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Abstract: In this note we study the problem of company values with a ruin constraint in classical
continuous time Lundberg models. For this, we adapt the methods and results for discrete de Finetti
models to time and state continuous Lundberg models. The policy improvement method works
also in continuous models, but it is slow and needs discretization. Better results can be obtained
faster using the barrier method for discrete models which can be adjusted for Lundberg models.
In this method, dividend strategies are considered which are based on barrier sequences. In our
continuous state model, optimal barriers can be computed with the Lagrange method leading to a
backward recursion scheme. The resulting dividend strategies will not always be optimal: in the case
without ruin constraint, there are examples in which band strategies are superior. We also develop
equations for optimal control of dynamic reinsurance to maximize the company value under a ruin
constraint. These identify the optimal reinsurance strategy in no action regions and allow for an
interactive computation of the value function. We apply the methods in a numerical example with
exponential claims.
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1. Introduction

We consider a classical Lundberg model for the surplus S(t) of an insurer at time t:

S(t) = s + ct− X1 − ...− XN(t), t ≥ 0, (1)

with initial surplus s ≥ 0, premium rate c and claim sizes X, X1, X2, ... which are iid. We will assume
throughout that

X is non-atomic, i.e., P{X = x} = 0 for all x ≥ 0.

The claims arrival process N(t) is a homogeneous Poisson process with constant intensity λ.
We always assume the net profit condition c > λE[X] which guarantees that τ = inf{t : S(t) < 0}
is infinite with positive probability, i.e., the ruin probability ψ(s) = P{τ < ∞|S(0) = s} < 1,
and on {τ = ∞} we have S(t)→ ∞.

For a discount rate δ > 0 we compute the value of the insurance company as the expected
discounted future sum of dividends:

V(s) = sup
D

{
E
[∫ ∞

0
e−δtdD(t)|S(0) = s

]}
, (2)
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where the supremum is taken over all predictable dividend strategies with total payment D(t) up to
time t. We always assume that no dividends are paid at or after ruin.

For a given dividend strategy D, the ruin probability of the with dividend risk process is defined by

ψD(s) = P{S(t)− D(t) < 0 for some t ≥ 0|S(0) = s}.

In this note we consider the company value with ruin constraint

V(s, α) = sup
D

{
E
[∫ ∞

0
e−δtdD(t)|S(0) = s

]
: ψD(s) ≤ α

}
(3)

which is defined for s ≥ 0 with ψ(s) ≤ α ≤ 1.
Dividend optimization with a ruin related constraint has been considered in several earlier papers:

Albrecher and Thonhauser (2007), Hernandez et al. (2017) as well as Junca et al. (2018) deal with the
time value of ruin. In these problems both objective functions are discounted which allows for explicit
solutions.

Without a ruin constraint, the optimal dividend problem is often solved by a barrier strategy, i.e.,
there exists a constant B∗ ≥ 0 such that

D(t) = sup
0≤u≤t

(S(u)− B∗)+, (4)

V(s) = v(s)/v′(B∗), s ≤ B∗, (5)

V(s) = V(B∗) + s− B∗, s ≥ B∗, (6)

B∗ = arg min{v′(s), s ≥ 0}, (7)

where v(s) is the scale function given below. The corresponding with dividend process S(t)− D(t)
has certain ruin for each initial surplus s.

The optimal dividend strategy defining the company value can also be a band strategy in which
two or more bands exist: these are disjoint closed intervals [ai, bi], i = 1, ..., m, with 0 = a1 < a2 <

... < am in which no dividends are paid. The with dividends surplus process lives in the union of
these intervals: dividends are paid at bi, and if the process drops below ai, then no dividends are paid
when we reach a point in one of the intervals [aj, bj], or dividends are paid such that the resulting
surplus lies in the largest value bj below the surplus before dividend payment. For situations in
which barrier strategies are optimal for spectrally negative Lévy processes see Loeffen (2008) and
Loeffen and Renaud (2018).

For the characterization and computation of the value function and the corresponding optimal
strategy see (Schmidli 2007, sct. 2.4). When the solution v(x) of Equation (12) with v(0) = 1 has
a continuous derivative v′(x) with v′(x) decreasing for x < B and v′(x) increasing for x > B, then we
have optimality of a barrier strategy, and B = B∗ is the value of this barrier.

For initial surplus below b1, the upper bound of the first band, a barrier strategy is optimal,
since the process stays in the interval [a1, b1]. The problem of optimality for barrier strategies is
unsolved in the case with ruin constraints. There, it might be possible to have optimal dividend
strategies which are band strategies with bands depending on the allowed ruin probability α.

In our numerical example we checked for optimality of barrier strategies. Using the iteration
method, we could not find a second band in the range s ≤ 50, for exponentially distributed claims.

For dividend strategies D(t) representing (or approximating) the company value with ruin
constraint, the with dividend process S(t)− D(t) may not be bounded, i.e.,

P{sup
t
[S(t)− D(t)] < ∞} = 0,

for otherwise we would have certain ruin which is excluded when α < 1. With dividend processes which
are unbounded can be obtained, e.g., with linear barriers (see Albrecher et al. (2005) and Gerber (1981)).
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Remark 1. With barriers

B(t) = at + b, t ≥ 0, 0 < a < c, b ≥ 0,

at time t the amount exceeding B(t) is paid out as dividend. We write U(s, a, b) for the dividend value of these
strategies and ψ(s, a, b) for the corresponding ruin probability. In our numerical example below (exponential
claims with mean 1, premium rate 2 and discount rate 0.03) the dividend value U(s, a, b) is considerably smaller
than our numerical values for V(s, α) whenever ψ(s, a, b) ≤ α.

For this we consider the surplus s = 2 and the allowed ruin probability α = 0.2. For 0 < a < c we
choose b = b(a) > 0 such that ψ(s, a, b) equals α. The company value computed with the barrier method equals
V = V(s, α) = 20.15151719. Since for all a, b > 0 we have U(s, a, b) < v(s)/v′(b) which is the unconstrained
dividend value for a barrier b, we obtain from

v(2)/v′(6.35) = 20.0832891 and v(2)/v′(14.2) = 20.1146463

that U(2,a,b(a)) < V for b(a) < 6.35 and b(a) > 14.2. For a = 0.188 we obtain b(a) = 14.2955096, so U(2,a,b(a))
< V for a ≤ 0.188. For a = 0.385 we obtain b(a) = 6.322805359, so U(2,a,b(a)) < V for a ≥ 0.385. The interval
0.188 ≤ a ≤ 0.385 was checked with step size 0.001. We found a maximum of the corresponding U(s, a, b(a))
values of 17.304735 at a = 0.267. The curves of b(a) and U(2,a,b(a)) are shown in Figure 1. For the computation
we used the formulas in Gerber (1981) (18), (20), (23), (24), (27) for ψ(s, a, b) and (20), (48)–(51) for U(s, a, b).
We checked our source code with the numerical results in Albrecher et al. (2005).
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Figure 1. Plots of a→ b(a) (Left) and a→ U(2, a, b(a)) (Right).

2. Methods

2.1. Policy Improvement without Bellman Equation

This method is conceptually and formally equivalent to the iteration method described
in Hipp (2017). We repeat the iteration procedure for the sake of completeness: we start with
an appropriate initial value function V0(s, α) such as

V0(s, α) = 0
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or

V0(s, α) = V(s− s(α)), s ≥ s(α),

V0(s, α) = 0, s < s(α),

α = E[ψ(s(α)−Y)].

Here, Y is the claim causing ruin when dividends are paid using a dividend strategy with
barrier B∗. The second initial function is the dividend value for the strategy which pays out the total
surplus above the barrier B∗ + s(α) and stops paying dividends forever when the surplus is below the
value s(α). For the iteration we define

Vn+1(s, α) = max
B≥s
{W(s, B)Vn(s, a(B))} (8)

Vn+1(s, α) ≥ Vn+1(s− 1, α) + 1 if ψ(s− 1) ≤ α, (9)

α = p(s, B) + (1− p(s, B))a(B). (10)

Here, p(s, B) is the probability that the without dividend process S(t) falls below zero before
reaching B, and W(s, B) is the discounting factor E[exp(−δτ(s, B))] for τ(s, B) the waiting time to
reach B from s before ruin. This device produces a monotone sequence of functions Vn which converge
to a function which is a possible candidate for the value function V(s, α). The first Equation (8) covers
the case in which no dividends are paid before reaching B, while Equation (9) allows for immediate
dividend payment at surplus s. The functions p(s, B) and W(s, B) can be written with the survival
function and the scale function given below.

2.2. Barrier Method

For the construction of optimal dividend strategies the barrier method has been used for time and
state discrete models in Hipp (2018). There, an increasing sequence of barriers had been selected at
which dividends are paid, and the dividend value as well as th corresponding ruin probability were
computed. We adjust this for the continuous Lundberg model and use an optimal selection of barriers
which is based on the Lagrange multiplier method.

The two fundamental ingredients for the Lundberg model are the survival probability
f (s) = 1− ψ(s) which satisfies f (s) = 0 for s < 0 and the equation

λE[ f (s− X)− f (s)] + c f ′(s) = 0, (11)

as well as the scale function v(s) which is the unique solution of the equation

− δv(s) + λE[v(s− X)− v(s)] + cv′(s) = 0, (12)

satisfying v(s) = 0, s < 0, and v(0) = 1.
We also consider the functions g(s) = E[ f (s− X)] and w(s) = E[v(s− X)]. With formulas (11)

and (12) these can be computed as

g(s) = λ f (s)− c f ′(s), s ≥ 0, (13)

w(s) = (λ + δ)v(s)− cv′(s), s ≥ 0. (14)

Many ruin related quantities can be expressed via f (s), and most dividend values are connected
with v(s). Examples are first entry probabilities (before ruin) and discount factors corresponding to the
time of first entry (see Hipp (2018)). So, e.g., the functions p(s, B) and W(s, B) are given by
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p(s, B) = f (s)/ f (B) and W(s, B) = v(s)/v(B). (15)

The Equations (11) and (12) have solutions with continuous first derivative when the claim size
distribution is non-atomic. All solutions of (11) vanishing for s < 0 are proportional. The same is true
for Equation (12).

Fix an initial surplus s > 0 and an allowed ruin probability α with ψ(s) < α ≤ 1. We first define
the running ruin probabilities introduced in Hipp (2017) for a dividend strategy D which is defined
via a finite non-decreasing sequence s < B0 < B1 < ... < Bn: whenever we reach Bi, i ≤ n, all
incoming premia are paid out as dividends until the next claim happens. When the surplus reaches Bn,
we pay out all premia as dividends until the next claim happens, and then we stop dividend payment
forever. For 0 ≤ x < B0 the ruin probability ψD(x) of the (with dividend) risk process S(t)− D(t) is
proportional to ψ(x), and ψD(s) = α implies that it can be written as

ψD(x) = 1− γ0 + γ0ψ(x), γ0 =
1− α

1− ψ(s)
. (16)

These running allowed ruin probabilities had been introduced in Hipp (2018) for a discrete model.
Let Bi be one of the barrier levels at which all premia are paid out as dividends. Then the corresponding
running ruin probability ri(x), x ≤ Bi after hitting Bi has the form

1− ri(x) = γi(1− ψ(x)) = γi f (x).

We leave level Bi at the first claim during dividend payment. The ruin probability ri+1(x)
after leaving the level Bi and before hitting Bi+1 is also of the above form with γi+1 derived from
ri(Bi) = E[ri+1(Bi − X)] = γi f (Bi) = γi+1g(Bi) or

γi+1 = γi
f (Bi)

g(Bi)
.

The ruin probability ψD(x) for the with dividend process S(t) − D(t) satisfies ψD(s) ≤ α

whenever

γn = max
i

γi ≤ 1.

Lemma 1. For fixed surplus s ≥ 0 and allowed ruin probability 0 < α ≤ 1 let s < B0 < B1 < ... be an infinite
sequence with Bi → ∞. Assume that the corresponding factors γi converge to 1. Then ψD(s) = α, where D is
the dividend strategy which pays dividends on the barrier levels Bi.

Proof. The survival probability 1 − ψD(s) is the probability that from surplus s we reach B0,
after leaving B0 at a claim we reach B1 and so on. For B ≥ x ≥ 0 let p(x, B) be the probability
that the without dividend process S(t) starting at x will reach B before ruin. Then

p(x, B) =
f (x)
f (B)

.

The events Ai, i = 1, 2, ... that after dividend payment at Bi−1 the surplus will reach Bi are
independent and have probability

E[p(Bi−1 − X, Bi)] =
g(Bi−1)

f (Bi)
.
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The event A0 that S(t) starting at s will reach B0 has probability

f (s)
f (B0)

.

For i ≥ 0 we have
g(Bi)

f (Bi+1)
=

γi
γi+1

f (Bi)

f (Bi+1)

and so we obtain the survival probability

f (s)
f (B0)

∞

∏
i=0

g(Bi)

f (Bi+1)
= f (s)γ0 = 1− α. (17)

With a finite sequence s < B0 < B1 < B2 < ... < Bn we represent a dividend strategy
in which dividend payment is stopped forever when the surplus leaves Bn, i.e., γn+1 = 1 and
Bn+1 = ∞. The survival probability after reaching Bn equals g(Bn). For this strategy we obtain the
survival probability

1− ψD(s) =
f (s)

f (B0)

n−1

∏
i=0

g(Bi)

f (Bi+1)
g(Bn) = (1− α)/γn ≥ 1− α.

The present value of dividends paid on a barrier Bi does not depend on i, it is

A =
∫ ∞

0

∫ t

0
c exp(−δu)λ exp(−λt)dt =

c
λ + δ

.

This dividend value is discounted to the time at which Bi is visited first. The discount factor for
the time spent at barrier level Bi equals

C =
∫ ∞

0
λ exp(−λt) exp(−δt)dt =

λ

λ + δ
. (18)

The discount factor for the time between leaving Bi and hitting Bi+1 ≥ Bi equals

Gi := E[w(Bi)/v(Bi+1)] =
λ + δ

λ

v(Bi)

v(Bi+1)
− c

λ

v′(Bi)

v(Bi+1)
. (19)

The dividend value for a strategy D with barriers B0, B1, ..., Bn satisfying

s ≤ B0 ≤ B1 ≤ ... ≤ Bn

is given by

VD(s) = Aw(s)/w(B0)
n

∑
i=0

Ui, (20)

where U0 = 1 and Ui+1 = CGiUi. The present value of dividends paid at level B0 equals Av(s)/v(B0).
The present value for dividends paid at level B1 equals Av(s)/v(B0)CG0, and the next barrier
level contributes

Av(s)/v(B0)C2G0G1,

and so on. For equal barriers Bi = M we easily obtain that for s ≤ M and with G = Gi

V(s) = A
v(s)

v(M)

1
1− CG

=
v(s)

v′(M)
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which is the well known correct value (compare with Renaud and Zhou (2007)).
We first consider dividend strategies which have only one barrier B at which dividends are paid

a finite number of times. This means that barriers are paid at B0 = B, ..., BK = B, and after paying
dividends on barrier level B K + 1 times we stop paying dividends forever. The barrier B can be
chosen such that the allowed ruin probability is exact, and the corresponding dividend value can be
given explicitly.

Lemma 2. For any given pair s, α with ψ(s) < α and K ≥ 1 we can find B such that the above dividend
strategy D(t) yields the with dividend ruin probability P{S(t)− D(t) < 0 for some t > 0|S(0) = s} = α.
The corresponding dividend value is

V =
v(s)

v′(B)

(
1−

(
1− cv′(B)

(λ + δ)v(B)

)K+1
)

. (21)

Proof. The with dividend survival probability is

f (s)
f (B)

K

∏
i=1

g(B)
f (B)

g(B) (22)

which equals 1− α whenever

1− α = f (s)
(

g(B)
f (B)

)K+1

,

so the appropriate choice for B is the solution of

g(B)
f (B)

= γ
1/(K+1)
0 . (23)

Equation (21) follows from (18)–(20).

These one barrier strategies are clearly suboptimal: the dividend value converges to zero when
K → ∞, since the corresponding barriers converge to infinity. However, for moderate values of K
the corresponding dividend values are surprisingly good. These can be used for barrier strategies for
the tail of a finite barrier sequence s < B0 < B1 < ... < Bn : we choose K large enough such that the
barrier B corresponding to γn and K is larger than Bn, and then the sequence of barriers in which Bn

is followed by K values of B has the exact allowed ruin probability. The same method applies to the
choice of B0 : if γN < 1 then we can decrease B0 to get an exact allowed ruin probability (and a slightly
larger dividend value).

A manual search for good sequences of barrier sequences is tedious: we used

1. linear sequences of the form Bi = B0 + i∆, i = 1, ..., n,
2. sequences satisfying the recursion

g(Bi+1)/ f (Bi+1) = g(Bi)/ f (Bi)
ρ, i = 0, ..., n− 1, (24)

3. barriers s < B0 < ... < Bn with small n which are selected manually.

Linear sequences produce dividend values which are almost optimal, and sequences from
recursion (24) can do even better, but are still suboptimal. We come close to optimal results when, for
large N, we maximize the dividend value V = G(B0, ..., BN) using the Lagrange multiplier method.
The problem has a high dimension, but using the structure of the function G we could find some
simplifications. As a first step, we look at a related but simpler problem.
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Problem: For N ≥ 1 and a smooth increasing function F(u) maximize the function

G(u0, ..., uN) =
N

∑
n=0

n

∏
i=0

F(ui)

under the constraint
u0 + u1 + ... + uN = R.

We start with the Lagrange system of equations

∂G
∂uk

=
N

∑
n=k

n

∏
i=0

F(ui)
F′(uk)

F(uk)
= L, k = 0, ..., N.

For n = N we get

L =
N−1

∏
i=0

F(ui)F′(uN)

which leads to the recursive relations

F′(ui−1)

F(ui−1)
=

F(ui)...F(uN−1)F′(uN)

1 + F(ui) + F(ui)F(ui+1) + ... + F(ui)...F(uN)
.

For the calculation of ui−1 we would need that F′(u)/F(u) is monotone.

In our control problem we want to maximize the following term by the choice of barriers
B0, B1, ..., BN : with F(x) = w(x)/v(x) and Z(x) = 1/v(x)

G(B0, ..., BN) =
V

Av(s) = Z(B0) + DF(B0)Z(B1) + D2F(B0)F(B1)Z(B2) + ... + DN F(B0)...F(BN−1)Z(BN).

As in the above problem, we fix BN and use the Lagrange equations with a multiplier L and
H(x) = g(x)/ f (x)

∂

∂Bi
G(B0, ..., BN) = LH′(Bi), i = 0, ..., N. (25)

With i = N we get a formula for L :

F(B0)...F(BN−1Z′(BN) = H′(BN). (26)

Our function G(B) allows for the following simplification: for i = 0, ..., N − 1 the barrier Bi solves

A1H′(x)F(x) = Z′(x) + A2F′(x), (27)

A1 = CN−iF(Bi)...F(BN−1)Z′(BN)H′(Bi)/H′(BN), (28)

A2 = CZ(Bi+1) + C2F(Bi+1)Z(Bi+2) + ... + CN−iF(Bi+1)...F(BN−1)Z(BN). (29)

Here, we first omit the factor Av(s) and all terms in which Bi does not occur, then we divide both
sides by F(B0)...F(Bi−1)Ci. Equation (27) can be solved easily and quickly using Newton or the false
position (regula falsi) method.

Some care is needed since the method has some uncommon features: We start with the last barrier
BN which has practically no impact on the value of the company or the ruin probability, but in the
recursion it determines all barriers. If we increase a large N by 1, then the company value as well
as the corresponding ruin probability will change a lot, since we add a new first barrier which has
a major impact on both numbers. Finally, we want to maximize G(x0, ..., xN) under the constraint
s ≤ x0 ≤ ... ≤ xN . Nevertheless, the method is stable and accurate, even with the numerical precision
of MatLab, and it produces admissible solutions. For N = 200 we obtain B0 = 12.061058869 and
V(2, 0.2) = 20.15151719.
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A plot of the resulting optimal barriers B0, ..., BN in Figure 2 explains the good performance of
linear sequences: the optimal sequences B0, ..., BN are not linear but almost linear. Figure 2 left and
right shows the optimal sequences and their increments in the example considered below.
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Figure 2. Optimal barriers: values (Left) and increments (Right).

In dividend control problems, optimal strategies can often be characterized by a single barrier
function M(β), 0 < β ≤ 1, which identifies the optimal barriers for arbitrary initial surplus s and
allowed ruin probability α : we start paying dividends whenever the with dividend process S(t)−D(t)
and the allowed running ruin probability α(t) hit M(β), i.e., when M(α(t)) = S(t)− D(t). Notice that
the optimal sequences Bi and the corresponding running ruin probabilities ai(Bi) are points on the
curve M(β), i.e.,

M(ai(Bi)) = Bi.

Figure 3 shows the function M(β) at the points β at which M(β) = Bi, as well as the corresponding
curve for the iteration method with

M(β) = min{s : Vs(s, β) = 1}.

The curves should coincide; however, the second curve shows edges and higher values which
are due to the discretization of s and α. The curves are plotted for 0 < β ≤ 0.02 only because of
a0(B0) = 0.020859.
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Figure 3. Universal barriers from the Lagrange method (lower) and the iteration (upper curve).

2.3. Reinsurance Control for Company Value with Ruin Constraint

Many problems in stochastic control are solved via the well known Hamilton-Jacobi-Bellman
equation. It is written for the value function of the given control problem reflecting the dynamics of
the underlying stochastic model and the influence of control variables on these dynamics.

The case of a company value without ruin constraint is easy. We have a set of possible reinsurance
contracts g(x, a), 0 ≤ g(x, a) ≤ x, a ∈ A, which describe the risk sharing at a claim of size X between
insurer (paying g(X, a)) and reinsurer (paying X− g(X, a)), and we have a reinsurance premium h(a)
for contract a. Then the Hamilton-Jacobi-Bellman equation for the candidate solution v(s) satisfying
v(0) = 1 reads

sup
a∈A

(
−δv(s) + λE[v(s− g(X, a))− v(s)] + (c− h(a))v′(s)

)
= 0. (30)

The optimal dividend strategy is of barrier type if v′(s) is decreasing in [0, B] and increasing
in [B, ∞), and in this case B is the barrier. We let V(s) = v(s)/v′(B) when s ≤ B while
V(s) = V(B) + s− B for s > B. On the no action region [0, B) we can restrict the possible reinsurance
contracts to Ac = {a ∈ A : h(a) < c}, and then

V′(s) = inf
a∈Ac

(λ + δ)V(s)− λE[V(s− g(X, a))]
c− h(a)

. (31)

The optimal reinsurance strategy in the no action region is given by the minimizer a∗(s) in (31).
This approach solves our control problem: Equation (30) is homogeneous, the set of solutions has
dimension 1, and the optimal reinsurance strategy is unique. Furthermore, from (30) we get an iteration
producing a non-decreasing sequence of functions converging to V(s). For reinsurance control to
minimize the ruin probability—which uses quite similar techniques—see Hipp and Vogt (2003) as well
as Dickson and Waters (2006).

The situation of a company value with ruin constraint is more complex. We can simplify the
problem by fixing a sequence of barriers s0 ≤ B0 < ... < BN on which dividends are paid, and use
the running ruin probability ψn(x) valid for x < Bn after visiting the barriers B0, ..., Bn−1. Then the
function V(x) = V(x, ψn(x)) satisfies Equation (30) above. This implies that the optimal reinsurance
strategy for maximizing the company value with ruin constraint equals a∗(x) for 0 ≤ x < Bn, i.e.,
the same strategy as without ruin constraint, as long as we are in the no action region. This holds
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generally when we are not on a barrier level, no matter how many barriers we have visited. With the
Markov property we get a constant value for the reinsurance parameter on each single barrier. If the
barriers and these parameters ai are fixed, then we can compute the corresponding dividend value
with formula (20), where W(s) is replaced by the candidate solution of

0 = −δv(s) + λE[v(s− g(X, a∗(s)))− v(s)] + (c− h(a∗(s))v′(s).

In addition, the ruin probabilities φn(x) for the no action regions are computed under the optimal
reinsurance strategy:

0 = λE[φn(s− g(X, a∗(s)))− φn(s)] + (c− h(a∗(s))φ′n(s).

The reinsurance strategies ai valid on the barriers were specified manually. Our first guess was
ai = a∗(Bi), for which we would not have a jump in the optimal reinsurance strategy when reaching
Bi. However, in our numerical experiments we found that an optimal strategy uses more reinsurance
during dividend payment. This is surprising since this at the same time reduces dividend payment.

In our numerical example we use these tools to manually construct a solution via the choice
of a barrier sequence Bi and contract parameters ai on these barriers. The corresponding dividend
strategy pays the dividend rate c− h(ai) on the barrier Bi, and the running ruin probabilities φi(x) are
concatenated via

E[φi+1(Bi − g(X, a∗(Bi)))] = φi(Bi).

3. Numerical Example

We consider a Lundberg process with premium rate 2, exponential claims with mean 1, a claim
frequency of 1, and the interest rate δ = 0.03. Here we have explicit formulas for f (s), g(s), v(s),
w(s) and their derivatives:

f (s) = 1− exp(−s/2)/2, (32)

g(s) = E[ f (s− X)] = 1− exp(−s/2), (33)

v(s) = (1− C) exp(a1s) + C exp(a2s), (34)

w(s) = EW[v(s− X)] = (1 + δ)v(x)− cv′(s), (35)

a1 = 0.02917305718455, (36)

a2 = −0.5141730571845, (37)

C = −0.894138984281798, (38)

M = 9.180097300194138. (39)

We take s = 2 and α = 0.2. The ruin probability without dividend payment is

ψ(s) = 0.18393972 (40)

which is quite close to α.
The iteration method produces—with discretization 1/100 for s and 1/500 for α and 100

repetitions—the value V(2, 0.2) = 19.8246037. The computation time for one iteration was
240–260 cpu seconds. Additional iterations change little, the value for 150 iterations is 19.82804494.
We used the initial function

V0(s, α) = 0 if s < s(α), (41)

V0(s, α) = V0(s− s(α)), s ≥ s(α), (42)
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where α = E[ψ(s(α)− Y)] and Y is the claim causing ruin in the risk process with barrier dividend
payment. For exponential claim sizes, Y has the same distribution as X. The dividend value
corresponds to a strategy which pays dividends without a constraint until the surplus drops below s(α).
The unconstrained dividend value equals V(2, 1) = 22.11840639. This and later values show that ruin
constraints are rather cheap.

We next compute the dividend function with the barrier method. With the following linearly
increasing barrier levels we obtain V(2, 0.2) = 20.0750017795 (using MAPLE and 50 digits accuracy):

B0 = 11.47909729919, (43)

B1 = 11.648050776, (44)

Bi = Bi−1 + 0.16895347669, i = 2, ..., 400. (45)

These barriers were obtained via a simple but tedious manual search. The first barrier B0 is chosen
to yield an exact allowed ruin probability α. The difference between this result and the result in the
iteration method is due to discretization of s and α.

The second search was done with barriers for which log(g(Bi+1)/ f (Bi+1)) = ρ log(g(Bi+1)

/ f (Bi+1)), i ≥ 1. The choice of ρ = 0.9299, B0 = 11.41895, B1 = 11.9442 produced the dividend
value V = 20.12254329. This is better than the best value with linearly increasing barriers, but still not
optimal, and it is unclear why this definition of the Bi produces a close to optimal company value.

Of course, for optimal barriers one should try the Lagrange method since it characterizes
a local maximum of the function G(B0, ..., BN) under a constraint H(B0) + ... + H(BN) = R,
where H(x) = log(g(x)/ f (x)) and R = log(γ0). Since the problem is high dimensional and the
function is highly non-linear, the Lagrange method was not the first choice for the optimization.
However, it surprisingly works with the backward recursion described above. With N = 200 we obtain
the dividend value V = 20.15151719. The first two barriers are B0 = 12.06105887 and B1 = 12.18704856.
The optimal barriers go up to BN = 36.80050963.

For the control of reinsurance we consider unlimited XL-reinsurance which is parametrized by
a threshold M ∈ [0, ∞] and defined via

g(x, M) = min(x, M),

i.e., the reinsurer pays the amount of the claim exceeding M. The reinsurance premium is assumed of
the form

h(M) = λcρE[(X−M)+]/E[X],

where the loading factor ρ = 1.2 > 1 avoids an ill posed problem. We first compute the optimal
reinsurance strategy to maximize the unconstrained company value V(s). The optimal reinsurance
strategy for the unconstraint company value is given in Figure 4 which shows that

• for small surplus no reinsurance is written, M(s) = ∞,
• then M(s) = s is optimal, which guarantees the payment of the next claim, and finally
• M(s) is below s but still increasing (in contrast to the case of ruin probabilities).

We use these facts—which we could see in a complete search—also in our computer code;
this speeds up a lot. In the region without reinsurance, the candidate solution v(s) is the function W(s)
above. In the range where M(s) = s, the defining equation reads

0 = [(λ + δ)v(s)− λv(0)− (c− h(s))v′(s).
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.Figure 4. Optimal threshold M(s) for company value (left) and ruin probability

We obtain a minimum of v′(s) at M = 7.85, and a company value of V(2) = v(2)/v′(M) = 25.124375.
These values are computed with MatLab and a discretization step size 1/500 for s, and 1/1.000 for
α, so the accuracy is not too bad. The ruin probability under this dynamic reinsurance strategy is
φ(2) = 0.0381551, much smaller than without reinsurance (see (40)). The minimal ruin probability
with reinsurance is φ(2) = 0.018648. In the following we work with allowed ruin probability α = 0.05.

For 2 = s < B0 < ... < Bn we first used ai = M(Bi). The running ruin probabilities ai(x) are again
of the form

ai(x) = 1− γi + γiφ(x),

with γ0 = (1− α)/(1− φ(s)) and γi+1 = γi(1− φ(Bi))/(1− E[φ(Bi − g(X, ai))]. As above, our choice
of barriers satisfies the ruin constraint whenever γn < 1. The corresponding company value is given by

V(s) =
W(s)

W(B0)

n

∑
i=0

AiUi, (46)

Ai =
c− h(ai)

λ + δ
, (47)

C = λ/(λ + δ), (48)

Gi = E[W(Bi − g(X, ai))]/W(Bi+1) (49)

U0 = 1, Ui+1 = CGiUi. (50)

The following Table 1 gives our manually maximized company values with linear barrier
levels Bi = B0 + iβ for five different parameters B0, β and reinsurance contracts ai on the barrier
levels Bi : A: ai = M(B(i)), B: ai = M(B(i)) + 0.2, C: ai = M(B(i)) − 0.2, D: ai = M(B(i)) − 0.7,
and E: no reinsurance. For each case we show the optimal first barrier B0 and the corresponding
optimal β.
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Table 1. Dividend values for five reinsurance strategies.

ReIns B0 β V(2, 0.05)

A 9.405 0.105 23.7637
B 9.43 0.104 23.761297
C 9.40487 0.104 23.765385
D 9.4 0.10437 23.768094
E 9.449 0.104 23.75439

The largest company value in our experiments was case D with expensive reinsurance on the
barrier levels. It produces the value

V(2, 0.05) = 23.768094.

If we stop reinsurance after 54 visited barriers and start with B0 = 9.38955, the reinsurance
ai = M(B(i))− 1.1 increases the company value to 23.7689406. This dividend value is certainly still
not optimal and/or accurate, so the search could be continued. In addition, one should think about
characterizations of optimal barrier levels Bi and corresponding reinsurance contracts ai.

In the Appendix folder you will find the source codes of our MatLab calculation for the iteration
method (called Lundberg Model and Iteration), three MAPLE codes for the barrier method, Barrier1 for
linear barriers Bi, and Barrier2 for barriers with the multiplicative definition above, and GerberFormulas
for computations with linear barriers. The code LagrangeM computs the optimal barrier sequence
via the Lagrange multiplier approach. We also include three MatLab codes for reinsurance control:
Reinsurance1 and Reinsurance2, executed in this order, produce the results in the table above. For further
experiments it is convenient to generate the file Reinsurance500.mat; loading this file and running
ReMatrix generates a workspace for Reinsurance2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9091/6/3/73/s1,
Textfile: HowToUse; MatLab files: Iteration, LagrangeM, LundbergModel, Reinsurance1, Reinsurance2, Rematrix;
MAPLE Files: Barrier1, Barrier2, GerberFormulas.
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