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Abstract: One way to formulate a multivariate probability distribution with dependent univariate
margins distributed gamma is by using the closure under convolutions property. This direction
yields an additive background risk model, and it has been very well-studied. An alternative way
to accomplish the same task is via an application of the Bernstein–Widder theorem with respect to
a shifted inverse Beta probability density function. This way, which leads to an arguably equally
popular multiplicative background risk model (MBRM), has been by far less investigated. In this
paper, we reintroduce the multiplicative multivariate gamma (MMG) distribution in the most general
form, and we explore its various properties thoroughly. Specifically, we study the links to the
MBRM, employ the machinery of divided differences to derive the distribution of the aggregate
risk random variable explicitly, look into the corresponding copula function and the measures of
nonlinear correlation associated with it, and, last but not least, determine the measures of maximal
tail dependence. Our main message is that the MMG distribution is (1) very intuitive and easy
to communicate, (2) remarkably tractable, and (3) possesses rich dependence and tail dependence
characteristics. Hence, the MMG distribution should be given serious considerations when modelling
dependent risks.

Keywords: multivariate gamma distribution; multiplicative background risk model; aggregate risk;
individual risk model; collective risk model

1. Introduction

Let X be a collection of actuarial risks, that is let it contain random variables (r.v.’s) X : Ω →
R defined on the probability space (Ω,F , P) and interpreted as the financial risks an insurer is
exposed to. Often, for applications in insurance, actuaries would consider those X ∈ X , whose
distributions are supported on the non-negative real half-line, have positive skewness, and allow for a
certain degree of heavy-tailness. One such distribution, which has been of prominent importance in
insurance applications, is gamma. We refer to Hürlimann (2001), Dornheim and Brazauskas (2007),
Furman et al. (2018), and Zhou et al. (2018) for applications in solvency assessment, loss reserving,
and aggregate risk approximation, respectively.

Furthermore, let γ ∈ R+ and σ ∈ R+ denote, correspondingly, the shape and scale parameters,
then the r.v. X is said to be distributed gamma, succinctly X ∼ Ga(γ, σ), if it has the probability density
function (p.d.f.)

f (x) =
1

Γ(γ)
e−x/σxγ−1σ−γ for all x ∈ R+, (1)

where Γ(·) stands for the complete gamma function. The popularity of the r.v.’s distributed gamma
in insurance applications is not surprising: the p.d.f.’s of the (aggregate) insurance losses have as
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a rule the same shape as p.d.f. (1), i.e., they are positively skewed, unimodal and have positive
supports; p.d.f. (1) is log-convex for γ ∈ (0, 1) and so has decreasing failure rate, thus allowing for
moderate heavy-tailness (Klugman et al. 2012); p.d.f. (1) has been very well studied and has turned
out remarkably tractable.

When it comes to multivariate extensions of p.d.f. (1), there are an ample number of
dependence structures with univariate margins distributed gamma to consider (e.g., Kotz et al. 2000;
Balakrishnan and Ristić 2016, for a recent development and a comprehensive reference, respectively).
However, irrespective of whether the two-steps copula approach or the more ‘natural’ stochastic
representation approach to formulate the desired multivariate gamma distribution is pursued,
the tractability of the end-result is often an issue. For the former approach, the cumulative
distribution function (c.d.f.) of (1) cannot be written in a closed form, and consequently intensive
numerical algorithms are often needed to implement copula-based multivariate gamma models
(e.g., Cossette et al. 2018; Bahraoui et al. 2015). For the latter approach, consider the following
example. Let Yj ∼ Ga(γj, σ) for γj ∈ R+ and j = 1, . . . , n + 1 be mutually independent r.v.’s, and set
X = (X1, . . . , Xn)′ = (Y1 + Yn+1, . . . , Yn + Yn+1)

′. Then the distribution of the r.v. X is the multivariate
gamma of Mathai and Moschopoulos (1991) (also, e.g., Avanzi et al. 2016; Furman and Landsman 2005,
for recent applications in insurance). Consequently, for the p.d.f. of the r.v. X, we have

f (x1, . . . , xn) ∝
∫ mini=1,...,n xi

0
xγn+1−1e−x/σ

n

∏
i=1

(xi − x)γi−1e−(xi−x)/σdx (2)

for all (x1, . . . , xn)′ ∈ Rn
+, which inconveniently takes distinct forms for each of the n! orderings of

x1, . . . , xn.

Remark 1. The r.v.’s Y1, . . . , Yn and Yn+1 are often interpreted as, respectively, the specific and systematic risk
factors. The systematic risk factor, Yn+1, has also been referred to as the background risk (Gollier and Pratt 1996),
and so the distribution of the r.v. X = (X1, . . . , Xn)′ can be associated with an Additive Background Risk
Model with risk components distributed gamma (G-ABRM). Succinctly, for γ = (γ1, . . . , γn)′, we write
X ∼ Ga+n (γ, γn+1, σ), where γn+1 serves as the dependence parameter.

An alternative way to link the specific risk factors and the systematic (or background) risk
factor is with the help of multiplication. Namely, in order to formulate a Multiplicative Background
Risk Model with the risk components distributed gamma (G-MBRM), we must find a sequence of
(n + 1) independent r.v.’s Z1, . . . , Zn, Zn+1, say, such that X = (X1, . . . , Xn)′ = (Z1Zn+1, . . . , ZnZn+1)

′

results in the coordinates of the r.v. X being distributed gamma. One solution of this exercise,
which is of pivotal importance for this paper, can be found in Feller (1968) (also, Albrecher et al. 2011;
Sarabia et al. 2018). We organize the rest of the paper as follows: in Section 2, we explore the basic
distributional properties of—what we call—the multiplicative multivariate gamma (MMG) distribution.
Then, in Sections 3 and 4, respectively, we discuss in detail and elucidate with examples of actuarial
interest the aggregation and (tail) dependence properties of the MMG distribution. Section 5 concludes
the paper. All proofs are relegated to Appendix A to facilitate the reading.

2. Definition and Basic Properties

Multivariate distributions lay the very foundation of the successful (insurance) risk
measurement—and thus of the consequent risk management—processes. However, the toolbox
of the available stochastic dependencies that can be used to link stand-alone risk components into risk
portfolios is somewhat overwhelming. Indeed, there are infinitely many ways to formulate the joint
distribution of two dependent risk r.v.’s, whereas there is a single way only to write this distribution
under the assumption of independence. The case of the multivariate distributions with the margins
distributed gamma is of course not an exception (e.g., Kotz et al. 2000).
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Nevertheless, real applications impose significant constraints on the model choice. Namely,
practitioners often opt for those multivariate distributions that: (i) admit meaningful and relevant
interpretations; (ii) allow for an adequate fit to the modelled data, be it in the ‘tail’, in the
‘body’, and/or in the dependence; and (iii) can be readily implemented. We feel that the
multivariate distribution with the univariate margins distributed gamma that we put forward next
(also, Albrecher et al. 2011; Sarabia et al. 2018) is exactly such.

Formally, let Eλ and Λ denote, respectively, an exponentially distributed r.v. with the rate
parameter λ ∈ R+ and an arbitrarily distributed r.v. with the range Λ ∈ R+; assume that the
r.v.’s EΛ and Λ are independent. In addition, let ‘∗’ represent the mixture operator (e.g., Feller 1968;

Su and Furman 2017a), such that, for ‘ d
=’ denoting equality in distribution, it holds that Eλ ∗Λ d

= EΛ.
We note in passing that the just-mentioned mixture operator is referred to as ‘randomization’ in
Feller (1968), and is closely related—via the Bernstein–Widder theorem—to the notion of the Laplace
transform of the p.d.f. of Λ. More specifically, if fΛ and L{ fΛ} denote, correspondingly, the p.d.f. of Λ
and its Laplace transform, which is

L{ fΛ}(x) =
∫

Λ
e−xλ fΛ(λ)dλ, (3)

then (3) establishes the decumulative distribution function (d.d.f.) of the r.v. EΛ.
Recall that in this paper we are interested in formulating a multivariate distribution with the

univariate margins distributed gamma and a dependence. To this end, we assume that the r.v. Λ is
distributed as a special shifted inverse Beta, succinctly Λ ∼ IB(γ), with the p.d.f.

fΛ(λ) =
λ−1 (λ− 1)−γ

Γ(1− γ)Γ(γ)
for all λ > 1, (4)

where γ ∈ (0, 1) is the shape parameter. In our context, the choice of p.d.f. (4) is unique, which readily
follows from the Bernstein–Widder theorem. The next few facts are used frequently later on in the
paper, and are hence formulated as a lemma. In the following, the k-th order derivative of the Laplace
transform is denoted by ψ(k), k ∈ N := {1, 2, . . .}, also R0,+ := [0, ∞).

Lemma 1. Let Λ ∼ IB(γ), γ ∈ (0, 1) with p.d.f. (4), then:

(i) The Laplace transform of (4) is

L{ fΛ}(x) = Γ(γ, x)/Γ(γ) for all x ∈ R0,+,

where Γ(γ, x) :=
∫ ∞

x tγ−1e−tdt denotes the upper incomplete gamma function.
(ii) The negative k-th order moment of the r.v. Λ is

E[Λ−k] =
Γ(γ + k)

Γ(γ)Γ(k + 1)
for all k ∈ N.

(iii) The alternating sign k-th order derivative of L{ fΛ} is

(−1)kψ
(k)
Λ (x) =

k−1

∑
i=0

(
k− 1

i

)
Γ(i− γ + 1)

Γ(1− γ)Γ(γ)
e−xx−(i−γ+1) for all k ∈ N. (5)

Let Eλ,1, . . . , Eλ,n denote independent copies of Eλ, and let Λ ∼ IB(γ), γ ∈ (0, 1).
In addition, let σ = (σ1, . . . , σn)′ denote a vector of positive parameters.
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Definition 1. Set Xj = σjEλ,j ∗Λ, j = 1, . . . , n, and then the r.v. X = (X1, . . . , Xn)′ has a multiplicative
multivariate distribution with univariate margins distributed gamma, and we succinctly write X ∼ Ga×n (γ, σ),
where γ ∈ (0, 1) and σ ∈ Rn

+ are parameters.

Remark 2. Let Ej := E1,j, j = 1, . . . , n denote independent copies of a r.v. distributed exponentially with unit
scale, then the joint distribution of the r.v. X = (X1, . . . , Xn)′ in Definition 1 admits the following multiplicative
background risk model representation (see, Asimit et al. 2016; Frank et al. 2006, for the corresponding economic
implication and application)

X = (X1, . . . , Xn)
′ d
= (σ1E1/Λ, . . . , σnEn/Λ)′. (6)

Above, the r.v. Λ can be interpreted as the systematic risk factor that endangers every risk component of the
portfolio X = (X1, . . . , Xn)′ in Equation (6). The Monte Carlo simulation of Equation (6) is immediate.

Theorem 1. Let Λ ∼ IB(γ), γ ∈ (0, 1), and let σ1, . . . , σn be positive scale parameters, then the following
assertions hold:

(i) The r.v. X = σEλ ∗Λ has the d.d.f.

F(x) = Γ(γ, x/σ)/Γ(γ) for all x ∈ R0,+,

which is X is distributed gamma with the shape and scale parameters equal to γ ∈ (0, 1) and
σ ∈ R+, respectively.

(ii) The r.v. X = (X1, . . . , Xn)′ with the j-th coordinate Xj = σjEλ,j ∗Λ, has the joint d.d.f.

F(x1, . . . , xn) =
Γ(γ, x1/σ1 + · · ·+ xn/σn)

Γ(γ)
, (7)

for all (x1, . . . , xn)′ ∈ Rn
0,+.

(iii) The p.d.f. that corresponds to d.d.f. (7) is, for all (x1, . . . , xn)′ ∈ Rn
+,

f (x1, . . . , xn) =
1

∏n
i=1 σi

n−1

∑
i=0

(
n− 1

i

)
Γ(i− γ + 1)

Γ(1− γ)Γ(γ)
e
−∑n

j=1
xj
σj

(
n

∑
j=1

xj

σj

)−(i−γ+1)

. (8)

The following facts are immediate from Theorem 1: (i) the distribution of X ∼ Ga×n (γ, σ) is
marginally closed, namely, Xj ∼ Ga(γ, σj), j = 1, . . . , n; (ii) the mathematical expectation of the j-th
coordinate is E[Xj] = γσj; and (iii) the variance of the j-th coordinate is Var[Xj] = γσ2

j .
We further explore some less obvious properties of the MMG/G-MBRM and note with satisfaction

that the risk portfolios with the joint distributions within this class are often more tractable than the
portfolios having stochastically independent risk components distributed gamma. At the outset,
we note in passing that the MMG distribution put forward in Definition 1 is a non-exchangeable
generalization of the multivariate distributions having univariate margins distributed gamma that
are discussed in Albrecher et al. (2011); Sarabia et al. (2018). As such, the MMG distribution requires
a more delicate treatment when deriving the results below, which hinge crucially on the stochastic
characteristics of the univariate margins of the r.v. X ∼ Ga×n (γ, σ).

We look into the minima and maxima r.v.’s first; both are of evident importance in insurance.
To this end, denote by Xmin = mini=1,...,n Xi ∼ Fmin and by Xmax = maxi=1,...,n Xi ∼ Fmax the minima
and maxima r.v.’s. Then we have – unlike in the independent case – that the coordinates of the r.v.
X = (X1, . . . , Xn)′ in Definition 1 are closed under minima.
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Theorem 2. Let X ∼ Ga×n (γ, σ), then Xmin is distributed gamma. More specifically, we have

Xmin ∼ Ga(γ, σ∗), where σ∗ =
(

∑n
j=1 1/σj

)−1
is the positive scale parameter, and γ ∈ (0, 1) is the shape

parameter. In addition, the d.d.f. of Xmax is a linear combination of the d.d.f.’s of the univariate r.v.’s distributed
gamma, such that

Fmax(x) = ∑
S⊆{1,...,n}

(−1)|S|−1FXS (x) for all x ∈ R0,+,

where XS = mins∈S⊆{1,...,n} Xs and XS ∼ Ga(γ, σ∗S ) with σ∗S = (∑j∈S 1/σj)
−1.

Another r.v. of pivotal interest in insurance is the aggregate risk r.v. denoted by
X+ = X1 + · · ·+ Xn; in addition, let X+ ∼ F+. It is well known that, if X1, . . . , Xn are mutually
independent and distributed gamma with arbitrary parameters, then F+ admits an infinite sum
representation (Moschopoulos 1985; Provost 1989). We further show that for X ∼ G×n (γ, σ) and when
all the scale parameters are distinct, then F+ is noticeably more elegant. The derivation of F+ in
the general case—i.e., for arbitrary (possibly equal) scale parameters—is more cumbersome and is
presented in Section 3.

Let

wi(σ) =
n

∏
j=1, j 6=i

1
1− σj/σi

for i = 1, . . . , n. (9)

We often write wi omitting the vector of scale parameters σ for the simplicity of notation.

Proposition 1. Let X ∼ Ga×n (γ, σ) and assume that all the scale parameters are distinct, which is σi 6= σj for
i 6= j ∈ {1, . . . , n}, then the d.d.f. of X+ = X1 + · · ·+ Xn is

F+(x) =
n

∑
i=1

wi
Γ(γ, x/σi)

Γ(γ)
for all x ∈ R0,+. (10)

The last result in this section provides an expression for the higher-order (product) moments of
the r.v. X ∼ G×n (γ, σ). We employ a special form of this expression later on in Section 4 to derive the
formula for the Pearson index of linear correlation.

Theorem 3. Let X ∼ G×n (γ, σ), then, for h1, . . . , hn ∈ N, we have

E

[
n

∏
i=1

Xhi
i

]
=

Γ(γ + ∑n
i=1 hi)

Γ(γ)Γ(∑n
i=1 hi + 1)

n

∏
i=1

σ
hi
i Γ(hi + 1). (11)

We conclude the discussion in the present section by noticing that joint p.d.f. (8) can be used to
estimate the parameters of the MMG distribution via the (numerical) maximum likelihood approach,
whereas expression (11) is of interest if the moment-based estimation is being pursued.

3. Aggregation Properties of the Multiplicative Multivariate Gamma Distribution

One of the key paradigms in the modern enterprise risk management requires that all risks
are treated on a holistic basis. As a result, risk aggregation is of fundamental importance for the
effective conglomerate-wide risk management, risk-sensitive supervision, and a great variety of
other business decision making processes. In the context of the MMG distribution, when all scale
parameters are distinct, the decumulative distribution function of the aggregate risk r.v. is given by (10).
The situation with arbitrary (possibly equal) scales is more involved. We further show that, within
the MMG/G-MBRM class, that is for X ∼ Ga×n (γ, σ) with arbitrary scale parameters and γ ∈ (0, 1),
the d.d.f. of the aggregate risk r.v. X+ admits a finite sum representation. To this end, we employ
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the well-studied machinery of divided differences (e.g., Milne-Thomson 2000, for a comprehensive
treatment). The rest of the section is divided into two: theoretical considerations and applications.

3.1. Theoretical Considerations

We remind at the outset that the divided differences, denoted by ω(y1, . . . , ym), on a grid
∆ = {y1, . . . , ym} for a function ω : R→ R can be written as (e.g., Milne-Thomson 2000)

ω(y1, . . . , ym) =
m

∑
i=1

∏
1≤j 6=i≤m

ω(yi)

yi − yj
. (12)

Denote

g(y) =
Γ(γ, y)
yΓ(γ)

for all y ∈ R0,+. (13)

Then the following corollary is merely a rearrangement of Equation (10).

Corollary 1 (of Proposition 1). The d.d.f. of the r.v. X+ can be formulated, for distinct σj, j = 1, . . . , n, as

F+(x) =
(−1)n−1xn

∏n
i=1 σi

g(x/σ1, . . . , x/σn) for all x ∈ R0,+,

where g(x1/σ1, . . . , x/σn) is the divided differences representation of g(·) defined as per Equation (13).

Obviously, Equation (12) does not yield sensible results when some of the scale parameters of
the r.v. X ∼ Ga×n (γ, σ) are equal. To circumvent this inconvenience, we formulate and prove the
following lemma.

Lemma 2. Consider ω : R→ R, and the grid ∆ = {y1, . . . , ym} as before. For ni ∈ N, i = 1, . . . , m, assume
ω is at least k = maxi=1,...,m ni − 1 times differentiable; then, we have

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

)

=
m

∑
i=1

1
Γ(ni)

∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j 6=i≤m

(−nj)hj
(yi − yj)

−nj−hj ,

where (p)n := p(p− 1) . . . (p− n + 1) for n ∈ N denotes the falling factorial, (p)0 := 1.

The next assertion establishes the distribution of the aggregate risk r.v. with arbitrary scale
parameters. Its proof follows by rearranging d.d.f. (10) using the divided differences operator and
consequently evoking Lemma 2.

Theorem 4. Consider X ∼ Ga×n (γ, α), where γ ∈ (0, 1) and σ = (σ1, . . . , σn)′ with arbitrary coordinates
in the latter vector of parameters. Let σ = (σ1, . . . , σ1︸ ︷︷ ︸

n1

, . . . , σm, . . . , σm︸ ︷︷ ︸
nm

)′ for m ∈ N and n1 + · · ·+ nm = n,

then, for x ∈ R0,+, the d.d.f. of X+ admits the following finite sum form:

F+(x) =
1

∏m
i=1 σ

ni
i

m

∑
i=1

∑
h1+...+hm=ni−1

g∗
(

x
σi

)
σ

hi+1
i ∏

1≤j 6=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj

,
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where

g∗(y) =
hi

∑
k=0

1
Γ(k + 1)

yk(−1)kψ
(k)
Λ (y).

Remark 3. A close look at Theorem 4 reveals that the distribution of the r.v. X+ can be considered a finite
mixture of the r.v.’s distributed Erlang with stochastic scale parameters. To see this, first note that

g∗(x/σi) =
hi

∑
k=0

1
Γ(k + 1)

(x/σi)
k(−1)kψ

(k)
Λ (x/σi)

= E

[
hi

∑
k=0

1
Γ(k + 1)

(xΛ/σi)
ke−Λx/σi

]
= Fei,hi

(x) for all x ∈ R0,+,

in which ei,hi
denotes the r.v. distributed Erlang with the shape parameter hi + 1 and the random scale parameter

σi/Λ. Then rewrite F+ as

F+(x) =
1

∏m
i=1 σ

ni
i

m

∑
i=1

ni−1

∑
hi=0

σ
hi+1
i ∑

h1+...+hm=ni−1
∏

1≤j 6=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj
 Fei,hi

(x)

=
m

∑
i=1

ni−1

∑
hi=0

pi,hi
Fei,hi

(x),

where

pi,hi
=

σ
hi+1
i

∏m
i=1 σ

ni
i

 ∑
h1+...+hm=ni−1

∏
1≤j 6=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj
 .

By setting x = 0, it is clear that pi,hi
are generalized weights in the sense that ∑m

i=1 ∑ni−1
hi=0 pi,hi

= 1.
However, these weights are not necessarily positive. For an example, consider the bivariate case with n = m = 2
and n1 = n2 = 1. A simple calculation yields

F+(x) = p1,0Fe1,0(x) + p2,0Fe2,0(x) for all x ∈ R0,+,

where ei,0 ∼ Ga(1, σi/Λ), i = 1, 2, p1,0 = σ−1
2 (1/σ2 − 1/σ1)

−1, and p2,0 = σ−1
1 (1/σ1 − 1/σ2)

−1.
Therefore, depending on the values of σ1 and σ2, one of the weights must be negative.

3.2. Applications

Herein we confine the discussion to the individual and collective risk models. In this respect,
recall that we call the r.v. Sn = X1 + · · · + Xn, n ∈ N the individual risk model, where we let
the severity r.v.’s Xj, j = 1, . . . , n be possibly non-homogeneous. In the collective risk model case,
for N ∈ Z0,+ := {0, 1, 2, . . .} denoting the frequency r.v., we are interested in exploring the distribution
of the random sum SN = X1 + · · ·+ XN . In the context of the MMG/G-MBRM, we have

Sn = σ1
E1

Λ
+ · · ·+ σn

En

Λ
, (14)

and
SN = σ

E1

Λ
+ · · ·+ σ

EN
Λ

. (15)
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P.d.f.’s—rather than d.d.f.’s—often play an important role in the individual/collective risk model
contexts. Therefore, the p.d.f.’s of Sn and SN engage us in the rest of this section. We start with the
p.d.f. of the former r.v. in the following proposition. Recall that pi,hi

are given in (14), and ψ(k) denotes
the k-th order derivative of the Laplace transform.

Proposition 2. Let X ∼ Ga×n (γ, σ) with σ = (σ1, . . . , σ1︸ ︷︷ ︸
n1

, . . . , σm, . . . , σm︸ ︷︷ ︸
nm

)′ for m ∈ N and n1 + · · ·+ nm = n,

then, for x ∈ R+, the p.d.f. of the r.v. Sn is given by

fSn(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi

(−σi)
−(hi+1)xhi

Γ(hi + 1)
ψ
(hi+1)
Λ (x/σi).

The next corollary follows immediately from Proposition 2, by setting m = 1 and n1 = n.

Corollary 2. Let X ∼ Ga×n (γ, σ), where γ ∈ (0, 1) and σ1 = · · · = σn ≡ σ ∈ R+. Then, for x ∈ R+,
the p.d.f. of the r.v. Sn is given by

fSn(x) =
n−1

∑
i=0

1
Γ(i + 1)Γ(n− i)

Γ(i− γ + 1)
Γ(1− γ)Γ(γ)

σ−(n−i+γ−1)e−x/σxn−i+γ−2. (16)

Remark 4. It is not difficult to see that p.d.f. (16) admits the following finite mixture representation

fSn(x) =
n−1

∑
i=0

pi fei (x),

where ei ∼ Ga(n− i + γ− 1, σ) and the weights are given by

pi =
Γ(n− i + γ− 1)
Γ(i + 1)Γ(n− i)

Γ(i− γ + 1)
Γ(1− γ)Γ(γ)

for i = 0, . . . , n− 1. Remarkably, in this special case, the weights pi are ‘proper’ in the sense that pi > 0 and
∑n−1

i=0 pi = 1. This observation complements Theorem 6 in Sarabia et al. (2018).

We further derive the p.d.f. of the r.v. SN .

Proposition 3. Let X ∼ Ga×n (γ, σ) with σ1 = · · · = σn ≡ σ ∈ R+, then, for x ∈ R+, the p.d.f. of the r.v.
SN is

fSN (x) =


xγ−1e−x/σ

Γ(γ)σγ ∑∞
i=0 ∑∞

m=0
〈1−γ〉i

i!m!
( x

σ

)m P[N = m + i + 1], for x > 0,

P[N = 0], for x = 0,
(17)

where 〈p〉n = p(p + 1) . . . (p + n− 1) for n ∈ N denotes the rising factorial, 〈p〉0 := 1.

We conclude this section by specializing the p.d.f. of the r.v. SN reported in Proposition 3 for particular
choices of the frequency r.v. In actuarial science, some popular choices of the r.v. N are, e.g., the Poisson,
negative binomial, and logarithmic (e.g., Klugman et al. 2012). Below, we first remind the reader in
passing the probability mass functions (p.m.f.’s) of the just-mentioned r.v.’s, and we then present the
p.d.f.’s of the aggregate r.v.’s within the framework of the corresponding collective risk models.

• If N ∼ Poisson(λ) with λ ∈ R+, then the p.m.f. is given by

P[N = n] =
λn

n!
e−λ for all n ∈ Z0,+.
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• If N ∼ NB(β, p), the negative binomial distribution with β ∈ R+ and p ∈ (0, 1), then

P[N = n] =
Γ(n + β)

Γ(n + 1)Γ(β)
pβ(1− p)n for all n ∈ Z0,+.

• If N ∼ Logm(θ), the logarithmic distribution with θ ∈ (0, 1), then the p.m.f. is

P[N = n] =
−θn

n log(1− θ)
for all n ∈ Z+.

Let Φ1 and Φ3, respectively, denote the two-variable confluent hypergeometric series of the first
and third kind (see, e.g., Srivastava and Karlsson 1985), that is with a1, a2, a3 ∈ R+,

Φ1(a1, a2; a3; x, y) =
∞

∑
i=0

∞

∑
j=0

〈a1〉(i+j)〈a2〉(j)

〈a3〉(i+j)i!j!
xiyj,

for x ∈ R, |y| < 1, and

Φ3(a1; a2; x, y) =
∞

∑
i=0

∞

∑
j=0

〈a1〉(j)

〈a2〉(i+j)i!j!
xiyj,

for x, y ∈ R. The following corollary follows readily.

Corollary 3 (of Proposition 3). In the context of the collective risk model, we have, for all x ∈ R+, γ ∈ (0, 1)
and σ ∈ R+, that

• If N ∼ Poisson(λ), then

fSN (x) = λ
xγ−1e−x/σ−λ

Γ(γ)σγ
Φ3(1− γ, 2, xλ/σ, λ).

• If N ∼ NB(β, p), then

fSN (x) = βpβ(1− p)
xγ−1e−x/σ

Γ(γ)σγ
Φ1(1 + β, 1− γ, 2, x(1− p)/σ, 1− p).

• If N ∼ Logm(θ), then

fSN (x) = − θ

log(1− θ)

xγ−1e−x/σ

Γ(γ)σγ
Φ1(1, 1− γ, 2, xθ/σ, θ).

4. Dependence Properties of the Multiplicative Multivariate Gamma Distribution

At first sight, the dependence structure that underlies the MMG distribution—that is d.d.f. (7)—
is not as versatile as the one behind the additive counterpart of Mathai and Moschopoulos (1991).
This is because the Pearson correlation, ρ, for the former class of distributions does not attain every
value in the interval [0, 1], whereas it does so in the context of the latter class of distributions (e.g.,
Das et al. 2007; Su and Furman 2017a, 2017b, for a similar constraint in the context of default risk).
More formally, we have the following proposition, the proof of which is a direct application of Theorem
3 and is thus omitted.

Proposition 4. Let X ∼ Ga×n (γ, σ), then the Pearson correlation between any pair of Xi and Xj,
for i 6= j ∈ {1, . . . , n} is

ρ[Xi, Xj] = (1− γ)/2, (18)
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where γ ∈ (0, 1). In addition, we have ρ[Xi, Xj] ∈ (0, 1/2) and it is a decreasing function of γ ∈ (0, 1).

In the rest of this section, we show that the just-mentioned seeming shortcoming should in fact be
attributed to the Pearson index of correlation, ρ, itself, rather than to the dependence structure of the
MMG distribution. As hitherto, we divide our observations herein into two subsections.

4.1. Theoretical Considerations

At the outset, we observe that the dependence structure that underlies the MMG/G-MBRM is
not linear in the—common—background r.v. Λ. Therefore, the machinery of copulas lands itself very
naturally to exploring the relevant dependence properties. The next theorem states the copula function
(e.g., Joe 1997) of X ∼ Ga×n (γ, σ).

Theorem 5. Assume that X ∼ Ga×n (γ, σ), then the copula function underlying the d.d.f. of X is given,
for γ ∈ (0, 1), by

Cγ(u1, . . . , un) =
1

Γ(γ)
Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
, (19)

where (u1, . . . , un)′ ∈ [0, 1]n, and Γ−1(·, s) denotes the inverse incomplete gamma function evaluated at
s ∈ R+. Moreover, the p.d.f. associated with Cγ is given by

cγ(u1, . . . , un) = (−1)nψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

1
f (Γ−1(γ, uiΓ(γ)))

, (20)

where f denotes the p.d.f. of Ga(γ, 1), and (−1)nψ(n) is obtained in Lemma 1.

Figure 1 depicts the simulated scatter plots of the copula function Cγ for varying values of the
γ parameter.

Remark 5. Copula function (19) is a member of the encompassing class of the Archimedean copulas.
Specifically, set

φ(s) =
Γ(γ, s)
Γ(γ)

for all s ∈ R0,+,

and observe that (19) admits the following form, for (u1, . . . , un)′ ∈ [0, 1]n,

Cφ(u1, . . . , un) = φ(φ−1(u1) + · · ·+ φ−1(un)),

where φ : [0, ∞) → [0, 1] is a legitimate completely monotonic function—known as the Archimedean
generator—and φ−1 is its inverse (e.g., McNeil and Nešlehová 2009). The MMG copula therefore enriches the
encompassing toolbox of the distinct Archimedean copulas available to researchers and practitioners.

We have already mentioned at the end of Section 2 that the maximum likelihood approach can be
used in order to numerically estimate the parameters of the MMG distribution. An alternative way to
estimate the parameters is via the two-step copula approach. That is, we first fit the MMG copula to the
pseudo uniform samples based on the empirical c.d.f.’s of Xi, i = 1, . . . , n and estimate the γ parameter
(e.g., Embrechts and Hofert 2013; Genest et al. 2011, and references therein), and we then estimate the
σi parameters based on the univariate marginal distributions assuming that the γ parameter is known.
Given the cumbersome form of p.d.f. (8), the copula-based approach is computationally simpler.

Besides the just-mentioned statistical inference, a useful contribution of copulas to the vast
literature of multivariate modelling is that they have given rise to a number of indices of dependence
that circumvent the known fallacies of the Pearson ρ. Such indices of dependence are, e.g., the Kendall τ
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and Spearman ρS measures of rank correlation, and we derive these two in the next subsection in the
context of the MMG copula function Cγ.
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Figure 1. Scatter plots of the MMG copula (4000 simulation points) for varying values of the γ

parameter: γ = 0.05 (top left), γ = 0.2 (top right), γ = 0.5 (bottom left), γ = 0.8 (bottom right).

In the rest of this subsection, we build up the theoretical groundwork necessary for exploring
the tail dependence of Cγ. As tail dependence represents the co-movement of extreme risks, it is of
particular importance in the era following the financial crisis of 2007–2009. We note in passing that,
since the majority of the existing methods for quantifying tail dependence mainly aim at random pairs,
we specialize the discussion in this part of the present report to the bivariate case only.

Let Ĉ denote the survival copula that corresponds to C, that is Ĉ(u1, u2) := u1 + u2 − 1+
C(1− u1, 1− u2), for u1, u2 ∈ [0, 1]. Then the first order lower and upper tail dependence parameters
(e.g., Joe 1997) are given by

λL := lim
u↓0

C(u, u)
u

and λU := lim
u↓0

Ĉ(u, u)
u

, (21)

whereas the second order tail dependence parameters (Coles et al. 1999) are given by

χL := lim
u↓0

2 log u
log C(u, u)

− 1 and χU := lim
u↓0

2 log u
log Ĉ(u, u)

− 1. (22)
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Recently, an argument has been put forward that tail dependence measures (21) and (22)
may underestimate the extent of the tail dependence inherent in a copula. More specifically,
Furman et al. (2015) claim and elucidate with numerous examples that as measures (21) and (22)
are computed along the main diagonal (u, u), u ∈ [0, 1], their values are not necessarily maximal when
alternative paths in [0, 1]2 are considered. This motivated the following definitions of the admissible
paths and the paths of maximal dependence in ibid.

Definition 2. A function ϕ : [0, 1]→ [0, 1] is called admissible if it satisfies the following conditions:

(C1) ϕ(u) ∈ [u2, 1] for every u ∈ [0, 1]; and
(C2) ϕ(u) and u2/ϕ(u) converge to 0 when u ↓ 0.

Then the path (ϕ(u), u2/ϕ(u))0≤u≤1 is admissible whenever the function ϕ is admissible. In addition,
we denote by A the set of all admissible functions ϕ.

Definition 3. The path(s) (ϕ(u), u2/ϕ(u))0≤u≤1 in A are called paths of maximal dependence if they
maximize the probability

Πϕ(u) = C
(

ϕ(u), u2/ϕ(u)
)

or, equivalently, the distance function

dϕ

(
C, C⊥

)
(u) = C

(
ϕ(u), u2/ϕ(u)

)
− C⊥(ϕ(u), u2/ϕ(u)),

where C⊥ is the independence copula, i.e., C⊥(u1, u2) = u1u2 for all 0 ≤ u1, u2 ≤ 1.

Obviously, the function ϕ0(u) = u is admissible and yields the representation of the diagonal path
that serves as a building block for classical indices (21) and (22). For the Archimedean class of copulas,
the following property of the maximal dependence path holds. The verification of the condition stated
in Lemma 3 below is not trivial, and is carried out for the MMG copula Cγ in Theorem 6.

Lemma 3 (Furman et al. 2015). For an Archimedean copula with generator φ, if x ∂
∂x φ−1(x) is increasing on

x ∈ (0, 1), then the path of maximal dependence coincides with the main diagonal.

The next lemma on a L’Hospital type rule for monotonicity, plays an importantly auxiliary role
when deriving the maximal dependence path for Cγ.

Lemma 4 (Pinelis 2002). Let −∞ ≤ a < b ≤ ∞, also g1 and g2 be differentiable functions over the interval
(a, b). Assume that g′2(s) < 0 for s ∈ (a, b), and lims↓a g1(s) = 0 and lims↓a g2(s) = 0. Then, g1/g2 is
increasing on (a, b) if g′1/g′2 is increasing.

Our last result in this subsection implies that measures of tail dependence (21) and (22) are in fact
maximal in the context of the MMG copula Cγ.

Theorem 6. The maximal dependence path of the copula function Cγ in (19) is diagonal.

4.2. Applications

The next assertion reports the Kendall tau and Spearman rho rank correlations, implied by the
MMG copula (19). The hypergeometric function plays a pivotal role in deriving the Spearman rho
correlation in the following proposition, and it is given in Gradshteyn and Ryzhik (2014)

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) =
∞

∑
k=0

〈a1〉k, . . . , 〈aq+1〉k
〈b1〉k, . . . , 〈bq〉k

zk

k!
. (23)
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For a1, . . . , aq+1 all positive, and these are the cases of interest in the present report. The radius
of convergence of the series is the open disk |z| < 1. On the boundary |z| = 1, the series converges
absolutely if d = b1 + · · ·+ bq − a1 − · · · − aq+1 > 0, and it converges except at z = 1 if 0 ≥ d > −1.

Proposition 5. For the copula Cγ, the Kendall τ rank correlation is given by

τ(Cγ) = 1− 2 Γ(γ + 1/2)√
π Γ(γ)

,

and the Spearman ρS rank correlation is given by

ρS(Cγ) = 6
(

8−γΓ(3γ)

Γ(γ + 1)Γ(2γ) 2F1(1, 3γ; 2γ + 1; 1/2)− 1/2
)

.

Figure 2 depicts the values for the Pearson ρ, Kendall τ and Spearman ρS indices of correlation
with varying γ ∈ (0, 1). The figure confirms that, while the Pearson ρ does not attain all values in [0, 1]
for the MMG/G-MBRM distribution, the other two indices are able to achieve this goal.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

γ

 

Pearson
Kendall
Spearman

Figure 2. The plot of the Pearson rho, Kendall tau, and Spearman rho measures of correlation for
varying values of γ ∈ (0, 1).

Proposition 6. Assume that X ∼ Ga×n (γ, σ) has copula Cγ, the lower maximal tail dependence of Cγ is

λL(Cγ) = χL(Cγ) = 0.

The upper maximal tail dependence of Cγ is

λU(Cγ) = 2− 2γ, and χU(Cγ) = 1.

Proposition 6 readily implies—recall to this end that the copula Cγ is in fact a survival copula
(by construction)—that the coordinates of X ∼ Ga×n (γ, σ) are asymptotically dependent in the lower
tail, but independent in the upper tail. Speaking bluntly, this means that X is more likely to take smaller
values simultaneously, but less likely to form a cluster of large values. This conforms to the already
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made intuitive observation that the copula Cγ can serve as a reflected variant of the well-studied
Clayton copula.

5. Conclusions

In the present report, we have systematically studied a class of multivariate multiplicative
gamma distributions. We have demonstrated that the MMG distribution admits a very meaningful
background risk model representation, where the interdependencies among risks are implied by
a common systematic risk factor. Moreover, we have shown that the MMG distribution enjoys a
remarkable level of analytical tractability, that is, the risk r.v.’s distributed MMG are straightforward to
simulate, easy to aggregate and take maxima, closed under minima, and have attractive dependence
and tail dependence characteristics. In view of the above, we think that the potential applications of the
MMG distribution in actuarial science are vast, and we hope to draw the attention of the community to
this class of distributions. In fact, reduced forms of the proposed MMG distribution have been recently
heuristically adopted in the actuarial literature to model a variety of dependent insurance risks (e.g.,
Sarabia et al. 2018, also, Albrecher et al. 2011).
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Appendix A. Proofs

Proof of Lemma 1. The proof of (i) is due to Equation 3.383(9) in Gradshteyn and Ryzhik (2014);
(ii) follows readily via the integral representation of the Beta function. In order to check (iii), we have

(−1)k dk

dxkL{ fΛ}(x) =
1

Γ(1− γ)Γ(γ)

∫ ∞

1
λk−1e−λx(λ− 1)−γdλ

=
1

Γ(1− γ)Γ(γ)

∫ ∞

0
(1 + λ)k−1e−(1+λ)xλ−γdλ

=
1

Γ(1− γ)Γ(γ)

k−1

∑
i=0

(
k− 1

i

)
e−x

∫ ∞

0
e−λxλi−γdλ.

This completes the proof of the lemma.

Proof of Theorem 1. The d.d.f.’s of the r.v.’s X and X follow immediately from Lemma 1, Statement (i)
and Chapter 4 in Joe (1997). The joint p.d.f. follows from Lemma 1, Statement (iii) since

f (x1, . . . , xn) =
(−1)n

∏n
i=1 σi

ψ
(n)
Λ

(
n

∑
i=1

xi
σi

)
for all (x1, . . . , xn) ∈ Rn

+.

This completes the proof of the theorem.

Proof of Theorem 2. The closure under the minima operation is trivial by evoking Theorem 1,
Statement (ii). The distribution of the r.v. Xmax follows immediately (e.g., Corollary 2.2 in
Su and Furman 2017a, for a similar result in the context of a multivariate Pareto distribution). This
completes the proof of the theorem.
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Proof of Proposition 1. Recall (e.g., Akkouchi 2008) that, for the convolution of σ1Eλ,1, . . . , σnEλ,n with
σi 6= σj, i 6= j ∈ {1, . . . , n}, we have

F+(x| Λ = λ) =
n

∑
i=1

wi exp{−xλ/σi} for all x ∈ R0,+.

Therefore we also have

F+(x) =
n

∑
i=1

wiE [exp{−xΛ/σi}] for all x ∈ R0,+,

and the assertion of the proposition follows evoking Lemma 1, Statement (i).

Proof of Theorem 3. We immediately have

E

[
n

∏
i=1

Xhi
i

]
= E

[
E

[
n

∏
i=1

Xhi
i

∣∣∣Λ]]
(1)
= E

[
n

∏
i=1

(σi
Λ

)hi
Γ(hi + 1)

]

= E
[
Λ−∑n

i=1 hi
] n

∏
i=1

σ
hi
i Γ(hi + 1),

where ‘
(1)
= ’ holds due to the moments’ formula in the case of the exponentially distributed r.v.’s

(see, e.g., Klugman et al. 2012). The proof is then completed by evoking Lemma 1, Statement (ii).

Proof of Lemma 2. We start with Equation (6) of Kunz (1956) and have

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

) =
1

∏m
i=1 Γ(ni)

∂n1+...+nm−m

∏m
i=1 ∂yni−1

i

m

∑
i=1

ω(yi)

∏1≤j 6=i≤m(yi − yj)
.

Then we differentiate term-by-term to obtain

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

)

=
1

∏m
i=1 Γ(ni)

m

∑
i=1

∂ni−1

∂yni−1
i

ω(yi)

 ∂∑1≤j 6=i≤m nj−m+1

∏1≤j 6=i≤m ∂y
nj−1
j

∏
1≤j 6=i≤m

(yi − yj)
−1


=

1
∏m

i=1 Γ(ni)

m

∑
i=1

∂ni−1

∂yni−1
i

ω(yi)

(
∏

1≤j 6=i≤m
Γ(nj)(yi − yj)

−nj

)

=
m

∑
i=1

1
Γ(ni)

∂ni−1

∂yni−1
i

ω(yi) ∏
1≤j 6=i≤m

(yi − yj)
−nj .
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Finally, we apply the Leibniz rule and readily have, for i = 1, . . . , m,

∂ni−1

∂yni−1
i

ω(yi) ∏
1≤j 6=i≤m

(yi − yj)
−nj

= ∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j 6=i≤m

∂hj

∂y
hj
i

(yi − yj)
−nj

= ∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j 6=i≤m

(−nj)hj
(yi − yj)

−nj−hj .

This concludes the proof of the lemma.

Proof of Proposition 2. The proof of the proposition follows from Remark 3 that reports the mixture
representation. Namely,

fSn(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi
fei,hi

(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi
E

[
(Λ/σi)

hi+1xhi

Γ(hi + 1)
e−xΛ/σi

]
for all x ∈ R+.

This completes the proof.

Proof of Proposition 3. We have the following string of equations, for all x ∈ R+,

fSN (x) =
∞

∑
n=1

fSn(x)P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
n=1

n−1

∑
i=0

〈1− γ〉i
i!(n− i− 1)!

( x
σ

)n−i−1
P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
i=0

〈1− γ〉i
i!

∞

∑
n=i+1

(x/σ)n−i−1

(n− i− 1)!
P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
i=0

〈1− γ〉i
i!

∞

∑
m=0

(x/σ)m

m!
P[N = m + i + 1].

This completes the proof of the proposition.

Proof of Theorem 5. The proof is a direct application of the Sklar’s theorem. Namely, recall that

P [Xi > xi] =
Γ(γ, xi/σi)

Γ(γ)
for all xi ∈ R0,+,

and thus, for i = 1, . . . , n, we have

Xi
d
= σiΓ−1(γ, UiΓ(γ)),

where Ui denotes a r.v. distributed uniformly on [0, 1]. Hence, the desired copula function is
computed as

Cγ(u1, . . . , un) = P[X1 > σ1Γ−1(γ, u1Γ(γ)), . . . , Xn > σnΓ−1(γ, unΓ(γ))]

=
1

Γ(γ)
Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
,

where (u1, . . . , un)′ ∈ [0, 1]n.
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We next turn to study the p.d.f. of Cγ. By definition, we readily obtain

cγ(u1, . . . , un) =
∂n

∏n
i=1 ∂ui

1
Γ(γ)

Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)

=
1

Γ(γ)
Γ(n)

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

∂

∂ui
Γ−1(γ, uiΓ(γ))

= ψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

∂

∂s
Γ−1(γ, s)

∣∣∣∣
s=uiΓ(γ)

Γ(γ)

= (−1)nψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

1
f (Γ−1(γ, uiΓ(γ)))

,

where f denotes the p.d.f. of Ga(γ, 1). This completes the proof of the theorem.

Proof of Theorem 6. Let φ−1(x) = Γ−1(γ, xΓ(γ)), for all x ∈ (0, 1), so

x
∂

∂x
φ−1(x) =

x
− f (Γ−1(γ, xΓ(γ)))

,

where f (·) is the p.d.f. of Ga(γ, 1). Note that, for γ ∈ (0, 1), which is exactly the case in the present
report, f (s) is decreasing for all s ∈ R+.

Now, set g1(x) = x and g2(x) = − f
(
Γ−1(γ, xΓ(γ))

)
. Clearly, limx↓0 g1(x) = 0, limx↓0 g2(x) = 0,

and g2(x) is decreasing on x ∈ (0, 1). Moreover,

g′1(x)
g′2(x)

=
f (s)
f ′(s)

∣∣∣
s=Γ−1(γ,xΓ(γ))

=
−1

1 + (1− γ) (Γ−1(γ, xΓ(γ)))−1

is increasing on x ∈ [0, 1]. Evoking Lemma 4, we conclude that x ∂
∂x φ−1(x) is increasing for x ∈ (0, 1).

Finally, based on Lemma 3, the path of maximal dependence for Cγ is the diagonal, and the proof
is completed.

Proof of Proposition 5. Recall that copula function (19) is a special member of the Archimedean class
of copulas having generator

φ(s) =
1

Γ(γ)
Γ(γ, s) for all s ∈ R0,+.

As a result, according to Theorem 4.3 in Joe (1997), we have

τ(Cγ) = 1− 4
∫ ∞

0
s
[

∂

∂s
φ(s)

]2
ds

= 1− 4
Γ(γ)2

∫ ∞

0
s2γ−1e−2sds

= 1− 41−γ Γ(2γ)

Γ(γ)2 . (A1)

The expression for the Kendall τ is obtained by simplifying (A1).
We further proceed to the case of the Spearman ρS. For i 6= j ∈ {1, . . . , n}, denote by fi and f j the

marginal p.d.f.’s of the random pair (Xi, Xj)
′ ⊆ X, then by definition (see, Section 2.1.9 in Joe 1997),

we have

ρS(Cγ) = 12
∫ ∞

0

∫ ∞

0
F(xi, xj) fi(xi) f j(xj)dxidxj − 3,
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where

∫ ∞

0

∫ ∞

0
F(xi, xj) fi(xi) f j(xj)dxidxj =

1
Γ(γ)

∫ ∞

0

∫ ∞

0
Γ

(
γ,

xi
σi

+
xj

σj

)
fi(xi) f j(xj)dxidxj

=
1

Γ(γ)Γ(2γ)

∫ ∞

0
Γ(γ, s)s2γ−1e−sds

(1)
=

Γ(3γ)

Γ(γ)Γ(2γ)

1
23γ+1γ

2F1(1, 3γ; 2γ + 1; 1/2).

Here, the equality ‘
(1)
= ’ holds because of (6.455(1)) in Gradshteyn and Ryzhik (2014). This completes

the proof of the proposition.

Proof of Proposition 6. Let us first study the lower tail dependence of Cγ. The following string of
equations holds:

χL = lim
u↓0

2 log φ(φ−1(u))
log φ(2φ−1(u))

− 1

= lim
t→∞

2 log φ(t)
log φ(2t)

− 1

= lim
t→∞

2
− log Γ(γ) + log Γ(γ; t)
− log Γ(γ) + log Γ(γ; 2t)

− 1.

We know that, as t→ ∞, the following asymptotic expansion holds (Temme 1996):

Γ(γ; t) = tγ−1e−t(1 + R(γ, t)),

with R(γ, t) = O(t−1). Then, we have

lim
t→∞

− log Γ(γ) + log Γ(γ; t)
− log Γ(γ) + log Γ(γ; 2t)

= lim
t→∞

− log Γ(γ) + (γ− 1) log t− t + log((1 + R(γ, t))
− log Γ(γ) + (γ− 1) log 2t− 2t + log((1 + R(γ, 2t))

= 1/2,

and thus χL = 0, which automatically implies λL = 0.
We now turn to study the upper tail dependence of Cγ. Note that the mixture r.v. Λ has d.d.f.

FΛ ∈ RV−γ that varies regularly at infinity with order −γ (Bingham et al. 1987). The expressions for
λU and χU are readily obtained by evoking Corollary 3.3 in Su and Hua (2017). This completes the
proof of this proposition.
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