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Abstract: In this short paper, we study a VaR-type risk measure introduced by Guérin and Renaud
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we compare it to the risk measures of Trufin et al. and Loisel and Trufin.
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1. Introduction

Over the last few years, several dynamic risk measures, i.e., risk measures based on ruin-theoretic
quantities, have been studied. For example, in the classical compound Poisson risk model,
Trufin et al. (2011) considered a VaR-type risk measure defined as the smallest initial capital needed
to ensure a certain probability of solvency throughout the lifetime of the surplus process. This risk
measure has been extended by Mitric and Trufin (2016) who defined a risk measure taking into account
both the probability of ruin and the expected deficit at ruin. In addition, Loisel and Trufin (2014) used
the expected area below the solvency threshold as a risk indicator to introduce a new risk measure
with some interesting properties.

Very recently, implementation delays in the recognition of ruin and occupation times of the
surplus process have been used as alternative risk management tools to assess the quality of an
insurance portfolio. In this direction, Guérin and Renaud (2017) introduced the concept of cumulative
Parisian ruin, which is based on the time spent in the red by the underlying surplus process. The time of
cumulative Parisian ruin is the first time the surplus process stays cumulatively below a critical level
longer than a pre-determined grace period. Inspired by the risk measure of Trufin et al. (2011), they
defined a VaR-type risk measure based on cumulative Parisian ruin. It is also defined as the smallest
amount of capital for which the associated cumulative Parisian ruin probability is less than or equal to
a tolerable level.

In this paper, we study this VaR-type risk measure based on cumulative Parisian ruin. In Guérin
and Renaud (2017), this risk measure is proposed as a motivational reason to study the concept
of cumulative Parisian ruin; the risk measure itself is neither analyzed nor used for any particular
application. We derive some of its properties and compare it to the risk measures of Trufin et al. (2011)
and Loisel and Trufin (2014).

The rest of the paper is organized as follows. In Section 2, we recall some background on the
Cramér–Lundberg model, also known as the classical risk model, and define the concept of cumulative
Parisian ruin. In Section 3, we introduce our risk measure and we give some of its properties. Finally,
in Section 4, we study our risk measure in the special case of a Cramér–Lundberg process with
exponential claims.
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2. Insurance Risk Model

The Cramér–Lundberg model was proposed by Lundberg (1903) and further developed by
Cramér (1930). In this model, the surplus process of an insurance company is modelled by

Xt = x + ct− St, (1)

where x ≥ 0 and c > 0, and where St = ∑Nt
i=1 Ci is a compound Poisson process with N = {Nt, t ≥ 0}

a Poisson process of intensity λ > 0 and with {C1, C2, . . . } positive random variables following
a common cumulative distribution function FC. Recall that in this setup the claim sizes {C1, C2, . . . }
are mutually independent and are also independent of the number-of-claim process N. The process
S = {St, t ≥ 0} is known as the aggregate claim amount process. We call x the initial capital and c the
premium rate.

We use the following equivalent notations Px (·) ≡ P (·|X0 = x) to emphasize that the process X
starts at level x. The notation Ex corresponds to Px. When X0 = 0, we drop the index. In this model,
the premium rate c is chosen usually to satisfy the net profit condition E [X1] = c− λE[C1] > 0, which
means that we can define the safety loading factor η > 0 by η := (c− λE[C1]) /λE[C1].

The time of classical ruin associated to X is defined as

τ−0 = inf {t > 0 : Xt < 0} .

We denote the corresponding finite-time probability of ruin, for x ≥ 0 and t > 0, by

ψ(t, x) = Px
(
τ−0 ≤ t

)
, (2)

and the infinite-time probability of ruin by

ψ(x) = Px
(
τ−0 < ∞

)
. (3)

Of course, we have ψ(x) = lim
t→∞

ψ(t, x).

In Trufin et al. (2011), assuming that the safety loading η is fixed, the following ruin-consistent
VaR-type risk measure is defined and analyzed: for a tolerance level ε > 0, set

ζε[C] = inf {x ≥ 0 : ψ(x) ≤ ε} .

It is well known that we can compute ψ(x) using the Pollaczeck–Khinchine formula (also known
in the actuarial literature as the Beekman’s convolution formula, see Beekman (1985)) which states
that the probability of classical ruin is equal to the tail distribution function of a compound geometric
random variable. First, let us define the aggregate loss at time t by Lt = St − ct and the maximal
aggregate loss of the process by L = max

t≥0
Lt. The random variable L can be expressed as

L =
M

∑
i=1

Di, (4)

where M is the number of record highs, which has a geometric distribution with success
probability η/(η + 1), and where {D1, D2, . . . } are the ladder heights with common distribution

FD(u) =
∫ u

0
(1− FC(y))dy/E[C1]. The Pollaczeck–Khinchine formula for the probability of ruin is

then given by

ψ (x) = P (L > x) = 1− η

η + 1

∞

∑
k=1

(
1

η + 1

)k
F∗(k)D (x) , (5)
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where F∗(k)D denotes the k-th convolution of the distribution FD. Therefore, this risk measure can also
be written as follows:

ζε[C] = inf {x ≥ 0 : P (L > x) ≤ ε} = F−1
L (1− ε) . (6)

In some sense, the focus of this risk measure is shifted from the surplus process X to the
distribution of the maximal aggregate loss L. This important relationship is at the core of the analysis
done in Trufin et al. (2011). However, this relationship with the maximal aggregate loss L does not
exist for the finite-time ruin probability. Note that this is also the case for the VaR-type risk measure
defined and analyzed in Mitric and Trufin (2016).

Cumulative Parisian Ruin

Recently, Guérin and Renaud (2017) introduced a new definition of actuarial ruin based on the
occupation-time process (below 0) associated with the surplus process X. The occupation-time process
OL =

{
OL

t , t ≥ 0
}

is defined as

OL
t =

∫ t

0
1{Xu<0}du =

∫ t

0
1{Lu>X0}du.

Then, the time of cumulative Parisian ruin, with delay r > 0, is given by

σr = inf
{

t > 0 : OL
t > r

}
.

In the definition of cumulative Parisian ruin, we aggregate the duration of all periods of financial
distress until we accumulate r units of time spent in that red zone. Consequently, ruin is not declared
as soon as X goes below zero: for x ≥ 0, t > 0 and r > 0, we have

Px (σr ≤ t) ≤ Px
(
τ−0 ≤ t

)
. (7)

Cumulative Parisian ruin is somehow a generalization of classical ruin and, when r → 0,
we recover the classical definition (see Guérin and Renaud (2017) for the details and see Figure 1 for
a graphical comparison).

We denote the finite-time probability of cumulative Parisian ruin by

ψr (t, x) = Px (σr ≤ t) = Px

(
OL

t > r
)

(8)

and the infinite-time version by
ψr (x) = Px (σr < ∞) .

Of course, we have ψr (x) = lim
t→∞

ψr (t, x). With this new notation in hand, we can re-write the

inequality in Equation (7) as follows: for x ≥ 0, t > 0 and r > 0, we have

ψr (t, x) ≤ ψ(t, x). (9)

We also have
ψ(t, x) = lim

r→0
ψr (t, x) and ψ(x) = lim

r→0
ψr (x) .
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Figure 1. A sample path of a Cramér–Lundberg process Xt. The time of ruin τ−0 is in red and the time
of cumulative Parisian ruin κr is in blue.

3. A VaR-type Risk Measure Derived from Cumulative Parisian Ruin

Using the definition of cumulative Parisian ruin, Guérin and Renaud (2017) defined the following
VaR-type risk measure: for a time horizon of length t and delay r, and for a given tolerance level
ε > 0, set

ρ
(r,t)
ε [X] = inf {x ≥ 0 : ψr (t, x) ≤ ε} .

It gives the amount of initial capital needed in order to bound the finite-time probability of
cumulative Parisian ruin with delay r by ε. Since ψr (t, x) = Px

(
OL

t > r
)
, we can also write

ρ
(r,t)
ε [L] = inf

{
x ≥ 0 : Px

(
OL

t > r
)
≤ ε

}
.

Consequently, this risk measure is based on the distribution of OL
t . This is the analog of the

random variable L for the risk measure in Equation (6). A major improvement is that we can
now vary both the time horizon and the implementation delay by changing the values of t and r,
respectively. The trade-off is that we need the distribution of a strongly path-dependent random
variable, namely OL

t .
For the rest of this paper, we focus on the properties of this VaR-type cumulative Parisian risk

measure. In addition, we compare the infinite-time version to the infinite-time risk measure defined
in Trufin et al. (2011). Then, we also study the finite-time version as this is possible as soon as the
distribution of OL

t is available.
Before going any further, let us give some background material on stochastic dominance.

3.1. Stochastic Dominance

Consider two random variables X and Y, and let F̄X and F̄Y be their survival functions. We say
that X is smaller than Y in the stochastic dominance order, which is denoted by X �st Y, if

F̄X(u) ≤ F̄Y(u), for all u. (10)

Equivalently, for all non-decreasing functions φ, we have

E [φ (X)] ≤ E [φ (Y)] . (11)

Here is a theorem taken from Shaked and Shanthikumar (2007).
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Theorem 1.

(i) Let {X1, X2, . . . , Xm} and {Y1, Y2, . . . , Ym} be two finite sets of independent random variables such that
Xi �st Yi, for each i = 1, . . . , m. Then, for any increasing function g : Rm → R, we have

g (X1, X2, . . . , Xm) �st g (Y1, Y2, . . . , Ym) . (12)

(ii) Consider two sequences of random variables {X1, X2, . . .} and {Y1, Y2, . . .} and two random variables X
and Y such that

Xn
d→ X and Yn

d→ Y,

where d→ denotes convergence in distribution. If Xn �st Yn for each n, then X �st Y.
(iii) Let the positive integer-valued random variable N be independent of the family of random variables

{C1, C2, . . . } and define S =
N
∑

i=1
Ci. Define similarly S̃ =

Ñ
∑

i=1
C̃i.

If N �st Ñ and Ci �st C̃i for each i, then
S �st S̃. (13)

Finally, if X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0} are stochastic processes, then we write X �st Y if,
for each t ≥ 0, we have

Xt �st Yt.

The reader is referred to Shaked and Shanthikumar (2007), Kaas et al. (2008) and Denuit et al.
(2005) for more details on stochastic ordering and applications in actuarial science.

3.2. Properties of the Risk Measure ρ
(r,t)
ε

In the following, let L and L̃ be two aggregate loss amount processes associated with two aggregate
claim amount processes S and S̃, themselves from two Cramér–Lundberg risk processes X and X̃ as
defined in v(1).

Theorem 2. For r > 0, ε > 0 and t > 0, we have:

(i) Invariance by translation: For a > 0,

ρ
(r,t)
ε [L + a] = ρ

(r,t)
ε [L]− a. (14)

(ii) Positive homogeneity: For b > 0,

ρ
(r,t)
ε [bL] = bρ

(r,t)
ε [L] . (15)

(iii) Monotonicity: If L �st L̃, then

ρ
(r,t)
ε [L] ≤ ρ

(r,t)
ε [L̃]. (16)

Proof. First, note that

Px

(
OL+a

t > r
)
= Px

(∫ t

0
1{Lu>x−a }du > r

)
= Px−a

(
OL

t > r
)

.
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Consequently,

ρ
(r,t)
ε [L + a] = inf

{
x ≥ 0 : Px

(
OL+a

t > r
)
≥ ε

}
= inf

{
x ≥ 0 : Px+a

(
OL

t > r
)
≥ ε

}
= ρ

(r,t)
ε [L] + a.

This proves Equation (14).
Similarly, if we note that

Px

(
ObL

t > r
)
= Px

(∫ t

0
1{Lu>x/b}du > r

)
= Px/b

(
OL

t > r
)

,

then Equation (15) follows.
To prove the third property, we fix t > 0 and we show that, if Lu �st L̃u for all u ≤ t, then

OL
t �st O L̃

t .

First, let us define a sequence of discretized versions of the occupation-time process OL
t . For each

n ≥ 1, choose 0 = t0 < t1 < . . . < tn = t such that max
0≤i≤n

(ti − ti−1)→ 0, as n→ ∞, and define

O(n)
t =

n

∑
i=1

(ti − ti−1) 1{Lti>x}.

We define Õ(n)
t in the obvious way, i.e., when S is replaced by S̃. We can re-write O(n)

t as follows:

O(n)
t = φn

(
Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1

)
,

where φn (u1, . . . , un) = ∑n
i=1(ti − ti−1)1{∑i

j=1 uj>x+cti

}.

Since Lu �st L̃u for all u ≤ t, then we have Lti−ti−1 �st L̃ti−ti−1 for each i. Then, since

Lti−ti−1
d
= Lti − Lti−1 and L̃ti−ti−1

d
= L̃ti − L̃ti−1 ,

we have that Lti − Lti−1 �st L̃ti − L̃ti−1 for each i. From Equation (12), we obtain

φn
(

Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1

)
�st φn

(
L̃t1 − L̃t0 , L̃t2 − L̃t1 , . . . , L̃tn − L̃tn−1

)
,

or equivalently
O(n)

t �st Õ(n)
t .

Since O(n)
t

d→ OL
t and Õ(n)

t
d→ O L̃

t , by the second part of Theorem 1, we get

OL
t �st O L̃

t .

This means that
Px

(
OL

t > r
)
≤ Px

(
O L̃

t > r
)

, for all r.

The property in Equation (16) follows.

The monotonicity property in Equation (16) says that the risk measure ρ
(r,t)
ε [L] is increasing with

respect to the stochastic dominance order. Note that, if P
(

Lt ≤ L̃t
)
= 1 for all t ≥ 0, then we can also

prove that
ρ
(r,t)
ε [L] ≤ ρ

(r,t)
ε

[
L̃
]

.
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If we put together the monotonicity property in Equations (16) and (13), then we can deduce the
following intuitive relationship: a smaller frequency and a smaller severity yield less occupation time
in the red zone and thus a smaller probability of cumulative Parisian ruin. For example, by the third
part of Theorem 1, if C and C̃ are exponentially distributed random variables with parameters α and
α̃, respectively, and if α ≥ α̃, λ ≤ λ̃ and c = c̃, then, for a given common premium rate c, the initial
capital needed at a given tolerance level ε is larger for X than for X̃.

It is worth mentioning that, as an immediate consequence of Proposition 1, Theorem 2 is also
satisfied for the infinite-time horizon risk measure ζε. Thus, we have recovered some of the results in
Properties 3.1 and 3.2 of Trufin et al. (2011). In addition, an important consequence of Proposition 1 is
the stochastic ordering for the finite-time ruin probability ψ (t, x).

When there is no initial reserve, i.e., when x = 0, and for c = c̃, the last theorem generalizes
Theorem 4 in Goovaerts and De Vylder (1984) and also Proposition 1 of Lefèvre et al. (2017).

3.3. Relationship with Other Risk Measures

Recall that our main object of study is the following VaR-type risk measure: for r > 0, ε > 0 and
t > 0,

ρ
(r,t)
ε [L] = inf {x ≥ 0 : ψr (t, x) ≤ ε} = inf

{
x ≥ 0 : Px

(
OL

t > r
)
≤ ε

}
. (17)

When t = ∞, we write ρ
(r)
ε .

We are also interested in the risk measure based on the finite-time probability of classical ruin:

ζ
(t)
ε [L] = inf {x ≥ 0 : ψ(t, x) ≤ ε} . (18)

Using the inequality in Equation (9) and the discussions in the previous section, we deduce the
following first proposition:

Proposition 1. For a given time horizon 0 < t ≤ ∞ and an acceptance level ε > 0, the risk measure ρ
(r,t)
ε is

less conservative than the risk measure ζ
(t)
ε , i.e.,

ρ
(r,t)
ε [L] ≤ ζ

(t)
ε [L] , (19)

and, when r→ 0, it converges to ζ
(t)
ε , i.e.,

ρ
(r,t)
ε [L] ↑ ζ

(t)
ε [L] , as r→ 0. (20)

When the implementation delay r is replaced by copies of an exponentially distributed random
variable eq with rate q > 0, then, for x ∈ R, we have

Px

(
σeq ≤ t

)
= 1−Ex

[
e−qOL

t
]

. (21)

In addition, in this case, cumulative Parisian ruin corresponds to Parisian ruin with exponential
delays, that is

κq = inf
{

t > 0 : t− gt > egt
q

}
,

where gt = sup {0 ≤ s ≤ t : Xs ≥ 0} is is the last time before t when the process was non-negative.
Hence,

ψeq (t, x) = Px

(
σeq ≤ t

)
= Px (κ

q ≤ t) .

We can then define the following VaR-type risk measure: for q, r > 0, ε > 0 and t > 0,

ρ
(q,r,t)
ε [L] = inf

{
x ≥ 0 : ψeq (t, x) ≤ ε

}
, (22)
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In addition, we have
ρ
(q,r,t)
ε [L] ↑ ρ

(r,t)
ε [L] , as q→ ∞. (23)

The risk measure ρ
(q,r,t)
ε satisfies the properties in Theorem 2. For example, we proved that,

if L �st L̃, we have OL
t �st O L̃

t . Then, using Equation (12), we obtain

h(OL
t ) �st h(O L̃),

where h(x) = 1− e−qx. Hence, using Equation (11), we get

Ex [h(L)] ≤ Ex
[
h(L̃)

]
,

and then
ρ
(q,r,t)
ε [L] ≤ ρ

(q,r,t)
ε

[
L̃
]

.

In addition, as an improvement of the finite-time version of the (infinite-horizon) risk measure
defined by Loisel and Trufin (2014), we can define

ω
(t)
a [L] := inf

{
x ≥ 0 : Ex

[
AL

t

]
≤ a

}
,

where a > 0 is a tolerance level for the expected area in the red defined as

AL
t =

∫ t

0
(Lu − x)+ du,

where (x)+ = max(x, 0). Furthermore, we can use Theorem 1 of Loisel (2005) and then write

Ex

[
AL

t

]
=
∫ ∞

x
Ev

[
OL

t

]
dv =

∫ ∞

x

∫ ∞

0
Pv

(
OL

t ≥ u
)

dudv. (24)

Consequently, if we suppose that L �st L̃, thenOL
t �st O L̃

t and then, from Equations (10) and (24),
we have

Ex

[
AL

t

]
≤ Ex

[
AL̃

t

]
.

Thus,
ω
(t)
a [L] ≤ ω

(t)
a
[
L̃
]

, (25)

which corresponds to Property 3.1 in Loisel and Trufin (2014).

Remark 1. Note that, with the distribution in Theorem 3, it is possible to compute the finite-time version of this
risk measure based on the area in the red in the case of a Cramér–Lundberg process with exponential claims.

4. Example: Cramér–Lundberg Model with Exponential Claims

In this section, we want to see how ρ
(r,t)
ε reacts to changes in the value of its parameters. In other

words, we want to perform a sensitivity analysis.
In general, we could use Monte Carlo simulations to compute values for ρ

(r,t)
ε . However, if we

consider a Cramér–Lundberg process with exponentially distributed claims {C1, C2, . . . } with rate
parameter α > 0, then there exists an explicit expression for the distribution of the occupation time for
a finite-time horizon. Unfortunately, such formulas are not available for most claim distributions.

Theorem 3 (Guérin and Renaud (2017)). For t > 0, we have

Px

(
OL

t ∈ ds
)
= ax

t δ0 (ds) + (ax
t−s + kx

t−s)
(

λ− cα
(

1− a0
s

))
1(0,t) (s)ds,
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with

ax
t = 1− λe−αx

∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− s

s + x/c
I2

(
2
√

λcαs (s + x/c)
)]

ds

and

kx
t = e−αx − 1 + λxαe−αx

∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− I2

(
2
√

λcαs (s + x/c)
)]

ds,

where Iν represents the modified Bessel function of the first kind of order ν.

In Theorem 3, ax
t is the survival ruin probability over [0, t], that is

ax
t = 1− ψ(t, x)

= 1− λe−αx
∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− s

s + x/c
I2

(
2
√

λcαs (s + x/c)
)]

ds.

For an infinite-time horizon, we have the well-known expression:

ax = lim
t→∞

ax
t = 1− ψ(x) =

λ

cα
ex(λ/c−α) =

1
1 + η

e−xαη/(1+η).

From Corollary 2 in Renaud (2014), we can deduce the following expression for the distribution
of OL

∞, when the claims are exponentially distributed.

Corollary 1. For any x ∈ R, we have

Px

(
OL

∞ ∈ ds
)
= axδ0 (ds)

+
λ

c

(
1− λ

cα

)
e−csαe−x(α−λ/c)

(
c +

∞

∑
i=0

(λs)i+1

i! (1 + i)!

(
cΓ (i + 1, sλ)− c

sλ
Γ (i + 2, sλ)

))
,

where Γ(a, x) =
∫ x

0 e−tta−1dt is the incomplete gamma function.

The explicit formula in Theorem 3 allows for a sensitivity analysis of the value of the probability
of cumulative Parisian ruin, when claims are exponentially distributed, with respect to the delay
parameter r and the time horizon t. In Figure 2, we observe that for a fixed delay parameter r,
the probability of cumulative Parisian ruin increases when the time horizon t increases. This is because
we accumulate more occupation time. On the other hand, it decreases when the delay r increases.
For a fixed value of the time horizon t, increasing the initial capital x decreases the probability of
cumulative Parisian ruin, as expected.

For the corresponding risk measures, Figure 3 illustrates the relationships in Equations (19) and
in (20) between ρ

(r,t)
ε and ζ

(t)
ε . As r → 0, i.e., as the grace period gets smaller, the initial capital needed

with ρ
(r,t)
ε increases toward that needed with ζ

(t)
ε , both at a tolerance level of ε = 0.3. When the time

horizon t increases, both risk measures increase the initial capital needed for that tolerance level.
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Figure 2. The probability of cumulative Parisian ruin for the Cramér–Lundberg process with α = 1/8,
λ = 2, c = 17, r = 1, x = 10 and t = 10.
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Figure 3. Risk measures ρ
(r,t)
ε and ζ

(t)
ε for the Cramér–Lundberg process with α = 1/8, λ = 2, c = 17,

t = 10, r = 2, and ε = 0.3.

5. Conclusions

In this paper, we study a VaR-type risk measure derived from cumulative Parisian ruin for the
Cramér–Lundberg risk process. Precisely, this measure is defined as the smallest amount of capital
for which the associated cumulative Parisian ruin probability is less than or equal to a tolerable level.
We derive some properties of this risk measure and we provide some relationships with other risk
measures. Finally, for exponentially distributed claims sizes, we performed sensitivity analysis of the
values of the probability of cumulative Parisian ruin and the risk measure. Our risk measure could
still be used for other risk processes such as the Brownian motion risk model.
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