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Abstract: A fluctuation theory and, in particular, a theory of scale functions is developed for upwards
skip-free Lévy chains, i.e., for right-continuous random walks embedded into continuous time as
compound Poisson processes. This is done by analogy to the spectrally negative class of Lévy
processes—several results, however, can be made more explicit/exhaustive in the compound Poisson
setting. Importantly, the scale functions admit a linear recursion, of constant order when the support
of the jump measure is bounded, by means of which they can be calculated—some examples are
presented. An application to the modeling of an insurance company’s aggregate capital process is
briefly considered.

Keywords: Lévy processes; non-random overshoots; skip-free random walks; fluctuation theory;
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1. Introduction

It was shown in Vidmar (2015) that precisely two types of Lévy processes exhibit the property of
non-random overshoots: those with no positive jumps a.s., and compound Poisson processes, whose
jump chain is (for some h > 0) a random walk on Zh := {hk: k ∈ Z}, skip-free to the right. The latter
class was then referred to as “upwards skip-free Lévy chains”. Also in the same paper it was remarked
that this common property which the two classes share results in a more explicit fluctuation theory
(including the Wiener-Hopf factorization) than for a general Lévy process, this being rarely the case
(cf. (Kyprianou 2006, p. 172, sct. 6.5.4)).

Now, with reference to existing literature on fluctuation theory, the spectrally negative case (when
there are no positive jumps, a.s.) is dealt with in detail in (Bertoin 1996, chp. VII); (Sato 1999, sct. 9.46)
and especially (Kyprianou 2006, chp. 8). On the other hand, no equally exhaustive treatment of the
right-continuous random walk seems to have been presented thus far, but see Brown et al. (2010);
Marchal (2001); Quine (2004); (De Vylder and Goovaerts 1988, sct. 4); (Dickson and Waters 1991, sct. 7);
(Doney 2007, sct. 9.3); (Spitzer 2001, passim).1 In particular, no such exposition appears forthcoming
for the continuous-time analogue of such random walks, wherein the connection and analogy to the
spectrally negative class of Lévy processes becomes most transparent and direct.

In the present paper, we proceed to do just that, i.e., we develop, by analogy to the spectrally
negative case, a complete fluctuation theory (including theory of scale functions) for upwards skip-free
Lévy chains. Indeed, the transposition of the results from the spectrally negative to the skip-free setting
is mostly straightforward. Over and above this, however, and beyond what is purely analogous to the
exposition of the spectrally negative case, (i) further specifics of the reflected process (Theorem 1-1),
of the excursions from the supremum (Theorem 1-3) and of the inverse of the local time at the maximum

1 However, such a treatment did eventually become available (several years after this manuscript was essentially completed,
but before it was published), in the preprint Avram and Vidmar (2017).
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(Theorem 1-4) are identified, (ii) the class of subordinators that are the descending ladder heights
processes of such upwards skip-free Lévy chains is precisely characterized (Theorem 4), and (iii)
a linear recursion is presented which allows us to directly compute the families of scale functions
(Equations (20), (21), Proposition 9 and Corollary 1).

Application-wise, note that the classical continuous-time Bienaymé-Galton-Watson branching
process is associated with upwards skip-free Lévy chains via a suitable time change (Kyprianou 2006,
sct. 1.3.4). Besides, our chains feature as a natural continuous-time approximation of the more subtle
spectrally negative Lévy family, that, because of its overall tractability, has been used extensively in
applied probability (in particular to model the risk process of an insurance company; see the papers
Avram et al. (2007); Chiu and Yin (2005); Yang and Zhang (2001) among others). This approximation
point of view is developed in Mijatović et al. (2014, 2015). Finally, focusing on the insurance context,
the chains may be used directly to model the aggregate capital process of an insurance company,
in what is a continuous-time embedding of the discrete-time compound binomial risk model (for
which see Avram and Vidmar (2017); Bao and Liu (2012); Wat et al. (2018); Xiao and Guo (2007) and
the references therein). We elaborate on this latter point of view in Section 5.

The organisation of the rest of this paper is as follows. Section 2 introduces the setting and notation.
Then Section 3 develops the relevant fluctuation theory, in particular details of the Wiener-Hopf
factorization. Section 4 deals with the two-sided exit problem and the accompanying families of scale
functions. Finally, Section 5 closes with an application to the risk process of an insurance company.

2. Setting and Notation

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space supporting a Lévy process (Kyprianou
2006, p. 2, Definition 1.1) X (X is assumed to be F-adapted and to have independent increments relative
to F). The Lévy measure (Sato 1999, p. 38, Definition 8.2) of X is denoted by λ. Next, recall from
Vidmar (2015) (with supp(ν) denoting the support (Kallenberg 1997, p. 9) of a measure ν defined on
the Borel σ-field of some topological space):

Definition 1 (Upwards skip-free Lévy chain). X is an upwards skip-free Lévy chain, if it is a compound
Poisson process (Sato 1999, p. 18, Definition 4.2), viz. if E[eizXt ] = et

∫
(eizx−1)λ(dx) for z ∈ R and t ∈ [0, ∞),

and if for some h > 0, supp(λ) ⊂ Zh, whereas supp(λ|B((0,∞))) = {h}.

Remark 1. Of course to say that X is a compound Poisson process means simply that it is a real-valued
continuous-time Markov chain, vanishing a.s. at zero, with holding times exponentially distributed of rate λ(R)
and the law of the jumps given by λ/λ(R) (Sato 1999, p. 18, Theorem 4.3).

In the sequel, X will be assumed throughout an upwards skip-free Lévy chain, with λ({h}) > 0
(h > 0) and characteristic exponent Ψ(p) =

∫
(eipx − 1)λ(dx) (p ∈ R). In general, we insist on (i)

every sample path of X being càdlàg (i.e., right-continuous, admitting left limits) and (ii) (Ω,F ,F,P)
satisfying the standard assumptions (i.e., the σ-fieldF is P-complete, the filtration F is right-continuous
and F0 contains all P-null sets). Nevertheless, we shall, sometimes and then only provisionally, relax
assumption (ii), by transferring X as the coordinate process onto the canonical space Dh := {ω ∈
Z[0,∞)

h : ω is càdlàg} of càdlàg paths, mapping [0, ∞) → Zh, equipping Dh with the σ-algebra and
natural filtration of evaluation maps; this, however, will always be made explicit. We allow e1 to be
exponentially distributed, mean one, and independent of X; then define ep := e1/p (p ∈ (0, ∞)\{1}).

Furthermore, for x ∈ R, introduce Tx := inf{t ≥ 0 : Xt ≥ x}, the first entrance time of X into
[x, ∞). Please note that Tx is an F-stopping time (Kallenberg 1997, p. 101, Theorem 6.7). The supremum
or maximum (respectively infimum or minimum) process of X is denoted Xt := sup{Xs : s ∈ [0, t]}
(respectively Xt := inf{Xs : s ∈ [0, t]}) (t ≥ 0). X∞ := inf{Xs : s ∈ [0, ∞)} is the overall infimum.

With regard to miscellaneous general notation we have:
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1. The nonnegative, nonpositive, positive and negative real numbers are denoted by R+ := {x ∈
R : x ≥ 0}, R− := {x ∈ R : x ≤ 0}, R+ := R+\{0} and R− := R−\{0}, respectively.
Then Z+ := R+ ∩ Z, Z− := R− ∩ Z, Z+ := R+ ∩ Z and Z− := R− ∩ Z are the nonnegative,
nonpositive, positive and negative integers, respectively.

2. Similarly, for h > 0: Z+
h := Zh ∩R+, Z++

h := Zh ∩R+, Z−h := Zh ∩R− and Z−−h := Zh ∩R− are
the apposite elements of Zh.

3. The following introduces notation for the relevant half-planes of C; the arrow notation is meant
to be suggestive of which half-plane is being considered: C→ := {z ∈ C : <z > 0}, C← := {z ∈
C : <z < 0}, C↓ := {z ∈ C : =z < 0} and C↑ := {z ∈ C : =z > 0}. C→, C←, C↓ and C↑ are then
the respective closures of these sets.

4. N = {1, 2, . . .} and N0 = N∪ {0} are the positive and nonnegative integers, respectively. dxe :=
inf{k ∈ Z : k ≥ x} (x ∈ R) is the ceiling function. For {a, b} ⊂ [−∞,+∞]: a ∧ b := min{a, b} and
a ∨ b := max{a, b}.

5. The Laplace transform of a measure µ on R, concentrated on [0, ∞), is denoted by µ̂: µ̂(β) =∫
[0,∞) e−βxµ(dx) (for all β ≥ 0 such that this integral is finite). To a nondecreasing right-continuous

function F : R→ R, a measure dF may be associated in the Lebesgue-Stieltjes sense.

The geometric law geom(p) with success parameter p ∈ (0, 1] has geom(p)({k}) = p(1− p)k

(k ∈ N0), 1− p is then the failure parameter. The exponential law Exp(β) with parameter β > 0 is
specified by the density Exp(β)(dt) = βe−βt

1(0,∞)(t)dt. A function f : [0, ∞)→ [0, ∞) is said to be of
exponential order, if there are {α, A} ⊂ R+, such that f (x) ≤ Aeαx (x ≥ 0); f (+∞) := limx→∞ f (x),
when this limit exists. DCT (respectively MCT) stands for the dominated (respectively monotone)
convergence theorem. Finally, increasing (respectively decreasing) will mean strictly increasing
(respectively strictly decreasing), nondecreasing (respectively nonincreasing) being used for the weaker
alternative; we will understand a/0 = ±∞ for a ∈ ±(0, ∞).

3. Fluctuation Theory

In the following section, to fully appreciate the similarity (and eventual differences) with the
spectrally negative case, the reader is invited to directly compare the exposition of this subsection with
that of (Bertoin 1996, sct. VII.1) and (Kyprianou 2006, sct. 8.1).

3.1. Laplace Exponent, the Reflected Process, Local Times and Excursions from the Supremum, Supremum
Process and Long-Term Behaviour, Exponential Change of Measure

Since the Poisson process admits exponential moments of all orders, it follows that E[eβXt ] < ∞
and, in particular, E[eβXt ] < ∞ for all {β, t} ⊂ [0, ∞). Indeed, it may be seen by a direct computation
that for β ∈ C→, t ≥ 0, E[eβXt ] = exp{tψ(β)}, where ψ(β) :=

∫
R(e

βx − 1)λ(dx) is the Laplace
exponent of X. Moreover, ψ is continuous (by the DCT) on C→ and analytic in C→ (use the theorems
of Cauchy (Rudin 1970, p. 206, 10.13 Cauchy’s theorem for triangle), Morera (Rudin 1970, p. 209, 10.17
Morera’s theorem) and Fubini).

Next, note that ψ(β) tends to +∞ as β→ ∞ over the reals, due to the presence of the atom of λ

at h. Upon restriction to [0, ∞), ψ is strictly convex, as follows first on (0, ∞) by using differentiation
under the integral sign and noting that the second derivative is strictly positive, and then extends to
[0, ∞) by continuity.

Denote then by Φ(0) the largest root of ψ|[0,∞). Indeed, 0 is always a root, and due to strict
convexity, if Φ(0) > 0, then 0 and Φ(0) are the only two roots. The two cases occur, according as to
whether ψ′(0+) ≥ 0 or ψ′(0+) < 0, which is clear. It is less obvious, but nevertheless true, that this
right derivative at 0 actually exists, indeed ψ′(0+) =

∫
R xλ(dx) ∈ [−∞, ∞). This follows from the fact

that (eβx − 1)/β is nonincreasing as β ↓ 0 for x ∈ R− and hence the monotone convergence applies.
Continuing from this, and with a similar justification, one also gets the equality ψ′′(0+) =

∫
x2λ(dx) ∈

(0,+∞] (where we agree ψ′′(0+) = +∞ if ψ′(0+) = −∞). In any case, ψ : [Φ(0), ∞) → [0, ∞) is
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continuous and increasing, it is a bijection and we let Φ : [0, ∞)→ [Φ(0), ∞) be the inverse bijection,
so that ψ ◦Φ = idR+

.
With these preliminaries having been established, our first theorem identifies characteristics

of the reflected process, the local time of X at the maximum (for a definition of which see e.g.,
(Kyprianou 2006, p. 140, Definition 6.1)), its inverse, as well as the expected length of excursions
and the probability of an infinite excursion therefrom (for definitions of these terms see e.g.,
(Kyprianou 2006, pp. 140–47); we agree that an excursion (from the maximum) starts immediately
after X leaves its running maximum and ends immediately after it returns to it; by its length we mean
the amount of time between these two time points).

Theorem 1 (Reflected process; (inverse) local time; excursions). Let qn := λ({−nh})/λ(R) for n ∈ N
and p := λ({h})/λ(R).

1. The generator matrix Q̃ of the Markov process Y := X − X on Z+
h is given by (with {s, s′} ⊂ Z+

h ):
Q̃ss′ = λ({s− s′})− δss′λ(R), unless s = s′ = 0, in which case we have Q̃ss′ = −λ((−∞, 0)).

2. For the reflected process Y, 0 is a holding point. The actual time spent at 0 by Y, which we shall denote L,
is a local time at the maximum. Its right-continuous inverse L−1, given by L−1

t := inf{s ≥ 0 : Ls > t}
(for 0 ≤ t < L∞; L−1

t := ∞ otherwise), is then a (possibly killed) compound Poisson subordinator with
unit positive drift.

3. Assuming that λ((−∞, 0)) > 0 to avoid the trivial case, the expected length of an excursion away from
the supremum is equal to λ({h})h − ψ′(0+)

(ψ′(0+)∨0)λ((−∞,0)) ; whereas the probability of such an excursion being infinite

is λ({h})
λ((−∞,0)) (e

Φ(0)h − 1) =: p∗.

4. Assume again λ((−∞, 0)) > 0 to avoid the trivial case. Let N, taking values in N ∪ {+∞}, be the
number of jumps the chain makes before returning to its running maximum, after it has first left it (it does
so with probability 1). Then the law of L−1 is given by (for θ ∈ [0,+∞)):

− logE
[
exp(−θL−1

1 )1{L−1
1 <+∞}

]
= θ + λ((−∞, 0))

(
1−

∞

∑
k=1

P(N = k)
(

λ(R)
λ(R) + θ

)k
)

.

In particular, L−1 has a killing rate of λ((−∞, 0))p∗, Lévy mass λ((−∞, 0))(1− p∗) and its jumps
have the probability law on (0,+∞) given by the length of a generic excursion from the supremum,
conditional on it being finite, i.e., that of an independent N-fold sum of independent Exp(λ(R))-distributed
random variables, conditional on N being finite. Moreover, one has, for k ∈ N, P(N = k) = ∑k

l=1 ql pl,k,
where the coefficients (pl,k)

∞
l,k=1 satisfy the initial conditions:

pl,1 = pδl1, l ∈ N;

the recursions:

pl,k+1 =


0 if l = k or l > k + 1

∑k−1
m=1 qm pm+1,k if l = 1

pk+1 if l = k + 1

ppl−1,k + ∑k−l
m=1 qm pm+l,k if 1 < l < k

, {l, k} ⊂ N;

and pl,k may be interpreted as the probability of X reaching level 0 starting from level −lh for the first
time on precisely the k-th jump ({l, k} ⊂ N).

Proof. Theorem 1-1 is clear, since, e.g., Y transitions away from 0 at the rate at which X makes a
negative jump; and from s ∈ Z+

h \{0} to 0 at the rate at which X jumps up by s or more etc.
Theorem 1-2 is standard (Kyprianou 2006, p. 141, Example 6.3 & p. 149, Theorem 6.10).
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We next establish Theorem 1-3. Denote, provisionally, by β the expected excursion length.
Furthermore, let the discrete-time Markov chain W (on the state space N0) be endowed with the initial
distribution wj :=

qj
1−p for j ∈ N, w0 := 0; and transition matrix P, given by P0i = δ0i, whereas for

i ≥ 1: Pij = p, if j = i− 1; Pij = qj−i, if j > i; and Pij = 0 otherwise (W jumps down with probability
p, up i steps with probability qi, i ≥ 1, until it reaches 0, where it gets stuck). Further let N be the
first hitting time for W of {0}, so that a typical excursion length of X is equal in distribution to an
independent sum of N (possibly infinite) Exp(λ(R))-random variables. It is Wald’s identity that
β = (1/λ(R))E[N]. Then (in the obvious notation, where ∞ indicates the sum is inclusive of ∞),
by Fubini: E[N] = ∑∞

n=1 n ∑∞
l=1 wlPl(N = n) = ∑∞

l=1 wlkl , where kl is the mean hitting time of {0} for
W, if it starts from l ∈ N0, as in (Norris 1997, p. 12). From the skip-free property of the chain W it is
moreover transparent that ki = αi, i ∈ N0, for some 0 < α ≤ ∞ (with the usual convention 0 ·∞ = 0).
Moreover we know (Norris 1997, p. 17, Theorem 1.3.5) that (ki : i ∈ N0) is the minimal solution to
k0 = 0 and ki = 1 + ∑∞

j=1 Pijk j (i ∈ N). Plugging in ki = αi, the last system of linear equations is
equivalent to (provided α < ∞) 0 = 1− pα + αζ, where ζ := ∑∞

j=1 jqj. Thus, if ζ < p, the minimal
solution to the system is ki = i/(p− ζ), i ∈ N0, from which β = ζ/(λ((−∞, 0))(p− ζ)) follows at
once. If ζ ≥ p, clearly we must have α = +∞, hence E[N] = +∞ and thus β = +∞.

To establish the probability of an excursion being infinite, i.e., ∑∞
i=1 qi(1− αi)/ ∑∞

i=1 qi, where αi :=
Pi(N < ∞) > 0, we see that (by the skip-free property) αi = αi

1, i ∈ N0, and by the strong

Markov property, for i ∈ N, αi = pαi−1 + ∑∞
j=1 qjαi+j. It follows that 1 = pα−1

1 + ∑∞
j=1 qjα

j
1,

i.e., 0 = ψ(log(α−1
1 )/h). Hence, by Theorem 2-2, whose proof will be independent of this one,

α1 = e−Φ(0)h (since α1 < 1, if and only if X drifts to −∞).
Finally, Theorem 1-4 is straightforward.

We turn our attention now to the supremum process X. First, using the lack of memory property of
the exponential law and the skip-free nature of X, we deduce from the strong Markov property applied
at the time Ta, that for every a, b ∈ Z+

h , p > 0: P(Ta+b < ep) = P(Ta < ep)P(Tb < ep). In particular,
for any n ∈ N0: P(Tnh < ep) = P(Th < ep)n. And since for s ∈ Z+

h , {Ts < ep} = {Xep ≥ s} (P-a.s.) one
has (for n ∈ N0): P(Xep ≥ nh) = P(Xep ≥ h)n. Therefore Xep /h ∼ geom(1− P(Xep ≥ h)).

Next, to identify P(Xep ≥ h), p > 0, observe that (for β ≥ 0, t ≥ 0): E[exp{Φ(β)Xt}] = etβ

and hence (exp{Φ(β)Xt − βt})t≥0 is an (F,P)-martingale by stationary independent increments of
X, for each β ≥ 0. Then apply the optional sampling theorem at the bounded stopping time Tx ∧ t
(t, x ≥ 0) to get:

E[exp{Φ(β)X(Tx ∧ t)− β(Tx ∧ t)}] = 1.

Please note that X(Tx ∧ t) ≤ hdx/he and Φ(β)X(Tx ∧ t)− β(Tx ∧ t) converges to Φ(β)hdx/he −
βTx (P-a.s.) as t → ∞ on {Tx < ∞}. It converges to −∞ on the complement of this event, P-a.s.,
provided β + Φ(β) > 0. Therefore we deduce by dominated convergence, first for β > 0 and then also
for β = 0, by taking limits:

E[exp{−βTx}1{Tx<∞}] = exp{−Φ(β)hdx/he}. (1)

Before we formulate our next theorem, recall also that any non-zero Lévy process either drifts to
+∞, oscillates or drifts to −∞ (Sato 1999, pp. 255–56, Proposition 37.10 and Definition 37.11).

Theorem 2 (Supremum process and long-term behaviour).

1. The failure probability for the geometrically distributed Xep /h is exp{−Φ(p)h} (p > 0).
2. X drifts to +∞, oscillates or drifts to −∞ according as to whether ψ′(0+) is positive, zero, or negative.

In the latter case X∞/h has a geometric distribution with failure probability exp{−Φ(0)h}.
3. (Tnh)n∈N0 is a discrete-time increasing stochastic process, vanishing at 0 and having stationary

independent increments up to the explosion time, which is an independent geometric random variable; it is
a killed random walk.
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Remark 2. Unlike in the spectrally negative case (Bertoin 1996, p. 189), the supremum process cannot be
obtained from the reflected process, since the latter does not discern a point of increase in X when the latter is at
its running maximum.

Proof. We have for every s ∈ Z+
h :

P(Xep ≥ s) = P(Ts < ep) = E[exp{−pTs}1{Ts<∞}] = exp{−Φ(p)s}. (2)

Thus Theorem 2-1 obtains.
For Theorem 2-2 note that letting p ↓ 0 in (2), we obtain X∞ < ∞ (P-a.s.), if and only if Φ(0) > 0,

which is equivalent to ψ′(0+) < 0. If so, X∞/h is geometrically distributed with failure probability
exp{−Φ(0)h} and then (and only then) does X drift to −∞.

It remains to consider the case of drifting to +∞ (the cases being mutually exclusive and
exhaustive). Indeed, X drifts to +∞, if and only if E[Ts] is finite for each s ∈ Z+

h (Bertoin 1996, p. 172,
Proposition VI.17). Using again the nondecreasingness of (e−βTs − 1)/β in β ∈ [0, ∞), we deduce
from (1), by the monotone convergence, that one may differentiate under the integral sign, to get
E[Ts1{Ts<∞}] = (β 7→ − exp{−Φ(β)s})′(0+). So the E[Ts] are finite, if and only if Φ(0) = 0 (so that
Ts < ∞ P-a.s.) and Φ′(0+) < ∞. Since Φ is the inverse of ψ|[Φ(0),∞), this is equivalent to saying
ψ′(0+) > 0.

Finally, Theorem 2-3 is clear.

Table 1 briefly summarizes for the reader’s convenience some of our main findings thus far.

Table 1. Connections between the quantities ψ′(0+), Φ(0), Φ′(0+), the behaviour of X at large times,
and the behaviour of its excursions away from the running supremum (the latter when λ((−∞, 0)) > 0).

ψ′(0+) Φ(0) Φ′(0+) Long-Term Behaviour Excursion Length

∈ (0, ∞) 0 ∈ (0, ∞) drifts to +∞ finite expectation
0 0 +∞ oscillates a.s. finite with infinite expectation

∈ [−∞, 0) ∈ (0, ∞) ∈ (0, ∞) drifts to −∞ infinite with a positive probability

We conclude this section by offering a way to reduce the general case of an upwards skip-free
Lévy chain to one which necessarily drifts to +∞. This will prove useful in the sequel. First, there is
a pathwise approximation of an oscillating X, by (what is again) an upwards skip-free Lévy chain,
but drifting to infinity.

Remark 3. Suppose X oscillates. Let (possibly by enlarging the probability space to accommodate for it) N
be an independent Poisson process with intensity 1 and Nε

t := Ntε (t ≥ 0) so that Nε is a Poisson process
with intensity ε, independent of X. Define Xε := X + hNε. Then, as ε ↓ 0, Xε converges to X, uniformly on
bounded time sets, almost surely, and is clearly an upwards skip-free Lévy chain drifting to +∞.

The reduction of the case when X drifts to −∞ is somewhat more involved and is done by a
change of measure. For this purpose assume until the end of this subsection, that X is already the
coordinate process on the canonical space Ω = Dh, equipped with the σ-algebra F and filtration
F of evaluation maps (so that P coincides with the law of X on Dh and F = σ(prs : s ∈ [0,+∞)),
while for t ≥ 0, Ft = σ(prs : s ∈ [0, t]), where prs(ω) = ω(s), for (s, ω) ∈ [0,+∞)×Dh). We make
this transition in order to be able to apply the Kolmogorov extension theorem in the proposition,
which follows. Note, however, that we are no longer able to assume the standard conditions on
(Ω,F ,F,P). Notwithstanding this, (Tx)x∈R remain F-stopping times, since by the nature of the space
Dh, for x ∈ R, t ≥ 0, {Tx ≤ t} = {Xt ≥ x} ∈ Ft.
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Proposition 1 (Exponential change of measure). Let c ≥ 0. Then, demanding:

Pc(Λ) = E[exp{cXt − ψ(c)t}1Λ] (Λ ∈ Ft, t ≥ 0) (3)

this introduces a unique measure Pc on F . Under the new measure, X remains an upwards skip-free Lévy chain
with Laplace exponent ψc = ψ(·+ c)− ψ(c), drifting to +∞, if c ≥ Φ(0), unless c = ψ′(0+) = 0. Moreover,
if λc is the new Lévy measure of X under Pc, then λc � λ and dλc

dλ (x) = ecx λ-a.e. in x ∈ R. Finally, for every
F-stopping time T, Pc � P on restriction to F ′T := {A ∩ {T < ∞} : A ∈ FT}, and:

dPc|F ′T
dP|F ′T

= exp{cXT − ψ(c)T}.

Proof. That Pc is introduced consistently as a probability measure on F follows from the Kolmogorov
extension theorem (Parthasarathy 1967, p. 143, Theorem 4.2). Indeed, M := (exp{cXt − ψ(c)t})t≥0 is
a nonnegative martingale (use independence and stationarity of increments of X and the definition of
the Laplace exponent), equal identically to 1 at time 0.

Furthermore, for all β ∈ C→, {t, s} ⊂ R+ and Λ ∈ Ft:

Ec[exp{β(Xt+s − Xt)}1Λ] = E[exp{cXt+s − ψ(c)(t + s)} exp{β(Xt+s − Xt)}1Λ]

= E[exp{(c + β)(Xt+s − Xt)− ψ(c)s}]E[exp{cXt − ψ(c)t}1Λ]

= exp{s(ψ(c + β)− ψ(c))}Pc(Λ).

An application of the Functional Monotone Class Theorem then shows that X is indeed a Lévy
process on (Ω,F ,F,Pc) and its Laplace exponent under Pc is as stipulated (that X0 = 0 Pc-a.s. follows
from the absolute continuity of Pc with respect to P on restriction to F0).

Next, from the expression for ψc, the claim regarding λc follows at once. Then clearly X remains
an upwards skip-free Lévy chain under Pc, drifting to +∞, if ψ′(c+) > 0.

Finally, let A ∈ FT and t ≥ 0. Then A ∩ {T ≤ t} ∈ FT∧t, and by the Optional Sampling Theorem:

Pc(A∩{T ≤ t}) = E[Mt1A∩{T≤t}] = E[E[Mt1A∩{T≤t}|FT∧t]] = E[MT∧t1A∩{T≤t}] = E[MT1A∩{T≤t}].

Using the MCT, letting t→ ∞, we obtain the equality Pc(A ∩ {T < ∞}) = E[MT1A∩{T<∞}].

Proposition 2 (Conditioning to drift to +∞). Assume Φ(0) > 0 and denote P\ := PΦ(0) (see (3)). We then
have as follows.

1. For every Λ ∈ A := ∪t≥0Ft, limn→∞ P(Λ|X∞ ≥ nh) = P\(Λ).
2. For every x ≥ 0, the stopped process XTx = (Xt∧Tx )t≥0 is identical in law under the measures P\ and

P(·|Tx < ∞) on the canonical space Dh.

Proof. With regard to Proposition 2-1, we have as follows. Let t ≥ 0. By the Markov property of X at

time t, the process
4
X := (Xt+s − Xt)s≥0 is identical in law with X on Dh and independent of Ft under

P. Thus, letting
4
Ty := inf{t ≥ 0 :

4
Xt ≥ y} (y ∈ R), one has for Λ ∈ Ft and n ∈ N0, by conditioning:

P(Λ ∩ {t < Tnh < ∞}) = E[E[1Λ1{t<Tnh}1{
4
Tnh−Xt<∞}

|Ft]] = E[eΦ(0)(Xt−nh)
1Λ∩{t<Tnh}],
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since {Λ, {t < Tnh}} ∪ σ(Xt) ⊂ Ft. Next, noting that {X∞ ≥ nh} = {Tnh < ∞}:

P(Λ|X∞ > nh) = eΦ(0)nh (P(Λ ∩ {Tnh ≤ t}) + P(Λ ∩ {t < Tnh < ∞}))

= eΦ(0)nh
(
P(Λ ∩ {Tnh ≤ t}) + E[eΦ(0)(Xt−nh)

1Λ∩{t<Tnh}]
)

= eΦ(0)nhP(Λ ∩ {Tnh ≤ t}) + P\(Λ ∩ {t < Tnh}).

The second term clearly converges to P\(Λ) as n → ∞. The first converges to 0, because by (2)
P(Xe1 ≥ nh) = e−nhΦ(1) = o(e−nhΦ(0)), as n → ∞, and we have the estimate P(Tnh ≤ t) = P(Xt ≥
nh) = P(Xt ≥ nh|e1 ≥ t) ≤ P(Xe1 ≥ nh|e1 ≥ t) ≤ etP(Xe1 ≥ nh).

We next show Proposition 2-2. Note first that X is F-progressively measurable (in particular,
measurable), hence the stopped process XTx is measurable as a mapping into Dh (Karatzas and Shreve
1988, p. 5, Problem 1.16).

Furthermore, by the strong Markov property, conditionally on {Tx < ∞}, FTx is independent
of the future increments of X after Tx, hence also of {Tx′ < ∞} for any x′ > x. We deduce that the
law of XTx is the same under P(·|Tx < ∞) as it is under P(·|Tx′ < ∞) for any x′ > x. Proposition 2-2
then follows from Proposition 2-1 by letting x′ tend to +∞, the algebra A being sufficient to determine
equality in law by a π/λ-argument.

3.2. Wiener-Hopf Factorization

Definition 2. We define, for t ≥ 0, G∗t := inf{s ∈ [0, t] : Xs = Xt}, i.e., P-a.s., G∗t is the last time in the
interval [0, t] that X attains a new maximum. Similarly we let Gt := sup{s ∈ [0, t] : Xs = Xs} be, P-a.s.,
the last time on [0, t] of attaining the running infimum (t ≥ 0).

While the statements of the next proposition are given for the upwards skip-free Lévy chain
X, they in fact hold true for the Wiener-Hopf factorization of any compound Poisson process.
Moreover, they are (essentially) known in Kyprianou (2006). Nevertheless, we begin with these
general observations, in order to (a) introduce further relevant notation and (b) provide the reader
with the prerequisites needed to understand the remainder of this subsection. Immediately following
Proposition 3, however, we particularize to our the skip-free setting.

Proposition 3. Let p > 0. Then:

1. The pairs (G∗ep , Xep) and (ep − G∗ep , Xep − Xep) are independent and infinitely divisible, yielding the
factorisation:

p
p− iη −Ψ(θ)

= Ψ+
p (η, θ)Ψ−p (η, θ),

where for {θ, η} ⊂ R,

Ψ+
p (η, θ) := E[exp{iηG∗ep + iθXep}] and Ψ−p (η, θ) := E[exp{iηGep + iθXep}].

Duality: (ep − G∗ep , Xep − Xep) is equal in distribution to (Gep ,−Xep). Ψ+
p and Ψ−p are the

Wiener-Hopf factors.
2. The Wiener-Hopf factors may be identified as follows:

E[exp{−αG∗ep − βXep}] =
κ∗(p, 0)

κ∗(p + α, β)

and

E[exp{−αGep + βXep}] =
κ̂(p, 0)

κ̂(p + α, β)

for {α, β} ⊂ C→.
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3. Here, in terms of the law of X,

κ∗(α, β) := k∗ exp
(∫ ∞

0

∫
(0,∞)

(e−t − e−αt−βx)
1
t
P(Xt ∈ dx)dt

)
and

κ̂(α, β) = k̂ exp
(∫ ∞

0

∫
(−∞,0]

(e−t − e−αt+βx)
1
t
P(Xt ∈ dx)dt

)
for α ∈ C→, β ∈ C→ and some constants {k∗, k̂} ⊂ R+.

Proof. These claims are contained in the remarks regarding compound Poisson processes in
(Kyprianou 2006, pp. 167–68) pursuant to the proof of Theorem 6.16 therein. Analytic continuations
have been effected in part Proposition 3-3 using properties of zeros of holomorphic functions
(Rudin 1970, p. 209, Theorem 10.18), the theorems of Cauchy, Morera and Fubini, and finally the
finiteness/integrability properties of q-potential measures (Sato 1999, p. 203, Theorem 30.10(ii)).

Remark 4.

1. (Kyprianou 2006, pp. 157, 168) κ̂ is also the Laplace exponent of the (possibly killed) bivariate descending
ladder subordinator (L̂−1, Ĥ), where L̂ is a local time at the minimum, and the descending ladder heights
process Ĥ = XL̂−1 (on {L̂−1 < ∞}; +∞ otherwise) is X sampled at its right-continuous inverse L̂−1:

E[e−αL̂−1
1 −βĤ11{1<L̂∞}] = e−κ̂(α,β), {α, β} ⊂ C→.

2. As for the strict ascending ladder heights subordinator H∗ := XL∗−1 (on L∗−1 < ∞; +∞ otherwise),
L∗−1 being the right-continuous inverse of L∗, and L∗ denoting the amount of time X has spent at a
new maximum, we have, thanks to the skip-free property of X, as follows. Since P(Th < ∞) = e−Φ(0)h,
X stays at a newly achieved maximum each time for an Exp(λ(R))-distributed amount of time, departing
it to achieve a new maximum later on with probability e−Φ(0)h, and departing it, never to achieve a new
maximum thereafter, with probability 1− e−Φ(0)h. It follows that the Laplace exponent of H∗ is given by:

− logE[e−βH11(H1 < +∞)] = (1− e−βh)λ(R)e−Φ(0)h +λ(R)(1− e−Φ(0)h) = λ(R)(1− e−(β+Φ(0))h)

(where β ∈ R+). In other words, H∗/h is a killed Poisson process of intensity λ(R)e−Φ(0)h and with
killing rate λ(R)(1− e−Φ(0)h).

Again thanks to the skip-free nature of X, we can expand on the contents of Proposition 3,
by offering further details of the Wiener-Hopf factorization. Indeed, if we let Nt := Xt/h and Tk := Tkh
(t ≥ 0, k ∈ N0) then clearly T := (Tk)k≥0 are the arrival times of a renewal process (with a possibly
defective inter-arrival time distribution) and N := (Nt)t≥0 is the ‘number of arrivals’ process. One also
has the relation: G∗t = TNt , t ≥ 0 (P-a.s.). Thus the random variables entering the Wiener-Hopf
factorization are determined in terms of the renewal process (T, N).

Moreover, we can proceed to calculate explicitly the Wiener-Hopf factors as well as κ̂ and κ∗.
Let p > 0. First, since Xep /h is a geometrically distributed random variable, we have, for any β ∈ C→:

E[e−βXep ] =
∞

∑
k=0

e−βhk(1− e−Φ(p)h)e−Φ(p)hk =
1− e−Φ(p)h

1− e−βh−Φ(p)h
. (4)

Note here that Φ(p) > 0 for all p > 0. On the other hand, using conditioning (for any α ≥ 0):
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E

[
e−αG∗ep

]
= E

[(
(u, t) 7→

∞

∑
k=0

1[0,∞)(tk)e−αtk1[tk ,tk+1)
(u)

)
◦ (ep, T)

]

= E

[(
t 7→

∞

∑
k=0

1[0,∞)(tk)e−αtk (e−ptk − e−ptk+1)

)
◦ T

]
, since ep ⊥ T

= E

[
∞

∑
k=0

1{Tk<∞}

(
e−(p+α)Tk − e−(p+α)Tk e−p(Tk+1−Tk)

)]

= E

[
∞

∑
k=0

e−(p+α)Tk1{Tk<∞}

(
1− e−p(Tk+1−Tk)

)]
.

Now, conditionally on Tk < ∞, Tk+1 − Tk is independent of Tk and has the same distribution as
T1. Therefore, by (1) and the theorem of Fubini:

E[e−αG∗ep ] =
∞

∑
k=0

e−Φ(p+α)hk(1− e−Φ(p)h) =
1− e−Φ(p)h

1− e−Φ(p+α)h
. (5)

We identify from (4) for any β ∈ C→: κ∗(p,0)
κ∗(p,β) = 1−e−Φ(p)h

1−e−βh−Φ(p)h and therefore for any α ≥

0: κ∗(p+α,0)
κ∗(p+α,β) = 1−e−Φ(p+α)h

1−e−βh−Φ(p+α)h . We identify from (5) for any α ≥ 0: κ∗(p,0)
κ∗(p+α,0) = 1−e−hΦ(p)

1−e−Φ(p+α)h .

Therefore, multiplying the last two equalities, for α ≥ 0 and β ∈ C→, the equality:

κ∗(p, 0)
κ∗(p + α, β)

=
1− e−Φ(p)h

1− e−βh−Φ(p+α)h
(6)

obtains. In particular, for α > 0 and β ∈ C→, we recognize for some constant k∗ ∈ (0, ∞): κ∗(α, β) =

k∗(1− e−(β+Φ(α))h). Next, observe that by independence and duality (for α ≥ 0 and θ ∈ R):

E[exp{−αG∗ep + iθXep}]E[exp{−αGep + iθXep}] =
∫ ∞

0
dtpe−ptE[exp{−αt + iθXt}] =∫ ∞

0
dtpe−pt−αt+Ψ(θ)t =

p
p + α−Ψ(θ)

.

Therefore:

(p + α− ψ(iθ))
κ̂(p, 0)

κ̂(p + α, iθ)
= p

1− eiθh−Φ(p+α)h

1− e−Φ(p)h
.

Both sides of this equality are continuous in θ ∈ C↓ and analytic in θ ∈ C↓. They agree on R,
hence agree on C↓ by analytic continuation. Therefore (for all α ≥ 0, β ∈ C→):

(p + α− ψ(β))
κ̂(p, 0)

κ̂(p + α, β)
= p

1− eβh−Φ(p+α)h

1− e−Φ(p)h
, (7)

i.e., for all β ∈ C→ and α ≥ 0 for which p + α 6= ψ(β) one has:

E[exp{−αGep + βXep}] =
p

p + α− ψ(β)

1− e(β−Φ(p+α))h

1− e−Φ(p)h
.

Moreover, for the unique β0 > 0, for which ψ(β0) = p + α, one can take the limit β → β0 in
the above to obtain: E[exp{−αGep + β0Xep}] =

ph
ψ′(β0)(1 − e−Φ(p)h)

= phΦ′(p + α)

1 − e−Φ(p)h . We also recognize

from (7) for α > 0 and β ∈ C→ with α 6= ψ(β), and some constant k̂ ∈ (0, ∞): κ̂(α, β) = k̂ α−ψ(β)

1−e(β−Φ(α))h .

With β0 = Φ(α) one can take the limit in the latter as β→ β0 to obtain: κ̂(α, β0) = k̂ψ′(β0)/h = k̂
hΦ′(α) .
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In summary:

Theorem 3 (Wiener-Hopf factorization for upwards skip-free Lévy chains). We have the following
identities in terms of ψ and Φ:

1. For every α ≥ 0 and β ∈ C→:

E[exp{−αG∗ep − βXep}] =
1− e−Φ(p)h

1− e−(β+Φ(p+α))h

and

E[exp{−αGep + βXep}] =
p

p + α− ψ(β)

1− e(β−Φ(p+α))h

1− e−Φ(p)h

(the latter whenever p + α 6= ψ(β); for the unique β0 > 0 such that ψ(β0) = p + α, i.e., for β0 =

Φ(p + α), one has the right-hand side given by ph
ψ′(β0)(1−e−Φ(p)h)

= phΦ′(p+α)

1−e−Φ(p)h ).

2. For some {k∗, k̂} ⊂ R+ and then for every α > 0 and β ∈ C→:

κ∗(α, β) = k∗(1− e−(β+Φ(α))h)

and

κ̂(α, β) = k̂
α− ψ(β)

1− e(β−Φ(α))h

(the latter whenever α 6= ψ(β); for the unique β0 > 0 such that ψ(β0) = α, i.e., for β0 = Φ(α), one has
the right-hand side given by k̂ψ′(β0)/h = k̂

hΦ′(α) ).

As a consequence of Theorem 3-1, we obtain the formula for the Laplace transform of the running
infimum evaluated at an independent exponentially distributed random time:

E[eβXep ] =
p

p− ψ(β)

1− e(β−Φ(p))h

1− e−Φ(p)h
(β ∈ R+\{Φ(p)}) (8)

(and E[eΦ(p)Xep ] = pΦ′(p)h
1−e−Φ(p)h ). In particular, if ψ′(0+) > 0, then letting p ↓ 0 in (8), one obtains by

the DCT:

E[eβX∞ ] =
eβh − 1

Φ′(0+)hψ(β)
(β > 0). (9)

We obtain next from Theorem 3-2 (recall also Remark 4-1), by letting α ↓ 0 therein, the Laplace
exponent φ(β) := − logE[e−βĤ11(Ĥ1 < ∞)] of the descending ladder heights process Ĥ:

φ(β)(eβh − eΦ(0)h) = ψ(β), β ∈ R+, (10)

where we have set for simplicity k̂ = e−Φ(0)h, by insisting on a suitable choice of the local time at
the minimum. This gives the following characterization of the class of Laplace exponents of the
descending ladder heights processes of upwards skip-free Lévy chains (cf. (Hubalek and Kyprianou
2011, Theorem 1)):

Theorem 4. Let h ∈ (0, ∞), {γ, q} ⊂ R+, and (φk)k∈N ⊂ R+, with q + ∑k∈N φk ∈ (0, ∞). Then:

There exists (in law) an upwards skip-free Lévy chain X with values in Zh and with (i) γ being
the killing rate of its strict ascending ladder heights process (see Remark 4-2), and (ii) φ(β) =

q+∑∞
k=1 φk(1− e−βkh), β ∈ R+, being the Laplace exponent of its descending ladder heights process.

if and only if the following conditions are satisfied:
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1. γq = 0.
2. Setting x equal to 1, when γ = 0, or to the unique solution of the equation:

γ = (1− 1/x)

(
φ1 + x ∑

k∈N
φk

)

on the interval x ∈ (1, ∞), otherwise2; and then defining λ1 := q + ∑k∈N φk, λ−k := xφk − φk+1,
k ∈ N; it holds:

λ−k ≥ 0, k ∈ N.

Such an X is then unique (in law), is called the parent process, its Lévy measure is given by ∑k∈N λ−kδ−kh +

λ1δh, and x = eΦ(0)h.

Remark 5. Condition Theorem 4-2 is actually quite explicit. When γ = 0 (equivalently, the parent process does
not drift to −∞), it simply says that the sequence (φk)k∈N should be nonincreasing. In the case when the parent
process X drifts to −∞ (equivalently, γ > 0 (hence q = 0)), we might choose x ∈ (1, ∞) first, then (φk)k≥1,
and finally γ.

Proof. Please note that with φ(β) =: q+∑∞
k=1 φk(1− e−βkh), x := eΦ(0)h, and comparing the respective

Fourier components of the left and the right hand-side, (10) is equivalent to:

1. q + ∑k∈N φk = λ({h}).
2. x(q + ∑k∈N φk) + φ1 = λ(R).
3. xφk − φk+1 = λ({−kh}), k ∈ N.

Moreover, the killing rate of the strict ascending ladder heights processes expresses as λ(R)(1−
1/x), whereas (1) and (3) alone, together imply q + x ∑k∈N φk + φ1 = λ(R).

Necessity of the conditions. Remark that the strict ascending ladder heights and the descending
ladder heights processes cannot simultaneously have a strictly positive killing rate. Everything else is
trivial from the above (in particular, we obtain that such an X, when it exists, is unique, and has the
stipulated Lévy measure and Φ(0)).

Sufficiency of the conditions. The compound Poisson process X whose Lévy measure is given
by λ = ∑k∈N λ−kδ−kh + λ1δh (and whose Laplace exponent we shall denote ψ, likewise the largest
zero of ψ will be denoted Φ(0)) constitutes an upwards skip-free Lévy chain. Moreover, since x = 1,
unless q = 0, we obtain either way that φ(β)(eβh − x) = ψ(β) with φ(β) := q + ∑∞

k=1 φk(1− e−βkh),
β ≥ 0. Substituting in this relation β := (log x)/h, we obtain at once that if γ > 0 (so q = 0), that then
X drifts to −∞, x = eΦ(0)h, and hence γ = (1− e−Φ(0))λ(R) is the killing rate of the strict ascending
ladder heights process. On the other hand, when γ = 0, then x = 1, and a direct computation
reveals ψ′(0+) = hλ1 −∑k∈N kh(φk − φk+1) = h(λ1 −∑k∈N φk) = hq ≥ 0. So X does not drift to −∞,
and Φ(0) = 0, whence (again) x = eΦ(0)h. Also in this case, the killing rate of the strict ascending
ladder heights process is 0 = (1− x)λ(R). Finally, and regardless of whether γ is strictly positive or
not, compared with (10), we conclude that φ is indeed the Laplace exponent of the descending ladder
heights process of X.

4. Theory of Scale Functions

Again the reader is invited to compare the exposition of the following section with that of
(Bertoin 1996, sct. VII.2) and (Kyprianou 2006, sct. 8.2), which deal with the spectrally negative case.

2 It is part of the condition, that such an x should exist (automatically, given the preceding assumptions, there is at most one).
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4.1. The Scale Function W

It will be convenient to consider in this subsection the times at which X attains a new maximum.
We let D1, D2 and so on, denote the depths (possibly zero, or infinity) of the excursions below these
new maxima. For k ∈ N, it is agreed that Dk = +∞ if the process X never reaches the level (k− 1)h.
Then it is clear that for y ∈ Z+

h , x ≥ 0 (cf. (Bühlmann 1970, p. 137, para. 6.2.4(a)) (Doney 2007, sct. 9.3)):

P(XTy ≥ −x) = P(D1 ≤ x, D2 ≤ x + h, . . . , Dy/h ≤ x + y− h) =

P(D1 ≤ x) · P(D1 ≤ x + h) · · ·P(D1 ≤ x + y− h) =
∏
b(y+x)/hc
r=1 P(D1 ≤ (r− 1)h)

∏
bx/hch
r=1 P(D1 ≤ (r− 1)h)

=
W(x)

W(x + y)
,

where we have introduced (up to a multiplicative constant) the scale function:

W(x) := 1/
bx/hc

∏
r=1

P(D1 ≤ (r− 1)h) (x ≥ 0). (11)

(When convenient, we extend W by 0 on (−∞, 0).)

Remark 6. If needed, we can of course express P(D1 ≤ hk), k ∈ N0, in terms of the usual excursions away
from the maximum. Thus, let D̃1 be the depth of the first excursion away from the current maximum. By the
time the process attains a new maximum (that is to say h), conditionally on this event, it will make a total
of N departures away from the maximum, where (with J1 the first jump time of X, p := λ({h})/λ(R),
p̃ := P(XJ1 = h|Th < ∞) = p/P(Th < ∞)) N ∼ geom( p̃). So, denoting θ̃k := P(D̃1 ≤ hk), one has
P(D1 ≤ hk) = P(Th < ∞)∑∞

l=0 p̃(1− p̃)l θ̃l
k =

p
1−(1−eΦ(0)h p)θ̃k

, k ∈ N0.

The following theorem characterizes the scale function in terms of its Laplace transform.

Theorem 5 (The scale function). For every y ∈ Z+
h and x ≥ 0 one has:

P(XTy ≥ −x) =
W(x)

W(x + y)
(12)

and W : [0, ∞) → [0, ∞) is (up to a multiplicative constant) the unique right-continuous and piecewise
continuous function of exponential order with Laplace transform:

Ŵ(β) =
∫ ∞

0
e−βxW(x)dx =

eβh − 1
βhψ(β)

(β > Φ(0)). (13)

Proof. (For uniqueness see e.g., (Engelberg 2005, p. 14, Theorem 10). It is clear that W is of exponential
order, simply from the definition (11).)

Suppose first X tends to +∞. Then, letting y → ∞ in (12) above, we obtain P(−X∞ ≤ x) =

W(x)/W(+∞). Here, since the left-hand side limit exists by the DCT, is finite and non-zero at least for
all large enough x, so does the right-hand side, and W(+∞) ∈ (0, ∞).

Therefore W(x) = W(+∞)P(−X∞ ≤ x) and hence the Laplace-Stieltjes transform of W is given
by (9)—here we consider W as being extended by 0 on (−∞, 0):

∫
[0,∞)

e−βxdW(x) = W(+∞)
eβh − 1

Φ′(0+)hψ(β)
(β > 0).

Since (integration by parts (Revuz and Yor 1999, chp. 0, Proposition 4.5))
∫
[0,∞) e−βxdW(x) =

β
∫
(0,∞) e−βxW(x)dx,
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∫ ∞

0
e−βxW(x)dx =

W(+∞)

Φ′(0+)

eβh − 1
βhψ(β)

(β > 0). (14)

Suppose now that X oscillates. Via Remark 3, approximate X by the processes Xε, ε > 0. In (14),
fix β, carry over everything except for W(+∞)

Φ′(0+)
, divide both sides by W(0), and then apply this equality

to Xε. Then on the left-hand side, the quantities pertaining to Xε will converge to the ones for the
process X as ε ↓ 0 by the MCT. Indeed, for y ∈ Z+

h , P(XTy = 0) = W(0)/W(y) and (in the obvious
notation): 1/P(Xε

Tε
y
= 0) ↑ 1/P(XTy = 0) = W(y)/W(0), since Xε ↓ X, uniformly on bounded time

sets, almost surely as ε ↓ 0. (It is enough to have convergence for y ∈ Z+
h , as this implies convergence

for all y ≥ 0, W being the right-continuous piecewise constant extension of W|Z+
h

.) Thus we obtain in
the oscillating case, for some α ∈ (0, ∞) which is the limit of the right-hand side as ε ↓ 0:

∫ ∞

0
e−βxW(x)dx = α

eβh − 1
βhψ(β)

(β > 0). (15)

Finally, we are left with the case when X drifts to −∞. We treat this case by a change of measure
(see Proposition 1 and the paragraph immediately preceding it). To this end assume, provisionally,
that X is already the coordinate process on the canonical filtered space Dh. Then we calculate by
Proposition 2-2 (for y ∈ Z+

h , x ≥ 0):

P(XTy ≥ −x) = P(Ty < ∞)P(XTy ≥ −x|Ty < ∞) = e−Φ(0)yP(XTy
∞ ≥ −x|Ty < ∞) =

e−Φ(0)yP\(XTy
∞ ≥ −x) = e−Φ(0)yP\(XT(y) ≥ −x) = e−Φ(0)yW\(x)/W\(x + y),

where the third equality uses the fact that (ω 7→ inf{ω(s) : s ∈ [0, ∞)}) : (Dh,F ) →
([−∞, ∞),B([−∞, ∞)) is a measurable transformation. Here W\ is the scale function corresponding to
X under the measure P\, with Laplace transform:

∫ ∞

0
e−βxW\(x)dx =

eβh − 1
βhψ(Φ(0) + β)

(β > 0).

Please note that the equality P(XTy ≥ −x) = e−Φ(0)yW\(x)/W\(x + y) remains true if we revert
back to our original X (no longer assumed to be in its canonical guise). This is so because we can always
go from X to its canonical counter-part by taking an image measure. Then the law of the process,
hence the Laplace exponent and the probability P(XTy ≥ −x) do not change in this transformation.

Now define W̃(x) := eΦ(0)b1+x/hchW\(x) (x ≥ 0). Then W̃ is the right-continuous
piecewise-constant extension of W̃|Z+

h
. Moreover, for all y ∈ Z+

h and x ≥ 0, (12) obtains with W

replaced by W̃. Plugging in x = 0 into (12), W̃|Zh
and W|Zh

coincide up to a multiplicative constant,
hence W̃ and W do as well. Moreover, for all β > Φ(0), by the MCT:

∫ ∞

0
e−βxW̃(x)dx = eΦ(0)h

∞

∑
k=0

∫ (k+1)h

kh
e−βxeΦ(0)khW\(kh)dx

= eΦ(0)h
∞

∑
k=0

1
β

e−βkh(1− e−βh)eΦ(0)khW\(kh)

= eΦ(0)h β−Φ(0)
β

1− e−βh

1− e−(β−Φ(0))h

∫ ∞

0
e−(β−Φ(0))xW\(x)dx

= eΦ(0)h β−Φ(0)
β

1− e−βh

1− e−(β−Φ(0))h
e(β−Φ(0))h − 1

(β−Φ(0))hψ(β)
=

(eβh − 1)
βhψ(β)

.
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Remark 7. Henceforth the normalization of the scale function W will be understood so as to enforce the validity
of (13).

Proposition 4. W(0) = 1/(hλ({h})), and W(+∞) = 1/ψ′(0+) if Φ(0) = 0. If Φ(0) > 0,
then W(+∞) = +∞.

Proof. Integration by parts and the DCT yield W(0) = limβ→∞ βŴ(β). (13) and another application
of the DCT then show that W(0) = 1/(hλ({h})). Similarly, integration by parts and the MCT give the
identity W(+∞) = limβ↓0 βŴ(β). The conclusion W(+∞) = 1/ψ′(0+) is then immediate from (13)
when Φ(0) = 0. If Φ(0) > 0, then the right-hand side of (13) tends to infinity as β ↓ Φ(0) and thus,
by the MCT, necessarily W(+∞) = +∞.

4.2. The Scale Functions W(q), q ≥ 0

Definition 3. For q ≥ 0, let W(q)(x) := eΦ(q)b1+x/hchWΦ(q)(x) (x ≥ 0), where Wc plays the role of W but
for the process (X,Pc) (c ≥ 0; see Proposition 1). Please note that W(0) = W. When convenient we extend
W(q) by 0 on (−∞, 0).

Theorem 6. For each q ≥ 0, W(q) : [0, ∞)→ [0, ∞) is the unique right-continuous and piecewise continuous
function of exponential order with Laplace transform:

Ŵ(q)(β) =
∫ ∞

0
e−βxW(q)(x)dx =

eβh − 1
βh(ψ(β)− q)

(β > Φ(q)). (16)

Moreover, for all y ∈ Z+
h and x ≥ 0:

E[e−qTy1{XTy≥−x}] =
W(q)(x)

W(q)(x + y)
. (17)

Proof. The claim regarding the Laplace transform follows from Proposition 1, Theorem 5 and
Definition 3 as it did in the case of the scale function W (cf. final paragraph of the proof of
Theorem 5). For the second assertion, let us calculate (moving onto the canonical space Dh as usual,
using Proposition 1 and noting that XTy = y on {Ty < ∞}):

E[e−qTy1{XTy≥−x}] = E[eΦ(q)XTy−qTy
1{XTy≥−x}]e

−Φ(q)y =

e−Φ(q)yPΦ(q)(XTy ≥ −x) = e−Φ(q)y WΦ(q)(x)
WΦ(q)(x + y)

=
W(q)(x)

W(q)(x + y)
.

Proposition 5. For all q > 0: W(q)(0) = 1/(hλ({h})) and W(q)(+∞) = +∞.

Proof. As in Proposition 4, W(q)(0) = limβ→∞ βŴ(q)(β) = 1/(hλ({h})). Since Φ(q) > 0,

W(q)(+∞) = +∞ also follows at once from the expression for Ŵ(q).

Moreover:

Proposition 6. For q ≥ 0:

1. If Φ(q) > 0 or ψ′(0+) > 0, then limx→∞ W(q)(x)e−Φ(q)b1+x/hch = 1/ψ′(Φ(q)).
2. If Φ(q) = ψ′(0+) = 0 (hence q = 0), then W(q)(+∞) = +∞, but lim supx→∞ W(q)(x)/x <

∞. Indeed, limx→∞ W(q)(x)/x = 2/m2, if m2 :=
∫

y2λ(dy) < ∞ and limx→∞ W(q)(x)/x = 0,
if m2 = ∞.
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Proof. The first claim is immediate from Proposition 4, Definition 3 and Proposition 1. To handle the
second claim, let us calculate, for the Laplace transform d̂W of the measure dW, the quantity (using
integration by parts, Theorem 5 and the fact that (since ψ′(0+) = 0)

∫
yλ(dy) = 0):

lim
β↓0

βd̂W(β) = lim
β↓0

β2

ψ(β)
=

2
m2
∈ [0,+∞).

For:

lim
β↓0

∫
(eβy − 1)λ(dy)/β2 = lim

β↓0

∫ eβy − βy− 1
β2y2 y2λ(dy) =

m2

2
,

by the MCT, since (u 7→ e−u+u−1
u2 ) is nonincreasing on (0, ∞) (the latter can be checked by comparing

derivatives). The claim then follows by the Karamata Tauberian Theorem (Bingham et al. 1987, p. 37,
Theorem 1.7.1 with ρ = 1).

4.3. The Functions Z(q), q ≥ 0

Definition 4. For each q ≥ 0, let Z(q)(x) := 1 + q
∫ bx/hch

0 W(q)(z)dz (x ≥ 0). When convenient we extend
these functions by 1 on (−∞, 0).

Definition 5. For x ≥ 0, let T−x := inf{t ≥ 0 : Xt < −x}.

Proposition 7. In the sense of measures on the real line, for every q > 0:

P−Xeq
=

qh
eΦ(q)h − 1

dW(q) − qW(q)(· − h) · ∆,

where ∆ := h ∑∞
k=1 δkh is the normalized counting measure on Z++

h ⊂ R, P−Xeq
is the law of −Xeq under P,

and (W(q)(· − h) · ∆)(A) =
∫

A W(q)(y− h)∆(dy) for Borel subsets A of R.

Theorem 7. For each x ≥ 0,

E[e−qT−x 1{T−x <∞}] = Z(q)(x)− qh
eΦ(q)h − 1

W(q)(x) (18)

when q > 0, and P(T−x < ∞) = 1−W(x)/W(+∞). The Laplace transform of Z(q), q ≥ 0, is given by:

Ẑ(q)(β) =
∫ ∞

0
Z(q)(x)e−βxdx =

1
β

(
1 +

q
ψ(β)− q

)
, (β > Φ(q)). (19)

Proofs of Proposition 7 and Theorem 7. First, with regard to the Laplace transform of Z(q), we have the
following derivation (using integration by parts, for every β > Φ(q)):

∫ ∞

0
Z(q)(x)e−βxdx =

∫ ∞

0

e−βx

β
dZ(q)(x) =

1
β

(
1 + q

∞

∑
k=1

e−βkhW(q)((k− 1)h)h

)

=
1
β

(
1 +

qe−βhβh
1− e−βh

∞

∑
k=1

(1− e−βh)

β
e−β(k−1)hW(q)((k− 1)h)

)

=
1
β

(
1 + q

βh
eβh − 1

Ŵ(q)(β)

)
=

1
β

(
1 +

q
ψ(β)− q

)
.
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Next, to prove Proposition 7, note that it will be sufficient to check the equality of the Laplace
transforms (Bhattacharya and Waymire 2007, p. 109, Theorem 8.4). By what we have just shown, (8),
integration by parts, and Theorem 6, we then only need to establish, for β > Φ(q):

q
ψ(β)− q

e(β−Φ(q))h − 1
1− e−Φ(q)h

=
qh

eΦ(q)h − 1
β(eβh − 1)

(ψ(β)− q)βh
− q

ψ(β)− q
,

which is clear.
Finally, let x ∈ Z+

h . For q > 0, evaluate the measures in Proposition 7 at [0, x], to obtain:

E[e−qT−x 1{T−x <∞}] = P(eq ≥ T−x ) = P(Xeq < −x) = 1− P(Xeq ≥ −x)

= 1 + q
∫ x

0
W(q)(z)dz− qh

eΦ(q)h − 1
W(q)(x),

whence the claim follows. On the other hand, when q = 0, the following calculation is straightforward:
P(T−x < ∞) = P(X∞ < −x) = 1− P(X∞ ≥ −x) = 1−W(x)/W(+∞) (we have passed to the limit
y→ ∞ in (12) and used the DCT on the left-hand side of this equality).

Proposition 8. Let q ≥ 0, x ≥ 0, y ∈ Z+
h . Then:

E[e−qT−x 1{T−x <Ty}] = Z(q)(x)− Z(q)(x + y)
W(q)(x)

W(q)(x + y)
.

Proof. Observe that {T−x = Ty} = ∅, P-a.s. The case when q = 0 is immediate and indeed contained
in Theorem 5, since, P-a.s., Ω\{T−x < Ty} = {T−x ≥ Ty} = {XTy ≥ −x}. For q > 0 we observe that by
the strong Markov property, Theorem 6 and Theorem 7:

E[e−qT−x 1{T−x <Ty}] = E[e−qT−x 1{T−x <∞}]− E[e−qT−x 1{Ty<T−x <∞}]

= Z(q)(x)− qh
eΦ(q)h − 1

W(q)(x)− E[e−qTy1{Ty<T−x }]E[e
−qT−x+y1{T−x+y<∞}]

= Z(q)(x)− qh
eΦ(q)h − 1

W(q)(x)− W(q)(x)
W(q)(x + y)

(
Z(q)(x + y)− qh

eΦ(q)h − 1
W(q)(x + y)

)
= Z(q)(x)− Z(q)(x + y)

W(q)(x)
W(q)(x + y)

,

which completes the proof.

4.4. Calculating Scale Functions

In this subsection it will be assumed for notational convenience, but without loss of generality,
that h = 1. We define:

γ := λ(R), p := λ({1})/γ, qk := λ({−k})/γ, k ≥ 1.

Fix q ≥ 0. Then denote, provisionally, em,k := E[e−qTk1{XTk
≥−m}], and ek := e0,k, where {m, k} ⊂

N0 and note that, thanks to Theorem 6, em,k =
em+k

em
for all {m, k} ⊂ N0. Now, e0 = 1. Moreover, by the

strong Markov property, for each k ∈ N0, by conditioning on FTk and then on FJ , where J is the time
of the first jump after Tk (so that, conditionally on Tk < ∞, J − Tk ∼ Exp(γ)):
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ek+1 = E
[
e−qTk1{XTk

≥0}e
−q(J−Tk)

(
1(next jump after Tk up) +

1(next jump after Tk 1 down, then up 2 before down more than k− 1) + · · ·+

1(next jump after Tk k down & then up k + 1 before down more than 0)
)
e−q(Tk+1−J)

]
= ek

γ

γ + q
[p + q1ek−1,2 + · · ·+ qke0,k+1] = ek

γ

γ + q
[p + q1

ek+1
ek−1

+ · · ·+ qk
ek+1
e0

].

Upon division by ekek+1, we obtain:

W(q)(k) =
γ

γ + q
[pW(q)(k + 1) + q1W(q)(k− 1) + · · ·+ qkW(q)(0)].

Put another way, for all k ∈ Z+:

pW(q)(k + 1) =
(

1 +
q
γ

)
W(q)(k)−

k

∑
l=1

qlW(q)(k− l). (20)

Coupled with the initial condition W(q)(0) = 1/(γp) (from Proposition 5 and Proposition 4),
this is an explicit recursion scheme by which the values of W(q) obtain (cf. (De Vylder and Goovaerts
1988, sct. 4, eq. (6) & (7)) (Dickson and Waters 1991, sct. 7, eq. (7.1) & (7.5)) (Marchal 2001, p. 255,
Proposition 3.1)). We can also see the vector W(q) = (W(q)(k))k∈Z as a suitable eigenvector of
the transition matrix P associated with the jump chain of X. Namely, we have for all k ∈ Z+:(

1 + q
γ

)
W(q)(k) = ∑l∈Z PklW(q)(l).

Now, with regard to the function Z(q), its values can be computed directly from the values
of W(q) by a straightforward summation, Z(q)(n) = 1 + q ∑n−1

k=0 W(q)(k) (n ∈ N0). Alternatively,
(20) yields immediately its analogue, valid for each n ∈ Z+ (make a summation ∑n−1

k=0 and multiply by
q, using Fubini’s theorem for the last sum):

pZ(q)(n + 1)− p− pqW(q)(0) =
(

1 +
q
γ

)
(Z(q)(n)− 1)−

n−1

∑
l=1

ql(Z(q)(n− l)− 1),

i.e., for all k ∈ Z+:

pZ(q)(k + 1) +

(
1− p−

k−1

∑
l=1

ql

)
=

(
1 +

q
γ

)
Z(q)(k)−

k−1

∑
l=1

qlZ(q)(k− l). (21)

Again this can be seen as an eigenvalue problem. Namely, for all k ∈ Z+:
(

1 + q
γ

)
Z(q)(k) =

∑l∈Z PklZ(q)(l). In summary:

Proposition 9 (Calculation of W(q) and Z(q)). Let h = 1 and q ≥ 0. Seen as vectors, W(q) := (W(q)(k))k∈Z
and Z(q) := (Z(q)(k))k∈Z satisfy, entry-by-entry (P being the transition matrix associated with the jump chain
of X; λq := 1 + q/λ(R)):

(PW(q))|Z+
= λqW(q)|Z+

and (PZ(q))|Z+
= λqZ(q)|Z+

, (22)

i.e., (20) and (21) hold true for k ∈ Z+. Additionally, W(q)|Z− = 0 with W(q)(0) = 1/λ({1}),
whereas Z(q)|Z− = 1.

An alternative form of recursions (20) and (21) is as follows:
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Corollary 1. We have for all n ∈ N0:

W(q)(n + 1) = W(q)(0) +
n+1

∑
k=1

W(q)(n + 1− k)
q + λ(−∞,−k]

λ({1}) , W(q)(0) = 1/λ({1}), (23)

and for Z̃(q) := Z(q) − 1,

Z̃(q)(n + 1) = (n + 1)
q

λ({1}) +
n

∑
k=1

Z̃(q)(n + 1− k)
q + λ(−∞,−k]

λ({1}) , Z̃(q)(0) = 0. (24)

Proof. Recursion (23) obtains from (20) as follows (cf. also (Asmussen and Albrecher 2010, (proof of)
Proposition XVI.1.2)):

pW(q)(n + 1) +
n

∑
k=1

qkW(q)(n− k) = νqW(q)(n), ∀n ∈ N0 ⇒

pW(q)(k + 1) +
k−1

∑
m=0

qk−mW(q)(m) = νqW(q)(k), ∀k ∈ N0 ⇒ (making a summation
n

∑
k=0

)

p
n

∑
k=0

W(q)(k + 1) +
n

∑
k=0

k−1

∑
m=0

qk−mW(q)(m) = νq

n

∑
k=0

W(q)(k), ∀n ∈ N0 ⇒ (Fubini)

pW(q)(n + 1) + p
n

∑
k=0

W(q)(k) +
n−1

∑
m=0

W(q)(m)
n

∑
k=m+1

qk−m = pW(q)(0) + νq

n

∑
k=0

W(q)(k), ∀n ∈ N0 ⇒ (relabeling)

pW(q)(n + 1) + p
n

∑
k=0

W(q)(k) +
n−1

∑
k=0

W(q)(k)
n−k

∑
l=1

ql = pW(q)(0) + (1 + q/γ)
n

∑
k=0

W(q)(k), ∀n ∈ N0 ⇒ (rearranging)

W(q)(n + 1) = W(q)(0) +
n

∑
k=0

W(q)(k)
q + γ ∑∞

l=n−k+1 ql

pγ
, ∀n ∈ N0 ⇒ (relabeling)

W(q)(n + 1) = W(q)(0) +
n+1

∑
k=1

W(q)(n + 1− k)
q + γ ∑∞

l=k ql

pγ
, ∀n ∈ N0.

Then (24) follows from (23) by another summation from n = 0 to n = w− 1, w ∈ N0, say, and an
interchange in the order of summation for the final sum.

Now, given these explicit recursions for the calculation of the scale functions, searching for those
Laplace exponents of upwards skip-free Lévy chains (equivalently, their descending ladder heights
processes, cf. Theorem 4), that allow for an inversion of (16) in terms of some or another (more or
less exotic) special function, appears less important. This is in contrast to the spectrally negative case,
see e.g., Hubalek and Kyprianou (2011).

That said, when the scale function(s) can be expressed in terms of elementary functions, this is
certainly note-worthy. In particular, whenever the support of λ is bounded from below, then (20)
becomes a homogeneous linear difference equation with constant coefficients of some (finite) order,
which can always be solved for explicitly in terms of elementary functions (as long as one has control
over the zeros of the characteristic polynomial). The minimal example of this situation is of course
when X is skip-free to the left also. For simplicity let us only consider the case q = 0.

• Skip-free chain. Let λ = pδ1 + (1− p)δ−1. Then W(k) = 1
1−2p

[(
1−p

p

)k+1
− 1
]

, unless p = 1/2,

in which case W(k) = 2(1 + k), k ∈ N0.

Indeed one can in general reverse-engineer the Lévy measure, so that the zeros of the characteristic
polynomial of (20) (with q = 0) are known a priori, as follows. Choose l ∈ N as being − inf supp(λ);
p ∈ (0, 1) as representing the probability of an up-jump; and then the numbers λ1, . . . , λl+1 (real, or not),
in such a way that the polynomial (in x) p(x − λ1) · · · (x − λl+1) coincides with the characteristic
polynomial of (20) (for q = 0):

pxl+1 − xl + q1xl−1 + · · ·+ ql
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of some upwards skip-free Lévy chain, which can jump down by at most (and does jump down by)
l units (this imposes some set of algebraic restrictions on the elements of {λ1, . . . , λl+1}). A priori
one then has access to the zeros of the characteristic polynomial, and it remains to use the linear
recursion in order to determine the first l + 1 values of W, thereby finding (via solving a set of linear
equations of dimension l + 1) the sought-after particular solution of (20) (with q = 0), that is W.
A particular parameter set for the zeros is depicted in Figure 1 and the following is a concrete example
of this procedure.

-0.5 0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

1.5

2.0

Figure 1. Consider the possible zeros λ1, λ2 and λ3 of the characteristic polynomial of (20) (with
q = 0), when l := − inf supp(λ) = 2 and p = 1/2. Straightforward computation shows they
are precisely those that satisfy (o) λ3 = 2− λ1 − λ2; (i) (λ1 − 1)(λ2 − 1)(λ1 + λ2 − 1) = 0 and (ii)
λ1λ2 + (λ1 + λ2)(2− λ1 − λ2) ≥ 0 & λ1λ2(2− λ1 − λ2) < 0. In the plot one has λ1 as the abscissa,
λ2 as the ordinate. The shaded area (an ellipse missing the closed inner triangle) satisfies (ii), the black
lines verify (i). Then q1 = (λ1λ2 + (λ1 + λ2)(2− λ1 − λ2))/2 and q2 = (−λ1λ2(2− λ1 − λ2))/2.

• “Reverse-engineered” chain. Let l = 2, p = 1
2 and, with reference to (the caption of) Figure 1,

λ1 = 1, λ2 = − 1
2 , λ3 = 3

2 . Then this corresponds (in the sense that has been made precise
above) to an upwards skip-free Lévy chain with λ/λ(R) = 1

2 δ1 +
1
8 δ−1 +

3
8 δ−2 and with W(n) =

A + B(− 1
2 )

n + C( 3
2 )

n, for all n ∈ Z+, for some {A, B, C} ⊂ R. Choosing (say) λ(R) = 2, we have
from Proposition 4, W(0) = 1; and then from (20), W(1) = 2, W(2) = 15

4 . This renders A = − 4
3 ,

B = 1
12 , C = 9

4 .

An example in which the support of λ is not bounded, but one can still obtain closed form
expressions in terms of elementary functions, is the following.

• “Geometric” chain. Assume p ∈ (0, 1), take an a ∈ (0, 1), and let ql = (1− p)(1− a)al−1 for l ∈ N.
Then (20) implies for z(k) := W(k)/ak that paz(k + 1) = z(k) − ∑k

l=1(1− p)(1− a)z(k − l)/a,
i.e., for γ(k) := ∑k

l=0 z(l) the relation pa2γ(k + 1)− (a + pa2)γ(k) + (1− p + pa)γ(k − 1) = 0,
a homogeneous second order linear difference equation with constant coefficients. Specialize now
to p = a = 1

2 and take γ = λ(R) = 2. Solving the difference equation with the initial conditions
that are got from the known values of W(0) and W(1) leads to W(k) = 2( 3

2 )
k − 1, k ∈ Z+.
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This example is further developed in Section 5, in the context of the modeling of the capital
surplus process of an insurance company.

Beyond this “geometric” case it seems difficult to come up with other Lévy measures for X that
have unbounded support and for which W could be rendered explicit in terms of elementary functions.

We close this section with the following remark and corollary (cf. (Biffis and Kyprianou 2010,
eq. (12)) and (Avram et al. 2004, Remark 5), respectively, for their spectrally negative analogues): for
them we no longer assume that h = 1.

Remark 8. Let L be the infinitesimal generator (Sato 1999, p. 208, Theorem 31.5) of X. It is seen from (22),
that for each q ≥ 0, ((L− q)W(q))|R+

= ((L− q)Z(q))|R+
= 0.

Corollary 2. For each q ≥ 0, the stopped processes Y and Z, defined by Yt := e−q(t∧T−0 )W(q) ◦ Xt∧T−0
and

Zt := e−q(t∧T−0 )W(q) ◦ Xt∧T−0
, t ≥ 0, are nonnegative P-martingales with respect to the natural filtration

FX = (FX
s )s≥0 of X.

Proof. We argue for the case of the process Y, the justification for Z being similar. Let (Hk)k≥1, H0 := 0,
be the sequence of jump times of X (where, possibly by discarding a P-negligible set, we may insist on
all of the Tk, k ∈ N0, being finite and increasing to +∞ as k→ ∞). Let 0 ≤ s < t, A ∈ FX

s . By the MCT
it will be sufficient to establish for {l, k} ⊂ N0, l ≤ k, that:

E[1(Hl ≤ s < Hl+1)1AYt1(Hk ≤ t < Hk+1)] = E[1(Hl ≤ s < Hl+1)1AYs1(Hk ≤ t < Hk+1)]. (25)

On the left-hand (respectively right-hand) side of (25) we may now replace Yt (respectively
Ys) by YHk (respectively YHl ) and then harmlessly insist on l < k. Moreover, up to a completion,
FX

s ⊂ σ((Hm ∧ s, X(Hm ∧ s))m≥0). Therefore, by a π/λ-argument, we need only verify (25) for sets A
of the form: A =

⋂M
m=1{Hm ∧ s ∈ Am} ∩ {X(Hm ∧ s) ∈ Bm}, Am, Bm Borel subsets of R, 1 ≤ m ≤ M,

M ∈ N. Due to the presence of the indicator 1(Hl ≤ s < Hl+1), we may also take, without loss
of generality, M = l and hence A ∈ FX

Hl
. Furthermore, H := σ(Hl+1 − Hl , Hk − Hl , Hk+1 − Hl) is

independent of FX
Hl
∨ σ(YHk ) and then E[YHk |F

X
Hl
∨H] = E[YHk |F

X
Hl
] = YHl , P-a.s. (as follows at once

from (22) of Proposition 9), whence (25) obtains.

5. Application to the Modeling of an Insurance Company’s Risk Process

Consider an insurance company receiving a steady but temporally somewhat uncertain stream of
premia—the uncertainty stemming from fluctuations in the number of insurees and/or simply from the
randomness of the times at which the premia are paid in—and which, independently, incurs random
claims. For simplicity assume all the collected premia are of the same size h > 0 and that the claims
incurred and the initial capital x ≥ 0 are all multiples of h. A possible, if somewhat simplistic, model for
the aggregate capital process of such a company, net of initial capital, is then precisely the upwards
skip-free Lévy chain X of Definition 1.

Fix now the X. We retain the notation of the previous sections, and in particular of Section 4.4,
assuming still that h = 1 (of course this just means that we are expressing all monetary sums in the
unit of the sizes of the received premia).

As an illustration we may then consider the computation of the Laplace transform (and hence,
by inversion, of the density) of the time until ruin of the insurance company, which is to say of the
time T−x .

To make it concrete let us take the parameters as follows. The masses of the Lévy measure
on the down jumps: λ({−k}) = ( 1

2 )
k, k ∈ N; mass of Lévy measure on the up jump: λ({1}) =

1
2 + ∑∞

n=1 n · ( 1
2 )

n = 5
2 /positive “safety loading” s := 1

2 /; initial capital: x = 10. This is a special
case of the “geometric” chain from Section 4.4 with γ = 7

2 , p = 5
7 and a = 1

2 (see p. 20 for a). Setting,
for k ∈ N0, γ(q)(k) := ∑k

l=0 W(q)(l)2l produces the following difference equation: 5γ(q)(k + 1)− (19 +
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4q)γ(q)(k) + (18 + 4q)γ(q)(k− 1) = 0, k ∈ N. The initial conditions are γ(q)(0) = W(q)(0) = 2
5 and

γ(q)(1) = γ(q)(0) + 2W(q)(1) = 2
5 + ( 2

5 )
2(7 + 2q). Finishing the tedious computation with the help of

Mathematica produces the results reported in Figure 2.

0.00 0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

0.25

0.30

(a) Laplace transform

0 5 10 15 20

0.005

0.010

0.015

(b) Density

Figure 2. (a): The Laplace transform l := ([0, ∞) 3 q 7→ E[e−qT−x ; T−x < ∞]) for the parameter set
described in the body of the text, on the interval [0, 0.2]. The probability of ruin is P(T−x < ∞) = l(0) =
1−W(10)/W(∞) = 1− ψ′(0+)W(x) = 1− sW(x) .

= 0.28 and the mean ruin time conditionally on
ruin is E[T−x |T−x < ∞] = −l′(0+)/l(0) .

= 21.8 (graphically this is one over where the tangent to l at
zero meets the abscissa); (b): Density of T−x on {T−x < ∞}, plotted on the interval [0, 20], and obtained
by means of numerically inverting the Laplace transform l (the Lebesgue integral of this density on
[0, ∞) is equal to P(T−x < ∞)).

On a final note, we should point out that the assumptions made above concerning the risk
process are, strictly speaking, unrealistic. Indeed (i) the collected premia will typically not all be of
the same size, and, moreover, (ii) the initial capital, and incurred claims will not be a multiple thereof.
Besides, there is no reason to believe (iii) that the times that elapse between the accrual of premia
are (approximately) i.id. exponentially distributed. Nevertheless, these objections can be reasonably
addressed to some extent. For (ii) one just need to choose h small enough so that the error committed in
“rounding off” the initial capital and the claims is negligible (of course even a priori the monetary units
are not infinitely divisible, but e.g., h = 0.01 e, may not be the most computationally efficient unit to
consider in this context). Concerning (i) and (iii) we would typically prefer to see a premium drift (with
slight stochastic deviations). This can be achieved by taking λ({h}) sufficiently large: we will then
be witnessing the arrival of premia with very high-intensity, which by the law of large numbers on a
large enough time scale will look essentially like premium drift (but slightly stochastic), interdispersed
with the arrivals of claims. This is basically an approximation of the Cramér-Lundberg model in the
spirit of Mijatović et al. (2015), which however (because we are not ultimately effecting the limits h ↓ 0,
λ({h})→ ∞) retains some stochasticity in the premia. Keeping this in mind, it would be interesting to
see how the upwards skip-free model behaves when fitted against real data, but this investigation lies
beyond the intended scope of the present text.
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