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Abstract: The direction of price movements are analysed under an ordered probit framework,
recognising the importance of accounting for discreteness in price changes. By extending the work of
Hausman et al. (1972) and Yang and Parwada (2012),This paper focuses on improving the forecast
performance of the model while infusing a more practical perspective by enhancing flexibility. This is
achieved by extending the existing framework to generate short term multi period ahead forecasts
for better decision making, whilst considering the serial dependence structure. This approach
enhances the flexibility and adaptability of the model to future price changes, particularly targeting
risk minimisation. Empirical evidence is provided, based on seven stocks listed on the Australian
Securities Exchange (ASX). The prediction success varies between 78 and 91 per cent for in-sample
and out-of-sample forecasts for both the short term and long term.
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1. Introduction

There has been a significant growth in market micro-structure research, which is concerned with the
study of the underlying process that translates the latent demands of investors into transaction prices and
volumes (Madhavan 2000). The study of the time series properties of security prices has been central to
market micro-structure research for many years. Madhavan (2000) asserts that frictions and departures from
symmetric information do affect the trading process. Furthermore, insights into future price trends provides
additional information useful in strategy formulation. As per financial economic theory, the asset returns
cannot be easily predicted by employing statistical or other techniques and incorporating publicly available
information. Nevertheless, recent literature bears evidence of successful forecasting of asset return signs;
see for example, Breen et al. (1989); Leung et al. (2000); White (2000); Pesaran and Timmermann (2004)
and Cheung et al. (2005). While having mean independence, it is statistically probable to have sign and
volatility dependence in asset returns (Christoffersen and Diebold 2006).

The knowledge of the future direction of the stock price movement provides valuable guidance
in developing profitable trading strategies. However, there is no clear consensus on the stochastic
behaviour of prices or on the major factors determining the change in prices. In this context, theories
of information asymmetry stating that private information deduced from trading causes market price
fluctuations (See Kyle 1985) became important propositions. Consequently, many market attributes
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have been employed as substitutes for information in the study of security price behaviour. Price
changes occur in discrete increments, which are denoted in multiples of ticks. It is well recognised today
that failing to treat the price process as a discrete series could adversely affect prediction results. Initially
the modeling of discrete transaction prices was done by Gottlieb and Kalay (1985). The generalisation
and variation of such a modeling framework can be found in Ball (1988); Glosten and Harris (1988);
Harris (1990); Dravid (1991) and Hasbrouck (1999). Most often, earlier studies have treated price
change as a continuous variable, primarily focusing on the unconditional distribution, ignoring the
timing of transactions, which is irregular and random. The “ordered probit model”, which was initially
proposed by Aitchison and Silvey (1957) is a useful model for discrete dependent variables, which can
take only a finite number of values with a natural ordering. Gurland et al. (1960) developed it further
and later it was introduced into the social sciences by McKelvey and Zavoina (1975), which became an
analytical tool in the financial market security price dynamics of micro-structure research. This could
be used to quantify the effects of various factors on stock price movements, whilst accounting for
discreteness in price changes and the irregular spacing of trades.

In an ordered probit analysis of the conditional distribution of price changes, Hausman et al. (1972)
recognised the importance of accounting for discreteness, especially in intraday price movements.
In such fine samples, the extent of price change is limited to a few distinct values, which may not be well
approximated by a continuous state space. Their paper investigated the impact of several explanatory
variables in capturing the transaction price changes. Importantly, the clock-time effect, measured in
terms of duration between two consecutive trades, bid-ask spread, trade size and market-wide or
systematic movements in prices based on a market index on conditional distribution of price changes
were modeled under this framework. In a more recent study, Yang and Parwada (2012) extended the
existing empirical literature on the impact of market attributes on price dynamics, utilising an ordered
probit model. Their study explored the price impact of variables such as market depth and trade
imbalance (also referred to as order imbalance in quote driven markets), in addition to trade size, trade
indicator, bid-ask spread and duration which were found to be significant in similar studies. The model
thus estimated by Yang and Parwada (2012), was able to forecast the direction of price change for about
72% of the cases, on average.

The in-sample and out-of-sample forecasts provided by the authors were based on the observed
values of the regressors in the forecast horizon. However, in generating out-of-sample forecasts beyond
one-step ahead incorporating observed values for regressors is of limited practical use, as they are not
observed priori. Developing multi-step ahead forecasts, at least for a few transactions ahead is much
more beneficial from a practical perspective, for effective decision making. However, such forecasting
evidence under this framework is seemingly absent in the literature. Therefore, in addressing this
shortcoming, this paper introduces a forecasting mechanism to generate forecasts beyond the one-step
ahead level. Towards this end, disaggregated forecasts are generated first, for each of the explanatory
variables for the period concerned. In order to generate forecasts for the regressors included, the serial
dependence structure of each of the variables is investigated and appropriate forecasting models are
fitted. Sign forecasts are subsequently generated, based on those predicted regressor values, rather than
on observed values and the estimated coefficients of the ordered probit model. These prediction results
are compared with those of the existing literature. Through the introduction of dynamic variables into
the forecasting system, the predictive capability of this approach is investigated through a study based
on the stocks of seven major companies listed in the Australian Securities Exchange (ASX).

In summary, the primary motivation of this paper is to introduce a method to enhance the flexibility
and adaptability of the ordered probit model to generate multi-step ahead forecasts of stock price
changes. Identifying and estimating appropriate univariate models for forecasting each explanatory
variable, taking their serial dependence structure into account, towards this endeavour, is the second
motivation. The third motivation is to improve on the results of Yang and Parwada (2012) in model
estimation and forecast accuracy, by reducing noise in the data used and suitably formulating variables.
Therefore, this exercise features the same stocks and almost the same independent variables that were
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employed by Yang and Parwada (2012). We were able to achieve an 88 per cent plus rate of accuracy,
on average, in the out of-sample forecasts of the direction of price changes using observed regressor
values. In addition, more than 91 per cent of in-sample estimates, on average, correctly predicted the
direction of price change. This is in comparison to the 72 per cent achieved by Yang and Parwada (2012).
It is between 78-80 per cent when predictied regressor values were incorporated.

The remainder of the paper is organized as follows. Section 2 provides a review of the ordered
probit model while Section 3 gives a description of the data and the variables used in the analysis.
This section reports the summary statistics for each variable for the chosen stocks and introduces the
relevant models for estimation and forecasting of durations, residuals and regressors. The empirical
evidence is reported in Section 4 including model estimation and diagnostics. The results of the
forecasting exercise for both in-sample and out-of-sample are presented in Section 5 and finally,
the concluding remarks are provided in Section 6.

2. A Review of the Ordered Probit Model

In a sequence of transaction prices, Pt0 , Pt1 , Pt2 , . . . , PtT occurring at times t0, t1, t2, . . . , tT the
resulting price changes multiplied by 100 is represented as an integer multiple of a tick and denoted by
Y1, Y2, . . . , YT , where Yk ≡ {Ptk − Ptk−1} × 100. The ordered probit model analyses discrete dependent
variables with responses that are ordinal but not continuous. Underlying the indexing in such models,
there exists a latent continuous metric and the thresholds partition the real line into a series of different
regions corresponding to these ordinal categories. Therefore, the unobserved latent continuous
variable Y∗ is related to the observed discrete variable Y. It is assumed that the conditional mean of Y∗

is described as a linear combination of observed explanatory variables, X and a disturbance term that
has a Normal distribution.

The ordered probit specification takes the following form:

Y∗k = X′kβ + εk, where εk|Xk ∼ i.n.i.d.N(0, σ2
k ), (1)

where i.n.i.d denotes that the errors are independently but not identically distributed. Xk is a q× 1
vector of predetermined explanatory variables that govern the conditional mean, Y∗k and β is a q× 1
vector of parameters to be estimated. Here, the subscript denotes the transaction time. The observed
price change Yk is related to the latent continuous variable Y∗k according to the following scheme:

Yk =


s1 if Y∗k ∈ A1

s2 if Y∗k ∈ A2
...

...
sm if Y∗k ∈ Am ,

(2)

where the sets Ak are comprised of non overlapping ranges of values, partitioning the continuous state
space of Y∗k and the sj are the corresponding discrete values containing the state space of Yk, which are
called states. Let sj’s be the price change in ticks −2, −1, 0, 1, . . .. Suppose that the threshold values of
A are given as follows: 

A1 ≡ (−∞, α1],
A2 ≡ (α1, α2],
...
Ak ≡ (αk−1, αk],
...
Am ≡ (αm−1, ∞).

(3)
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The number of states, m is kept finite, though in reality price change could take any value in
cents to avoid the explosion of an unknown number of parameters. As per Hausman et al. (1972),
the only requirement in this framework is the conditional independence of the εk’s, where all the serial
dependence would be captured by the regressors. Further, there are no restrictions on the temporal
dependence of the Xk’s. The conditional distribution of Yk , conditioned upon Xk depends on the
partition boundaries and the distributional assumption of εk. The conditional distribution in the case
of Gaussian εk is

P(Yk = si|Xk) = P(X′kβ + εk ∈ Ai|Xk)

=



P(X′kβ + εk ≤ α1|Xk) if i = 1,

P(αi−1 < X′kβ + εk ≤ αi|Xk) if 1 < i < m,

P(αm−1 < X′kβ + εk|Xk) if i = m,

(4)

=



Φ
(

α1−X′k β
σk

)
if i = 1,

Φ
(

αi−X′k β
σk

)
−Φ

(
αi−1−X′k β

σk

)
if 1 < i < m,

1−Φ
(

αm−1−X′k β
σk

)
if i = m,

(5)

where Φ(·) denotes the standard Normal cumulative distribution function. Since the distance between
the conditional mean X′kβ and the partition boundaries determines the probability of any observed
price change, the probabilities of attaining each state, given the conditional mean, could be changed
by shifting the partition boundaries appropriately. The explanatory variables capture the marginal
effects of various economic factors that influence the likelihood of a given state as opposed to another.
Therefore, the ordered probit model determines the empirical relation between the unobservable
continuous state space and the observed discrete state space as a function of the explanatory variables,
Xk, by estimating all the system parameters, including β coefficients, the conditional variance σ2

k and
the partition boundaries α, from the data itself.

Let Uik be an indicator variable, which takes the value 1 if the realisation of the kth observation, Yk
is the ith state si and 0 otherwise. The log likelihood function L for the price changes Y = [Y1, Y2, . . . , YT ],
conditional on the regressors, X = [X1, X2, . . . , XT ], takes the following form:

L(Y|X) = ∑T
k=1

{
U1k.logΦ

(
α1−X′k β

σk

)
+∑m−1

i=2 Uik.log
[
Φ
(

αi−X′k β
σk

)
−Φ

(
αi−1−X′k β

σk

)]
+Umk.log

[
1−Φ

(
αm−1−X′k β

σk

)]} (6)

Hausman et al. (1972) has reparameterised the conditional variance σ2
k based on the time between

trades and lagged spread.

Models for Correlated Errors and Explanatory Variables

As mentioned in the above subsection, models with an appropriate autoregressive structure are
used as forecasting models for the explanatory variables. Autoregressive integrated moving average
(ARIMA) models of order (p,d,q) or ARIMA (p,d,q) models are used tomodel the autocorrelation in a
time series and are used to predict behaviour based on past values alone. However, certain variables
warranted the application of a simple ARIMA type model while others exhibit long range dependence,
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which require autoregressive fractionally integrated moving average (ARFIMA) (p,d,q) type models
to describe their behaviour. On the other hand, forecasts of indicator variables with more than two
categories are based on multinomial logistic regressions, where the responses are nominal categories.
The heteroscedasticity in the residuals is captured by the generalised autoregressive conditional
heteroscedasticity GARCH(p, q) model (Bollerslev 1986), following (Yang and Parwada 2012). A brief
description of each of these models are given in the Appendix.

3. Data, Variables and ACD Model

3.1. Data Description and ACD Model

The relevant data for this analysis was obtained from the Securities Industry Research Centre
of Asia-Pacific (SIRCA) in Australia. The dataset consists of time stamped tick-by-tick trades, to the
nearest millisecond and other information pertaining to trades and quotes for the chosen stocks listed
in the Australian Securities Exchange (ASX). This study is based on a sample of stock prices collected
during a three month period from 16 January 2014 to 15 April 2014. The stocks that were not subjected to
any significant structural change, representing seven major industry sectors, are included in the sample.
The selected stocks are Australian Gas Light Company (AGL), BHP Billiton (BHP), Commonwealth
Bank (CBA), News Corporation (NCP), Telstra (TLS), Westfarmers (WES) and Woodside Petroleum
(WPL) from Utilities, Materials, Financials, Consumer Discretionary, Telecommunication services,
Consumer Staples and Energy sectors respectively. All seven of these stocks are included in the study
by Yang and Parwada (2012), consisting of both liquid and less liquid assets, to minimise sample
selection biases. However, the sampling period and the sample size differ between studies. Two stocks
are not included in this paper due to the absence of transactions during the study period. Intraday
price changes extracted from tick by tick trade data forms the basic time series under consideration.
Overnight price changes are excluded as their properties differ significantly from those of intraday
price changes (See Amihud and Mendelson 1987; Stoll and Whaley 1990). The trading hours of ASX
are from 10.00 a.m. to 4.00 p.m. Due to the possibility of contamination of the trading process by
including opening and closing trades (Engle and Russell 1998), the trades during the initial 30 min of
opening and the final 30 min prior to closing are disregarded.

The following information with respect to each transaction is collected for each stock: Trade
data comprising of date, time, transaction price and trade size, quote data such as bid price and
ask price, market depth data comprising of volume at the highest bid price (best bid) and volume
at the lowest ask price (best ask) and market index (ASX200). HFD generally contains erroneous
transactions and outliers that do not correspond to plausible market activity. This is mainly attributed
to the high velocity of transactions (Falkenberry 2002). Among others Hansen and Lunde (2006);
Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009) have paid special attention to the importance
of data cleaning. A rigorous cleaning procedure is used here in obtaining a reliable data series for the
analysis, mainly in accordance with the procedure outlined in Barndorff-Nielsen et al. (2009). To generate a
time series at unique time points, during the instances of simultaneous multiple trades (quotes), the median
transaction price (bid/ask prices) of those trades (quotes) is considered. Correspondingly, cumulative
volume of those trades (quotes) are taken as the trade volume (bid/ask volume).

In the ordered probit model, the dependent variable Yk is the price change between the kth and
k−1th trade multiplied by 100. This records Yk in cents, which however is equivalent to ticks as the tick
size of the ASX for stocks with prices of the chosen magnitude is 1 cent. In this analysis, several different
explanatory variables are included to measure their association with direction of price movement,
following Yang and Parwada (2012). Bid and ask quotes are reported as and when quotes are updated,
which necessitates the matching of quotes to transaction prices. Each transaction price is matched to the
quote reported immediately prior to that transaction. Similarly, aggregate volumes at the best bid and
best ask prices together with the ASX200 index representing the market are also matched in a similar
fashion. The bid-ask spread Sprdk−1, is given in cents, while LBAVk−1 & LBBVk−1 denote the natural
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log of number of shares at best ask and bid prices respectively. LVolk−1 gives the natural logarithm
of (k− 1)th trade size. Conditional duration, ψk−1 and standardised transaction duration εk−1 are
derived estimates by fitting an autoregressive conditional duration model (ACD (1,1)) to diurnally
adjusted duration data. A brief description of the model introduced by Engle and Russell (1998) is
presented in Appendix A. The initial record of each day is disregarded as it is linked to the previous
day’s prices and results in negative durations. TIk−1 denotes the trade indicator of (k− 1)th trade,
which classifies a trade as buyer-initiated, seller-initiated or other type of trade. Trade imbalance
TIBk−1, based on the preceding 30 trades that occurred on the same day (Yang and Parwada 2012)
(YP hereafter) is calculated as follows:

TIBk−1 =
∑30

j=1

(
TI(k−1)−j ×Vol(k−1)−j

)
∑30

j=1 Vol(k−1)−j
(7)

The first 30 observations of trade imbalance (TIB) is set to zero as TIB also depends on the previous
day’s trade imbalance for these transactions.

Market index return RIndxk−1, prevailing immediately prior to transaction k is computed as
given below:

RIndxk−1 = ln(INDXk−1)− ln(INDXk−2) (8)

The sampling period and the use and categorisation of certain variables in this analysis differ from
YP. ASX200 is applied here instead of specific sector indexes as the impact of the performance of the
overall economy tends to be more significant on stock price behaviour than of a specific sector. On the
other hand, the reference point for grouping the price changes is the ‘one tick’ threshold vis a vis the
‘zero’ change. This provides a more meaningful classification of the groups, as the categorisation of
price change is based on a range of values rather than a fixed value for a certain group.

3.2. Sample Statistics

The main characteristics of the chosen variables in the analysis and how those characteristics
differ between stocks could be ascertained from the several summary statistics that are provided in
Table 1. There is considerable variation in the price level among the stocks considered in the sample.
The highest price during this period ranged between AUD 4.96 for TLS and AUD 77.87 for CBA.
The volatility of prices as indicated by the standard deviation of the percentage price change is not
very high, with the TLS recording the highest value of 7.65 per cent. For most other stocks, it is
less than 5 per cent. Average trade volume also records a substantial dispersion between the stocks,
which varied from 161 for NCP and 6983 for TLS during the period. An indication of whether a
transaction is buyer-initiated or seller-initiated is required for the empirical analysis. This measure is
useful in identifying the party most anxious to execute the trade and the actions of whom would be
reflected in terms of the bid/ask spread. The trades fall into these two categories in more or less equal
proportions across stocks and are very similar in value except for TLS. The indeterminate trades form
around 8–18% of trades, while it is 45% for TLS. The absence of asymmetric pressure from the buying
or selling side suggests that there were no events with major news impact that would have resulted in
abnormal trades and returns. This is further highlighted by zero mean returns.

The trading frequency as measured by the average duration between two consecutive trades also
varies across stocks significantly. For more liquid stocks such as BHP, CBA and WES, trades tend to
occur every 5 s or less on average. The other stocks are generally traded within 10 s. However, NCP
is traded every 25 s on average. The observed large dispersions is a characteristic inherent in trade
durations. Next, the estimation of the duration dynamics under an ACD model is considered, since the
expected and standardised durations enter the orderd probit model as two separate variables.

The estimated coefficients of the ACD (1,1) model fitted to diurnally adjusted durations is
presented in Table 2. The multiplicative error component is assumed to follow a Standardised Weibull
distribution. All the coefficients are highly significant for each of the stocks, indicating the dependence
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of the expected duration on its past behaviour. It is straightforward to estimate the conditional
expected durations, ψk utilising the parameter estimates from the ACD model. The diurnal component
was estimated using a cubic spline with knots at each half hour between 10:30 a.m. and 15:30 p.m.
The standardised durations or the unexpected durations, εk are then obtained by dividing the diurnally
adjusted durations by the conditional expected durations, which is an i.i.d. process. The parameter
estimates are based on the conditional maximum likelihood approach, using the standardised Weibull
distribution for εk. The Weibull distribution is a better choice here as opposed to exponential since
the shape parameter is statistically significant and different from unity for all the stocks. Refer to the
Appendix for the corresponding log-likelihood function.

Table 1. Descriptive statistics of the variables considered in the ordered probit model for all the stocks,
for the period from 16 January 2014 to 15 April 2014.

Statistic AGL BHP CBA NCP TLS WES WPL

Price (AUD)

Max price 16.15 39.79 77.87 20.17 5.29 43.93 39.5
Min price 14.71 35.06 72.15 16.92 4.96 40.88 36.54

Price Change (%)

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Std.dev 0.0376 0.0197 0.0124 0.0728 0.0765 0.0181 0.0183

Duration (Seconds)

Mean 9.59 3.51 3.49 24.76 8.04 4.26 5.30
Std.dev 19.01 7.37 7.56 49.91 12.47 9.08 11.08

Trade Volume

Mean 395 710 285 161 6983 281 318
Std.dev 2206 3622 2183 711 39,379 1370 1290

Shares at the Best Bid Price

Mean 4451 5498 1579 877 941,002 1841 1983
Std.dev 5027 6464 2899 1994 603,015 2504 2406

Shares at the Best Ask Price

Mean 4399 5513 1808 977 992,906 1945 2100
Std.dev 5409 7544 5053 1649 642,204 2775 2719

Market Index Returns, ASX200

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Std.dev 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Trade Imbalance

Mean −0.0268 −0.0119 0.0094 −0.0623 0.0094 0.0224 0.0004
Std.dev 0.4653 0.4590 0.4401 0.4863 0.5082 0.4564 0.4446

Trade Direction (%)

Buyer initiated 40.9 41.0 44.7 43.9 27.0 44.2 44.6
Seller initiated 41.6 41.0 42.2 48.1 27.6 40.6 41.9

The standardised durations are deemed weakly exogenous in the case of Australian stocks,
according to the regression results of YP. They have regressed the standardised residuals on trades,
volumes and returns for each of the stocks, which included the seven stocks of our study. On the
other hand, both these studies consider the lagged measures of duration, addressing the problem
of endogeneity to some extent. Furthermore, Dufour and Engle (2000) have treated durations as a
strongly exogeneous variable in assessing the role of time on price dynamics.
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The volumes at the best bid and ask prices prevailing prior to a transaction gives a measure of
market depth. TLS has the deepest market, minimising the price impact cost for its trades. The trade
imbalance (TIB) attempts to capture the cumulative demand side and supply side discrepancy over the
last 30 trades. TIB < 0, if seller-initiated cumulative trading volume exceeded the buyer-initiated
cumulative trading volume, during the immediately preceeding 30 trades prior to the current
transaction. On the other hand, TIB > 0, if the buyer-initiated volume was more than the seller-initiated
volume. The zero indicates either all indeterminate trades or an exact matching of selling and buying
volumes during the period. In any case, zeros are very rare. Overall, there is a insignificant trade
imbalance across all stocks. However, three stocks have a negative sign implying the selling volume
marginally exceeded the buying volume while the other four stocks have a positive sign indicating the
reverse phenomenon.

Table 2. The coefficient estimates of an ACD (1,1) model with Standardised Weibull errors fitted for the
stocks. The conditional expected duration where xk is the adjusted duration. α is the shape parameter
of the Weibull distribution.

Parameter AGL BHP CBA NCP TLS WES WPL

α0
0.3177 0.0024 0.3178 0.0348 0.0291 0.3349 0.0030

(21.92 *) (10.16 *) (32.47 *) (10.03 *) (28.82 *) (23.33 *) (6.65 *)

α1
0.3113 0.0110 0.2195 0.1476 0.2180 0.1652 0.0201

(27.91 *) (20.61 *) (41.03 *) (15.53 *) (59.84 *) (29.71 *) (18.48 *)

β
0.4764 0.9865 0.4949 0.8524 0.7820 0.5220 0.9785

(26.80 *) (1371.66 *) (40.08 *) (89.69 *) (214.64 *) (30.26 *) (747.16 *)

α
0.2523 0.4295 0.4258 0.4369 0.5756 0.4194 0.4046

(427.88 *) (726.73 *) (731.49 *) (255.94 *) (476.06 *) (672.39 *) (582.99 *)

* Significant at 99% level.

It is noticed that most of the variables exhibit serial correlation, with variables such as LVol, LBBV,
LBAV, Sprd, TI and TIB showing strong serial dependence, for all stocks. For illustration, Figures 1–3
present the time series behaviour together with the acf and pacf for a few selected variables for a
random stock, AGL.
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Figure 1. Time series, acf and pacf for LVol of AGL.
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Figure 2. Time series, acf and pacf for spread of AGL. ×104
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Figure 3. Time series, acf and pacf for trade indicator of AGL.

A novel feature of this study is that unlike in YP’s study, we incorporate this feature by developing
forecasting models for each explanatory variable based on the serial dependence structure. Therefore,
Section 2 reports some useful models for capturing this feature in Xk’s and σ2

k , while details of the
forecasting exercise is discussed later in Section 5.1.
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4. Empirical Evidence

The model estimation for the direction of price change is carried out for these stocks for the period
16 January to 14 April 2014. Out of sample forecasts are generated for the last day of the sample,
on 15 April 2014 from 10:30 a.m. to 15:30 p.m.

Yk denotes the price changes between the k and (k− 1)th trades in terms of integer multiples
of ticks. The price change here is representative of the change in the observed transaction prices.
The number of states that could be assumed by the observed price changes Yk is set to 3, under the
ordered probit framework. Price increases of at least 1 tick being grouped as +1, price decreases
of at least 1 tick as −1, while price changes falling in (−1,1), taking the value 0. The choice of m is
based on achieving the balance between price resolution and minimising states with zero or very
few observations. The decision to restrict m to 3 was mainly influenced by the fact that the observed
price changes exceeding ±2 ticks was below 0.05% for most stocks. The distribution of observed price
changes in terms of ticks, over the transactions, is presented in Figure 4. Prices tend to remain stable in
more than 80 per cent of the transactions, in general. For the rest of the time, rises and falls are more or
less equally likely.
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Figure 4. Distribution of the number of trades over the three categories of price change in terms of
ticks, for all stocks during the period.

4.1. Ordered Probit Model Estimation

Prior to model estimation, all variables considered in the analysis was tested for stationarity
using an Augmented Dickey-Fuller (ADF) test, which confirmed the same, which is in agreement with
previous findings. The Ordered probit model specification depends on the underlying distribution of
the price series. The model can assume any suitable arbitrary multinomial distribution, by shifting the
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partition boundaries accordingly. However, the assumption of Gaussianity here has no major impact in
deriving the state probabilities, though it is relatively easier to capture conditional heteroscedasticity.

The dependent variable in Equation (11) below is the price change in ticks. (An explanation
of the latent continuous version of the price change was given in Section 2). The variables used in
Equation (11) were described in Section 3. Just to recap, the first three variables on the R.H.S. of
Equation (11) are three lags of the dependent variable. TIk−1 is the trade indicator; which classifies
a trade as a buyer-initiated, seller-initiated or other type of trade. SPRDk−1, is the Bid-Ask spread,
measured in cents. LVolk−1 gives the natural logarithm of (k− 1)th trade size. LBAVk−1 and LBABV
denote the natural log of number of shares at best ask and bid prices respectively. TIBk−1 is the
trade imbalance, based on the preceding 30 trades on the same day. Conditional duration, ψk−1 and
standardised transaction duration εk−1 are derived estimates by fitting an autoregressive conditional
duration model (ACD (1,1)) to diurnally adjusted duration data. The ACD (1,1) model is described in
the appendix. RIndxk−1, prevailing immediately prior to transaction k, is calculated as the continuously
compounded return on the ASX 200.

The mean equation under the ordered probit specification takes the following form:

X
′
kβ = β1Yk−1 + β2Yk−2 + β3Yk−3 + β4TIk−1 + β5Sprdk−1 + β6LVolk−1

+β7LBAVk−1 + β8LBBVk−1 + β9TIBk−1 + β10TIk−1 ∗ ψk−1
+β11TIk−1 ∗ εk−1 + β12RIndxk−1

(9)

The maximum likelihood estimates of the ordered probit model on price changes were computed
based on BHHH algorithm of Berndt et al. (1974). The estimated coefficients of the above ordered
probit system are presented in Table 3 while the corresponding z statistics are recorded within
parentheses. Most of the regressors are highly significant to the model for all seven stocks, based on
the asymptotically normally distributed z statistic (Hausman et al. 1972). The pseudo-R2 values
given at the bottom of the table show an improvement, irrespective of the number of observations,
in comparison to those of YP. A relatively higher number of significant coefficients across all stocks is
another improvement.

The first three lags of the dependent variable comes under scrutiny, first. All the lags are significant
with a 95% confidence level, with a negative coefficient for each stock. This inverse relationship with
past price changes is consistent with the existing literature, indicating a reversal in the price compared
to its past changes. Consider a one tick rise in price over the last three trades in the case of AGL,
for example, keeping the other variables constant. The subsequent fall in the conditional mean (Y∗k )
would be 3.9448, which is less than the lower threshold, resulting in −1 for Yk. The coefficients of
the traditional variables such as the bid ask spread (Sprd), trade volume (LVol) and the market index
returns are significant for all stocks but one, in each case. The Sprd and LVol has a positive impact on
the price change across all stocks. The market index returns, based on the ASX200, as a measure of the
overall economy, generally has a significant positive impact on price changes. Overall, this is in line
with the conventional wisdom. Meanwhile, the coefficients of the trade indicator, the number of shares
at the best bid price and the number of shares at the best ask price are significant for all stocks.

The trade imbalance (TIB) between buyers and sellers has a positive impact on price change and
is statistically significant across all stocks. This phenomenon agrees well with the general inference
that more buyer-initiated trades tend to exert pressure from the demand-side, resulting in a subsequent
rise in price and vice versa. The impact of the time duration between trades is measured separately via
the two constituent components of an ACD model. One is the conditional expected duration (signed),
TIk−1 ∗ ψk−1 and the other isthe standardised innovations (signed), also referred to as unexpected
durations, TIk−1 ∗ εk−1. The signed conditional expected duration is significant for all stocks while
the unexpected component is significant for all but one. This highlights the informational impact
of time between trades in price formation. The interpretation of these measures of duration is not
straightforward as they are comprised of two components. The kind of impact those variables have
on price change will depend on the significance of the trade initiation as well as on the durations.
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One striking feature is that either both the components have a positive impact or both have a negative
impact for a given stock. Wald tests were performed to investigate the significance of duration on price
changes. The tests were conducted under the null hypotheses in which either the coefficient of the
conditional duration is zero or the coefficient of standardised duration is zero or both are jointly zero.
The resultant F statistics suggest that both the components of duration are significant for all the stocks
considered. The test results are not presented here for the sake of brevity.

The partition boundaries produced below the coefficient estimates determine the partition points
of the direction of change in the latent variable. There are three possible directions the price change
can take in terms of ticks, Yk ≤ −1, Yk = 0 and Yk ≥ +1. By comparing these boundary values with
the estimated continuous variable Y∗k , values −1, 0 or +1 are assigned to the observed variable Ŷk.

Table 3. Coefficient estimates βi, of ordered probit model on direction of price change based on 12
explanatory variables for the selected stocks. The sampling period was 16 January 2014 to 15 January
2014. Z statistics are given within parentheses for each parameter.

Parameter AGL BHP CBA NCP TLS WES WPL

Obs. 114,318 316,547 317,761 41,085 137,323 260,954 205,651

Yk−1
−2.2281 −1.0240 −0.7915 −0.7637 −1.7745 −1.4750 −1.6261

(−72.21 *) (−130.16 *) (−119.64 *) (−54.32 *) (−53.16 *) (−143.59 *) (−113.69 *)

Yk−2
−1.1262 −0.3614 −0.3247 −0.2554 −0.9070 −0.7413 −0.8578

(−37.38 *) (−50.67 *) (−52.35 *) (−18.92 *) (−21.15 *) (−72.42 *) (−62.50 *)

Yk−3
−0.5905 −0.1142 −0.1153 −0.1405 −0.4252 −0.3533 −0.4137

(−19.79 *) (−16.65 *) (−19.56 *) (−10.50 *) (−12.21 *) (−33.69 *) (−30.20 *)

TI 0.9572 1.2730 −0.2832 −0.1256 −1.2319 0.8899 0.9831
(67.69 *) (285.32*) (−88.07 *) (−8.95 *) (−38.61 *) (165.00 *) (146.16 *)

Sprd 0.0479 0.0342 0.0078 0.0117 0.0703 0.0238 0.0261
(3.16 *) (6.71 *) (2.60 *) (1.85 **) (1.21) (0.95) (4.83 *)

LVol 0.0047 0.0090 0.0050 0.0167 0.0118 0.0060 0.0043
(1.16) (6.13 *) (3.67 *) (4.92 *) (3.04 *) (3.03 *) (1.85 **)

LBAV 0.0801 0.1019 0.0337 −0.0312 −0.0515 0.0398 0.0607
(12.36 *) (48.39 *) (20.31 *) (−6.94 *) (−4.76 *) (15.25 *) (19.05 *)

LBBV −0.0760 −0.1097 −0.0397 0.0252 0.0425 −0.0575 −0.0744
(−12.03 *) (−53.04 *) (−23.81 *) (5.66 *) (3.32 *) (−21.15 *) (−21.51 *)

TIB 0.0488 0.0647 0.0929 0.0457 0.1916 0.0986 0.0696
(2.52 *) (9.70 *) (15.89 *) (3.04 *) (9.47 *) (11.50 *) (6.77 *)

TI ∗ ψ
−0.2246 −0.3764 0.7304 0.0353 −0.0546 −0.2506 −0.2631

(−31.79 *) (−119.95 *) (203.38 *) (4.24 *) (−3.91 *) (−62.24 *) (−56.41 *)

TI ∗ ε
−0.0535 −0.0608 0.0706 0.0013 −0.0213 −0.0314 −0.0328

(−11.51 *) (−37.49 *) (55.74 *) (0.40) (−4.01 *) (−14.58 *) (−12.73 *)

RIndx 262.0988 110.1514 194.2312 307.72 −107.5324 342.8466 139.1455
(3.30 *) (2.47 *) (3.71 *) (7.49 *) (−0.87) (6.52 *) (2.72 *)

α1 −2.8628 −2.1469 −1.6552 −1.5723 −4.5651 −2.3399 −2.4639
α2 2.9999 2.1869 1.6699 1.7676 5.1375 2.2403 2.3768

Pseudo− R2 0.3203 0.3339 0.2226 0.2068 0.3223 0.2589 0.2833

* Significant at 95% level. ** Significant at 90% level.

In parameterising the conditional variance, an ARMA specification was used following YP.
Therefore, a GARCH (p, q) specification including up to two lags was used on the residual series of the
ordered probit model across all stocks. The orders p, q were selected on the basis of Akaike information
criterion (AIC). The selected parameter estimates of the fitted GARCH models are reported in Table 4.
Only some of the parameters appear to be significant with less persistence in conditional volatility for
some stocks.
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Table 4. Coefficient estimates of GARCH parameters of the conditional variance of the residuals for all
stocks. ω, constant; κ, GARCH parameters; δ, ARCH parameters

Parameter AGL BHP CBA NCP TLS WES WPL

Obs. 114,318 316,547 317,761 41,085 137,323 260,954 205,651

ω
0.4081 0.0468 0.0022 0.0598 0.0204 0.3242 0.3282

(0.3419) (0.5782) (0.4748) (0.3415) (0.1226) (0.5995) (0.4998)

κ1
0.3194 0.3803 0.9723 0.8255 0.9175 0.2445 0.2406

(0.2182) (0.3205) (46.8638) (2.4207) (2.9561) (0.2668) (0.2209)

κ2
0.5157 0.2045 0.2172

(0.4516) (0.2272) (0.2019)

δ1
0.2523 0.0429 0.0244 0.0873 0.0615 0.1735 0.1660

(0.6870) (0.9682) (1.4103) (0.6766) (0.0.2994) (1.3347) (1.1188)

4.2. Price Impact of a Trade

Price impact measures the effect of a current trade of a given volume on the conditional
distribution of the subsequent price movement. In order to derive this, Xkβ has to be conditioned
on trade size and other relevant explanatory variables. The volumes, durations and the spread were
kept at their median values while the index was fixed at 0.001 whereas trade indicator and trade
imbalance were kept at zero to minimise any bias. It is observed that the coefficients of the three lags
of Yk are not identical, implying path dependence of the conditional distribution of price changes
(Hausman et al. 1972). Consequently, the conditioning has to be based on a particular sequence of
price changes as well, as a change in the order will affect the final result. These conditioning values of
Xk’s specify the market conditions under which the price impact is to be evaluated.

The conditional probabilities were estimated under five scenarios of path dependence keeping the
other quantities at the specified values. These are falling prices (−1/−1/−1), rising prices (1/1/1),
constant prices (0/0/0) and alternative price changes, (−1/+1/−1) and (+1/−1/+1). Figures 5 and 6
exhibit the plots of estimated probabilities under the first three scenarios for all the seven stocks. The shifts
in the distribution are clearly evident for the first two cases as against the third case of constant prices.
Under the falling price scenario, the shift is more towards the right while for the rising price scenario, it is
more towards the left indicating an increased chance of price reversal after three consecutive rises or falls.
In the case of alternating prices it was revealed that prices tend to remain stable in the subsequent trade.
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Figure 5. Distribution of estimated probabilities of direction of price change conditioned on constant,
increasing and decreasing past price changes.
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Figure 6. Distribution of estimated probabilities of direction of price change conditioned on constant,
increasing and decreasing past price changes.

4.3. Diagnostics

A well specified ordinary least squares (OLS) regression would exhibit little serial correlation in
the residuals. A similar kind of test could be performed on the generalised residuals in the case of
ordered probit to test its validity, as it is not possible to obtain residuals directly (Hausman et al. 1972).
Table 5 contains the sample cross-correlation coefficients of generalised residuals with the lagged
generalised fitted values, Ŷk−j, computed up to 12 lags. Under the null hypothesis of no serial
correlation, the theoretical cross-correlation coefficients should be zero or close to zero. The reported
values are quite small, varying in the range from −0.01 to 6.19 × 10−6.

Table 5. Cross-autocorrelation coefficents v̂j, j = 1, . . . , 12 of generalised residuals with lagged
generalised fitted price changes.

Parameter AGL BHP CBA NCP TLS WES WPL

v̂1 −0.0025 −0.0002 −0.0015 −0.0004 0.0004 −0.0015 −0.0004
v̂2 −0.0057 0.0012 −0.0015 −0.0002 −0.0012 −0.0003 0.0009
v̂3 −0.0103 −0.0005 −0.0016 0.0008 −0.0008 0.0010 0.0015
v̂4 −0.0058 6.19 × 10−6 −0.0018 −0.0029 −0.0028 −0.0004 0.0013
v̂5 −0.0045 0.0006 −0.0018 −0.0022 −0.0039 0.0005 −0.0017
v̂6 −0.0056 −0.0001 −0.0020 −0.0025 0.0016 0.0031 0.0018
v̂7 0.0009 −0.0008 −0.0018 0.0002 −0.0015 0.0034 0.0001
v̂8 0.0029 0.0001 −0.0017 0.0043 −0.0039 0.0010 0.0003
v̂9 0.0001 −7.76 × 10−5 −0.0017 0.0057 −0.0023 0.0036 −0.0023
v̂10 0.0047 0.0003 −0.0015 0.0039 −0.0021 0.0030 0.0042
v̂11 0.0076 0.0020 −0.0013 0.0025 −0.0033 0.0009 0.0017
v̂12 0.0011 0.0014 −0.0011 0.0014 −0.0041 0.0024 −0.0002

5. Forecasting the Direction of Price Change

The forecasting performance of the ordered probit model fitted to the stocks is investigated.
The tests of in-sample and out of-sample forecasts provide some basis to gauge the model’s ability to
accurately forecast the future direction of price changes. Forecasts are generated under three scenarios.
In-sample probability estimates are based on the last week of the training sample from 8 April to
14 April 2014. Meanwhile, out-of-sample forecasts are based on the final day of the data series, 15 April.
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Only one day is considered for the out-of-sample performance as it is not feasible to project price
changes beyond one day with any degree of accuracy as a normal trading day contains more than 1000
transactions for all the stocks, with the exception of NCP which had only 417. Out-of-sample forecasts
are computed in two ways. One is one-step ahead forecasts based on the observed, recorded values of
the regressors and the other is the multi-step ahead, using their predicted values. The next subsection
discusses the forecast generation under the second scenario in more detail. The commonly observed
measures of forecast performance are not so relevant in this case, since the dependent variable is
categorical. However, some measures such as root mean square error (RMSE) and mean absolute
deviation (MAD) were calculated for both in-sample and out-of-sample forecasts, though they are not
reported here for the sake of brevity.

5.1. Out-of-Sample Multi-Step Ahead Forecasts with Disaggregated Predictions of Individual
Explanatory Variables

In real life, the values of the regressors are not observed priori, to forecast at least a few transactions
ahead. Unlike in YP’s study this paper develops out-of-sample multi-step ahead forecasts based on
disaggregated predictions of the regressors. Under this scenario, multi-step ahead forecasts are
generated for the entire forecast horizon, based on the estimated models, as well as 100-step ahead
rolling basis. The rolling forecasts of price change are based on similar forecasts of explanatory
variables. Towards this end, we first predict the future values of the regressors based on models that
are fitted to capture the autoregressive behaviour of each variable in the sample. Under this setup,
forecasts of price change are derived for the estimated transactions occurring on the last day of the
series, 15 April 2014. The relevant models are fitted after a careful inspection of the autocorrelation
function (acf) and the partial autocorrelation function (pacf) of the individual series, as discussed
in Section 2. The model selection among several competing models is based on the AIC for a given
regressor. In most instances, the time series of LVol shows a hyperbolic decay in their acfs and pacfs,
similar to Figure 1. Therefore, an ARFIMA type model is the preferred choice for LVol. The fractional
differencing parameter, d is always within the range of 0 to 0.5, indicating the presence of long memory.
On the other hand, most other variables such as LBBV, LBAV, TIB and Sprd have slow decaying
autocorrelations and partial autocorrelations, with the majority falling short of a hyperbola. Figure 2
gives a general perception on the behaviour observed in these variables. For these regressors, an ARMA
type model suffices for most stocks, in general. Forecasts of trade indicator are based on a multinomial
logistic regression on LBAV, LBBV, lags of Y and lags of TI, as the common contenders for the
explanatory variables. Parameter estimates of predictive models for selected variables are illustrated
in Tables 6 and 7 for the stock, AGL. The expected and unexpected durations are forecasted by the
estimated ACD model.

Table 6. Coefficient estimates of autoregressive model parameters fitted to selected independent
variables. The t statistics are given within parentheses. Illustrative examples include a long memory
and a short memory model for LVol and Sprd for the stock AGL. d, long memory parameter; φ,
AR parameters; θ, MA parameters.

Parameter LVol Spread

(ARFIMA) (ARMA)

c 0.0030 (7.30)
d 0.1867 (68.50)

φ1 0.0082 (15.72) 1.7555 (160.732)
φ2 −0.7581 (−71.06)
θ1 −0.0079 (−35.59) −1.3455 (−123.55)
θ2 0.2774 (41.16)
θ3 0.0621 (15.35)
θ4 0.0136 (3.67)
θ5 0.0052 (1.80)
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Table 7. Coefficient estimates of multinomial logistic regression model parameters fitted to Trade
indicator (TI) of AGL. The base category is 1. Z statistics are given in parentheses.

Independent Category

Variable −1 0

c 0.1449 (2.63) −1.9155 (−26.87)
dpk−1 0.2095 (5.08) 0.1128 (1.98)

lbbvk−1 −0.3146 (−60.57) −0.0746 (−10.41)
lbavk−1 0.3001 (60.42) 0.2302 (35.96)
TIk−1 −0.9664 (−119.26) −0.4632 (−42.96)

5.2. Forecast Performance of the Ordered Probit Model

The basic test of forecast errors is mainly based on the number of correct forecasts as a percentage
of total forecasts. The fitted directions of price change, Ŷk, based on the estimated coefficients are
compared with their actual counterparts for each transaction in the forecasting sample. The number
of exact tallies provide the number of correct forecasts. The in-sample forecast results illustrated in
Table 8 reports a 91% accuracy, which is a very high percentage, by any means, vouching for the
significant forecasting ability of the model. In comparison, YP achieved a percentage of 72. On the other
hand, out-of sample results are provided in Table 9. For one-step ahead forecasts based on observed
regressor values, the direction could be accurately predicted 88 per cent of the time, on average, across
all stocks. The percentage achieved by YP again is 72 per cent. Meanwhile, the performance of the
multi-step ahead forecasts based on the fitted regressor values is not as striking as in the other two
cases, as expected. Notwithstanding, percentages of 78 and 85, on average, are highly noteworthy and
are still higher than the 72 per cent of YP. The comparatively dismal performance of TLS under the first
scenario given in panel 2 (a) of Table 9 may have been influenced by a relatively small number of price
changes recorded during the period. However, the rolling forecasts show a remarkable improvement.
The ex-post forecast of this stock is slightly better than the ex-ante forecast, which is quite contrary to
the other stocks. The reverse is observed for five of the other stocks, as anticipated, while for one stock,
it is similar.

The predictions of regressors based on serial correlation structures do not provide very good long
term multi-step ahead forecasts, due to mean reversion. As a result of this, the forecasts of price change
direction, based on those fitted values may also not provide reliable long term forecasts. A single day
is referred to as longterm as the average daily transactions exceed 1000 for most stocks in the sample.
Therefore, under these circumstances, the forecast horizon is restricted to the 100 transactions of the
last day on a rolling basis, which resulted in a much better accuracy percentage of 85, in comparison
to the one incorporating all the transactions of that day. It is worthwhile mentioning that from an
individual stock’s perspective, the short term performance is better than the long term. The worst case
scenario gives around 75 per cent of out-of-sample correct forecasts, whereas it is around 85 per cent
for the in-sample predictions.

Based on predicted price movements, investors can adjust their trading positions accordingly in
formulating trading strategies, risk management, portfolio allocations etc. However, the most risky
position under these forecast scenarios would be the adverse selection (see Yang and Parwada 2012,
for more details). It is where the actual occurrence is the opposite of the predicted price movement,
with possible adverse effects on the investor’s networth. Therefore, it is worthwhile examining the
extent of the possibility of this risk of adverse selection taking place. The percentages of predictions
in the opposite direction for actual rise/fall are given in Tables 8 and 9 for in-sample predictions and
out-of-sample forecasts respectively. Generally, this risk is very small and not more than 1 per cent
across all stocks, except TLS, under all the forecast scenarios. In the case of out-of-sample forecasts,
TLS records a 50 per cent risk of adverse selection, mainly as a result of only two recorded price falls in
the forecast sample. Furthermore, altogether there are only three rises/falls in the price, giving rise to
zero correct classifications for those categories for TLS.
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The predicted conditional probabilities of the three categories of forecast price change Ŷk, −1,
0 and 1 are generated under the ordered probit system for in-sample as well as out-of-sample
forecasts. Ŷk is assigned the value of the category with the highest probability for a given transaction.
These probabilities obtained for the stock, CBA, are illustrated for 100 observations during the
forecast period, in Figures 7 and 8 to represent all the stocks, which show similar behaviour. For a
given observation, the vertical sum of the three conditional probabilities is one. In the case of both
in-sample and out-of-sample scenarios, the probabilities tend to fluctuate. However, for the majority of
observations, no price change category tends to have a probability greater than 50 per cent, in general,
resulting in lower percentages of correct classifications for rises and falls in prices. This does not
indicate a deviation from the real life behavior in prices, with respect to the overall distribution across
the three categories. Nevertheless, this phenomenon highlights a slight over prediction in that category.
A similar pattern of behaviour is observed for the forecasts with predicted regressors as well.

As discussed earlier, most of the trades do not witness heavy movements in prices. Nevertheless,
if a rise/fall in price could be foreseen in advance, investors are in a better position to create profitable
strategies or to manage risk appropriately. Since multi-step ahead predictions of opposite price
movements are rare, a forecast rise/fall would provide useful signals of future price directions.
This, when combined with the knowledge of past price paths, will aid the investor in making a more
informed decision in strategy formulation in his favour, especially towards minimising risk. However,
improving the individual forecasts of the explanatory variables will be beneficial in realising better
predictions of future price movements under this framework.

Table 8. In-sample predictions of direction of price change for the last one week period of the training
sample from 8 April 2014 to 14 April 2014.

Parameter AGL BHP CBA NCP TLS WES WPL

One Week—08/04–14/04

Observations 114,318 316,547 317,761 41,085 137,323 260,954 205,651
accuracy(%) 97.80 86.20 85.11 85.24 98.75 92.19 94.76
−1 40.00 23.79 36.03 25.48 39.29 27.11 38.45
0 99.79 98.67 98.14 98.64 99.65 99.51 99.78
+1 45.40 24.29 35.73 32.01 36.00 33.57 37.09
Actual Forecast No. % No. % No. % No. % No. % No. % No. %
−1 +1 0 0 1 0.05 6 0.32 1 0.42 0 0 0 0 0 0
+1 −1 0 0 0 0 3 0.17 0 0 0 0 0 0 0 0
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Figure 7. In-sample estimated probabilities of direction of price change for 100 observations of CBA.
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Ŷk = 0
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Figure 8. Out of-sample estimated probabilities of direction of price change for 100 observations of
CBA, based on actual regressor values.

Table 9. Out-of sample forecasts of direction of price change for the last day of the sample, 15 April
2014. First panel contains one-step ahead forecasts based on actual explanatory variables and the
second panel, muti-step ahead with predicted variables.

Parameter AGL BHP CBA NCP TLS WES WPL

One-Step Ahead—15/04

Observations 1151 3319 4073 417 1218 2518 3638
accuracy (%) 97.83 85.90 79.65 75.30 99.67 88.28 91.70
−1 35.29 27.40 26.80 21.54 0.00 32.54 32.77
0 99.73 98.47 97.31 96.82 99.92 98.95 99.47
+1 38.89 23.84 26.88 37.68 0.00 38.03 35.53
Actual Forecast No. % No. % No. % No. % No. % No. % No. %
−1 +1 0 0 0 0 6 1.2 0 0 0 0 2 1.2 0 0
+1 −1 0 0 0 0 1 0.2 0 0 0 0 0 0 0 0

Multi-Step Ahead—15/04

(a) All transactions
Observations 1151 3319 4073 417 1218 2518 3638
accuracy (%) 97.74 82.74 74.93 67.87 47.46 87.41 90.07

(b) 100-step ahead
accuracy (%) 97.48 83.25 80.55 74.82 79.97 89.87 92.25
−1 30.77 25.34 21.94 20.00 0.00 23.78 20.43
0 98.93 94.94 99.87 100.00 80.16 99.14 99.88
+1 38.46 29.18 23.72 23.19 0.00 27.45 25.71
Actual Forecast No. % No. % No. % No. % No. % No. % No. %
−1 +1 0 0 2 0.68 3 0.58 0 0 1 50 0 0 0 0
+1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6. Conclusions

The future direction of stock price movements are predicted through the estimation of an ordered
probit model under an empirical setup. The study comprises of intra-day transaction data of seven
stocks representing seven industry sectors, listed on the ASX. The ordered probit specification seems to
adequately capture the price changes. All the explanatory variables are highly significant for the majority
of the stocks. Diagnostics indicate lack of serial correlation in residuals with the implication of the model
providing a good fit. The sequence of trades has an impact on the conditional distribution of price changes,
while the trade size too is important with larger volumes putting more pressure on prices.
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In improving forecast accuracy of the model, our study differs from that of YP in certain respects.
Percentage of success in predicting future direction of price movements is used as a yardstick to
measure the forecasting strength of the model. The success rate of the in-sample predictions is around
91 per cent and out-of sample one-step ahead forecasts happens to be 88 per cent. These percentages
are much higher than the respective percentage of 72 per cent achieved by YP, for both cases. Overall,
our forecasts outperform those of YP for each common stock.

Another main contribution of this study is to forecast price changes within a more practical
perspective. In real life, the values of the regressors are not known a-priori to forecast at least a few
transactions ahead. In addressing this drawback, we first predict the future values of the regressors
based on their serial correlation structures by way of appropriate models. This resulted in several
Autoregressive Moving Average (ARMA) and Autoregressive Fractionally Integrated Moving Average
(ARFIMA) type models. In a subsequent step, these disaggregated forecasts are incorporated into the
ordered probit model to generate future price change forecasts. Obviously, the 100-steps ahead short
term forecasts perform better than the longterm ones including all transactions in the forecast horizon
for most stocks. On average, the successful percentage in the long term is still a reasonable 78 per cent,
which is affected by a poorly performing stock. On the other hand, the average success rate in the
short term is around 85 per cent, which is quite remarkable.

Given the considerably high percentage of constant prices in real life, the model captures this
phenomenon, albeit with a slight bias towards predicting no change. However, the risk of adverse
selection is minimised. Nevertheless, this predictive model is useful for investors in developing
successful trading strategies, particularly towards minimising risk as this provides valuable signals
towards the future directions of price movements. The usefulness of this model to growth driven
investors could be enhanced by improving the forecasting accuracy of the independent variables
by adopting more sophisticated econometric techniques within a unified framework. In addition,
the investigation of the adequacy of the conditional variance specification may also prove useful in
improving the forecast probabilities.
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experiments and analysed the data. R.Y., R.G., S.P. and D.E.A. wrote the paper.
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Appendix A. Models for Errors and Explanatory Variables

Appendix A.1. ACD Specification to Model Transaction Durations

The Autoregressive Conditional Duration (ACD) model analyses transaction duration, identifying
it as a conditional point process.The temporal dependence of the diurnally adjusted duration process
is captured by the conditional expected duration, ψk = E(xk|xk−1, . . . , x1), under a linear ACD(p, q)
specification and has the following form:

ψk = α0 +
p

∑
i=1

αixk−i +
q

∑
j=1

β jψk−j, (A1)

where p ≥ 0; q ≥ 0. The standardized durations

εk =
xk
ψk

are i.i.d. with E(εi) = 1. The log likelihood function for the Std. Weibull errors, is

L(x|θ) =
T

∑
k=2

α ln
[

Γ
(

1 +
1
α

)]
+ ln

(
α

xk

)
+ α ln

(
xk
ψk

)
−
[

Γ
(

1 +
1
α

)
xk
ψk

]α

, (A2)
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where α is the shape parameter of the density.

Appendix A.2. GARCH Specification to Model Heteroscedasticity

Conditional variance in the residuals (εk) of the orderd probit model, σ2
k can be estimated from

this model.
εk = σkηk, εk|Xk ∼ (o, σ2

k )

where σ2
k is the conditional volatility of εk given the past historical information, ηk is a sequence of

independently and identically distributed (i.i.d.) random variables with zero mean and variance 1
such that

σ2
k = ω +

p
′

∑
i=1

κiσ
2
k−i +

q
′

∑
j=1

δjε
2
k−j.

Appendix A.3. ARIMA Model

A series {Xk} that could be modeled as a stationary ARMA(p′′, q′′) process after being differenced
d times is denoted as ARIMA(p′′, d, q′′) with the following form:

φ(B)(1− B)dXk = c + θ(B)ak, (A3)

where φ(B) = 1− φ1− . . .−φp, θ(B) = 1+ θ1+ . . .+θq and ak ∼WN(0, σ2
a ) and B is the backshift operator.

Appendix A.4. Long Memory ARFIMA Model

ARFIMA is designed to capture the long range dependence in time series. This model
extends the ARIMA model in (A3) allowing d to lie between −0.5 and + 0.5 yielding a fractionally
integrated series. ARFIMA process is said to exhibit stationary long memory if d ∈ (0, 0.5).
See Granger and Joyeux (1980) for details.

An ARFIMA(p′′, d, q′′) process has the same form as in (A3) and the operator (1− B)d is given by

(1− B)d =
∞

∑
k=0

Γ(k− d)Bk

Γ(−d)Γ(k + 1)
; d /∈ {1, 2, . . .}

Appendix A.5. Multinomial Logistic Regression

Multinomial logistic regression is an extension of binary logistic regression, that handles
polytomous responses. This is used to predict the response category or the probability of category
membership of a nominal outcome variable. The log odds of the outcome are modeled as a linear
combination of multiple explanatory variables.

If xk = (xk1, xk2, . . . , xkr)
′ follows a multinomial distribution with r response categories and

parameter πk = (πk1, πk2, . . . , πkr)
′, then

log

(
πkj

π∗kj

)
= yT

k β
′
j, j 6= j∗

considering j∗ as the baseline category. Assuming that mth category is the baseline category (j∗ = m),
the coefficient vector is

β
′
= (β

′
1, β

′
2, ..., β

′
m−1, β

′
m+1, ..., β

′
r)
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