =
{(

LoB, cc, AY, AQ, age, inj_part, T, Y, Y−
)}

,

where we include the information of the total individual recovery Y−. Moreover, we define n7d ≤ n3

to be the number of claims with exactly one positive payment and one recovery payment and order
the claims appropriately in i such that Ki = 2 and K−i = 1 for all i = 1, . . . , n7d. This provides us with
the data

D7d =
{(

x1, R1), . . . , (xn7d , Rn7d

)}
,

with Ri defined as in (17). The rest is done as above. We obtain the cash flow (C(j)(x))0≤j≤11 with

C(j)(x) =


Y + Y−, if j = R(1)(x),
−Y−, if j = R(2)(x),
0, else.

Remark that we again have combinatorial complexity of (12
2 ) = 66 for the time points of the two

payments. Since data is sparse, for this calibration we restrict to the 35 most frequent distribution
patterns. More details on this restriction are provided in the next section.

2.7.3. Cash Flow for More than Two Payments K = 3, . . . , 12

On the one hand, the models for the cash flows in the case of more than two payments depend on
the exact number of payments K. On the other hand, they also depend on the respective numbers of
positive payments K+ and negative payments K−. If we have zero or one recovery payment (K− = 0, 1),
then we need to model (a) the time points where the K payments occur and (b) the proportions of
the total gross claim amount Y + Y− paid in the K+ positive payments. If K− = 0, then there are no
recovery payments and, thus, Y− = 0. If K− = 1, the recovery payment is always set at the end. In the
case of K− = 2 recovery payments, in addition to (a) and (b), we use another neural network to model
(c) the proportions of the total individual recovery Y− paid in the two recovery payments. The time
point of the first recovery payment is for simplicity assumed to be uniformly distributed on the set
of time points of the 2nd up to the (K− 1)-st payment. The second recovery payment is always set
at the end. The time point of the first payment is excluded for recovery in our model since we first
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require a positive payment before a recovery is possible. The three neural networks considered in this
modeling part are outlined below in (a)–(c). Afterwards, we can model the cash flow for claims with
K = 3, . . . , 12 payments, see item (d) below.

(a) Distribution of the K Payments

If we have K = 12 payments, then the distribution of these payments to the 12 development years
is trivial, as we have a payment in every development year. Since the model is pretty much the same
in all other cases K ∈ {3, . . . , 11}, we present here the case K = 6 as illustration.

For the modeling of the distribution of the payments to the development years, we slightly
simplify our feature space by dropping the categorical feature components cc and inj_part. Moreover,
we simplify the feature LoB with its four categorical classes: since the lines of business one and four as
well as the lines of business two and three behave very similarly w.r.t. the cash flow patterns, we merge
these lines of business in order to get more volume (and less complexity). We denote this simplified
lines of business by LoB∗. Thus, we work with the d = 8 dimensional feature space

X7e =
{(

LoB∗, AY, AQ, age, T, Y, K−, Y−
)}

.

Let n7e ≤ n3 be the number of claims with exactly six payments and order the claims appropriately
in i such that Ki = 6 for all i = 1, . . . , n7e. The time points R(1)

i , . . . , R(6)
i of the six payments are given by

R(1)
i = min

{
0 ≤ j ≤ 11

∣∣∣∣C(j)
i 6= 0

}
and R(k)

i = min
{

R(k−1)
i < j ≤ 11

∣∣∣∣C(j)
i 6= 0

}
,

for all k = 2, . . . , 6 and i = 1, . . . , n7e. Then, we use the following binary representation

Ri =
6

∑
k=1

2R(k)
i +1,

for all i = 1, . . . , n7e, for the time points of the six payments. This leads us to the data

D7e = {(x1, R1), . . . , (xn7e , Rn7e)} ,

where x1, . . . , xn7e ∈ X7e and R1, . . . , Rn7e ∈ A for some set A ⊂ N. Since there are (12
6 ) = 924

possibilities to distribute the K = 6 payments to the 12 development years, we have |A| = 924
distribution patterns. To reduce complexity (in view of sparse data), we only allow for the most
frequently observed distributions of the payments to the development years. For K = 6, we work with
21 different patterns, which cover 70% of all claims with K = 6. We denote the set containing these 21
patterns by Ã. See Table 1 for an overview, for each K = 3, . . . , 10, of the number of possible different
patterns, the number of allowed different patterns and the percentage of all claims covered with this
choice of allowed distribution patterns.

Table 1. Number of possible and allowed distribution patterns for K = 3, . . . , 10 payments.

Number of Payments K 3 4 5 6 7 8 9 10

number of possible patterns |A| 220 495 792 924 792 495 220 66
number of allowed patterns

∣∣Ã∣∣ 15 18 17 21 17 20 26 24
percentage of claims covered 91% 83% 73% 70% 62% 61% 64% 76%

Note that for K = 11, we allow for all the 12 possible distribution patterns. Going back to the
case K = 6, we denote by ñ7e ≤ n7e the number of claims with exactly K = 6 payments and with
a distribution of these six payments to the 12 development years contained in the set Ã. Then, we
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modify the data D7e accordingly to D̃7e by only considering the relevant observations in Ã. This
provides us with a classification problem similar to the one in Section 2.1—with |Ã| = 21 classes.

(b) Proportions of the K+ = K− K− Positive Payments

If the number of positive payments K+ is equal to one, then the amount paid in this unique
positive payment is given by the total gross claim amount Y + Y−. That is, we do not need to model
the proportions of the positive payments. Since the model is basically the same in all other cases
K+ ∈ {2, . . . , 12}, we present here the case K+ = 6 as illustration.

As in the previous part, we use the d = 8 dimensional feature space X7 f = X7e. Let n7 f ≤ n3 be
the number of claims with exactly six positive payments and order the claims appropriately in i such
that K+

i = Ki − K−i = 6 for all i = 1, . . . , n7 f . We define

R+(1)
i = min

{
0 ≤ j ≤ 11

∣∣∣∣C(j)
i > 0

}
and R+(k)

i = min
{

R+(k−1)
i < j ≤ 11

∣∣∣∣C(j)
i > 0

}
,

for all k = 2, . . . , 6 and i = 1, . . . , n7 f , to be the time points of the six positive payments. Then, we can define

P(k)
i =

C

(
R+(k)

i

)
i

Yi + Y−i

to be the proportion of the total gross claim amount Yi + Y−i that is paid in the k-th positive, annual
payment, for all k = 1, . . . , 6 and i = 1, . . . , n7 f . This equips us with the data

D7 f =
{(

x1, P(1)
1 , . . . , P(6)

1

)
, . . . ,

(
xn7 f , P(1)

n7 f , . . . , P(6)
n7 f

)}
.

For a claim with feature x ∈ X7 f and K+ = K− K− = 6 positive payments, the corresponding
proportions P(1)(x), . . . , P(6)(x) of the total gross claim amount Y + Y− that are paid in the six
positive payments are for simplicity assumed to be deterministic. Note that we could randomize
these proportions by simulating from a Dirichlet distribution, but—as in Section 2.7.2—we refrain
from doing so. Hence, we consider the proportion functions

P(k) : X7 f → [0, 1], x 7→ P(k)(x),

for all k = 1, . . . , 6, with normalization ∑6
k=1 P(k)(x) = 1, for all x ∈ X7 f . We use the same model

assumptions as in (7) by setting for k = 1, . . . , 6

P(k)(x) =
exp {µk(x)}

∑6
l=1 exp {µl(x)}

, (20)

for appropriate regression functions µk : X7 f → R resulting as output layer from a neural network
with two hidden layers. As in (19), we consider the cross entropy loss function

L(α) = LD7 f (α) = − 2
n7 f

∑
i=1

6

∑
k=1

P(k)
i log P(k)(xi),

where α is the corresponding network parameter. This model is calibrated as described in Section 2.1.
Remark that if K+ = 2, the model (20) simplifies to the binomial case, see (18).
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(c) Proportions of the Recovery Payments if K− = 2

In the case of K− = 2 recovery payments, we need to model the proportion of the total individual
recovery Y− that is paid in the first recovery payment. For this, we work with the d = 10 dimensional
feature space

X7g =
{(

LoB, cc, AY, AQ, age, inj_part, T, K, Y, Y−
)}

.

We denote by n7g ≤ n6 the number of claims with exactly two recovery payments and order the
claims appropriately in i such that K−i = 2 for all i = 1, . . . , n7g. Recall that we set K−i = 2 for all claims
i with two or more recovery payments, see (15). Moreover, we add all the amounts of the recovery
payments done after the second recovery payment to the second one. Let

R−i = min
{

0 ≤ j ≤ 11
∣∣∣∣C(j)

i < 0
}

denote the time point of the first recovery payment, for all i ∈ {1, . . . , n7g}. Then, the proportion P−i of
the total individual recovery Y−i that is paid in the first recovery payment is given by

P−i =
−C

(R−i )

i
Y−i

,

for all i = 1, . . . , n7g. This provides us with the data

D7g =
{(

x1, P−1 ), . . . , (xn7g , P−n7g

)}
.

The remaining modeling part is then done completely analogously to the second part of the two
positive payments case (a) in Section 2.7.2.

(d) Cash Flow Modeling

Finally, using the three neural network models outlined above, we can simulate the cash flow for
a claim with more than two payments and with feature x ∈ X7, see (5). We illustrate the case K = 6.
Note that we only allow for cash flow patterns in Ã that are compatible with the reporting delay T.
We start by describing the case T = 0. In this case, there is no difficulty and we directly simulate the
cash flow pattern R(x) ∈ Ã. This provides us six payments in the time points

R(6)(x) = max
{

0 ≤ j ≤ 11
∣∣∣∣ 2j+1 ≤ R(x)

}
and

R(k)(x) = max

{
0 ≤ j < R(k+1)(x)

∣∣∣∣ 2j+1 ≤ R(x)−
6

∑
l=k+1

2R(l)(x)+1

}
, for k = 1, . . . , 5.

For reporting delay T = 1, the set Ã of potential cash flow patterns becomes smaller because
some of them have to be dropped to remain compatible with T = 1. For this reason, we simulate
with probability 1

2 a pattern from Ã, and with probability 1
2 the six time points R(1)(x), . . . , R(6)(x) are

drawn in a uniform manner from the remaining possible time points in {T = 1, . . . , 11}. For T > 1,
the potential subset of patterns in Ã becomes (almost) empty. For this reason, we simply simulate
uniformly from the compatible configurations in {T, . . . , 11}.

Having the six time points for the payments, we distinguish the three different cases K− ∈ {0, 1, 2}:
Case K− = 0: we calculate the proportions P(1)(x), . . . , P(6)(x) according to point (b) above and

we receive the cash flow (C(j)(x))0≤j≤11 with

C(j)(x) =

{
P(l)(x)Y, if j = R(l)(x) for some 1 ≤ l ≤ 6,
0, else.
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Case K− = 1: we have five positive payments with proportions P(1)(x), . . . , P(5)(x) modeled
according to point (b) above. This provides the cash flow (C(j)(x))0≤j≤11 with

C(j)(x) =


P(l)(x) (Y + Y−) , if j = R(l)(x) for some 1 ≤ l ≤ 5,
−Y−, if j = R(6)(x),
0, else.

Case K− = 2: we have four positive payments with proportions P(1)(x), . . . , P(4)(x) according to
point (b) above and two negative payments with proportions P−(x) and 1− P−(x) according to point
(c) above. The time point of the first recovery R−(x) is simulated uniformly from the set of time points
{R(2)(x), . . . , R(5)(x)}. Note that the time point R(1)(x) is reserved for the first positive payment and
the time point R(6)(x) for the second recovery payment. We write R̃(1)(x), . . . , R̃(4)(x) for the time
points of the four positive payments. Summarizing, we get the cash flow (C(j)(x))0≤j≤11 with

C(j)(x) =


P(l)(x) (Y + Y−) , if j = R̃(l)(x) for some 1 ≤ l ≤ 4,
−P−(x)Y−, if j = R−(x),
−(1− P−(x))Y−, if j = R(6)(x),
0, else.

Of course, if K = 3 and K− = 2, we do not need to simulate the proportions of the positive
payments, as there is only one positive payment, which occurs in the beginning. Similarly, if K = 12,
we do not need to simulate the time points of the payments, since there is a payment in every
development year.

2.8. Claim Status Modeling

Finally, we design the model for the claim status process which indicates whether a claim is open
or closed at the end of each accounting year. This process modeling will also allow for re-opening.
Similarly to the payments, we do not model the status of a claim or its changes within an accounting
year, but only focus on its status at the end of each accounting year. The modeling procedure of the
claim status uses two neural networks, which are described below.

We remark that the closing date information was of lower quality in our data set compared to all
other information. For instance, some of the dates have been modified retrospectively which, of course,
destroys the time series aspect. For this reason, we have decided to model this process in a more crude
form, however, still capturing predictive power.

2.8.1. Re-Opening Indicator

We start by modeling the occurrence of a re-opening, i.e., whether a claim gets re-opened after
having been closed at an earlier date. We use the d = 15 dimensional feature space

X8a =

{(
LoB, AQ, T,

(
C̃(j)

)
0≤j≤11

)}
, (21)

where we do not consider the exact payment amounts, but the simplified version

C̃(j) =


− 1

2 , if C(j) = 0,
0, if C(j) 6= 0 and C(j) ≤ 1, 000,
1
2 , if C(j) > 1, 000,

(22)

for all j = 0, . . . , 11. Let n8a ≤ n denote the number of claims i for which we have the full information
(I(j)

i )Ti≤j≤11. For the ease of data processing, we set I(j)
i = 1 for all development years before claims

reporting Ti. Then, we can define the re-opening indicator Vi as
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Vi =

 1, if ∑11
j=1 1

{
I(j)
i −I(j−1)

i =1
} ≥ 1,

0, else,

for all i = 1, . . . , n8a. In particular, if Vi = 1, then claim i has at least one re-opening, and if Vi = 0, then
claim i has not been re-opened. This leads us to the data

D8a = {(x1, V1), . . . , (xn8a , Vn8a)},

where x1, . . . , xn8a ∈ X8a. For a given feature x ∈ X8a, the corresponding re-opening indicator V(x) is
a Bernoulli random variable. Thus, model calibration is done analogously to Section 2.2 with, however,
a neural network with only one hidden layer.

2.8.2. Closing Delay Indicator for Claims without a Re-Opening

For claims without a re-opening, we model the closing delay indicator determining whether the
closing occurs in the same year as the last payment or if the closing occurs later. In case of no payments
(Zi = 0), we replace the year of the last payment by the reporting year. We use the same d = 15
dimensional feature space as for the re-opening indicator and set X8b = X8a, see (21). Let n8b ≤ n8a be
the number of claims without a re-opening and order them appropriately in i such that Vi = 0 for all
i = 1, . . . , n8b. Then, we define the closing delay indicator Wi as

Wi =


1, if Zi = 1 and max

{
0 ≤ j ≤ 11

∣∣ I(j)
i = 1

}
≥ max

{
0 ≤ j ≤ 11

∣∣C(j)
i 6= 0

}
,

1, if Zi = 0 and max
{

0 ≤ j ≤ 11
∣∣ I(j)

i = 1
}
≥ Ti,

0, else,

for all i = 1, . . . , n8b. Hence, we have Wi = 1 if the closing occurs in a later year compared to the
year of the last payment (or in a later year compared to the claims reporting year in case there is no
payment) and Wi = 0 otherwise. This leads us to the data

D8b = {(x1, W1), . . . , (xn8b , Wn8b)}.

For a claim with feature x ∈ X8b, the corresponding closing delay indicator W(x) is again
a Bernoulli random variable. Therefore, model calibration is done analogously to Section 2.2. Similarly
as for the re-opening indicator, we use a neural network with only one hidden layer.

2.8.3. Simulation of the Claim Status

Based on the feature space X8a, we first simulate the re-opening indicator V(x) leading to the two
cases (i) and (ii) described below. Note that before a claim is reported—for ease of data processing—we
simply set its status to open (this has no further relevance).

(i) Case V(x) = 0 (without re-opening): for the given feature x ∈ X8a, we calculate the closing
delay probability π(x) = P[W(x) = 1] using the neural network of Section 2.8.2. The closing delay
B(x) is then sampled from a categorical distribution on {0, . . . , 12} with probabilities

P[B(x) = 0] = 1− π(x),

P[B(x) = 1] =
9
10

π(x),

P[B(x) = k] =
1
10

1
11

π(x), for k = 2, . . . , 12.

The resulting closing delay B(x) ∈ {0, . . . , 12} is added to the year of the last payment (or to the
reporting year if there is no payment). If this sum exceeds the value 11, the claim is still open at the
end of the last modeled development year. This provides the claim status process (I(j)(x))0≤j≤11 with
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I(j)(x) =


1, if Z = 1 and j < B(x) + max

{
0 ≤ j ≤ 11

∣∣C(j) 6= 0
}

,

1, if Z = 0 and j < B(x) + T,
0, else.

(ii) Case V(x) = 1 (with re-opening): if we have at least one payment for the considered claim,
then the first settlement time B1(x) is simulated from a uniform distribution on the set{

T, . . . , max
{

0 ≤ j ≤ 11
∣∣C(j) 6= 0

}}
.

The second settlement time B2(x) is simulated from a uniform distribution on the set{
max

{
0 ≤ j ≤ 11

∣∣C(j) 6= 0
}
+ 2, . . . , 13

}
.

In particular, the first settlement arrives between the reporting year and the year of the last
payment. Then, the claim gets re-opened in the year following the first settlement. The second
settlement, if there is one, arrives between two years after the year of the last payment and the last
modeled development year. In case the second settlement arrives after the last modeled development
year, we simply cannot observe it and the claim is still open at the end of the last modeled development
year. In case the first settlement happens in the last modeled development year, we do not even
observe the re-opening.

If the claim does not have any payment, we set B1(x) = T for the first settlement time. In particular,
the claim gets closed for the first time in the same year as it is reported. The second settlement time
B2(x) is simulated from a uniform distribution on the set {T + 2, . . . , 13}.

This leads to the claim status process (I(j)(x))0≤j≤11 with

I(j)(x) =

{
1, if j < B1(x) or B1(x) < j < B2(x),
0, if j = B1(x) or j ≥ B2(x).

3. Model Calibration Using Momentum-Based Gradient Descent

In Section 2 we have introduced several neural networks that need to be calibrated to the data.
This calibration involves the choice of the numbers of hidden neurons q1 and q2 as well as the choice
of the corresponding network parameter α. We first focus on the network parameter α for given q1

and q2.

3.1. Gradient Descent Methods

State-of-the-art for finding the optimal network parameter α w.r.t. a given differentiable loss
function α 7→ L(α) is the gradient descent method (GDM). The GDM locally improves the loss in
an iterative way. Consider the Taylor approximation of L around α, then

L(α̃) = L(α) + (∇αL(α))′ (α̃− α) + o (‖α̃− α‖) ,

as ‖α̃− α‖ → 0. The locally optimal move points into the direction of the negative gradient −∇αL(α).
If we choose a learning rate $ > 0 into that direction, we obtain a local loss decrease

L (α− $∇αL(α)) ≈ L(α)− $ ‖∇αL(α)‖2 , (23)

for $ small. Iterative application of these locally optimal moves—with tempered learning rates—will
converge ideally to the (local) minimum of the loss function. Note that (a) it is possible to end up in
saddle points; (b) different starting points of this algorithm should be explored to see whether we
converge to different (local) minima resp. saddle points and (c) the speed of convergence should be
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fine-tuned. An improved version of the GDM is the so-called momentum-based GDM introduced
in Rumelhart et al. (1986). Consider a velocity vector v with the same dimensions as α and initialize
v = 0, corresponding to zero velocity in the beginning. Then, in every iteration step of the GDM,
we are building up velocity to achieve a faster convergence. In formulas, this provides

v ← µv− $∇αL(α),
α ← α + v,

where µ ∈ [0, 1] is the momentum coefficient controlling how fast velocity is built up. By choosing
µ = 0, we get the original GDM without a velocity vector, see (23). Fine-tuning 0 < µ ≤ 1 may lead to
faster convergence. We refer to the relevant literature for more on this topic.

3.2. Gradients of the Loss Functions Involved

In Section 2 we have met three different model types of neural networks:

• categorical case with more than two categorical classes;
• Bernoulli case with exactly two categorical classes;
• log-normal case.

In order to apply the momentum-based GDMs, we need to calculate the gradients of the
corresponding loss functions of these three model types. As illustrations, we choose the reporting
delay T for the categorical case, the payment indicator Z for the Bernoulli case and the total individual
claim size Y for the log-normal case.

3.2.1. Categorical Case (with More than Two Categorical Classes)

The loss function α 7→ L(α) for the modeling of the reporting delay T is given in (8). The gradient
∇αL(α) can be calculated as

∇αL(α) = − 2
n1

∑
i=1

∑
t∈T

1{Ti=t}∇α log πt(xi) = − 2
n1

∑
i=1

∑
t∈T

1{Ti=t}
1

πt(xi)
∇απt(xi).

We have for the last gradients

∇απt(xi) = ∇α
exp {µt(xi)}

∑s∈T exp {µs(xi)}
= πt(xi)

(
∇αµt(xi)− ∑

s∈T
πs(xi)∇αµs(xi)

)
,

for all t ∈ T and i = 1, . . . , n1. Collecting all terms, we conclude

∇αL(α) = −2
n1

∑
i=1

∑
t∈T

1{Ti=t}

(
∇αµt(xi)− ∑

s∈T
πs(xi)∇αµs(xi)

)

= −2
n1

∑
i=1

∑
t∈T

(
1{Ti=t} − πt(xi)

)
∇αµt(xi).

There remains to calculate the gradients ∇αµt(xi), for all t ∈ T and i = 1, . . . , n1. This is done
using the back-propagation algorithm, which in today’s form goes back to Werbos (1982).

3.2.2. Bernoulli Case (Two Categorical Classes)

We calculate the gradient∇αL(α) for the modeling of the payment indicator Z with corresponding
loss function L(α) given in (11). We get as in the categorical case above

∇αL(α) = − 2
n2

∑
i=1

(
Zi

π(xi)
− 1− Zi

1− π(xi)

)
∇απ(xi),
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with gradient

∇απ(xi) =
exp {−µ(xi)}

(1 + exp {−µ(xi)})2∇αµ(xi) = π(xi) (1− π(xi))∇αµ(xi),

for all i = 1, . . . , n2. Collecting all terms, we obtain

∇αL(α) = −2
n2

∑
i=1

(Zi − π(xi))∇αµ(xi).

We again apply back-propagation to calculate the gradient ∇αµ(xi), for all i = 1, . . . , n2.

3.2.3. Log-Normal Case

Finally, the loss function L(α) for the modeling of the total individual claim size Y is given in (14).
Hence, for the gradient ∇αL(α), we have

∇αL(α) =
n4

∑
i=1
∇α (log Yi − µ(xi))

2 = − 2
n4

∑
i=1

(log Yi − µ(xi))∇αµ(xi),

where the last gradient ∇αµ(xi), for all i = 1, . . . , n4, is again calculated using back-propagation.

3.3. Choice of the Numbers of Hidden Neurons

For each modeling step of our simulation machine, we still need to determine the optimal neural
network in terms of the numbers q1 and q2 of hidden neurons. These hyperparameters are determined
by splitting the original data set into a training set and a validation set, where for each calibration we
choose at random 90% of the data for the training set. The training set is then used to fit the models
for the different choices of hyperparameters q1 and q2 by minimizing the corresponding (training)
in-sample losses of the functions α 7→ L(α). This is done as described in the previous sections—for
given q1 and q2. The hyperparameter choices q1 and q2—and model choices, respectively—are then
done by choosing the model with the smallest (validation) out-of-sample loss on the validation set.

4. Chain-Ladder Analysis

In this section we use the calibrated stochastic simulation machine to perform a small claims
reserving analysis. We generate data from the simulation machine and compare it to the real data.
For both data sets, we analyze the resulting claims reporting patterns and the corresponding claims
cash flow patterns. For claims reportings, we separate the individual claims i = 1, . . . , n by accident
year AY ∈ {1994, . . . , 2005} and reporting delays T ∈ {0, . . . , 11}. For claims cash flows, we separate
the individual claims i = 1, . . . , n again by accident year AY ∈ {1994, . . . , 2005} and aggregate the
corresponding payments over the development delays j = 0, . . . , 11. The reported claims and the
claims payments that are available by the end of accounting year 2005 then provide the so-called upper
claims reserving triangles. These triangles of reported claims of real and simulated data are shown in
Tables 2 and 3, the triangles of cumulative claims payments of real and simulated data are given in
Tables 4 and 5. At a first glance, these triangles show that the simulated data looks very similar to the
real data, with a slightly bigger similarity for claims reportings than for claims cash flows.

These data sets can be used to perform a chain-ladder (CL) claims reserving analysis. We therefore
use Mack’s chain-ladder model, for details we refer to Mack (1993). We calculate the chain-ladder
reserves for both the real and the simulated data, and we also calculate Mack’s square-rooted
conditional mean square error of prediction

√
msep.

We start the analysis on the claims reportings. Using the chain-ladder method, we predict the
number of incurred but not yet reported (IBNYR) claims. These are the predicted numbers of late
reported claims in the lower triangles in Tables 2 and 3. The resulting predictions are provided in the
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2nd and 5th columns of Table 6. We observe a high similarity between the results on the real and the
simulated data. In particular, for all the individual accident years, the chain-ladder predicted numbers
of IBNYR claims of the real data and the simulated data are very close to each other. Aggregating over
all accident years, the chain-ladder predicted number of the total IBNYR claims is only 0.2% higher
for the simulated data compared to the real data. This similarity largely carries over to the prediction
uncertainty analysis illustrated by the columns

√
msep in Table 6. Indeed, comparing the real and

the simulated data, we see that
√

msep is of similar magnitude for most accident years. Only for the
accident years 2003 and 2004 it seems notably higher for the real data. From this, we conclude that,
at least from a chain-ladder reserving point of view, our stochastic simulation machine provides very
reasonable claims reporting patterns.

Finally, Table 7 shows the results of the chain-ladder analysis for claims payments. Columns 2
and 5 of that table provide the chain-ladder reserves. These are the payment predictions for the cash
flows paid after accounting year 2005 and complete the lower triangles in Tables 4 and 5. Also here
we see high similarities between the real data and the simulated data analysis: the corresponding
total chain-ladder reserves as well as the corresponding reserves for most of the individual accident
years are rather close to each other. In particular, the total chain-ladder reserves are only 1.2% higher
for the simulated data. We only observe slightly shorter cash flow patterns in the simulated data,
which partially carries over to the prediction uncertainties illustrated by the columns

√
msep in Table 7.

Table 2. Triangle of reported claims of the real data.

Accident Reporting Delay T

Year AY 0 1 2 3 4 5 6 7 8 9 10 11

1994 861,899 59,056 1540 460 230 154 84 56 50 28 32 12
1995 850,297 64,733 1568 562 216 124 94 62 44 34 32
1996 781,875 61,465 1742 414 252 153 76 62 38 22
1997 756,147 59,269 1466 496 210 147 54 48 40
1998 753,552 60,249 1660 530 248 136 98 44
1999 754,992 59,690 1625 468 208 100 68
2000 766,684 61,120 1274 320 136 88
2001 758,443 61,449 1024 286 90
2002 745,125 55,246 876 200
2003 757,843 53,272 956
2004 733,785 51,742
2005 730,978

Table 3. Triangle of reported claims of the simulated data.

Accident Reporting Delay T

Year AY 0 1 2 3 4 5 6 7 8 9 10 11

1994 860,337 60,143 1837 553 256 155 101 70 57 35 36 21
1995 851,877 62,924 1776 499 263 164 80 58 52 29 36
1996 783,006 60,511 1557 477 182 122 87 49 53 39
1997 756,015 59,556 1434 399 169 129 77 42 42
1998 752,454 61,913 1422 380 164 100 65 37
1999 753,635 61,552 1279 362 153 116 49
2000 768,180 59,636 1215 338 150 71
2001 759,501 60,131 1124 304 132
2002 744,478 55,577 1012 270
2003 757,635 53,352 937
2004 732,884 52,586
2005 731,357
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Table 4. Triangle of cumulative claims payments (in 10,000 CHF) of the real data.

Accident Development Delay j

Year AY 0 1 2 3 4 5 6 7 8 9 10 11

1994 78,433 120,396 130,167 134,749 137,143 138,798 139,994 141,052 142,106 142,913 143,652 144,247
1995 79,372 124,532 135,488 140,338 143,145 144,859 146,408 147,624 148,735 149,686 150,578
1996 71,398 113,335 123,336 128,052 130,779 132,692 134,175 135,359 136,381 137,311
1997 68,600 107,716 117,556 122,331 125,304 127,477 129,037 130,171 131,216
1998 68,055 109,906 120,706 126,443 129,727 131,998 133,745 135,176
1999 71,989 114,344 127,311 134,174 138,075 140,614 142,530
2000 72,225 118,418 131,615 138,216 142,024 144,450
2001 74,891 126,244 141,008 147,923 151,917
2002 78,167 129,105 143,731 150,560
2003 82,668 134,010 148,161
2004 80,630 130,390
2005 82,015

Table 5. Triangle of cumulative claims payments (in 10,000 CHF) of the simulated data.

Accident Development Delay j

Year AY 0 1 2 3 4 5 6 7 8 9 10 11

1994 80,491 117,807 129,673 135,331 138,591 140,745 142,268 143,394 144,344 145,090 145,694 146,076
1995 79,170 116,943 129,313 135,330 138,785 141,079 142,743 144,045 145,115 146,002 146,760
1996 71,675 107,228 119,578 125,407 128,771 131,009 132,566 133,718 134,657 135,472
1997 68,857 104,291 116,406 122,177 125,495 127,662 129,194 130,388 131,270
1998 67,418 103,415 116,194 122,262 125,673 127,877 129,452 130,588
1999 69,308 107,587 121,381 127,930 131,534 133,924 135,502
2000 73,359 113,266 127,878 134,804 138,806 141,431
2001 73,338 115,626 131,197 138,481 142,591
2002 74,887 117,602 133,850 141,539
2003 81,921 127,461 144,444
2004 81,394 128,864
2005 86,837

Table 6. Chain-ladder predicted numbers of incurred but not yet reported (IBNYR) claims and Mack’s
√

msep for the real and the simulated data.

Accident CL Predicted
√

msep in % CL Predicted
√

msep in %

Year AY IBNYR Claims IBNYR Claims

Real Data Simulated Data

1994 0 0
1995 12 0 0.0% 21 0 0.0%
1996 40 0 0.4% 52 0 0.4%
1997 65 5 8.4% 82 7 8.6%
1998 105 7 6.2% 129 9 6.6%
1999 156 10 6.1% 178 14 7.7%
2000 235 19 8.0% 255 21 8.3%
2001 357 32 9.0% 370 35 9.4%
2002 536 65 12.2% 535 53 9.9%
2003 944 135 14.3% 925 95 10.2%
2004 2201 330 15.0% 2170 265 12.2%
2005 57,734 3542 6.1% 57,789 3410 5.9%

total 62,385 3565 5.7% 62,506 3425 5.5%
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Table 7. Chain-ladder reserves for claims payments (in 10,000 CHF) and Mack’s
√

msep for the real
and the simulated data.

Accident CL Reserves
√

msep in % CL Reserves
√

msep in %

Year AY

Real Data Simulated Data

1994 0 0
1995 624 117 18.8% 385 109 28.2%
1996 1337 146 10.9% 991 161 16.2%
1997 2112 168 8.0% 1723 179 10.4%
1998 3224 177 5.5% 2636 187 7.1%
1999 4686 259 5.5% 3943 209 5.3%
2000 6476 394 6.1% 5826 230 3.9%
2001 9275 599 6.5% 8846 290 3.4%
2002 13,049 889 6.8% 12,489 421 3.4%
2003 19,973 1421 7.1% 20,817 837 4.0%
2004 32,532 2394 7.4% 36,647 2050 5.6%
2005 82,706 5039 6.1% 84,175 4968 5.9%

total 175,994 6275 3.6% 178,076 5732 3.2%

5. Conclusions

We have developed a stochastic simulation machine that generates individual claims histories
of non-life insurance claims. This simulation machine is based on neural networks which have been
calibrated to real non-life insurance data. The inputs of the simulation machine are a portfolio of non-life
insurance claims—for which we want to simulate the corresponding individual claims histories—and
the two variance parameters σ2

+ (for the total individual claim size, see (13)) and σ2
− (for the total

individual recovery, see Section 2.6). Together with a portfolio generating algorithm, see Appendix B,
one can use this simulation machine to simulate as many individual claims histories as desired.
In a chain-ladder analysis we have seen that the simulation machine leads to reasonable results,
at least from a chain-ladder reserving point of view. Therefore, our simulation machine may serve as
a stochastic scenario generator for individual claims histories, which provides a common ground for
research in this area, we also refer to the study in Wüthrich (2018b).
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their insights and for their immense support.
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Appendix A. Descriptive Statistics of the Chosen Data Set

In this appendi we provide descriptive statistics of the data used to calibrate the individual claims
history simulation machine. For confidentiality reasons, we can only show aggregate statistics of the
claims portfolio, see Figures A1–A4 below.



Risks 2018, 6, 29 24 of 32

1 2 3 4

line of business

line of business (LoB)

nu
m

be
r 

of
 c

la
im

s

(a)

1 8 15 23 31 40 48

claims code

claims code (cc)

nu
m

be
r 

of
 c

la
im

s
(b)

1994 1997 2000 2003

accident year

accident year (AY)

nu
m

be
r 

of
 c

la
im

s

(c)

1 2 3 4

accident quarter

accident quarter (AQ)

nu
m

be
r 

of
 c

la
im

s

(d)

15 25 35 45 55 65

age of injured

age of injured (age)

nu
m

be
r 

of
 c

la
im

s

(e)

10 20 30 37 50 60 71

injured part

injured part (inj_part)

nu
m

be
r 

of
 c

la
im

s

(f)

Figure A1. Portfolio distributions w.r.t. the features (a) LoB; (b) cc; (c) AY; (d) AQ; (e) age and (f)
inj_part.
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Figure A2. (a) Logarithmic number of claims; (b) average claim size and (c) average number of
payments w.r.t. the reporting delay T; the red lines show the averages.
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Figure A3. (a) Logarithmic number of claims; (b) average claim size and (c) number of claims with
recoveries w.r.t. the number of payments K; the red lines show the averages.
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Figure A4. Average claim size w.r.t. the features (a) LoB; (b) cc; (c) AY; (d) AQ; (e) age and (f) inj_part;
the red lines show the averages.

Appendix B. Procedure of Generating a Synthetic Portfolio

In order to use the stochastic simulation machine derived above, we require a portfolio of features
x1, . . . , xn ∈ X1, see (1). Therefore, we need an additional scenario generator that simulates reasonable
synthetic portfolios. In this appendix we describe the design of our portfolio scenario generator which
provides portfolios similar in structure to the original portfolio.

Our algorithm of synthetic portfolio generation uses the following input parameters:

• V = totally expected number of claims;
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• (pl)1≤l≤4 = categorical distribution for the allocation of the claims to the four lines of business;
• (rl)1≤l≤4 = growth parameters for the numbers of claims in the 12 accident years for each of

the four lines of business.

In a first step, we use these parameters to simulate the total number of claims and allocate them
to the lines of business LoB and the accident years AY. We start by simulating (Vl)1≤l≤4 according to

(Vl)1≤l≤4 ∼ Multinomial (V, (pl)1≤l≤4) .

To determine the distribution of the claims among the 12 accident years within each line of
business l = 1, . . . , 4, we simulate (X(l)

j )1≤l≤4,2≤j≤12 from a normal distribution according to

X(l)
j

i.i.d.∼ N (rl , r2
l ).

Then, we define the weights W(l)
1 = 1 and

W(l)
j = W(l)

j−1 exp
{

X(l)
j

}
,

for all l = 1, . . . , 4 and j = 2, . . . , 12. Finally, we set

Vl,j = Vl
W(l)

j

∑12
j′=1 W(l)

j′

,

for all l = 1, . . . , 4 and j = 1, . . . , 12, to be the expected number of claims in line of business l with
accident year j. Conditionally given V = (V1,1, V1,2, . . . , V4,12), we simulate the number of claims Nl,j
in line of business l with accident year j from a Poisson distribution according to

Nl,j | V
ind.∼ Poi(Vl,j),

for all l = 1, . . . , 4 and j = 1, . . . , 12. Note that we have E[∑12
j=1 Nl,j] = Vpl , which justifies the above

modeling choices.
After having simulated the number of claims Nl,j for each line of business l and accident year j,

we need to establish these claims with the remaining feature components cc, AQ, age and inj_part.
This is achieved by choosing a multivariate distribution having a Gaussian copula and appropriate
marginal densities. These densities and the covariance parameters of the Gaussian copula have
been estimated from the real data. For the explicit parametrization, we refer to the R-function
Feature.Generation in our simulation package.

Appendix C. Sensitivities of Selected Neural Networks

In this final appendix we consider 11 selected neural networks of our simulation machine and
present the impact on the response variable of the respective most influential features. For each neural
network considered, we use the corresponding calibration data set, fix a feature component—e.g.,
the accident quarter AQ—and vary its value over its entire domain—e.g., {1, . . . , 4} for the accident
quarter AQ—to analyze the sensitivities in this feature component.

In Figure A5 we analyze the reporting delay T as a function of the features AQ, age and inj_part.
Not surprisingly, the accident quarter has the biggest influence, because a claim occurring in December
is likely to be reported only in the next accounting year.
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Figure A5. Reporting delay T w.r.t. the features (a) AQ; (b) age and (c) inj_part.

Figure A6 tells us that claims in lines of business one and four almost always have a payment.
In contrast, we expect only roughly half of the claims in lines of business two and three to have
a payment. Furthermore, the claims code cc causes some variation in the probability of having
a payment, and claims with either a small or a large reporting delay T have a higher probability of
having a payment than claims with a medium reporting delay.
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Figure A6. Payment indicator Z w.r.t. the features (a) LoB; (b) cc and (c) reporting delay T.

Recall that in determining the number of payments K, we use two neural networks, where in the
first one we model whether we have K = 1 or K > 1 payments. According to Figure A7, claims that
occur later in a year tend to have a higher probability of having more than one payment. The same
holds true with increasing age of the injured. In passing from reporting delay T = 0 to T = 1,
the probability of having only one payment increases. But then we observe a sinus curve shape in that
probability as a function of T.

The second neural network used to determine the number of payments K models the distribution
of K, conditioned on K > 1. As we see in Figure A8, claims in line of business two tend to have more
payments than claims in other lines of business, and both inj_part and reporting delay T heavily
influence the number of payments.
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Figure A7. Indicator whether we have K = 1 or K > 1 payments w.r.t. the features (a) AQ; (b) age and
(c) reporting delay T.
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Figure A8. Conditional distribution of the number of payments K, given K > 1, w.r.t. the features
(a) LoB; (b) inj_part and (c) reporting delay T.

In Figure A9 we present sensitivities for the expected total individual claim size Y on the log scale.
The main drivers here are the line of business LoB and the number of payments K.
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Figure A9. Total individual claim size Y (on log scale) w.r.t. the features (a) LoB; (b) reporting delay T
and (c) number of payments K.
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Figure A10 tells us that claims in lines of business one and four almost never have a recovery.
Moreover, the probability of having at least one recovery payment first increases with the number
of payments K but then slightly decreases again. Finally, up to 50% of the claims with a small total
individual claim size Y (of less than 10 CHF) have a recovery. This also comprises claims whose
recovery is almost equal to the total gross claim amount, leading to a small net claim size. In general,
the higher the total individual claim size, the less likely are recovery payments.
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Figure A10. Number of recovery payments K− w.r.t. the features (a) LoB; (b) number of payments K
and (c) total individual claim size Y.

According to Figure A11, the total individual recovery Y− is substantially higher for claims in
lines of business two and three, compared to claims in lines of business one and four. Furthermore,
if we have a recovery, then the higher the number of payments K and the total individual claim
size Y, the higher also the recovery, where the increase w.r.t. the number of payments is decisively
more pronounced.
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Figure A11. Total individual recovery Y− w.r.t. the features (a) LoB; (b) number of payments K and
(c) total individual claim size Y.

In determining the payment delay S for claims with exactly one payment, we use two neural
networks. In the first one, we model whether S = 0 or S > 0, and in the second one, we consider
the conditional distribution of S, given S > 0. Here we only present sensitivities for the first neural
network. We observe, see Figure A12, that the probability of a payment delay equal to zero decreases
with increasing accident quarter AQ and increasing total individual claim size Y. In particular, claims
that occur in the last quarter of a year have a considerably higher probability of having a payment
delay. This might be explained by claims for which the short time lag between the accident date and
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the end of the year only suffices for claims reporting but not for claims payments, leading to a payment
delay. Finally, claims with a reporting delay T > 0 almost never have an additional payment delay.
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Figure A12. Indicator whether we have payment delay S = 0 or S > 0 in the case of K = 1 payment
w.r.t. the features (a) AQ; (b) reporting delay T and (c) total individual claim size Y.

As a representative of the neural networks that calculate the proportions with which the total
gross claim amount Y + Y− is distributed among the K+ positive payments, we choose the one for
K+ = 6. According to Figure A13, we see some monotonicity, but apart from that these proportions
do not vary considerably. For claims which occur early during a year or have a high reporting delay
T or a comparably small total individual claim size Y, the biggest proportion of the total gross claim
amount is paid in the first (positive) payment.
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Figure A13. Proportions P(1), . . . , P(6) of the total gross claim amount Y + Y− paid in the K+ = 6
positive payments w.r.t. the features (a) AQ; (b) reporting delay T and (c) total individual claim size Y.

According to Figure A14, in the case of K− = 2 recovery payments, the proportion P− of the total
individual recovery Y− that is paid in the first recovery payment varies substantially for the different
values of the features cc and inj_part. We also observe that the higher the total individual recovery,
the higher the proportion paid in the first recovery.



Risks 2018, 6, 29 31 of 32

0.
2

0.
4

0.
6

0.
8

1.
0

first recovery proportion

claims code (cc)

pr
op

or
tio

n

1 8 15 23 31 40 48

(a)
0.

2
0.

4
0.

6
0.

8
1.

0

first recovery proportion

injured part (inj_part)
pr

op
or

tio
n

10 20 30 37 50 60 71

(b)

0.
2

0.
4

0.
6

0.
8

1.
0

first recovery proportion

total individual recovery (Y−)

pr
op

or
tio

n

1 10 100 10,000

(c)

Figure A14. Proportion P− of the total individual recovery Y− paid in the first recovery payment in
the case of K− = 2 recovery payments w.r.t. the features (a) cc; (b) inj_part and (c) total individual
recovery Y−.

In Figure A15 we see that claims in lines of business one and four have a higher re-opening
probability than claims in lines of business two and three. Moreover, the higher the reporting delay
T of a claim, the lower the rate of reopening. Finally, the probability of re-opening heavily depends
on the cash flow. In order to not overload the plot, we only show sensitivities w.r.t. the payments
C(0), C(1), C(2), C(3), C(8), C(10). Recall that for this neural network, the yearly payments are coded with
the values − 1

2 , 0 and 1
2 , see (22). Summarizing, one can say that if we have a payment after the first

development year, then the probability of re-opening is quite high.

0.
0

0.
2

0.
4

0.
6

re−opening indicator

line of business (LoB)

pr
ob

ab
ili

ty
 o

f r
e−

op
en

in
g

1 2 3 4

(a)

0.
0

0.
2

0.
4

0.
6

re−opening indicator

reporting delay (T)

pr
ob

ab
ili

ty
 o

f r
e−

op
en

in
g

0 2 4 6 8 10

(b)

1 1 1

0.
0

0.
2

0.
4

0.
6

re−opening indicator

payments (C0,C1,C2,C3,C8,C10)

pr
ob

ab
ili

ty
 o

f r
e−

op
en

in
g

2

2

2

3

3
3

4

4 4

5

5

5

6

6

6

1
2

3
4

5
6

C0
C1

C2
C3

C8
C10

−0.5 0 0.5

(c)

Figure A15. Re-opening indicator V w.r.t. the features (a) LoB; (b) reporting delay T and (c) yearly
payments C(0), C(1), C(2), C(3), C(8), C(10).
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