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Abstract: In this article we introduce the stability analysis of a compound sum: it consists of
computing the standardized variation of the survival function of the sum resulting from an
infinitesimal perturbation of the common distribution of the summands. Stability analysis is
complementary to the classical sensitivity analysis, which consists of computing the derivative
of an important indicator of the model, with respect to a model parameter. We obtain a computational
formula for this stability from the saddlepoint approximation. We apply the formula to the compound
Poisson insurer loss with gamma individual claim amounts and to the compound geometric loss
with Weibull individual claim amounts.
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1. Introduction

This article presents a computational formula for the stability of the survival function (s.f.) of
the compound sum of independent and identically distributed (i.i.d.) random variables that are
independent of their summation index. The compound sum typically represents the insurer total
claim amount during a fixed period (e.g., a year): the i.i.d. random variables are the individual claim
amounts and the number of claims within the period is a counting random variable or a counting
stochastic process, if we let the period length vary. We define the stability of a sum as the standardized
variation of the s.f. of the sum resulting from an infinitesimal perturbation at some point x ∈ R of the
distribution of the summands.

More precisely, let ∆x denote the Dirac distribution function (d.f.) over R with mass one at x (thus
jumping from level 0 to level 1 at point x). If F denotes the d.f. of the summands, then

Fxε = (1− ε)F + ε∆x (1)

is the ε-perturbation of F at x, for any choice of ε ∈ [0, 1]. The derivative of the s.f. of the sum under
Fxε with respect to (w.r.t.) ε evaluated at ε = 0 is the s.f. stability (s.f.s.) at the perturbation point x.

This concept differs from the one of sensitivity of queueing theory or risk theory, which is defined
as the derivative of the s.f. of the sum w.r.t. a parameter of F (cf., e.g., Asmussen and Albrecher (2010),
sct. IV.9). From an abstract point of view, a parametric model spans only a low-dimensional or narrow
subset of the space of probability distributions. Such a narrow subset is indeed beneficial to statistical
data reduction, but often does not contain all realistic perturbations of the assumed model. In this
sense, the sensitivity is a limited indicator of the model stability. Allowing for perturbations in all
possible directions provides a more complete or realistic analysis of the model stability. In this sense,
our concept of stability is preferable. This concept is in fact an important idea of robust statistics
(e.g., Hampel et al. (1986)). Mathematically, the quantity of interest of a stochastic model is regarded as
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a functional, and a functional derivative is computed. This approach is used, for example, in renewal
theory by Grübel (1989), where the renewal function is a functional of the lifetime distribution, or by
Politis (2006) for the probability of ruin of the risk process.

Practically, for a given actuarial aggregate loss model in the form of a compound sum, if a stability
of low magnitude results from the perturbation in the form of a new large individual claim amount
(viz. a large value of x), then the loss model is reliable under perturbations through extreme large
claims. In the context of uncertainty (where for example catastrophic events are not incorporated in
the model), this notion of stability appears practically relevant. The s.f.s. informs the risk manager
about the variation of the upper tail probability of the aggregate loss when an uncertain large claim
amount is considered. Still from the practical point of view, the sensitivity as described above has
the alternative role of identifying important model parameters—the most significant ones have large
sensitivity value. However, this interpretation holds only when the model is actually the correct one
(which is often not simple to establish). Of course, both sensitivity and stability analyses can be carried
out simultaneously.

Field and Ronchetti (1985) considered this type of stability for the sample mean and called it a
“tail area influence function”. Their applications concerned statistical testing. They computed the tail
area influence function with the saddlepoint approximation of Daniels (1954). This article generalizes
this approximation to the stability of the compound sum and suggests using this concept in risk
management. The new formula is easy and fast to compute. Numerical illustrations for the total claim
amount with gamma or Weibull individual claim amounts and Poisson or geometric number of claims
are provided.

Most methods for computing sensitivities rely on Monte Carlo simulation (e.g., Asmussen
and Rubinstein (1999) and Asmussen and Glynn (2007), sct. VII). One exception is Gatto and
Peeters (2015), who proposes evaluating the sensitivity of the s.f. of the random sum w.r.t. the
parameter of the summation index distribution (which is either Poisson or geometric) with the
saddlepoint approximation. Gatto and Peeters (2015) shows numerically that the sensitivities obtained
by the saddlepoint approximation and by simulation with importance sampling are very close,
even though importance sampling is computationally intensive. The high accuracy of the saddlepoint
approximation is well illustrated in the literature of statistics and applied probability; refer, for example,
to Jensen (1995) or to Gatto and Mosimann (2012) in the context of risk theory.

This article proceeds as follows. Section 2 provides the approximations to s.f.s. based on the
saddlepoint approximation. Section 2.1 considers the the deterministic sum and Section 2.2 the
compound sum, viz. the insurer aggregate claim amount. Section 3 provides numerical illustrations.
Section 3.1 considers the aggregate claim amount with Poisson-distributed number of claims and
gamma-distributed individual claim amounts. In Section 3.2, the number of claims follows the
geometric distribution and the individual claim amounts follow the Weibull distribution. Some related
long derivatives are provided in the Appendix A.

2. Saddlepoint Approximation to the Stability

This section has two parts: in Section 2.1 an approximation to s.f.s. of the deterministic sum is
derived. It corresponds to the formula of Field and Ronchetti (1985), although the derivation is different.
Section 2.2 generalizes the formula to the compound sum, which is an essential quantity of risk theory.

2.1. The Sum

Let X1, . . . , Xn be independent random variables with d.f. F, moment generating function (m.g.f.)
M and cumulant generating function (c.g.f.) K = log M. The Legendre–Fenchel transform (or convex
conjugate or large deviations index) of the c.g.f. K and at point t ∈ R is given by

K̂(t) = sup
v∈dom K

vt− K(v) ∈ R+ ∪ {∞}, (2)
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where dom ϕ = {x ∈ R | |ϕ(x)| < ∞} is the domain of definition of ϕ : R → R. The transform
K̂ is clearly nonnegative. One can show that it is convex and that it attains its minimum at
µ = E[X1], when the expectation exists. Assume that the supremum (2) is attained at vt ∈ int dom K.
This condition is satisfied without restrictions on t when F is light-tailed, in the sense of having
exponentially decaying tails. Under this assumption, vt solves w.r.t. v the equation

K′(v) = t, (3)

and convexity indicates that it is the unique solution. It is called the saddlepoint at t and
K̂(t) = vtt− K(vt). Define the sample mean by X̄n = ∑n

j=1 Xj/n and the s.f. H̄n(t) = PF[X̄n ≥ t].
Chernoff’s large deviations theorem states that ∀t ≥ µ,

1
n

log H̄n(t) = −K̂(t) + o(1), as n→ ∞. (4)

Although (4) is a large deviations approximation, the asymptotics are in the logarithmic scale of
the probability.

This article is based on the saddlepoint approximation of Lugannani and Rice (1980), because it is
known that it provides a very accurate approximation to the s.f. H̄n(t). It has bounded relative error
on the probability scale, instead of the logarithmic scale. From now on, we assume that F is absolutely
continuous. Under this additional assumption, Lugannani and Rice’s approximation to H̄n(t) at t 6= µ

is given by

Ḡn(t) = 1−Φ(n
1
2 r) + n−

1
2 φ(n

1
2 r)
(

1
s
− 1

r

)
, (5)

where
s = vt{K′′(vt)}

1
2 , r = sgn(vt){2K̂(t)}

1
2 , (6)

and φ and Φ are the standard normal density and d.f., respectively. The relative error of approximation (5)
is O(n−1), as n→ ∞. For comparison, (4) re-expressed in terms of the new variable r leads to the quite
dissimilar approximation to H̄n(t) given by

√
2πφ(n1/2r).

The s.f.s. of X̄n at tail value t and perturbation point x ∈ R is given by the Gâteaux differential

τn(t; x, F) =
∂

∂ε
Pxε[X̄n ≥ t]

∣∣∣
ε=0

, (7)

where Pxε is the probability measure obtained by the replacement of the summand d.f. F by its
ε-perturbation at x, that is Fxε defined in (1), for some ε ∈ [0, 1]. The following result gives an
approximation to the s.f.s. obtained from (5).

Theorem 1. Under the previous assumptions, the s.f.s. of X̄n given in (7), at t 6= µ and at perturbation point
x ∈ R, can be approximated by

τ̃n(t; x, F) = −n
1
2 φ(n

1
2 r)
{

rṙx

s
+ O(n−1)

}
, (8)

where s and r are given by (6), vt is given by (3), and

ṙx =
1
r

(
1− exp

{
vt(x− t) +

r2

2

})
. (9)

The remainder term in (8) is given by

−n−1
(

ṙx

r2 −
ṡx

s2

)
,
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where

ṡx =
vt

2s
exp

{
vt(x− t) +

r2

2

}{
(t− x)

(
2 +

v3
t

s2 K′′′(vt)

)
+ vt(t− x)2 − s2

vt

}
. (10)

Proof. Let x ∈ R and ε ∈ [0, 1]. The approximate s.f.s. (8) is obtained by differentiating w.r.t. ε the
Lugannani and Rice saddlepoint approximation (5) at Fxε and by evaluating it at ε = 0.

Let v ∈ R, denote Mxε(v) =
∫
R evydFxε(y) and Kxε = log Mxε. Then,

Mxε(v) = (1− ε)M(v) + εevx (11)

(because for any Borel function g : R→ R,
∫
R g(y)d∆x(y) = g(x)). The perturbed saddlepoint vtxε at

point t ∈ R is defined by K′xε(vtxε) = t. Thus, from

K′xε(vtxε) ∼ K′xε(vt) + (vtxε − vt)K′′xε(vt), as ε→ 0,

we obtain
vtxε − vt

ε
∼ t− K′xε(vt)

εK′′xε(vt)
, as ε→ 0.

Consequently,

v̇tx =
∂

∂ε
vtxε

∣∣∣
ε=0

= lim
ε→0

t− K′xε(vt)

εK′′xε(vt)
= lim

ε→0

− ∂
∂ε K′xε(vt)

K′′xε(vt) + ε ∂
∂ε K′′xε(vt)

= − K̇′x(vt)

K′′(vt)
, (12)

where K̇′x(v) = ∂/∂ε K′xε(v) |ε=0, see (A2) of the Appendix A. Thus, we obtain

v̇tx =
evtx(t− x)

M(vt)K′′(vt)
.

Denote r = r(F) in (6), then

ṙx =
∂

∂ε
r(Fxε)

∣∣∣
ε=0

= sgn(vt)
1
2
{2[vtt− K(vt)]}−

1
2 2
[

v̇txt− ∂

∂ε
Kxε(vtxε)

∣∣∣
ε=0

]
. (13)

Note that small perturbations do not affect the sign of vt when tail probabilities are considered.
Precisely, if t 6= E[X1], then sgn vtxε = sgn vt, ∀ε ∈ [0, ε0], for some ε0 > 0. Thus ∂/∂ε sgn vtxε = 0,
∀ε ∈ [0, ε0]. Define g(ε, v) = Kxε(v), g′1(ε, v) = ∂/∂ε g(ε, v), and g′2(ε, v) = ∂/∂v g(ε, v). Then, from the
multivariate chain rule,

∂

∂ε
Kxε(vtxε) =

∂

∂ε
g(ε, vtxε) = g′1(ε, vtxε) + g′2(ε, vtxε)

∂

∂ε
vtxε =

(
∂

∂ε
Kxε

)
(vtxε) + K′xε(vtxε)

∂

∂ε
vtxε.

Hence, we obtain
∂

∂ε
Kxε(vtxε)

∣∣∣
ε=0

= K̇x(vt) + K′(vt)v̇tx,

where K̇x(v) = ∂/∂ε Kxε(v) |ε=0 (see (A1) in the Appendix A). By inserting this result into (13),
we obtain (9).

Denote s = s(F), then (6) leads to

ṡx =
∂

∂ε
s(Fxε)

∣∣∣
ε=0

= v̇tx{K′′(vt)}
1
2 +

vt

2
{K′′(vt)}−

1
2

∂

∂ε
K′′xε(vtxε)

∣∣∣
ε=0

.

From the multivariate chain rule, we obtain

∂

∂ε
K′′xε(vtxε)

∣∣∣
ε=0

= K̇′′x (vt) + K′′′(vt)v̇tx,
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where K̇′′x (v) = ∂/∂ε K′′xε(v) |ε=0 (see (A3) in the Appendix A). These two last results yield (10).

The leading term of the approximation to the s.f.s. (8) is equal to Formula (3.1) in
Field and Ronchetti (1985), which is however not derived from the saddlepoint approximation (5)
but from the Laplace approximation to the integral of the saddlepoint approximation to the density
of Daniels (1954). In order to control this equality, the following correspondences between the two
notations can be useful: CF(t) = exp{K̂(t)}, αF(t) = vt, σF(t) = {K′′(vt)}1/2, and ψ(x; t) = x − t.
Thus, Theorem 1 provides an alternative derivation of the s.f.s. of Field and Ronchetti (1985) as well as
the exact form of the error term. However, numerical studies suggest that it is preferable to use the
first-order term alone.

Regarding the sum, let Sn = ∑n
j=1 Xj, then P[Sn ≥ t] = H̄n(t/n) is its s.f., its saddlepoint

approximation is Ḡn(t/n), ∂/∂ε Pxε[Sn ≥ t] |ε=0= τn(t/n; x, F) is its s.f.s., and the saddlepoint
approximation is τ̃n(t/n; x, F).

2.2. The Compound Sum

Let the random variables X1, X2, . . . fulfill the assumptions given in Section 2.1 and let F denote
their common d.f. Let N be an independent random variable taking values in {0, 1, . . .}with probability
function pn = P[N = n], for n = 0, 1, . . . Consider the compound sum

Z =
N

∑
j=0

Xj,

where X0 = 0 by definition. Define the indicator I{A} as the function equal to 1 if the statement A is
true, or equal to 0 if A is false. The s.f. of Z at t ∈ R can be written as

H̄Z(t) = PF[Z ≥ t] = p0I{t ≤ 0}+
∞

∑
n=1

∫
Rn

I

{
n

∑
k=1

xk ≥ t

}
n

∏
k=1

dF(xk)pn, (14)

which is generally not a computational formula. This section provides the saddlepoint approximation
to (14), and then the associated approximation to the s.f.s.

In (14) we see that the distribution of Z is a linear combination of a distribution with mass one at
zero and an absolutely continuous distribution. The mass at zero must be eliminated in order to apply
the saddlepoint approximation. Denote by MN and KN the m.g.f. and the c.g.f. of N, respectively,
and by K the c.g.f. of X1. Then, the m.g.f of Z is MZ = MN ◦ K, and its c.g.f. is KZ = KN ◦ K. Let Z0 be
a random variable with the conditional distribution of Z given N > 0. Then, H̄Z0(t) = P[Z ≥ t|N > 0]
and KZ0(v) = logE[evZ|N > 0] are the s.f. and the c.g.f. of Z0, respectively. The Legendre–Fenchel
transform of the c.g.f. KZ0 at t ∈ R is given by

K̂Z0(t) = sup
v∈dom KZ0

vt− KZ0(v). (15)

We assume that the supremum in (15) is attained at vt ∈ int dom KZ0 . Under this assumption,
vt solves w.r.t. v the equation

K′Z0
(v) = t. (16)

The solution vt is unique and called saddlepoint at t. We obtain the saddlepoint approximation to
H̄Z0(t) at t 6= E[Z0], denoted ḠZ0(t), by the left side of (5) with n = 1 and with

s = vt{K′′Z0
(vt)}

1
2 and r = sgn(vt){2K̂Z0(t)}

1
2 . (17)
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It follows from

KZ0(v) = log
MZ(v)− p0

1− p0

that (16) can be re-expressed as

M′N(K(v))K
′(v)

MN(K(v))− p0
= t. (18)

More explicit expressions of s and r than those in (17) are obtained with

K′′Z0
(vt) = t

(
M′′N(K(vt))K′(vt)

M′N(K(vt))
+

K′′(vt)

K′(vt)
− t
)

(19)

(see (A6) in the Appendix A), and by

r = sgn(vt){2[vtt− log{MN(K(vt))− p0}+ log{1− p0}]}
1
2 . (20)

It follows from
H̄Z(t) = H̄Z0(t)(1− p0) + I{t ≤ 0}p0 (21)

that the saddlepoint approximation to H̄Z(t) is given by

ḠZ(t) = ḠZ0(t)(1− p0) + I{t ≤ 0}p0. (22)

The s.f.s. of Z is the Gâteaux differential

τZ(t; x, F) =
∂

∂ε
Pxε[Z ≥ t]

∣∣∣
ε=0

, (23)

where Fx,ε is given by (1), ∀x ∈ R, and ε ∈ [0, 1]. The following result gives an approximation to the
s.f.s. τZ(t; x, F) obtained from the first-order approximation of the s.f.s. of the mean given in Theorem 1.

Theorem 2. Under the previous assumptions, the s.f.s. given in (23) for the s.f. of Z at t 6= E[N]E[X1]/(1− p0)

and at perturbation x ∈ R can be approximated by

τ̃Z(t; x, F) = τ̃Z0(t; x, F)(1− p0), (24)

where

τ̃Z0(t; x, F) = −φ(r)
rṙx

s
,

s and r are given by (17), (19), and (20), vt is given in (18),

ṙx = −
K̇Z0x(vt)

r
, (25)

and

K̇Z0x(vt) = t
exp{vtx− K(vt)} − 1

K′(vt)
. (26)

Proof. This proof is similar to the one of Theorem 1, and so only the main arguments are given.
Let x ∈ R and ε ∈ [0, 1]. Let us define the perturbed m.g.f. Mxε as in (11), Kxε = log Mxε, and for v ∈ R,
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KZ0xε(v) = log
MN(Kxε(v))− p0

1− p0
.

By following the reasoning that led to (12) in the proof of Theorem 1, we obtain the perturbed
saddlepoint at point t ∈ R as:

v̇tx = −
K̇′Z0x(vt)

K′′Z0
(vt)

, (27)

where K̇′Z0x(v) = ∂/∂ε K′Z0xε(v) |ε=0 is given by (A5) in the Appendix A. With (18), it simplifies to

K̇′Z0x(vt) = t
(

M′′N(K(vt))K̇x(vt)

M′N(K(vt))
+

K̇′x(vt)

K′(vt)
− K̇x(vt)

K′(vt)
t
)

, (28)

where K̇x(v) and K̇′x(v) are respectively given in (A1) and (A2) of the Appendix A.
By denoting r = r(F), we find for t 6= E[Z0],

ṙx =
∂

∂ε
r(Fxε)

∣∣∣
ε=0

= sgn(vt)
1
2
{2[vtt− KZ0(vt)]}−

1
2 2
[

v̇txt− ∂

∂ε
KZ0xε(vtxε)

∣∣∣
ε=0

]
.

The multivariate chain rule yields

∂

∂ε
KZ0xε(vtxε)

∣∣∣
ε=0

= K′Z0
(vt)v̇tx + K̇Z0x(vt),

where K̇Z0x = ∂/∂ε K′Z0xε(v) |ε=0 is given in (A4) in the Appendix. By joining these two last expressions,
one obtains (25) in the theorem. Then, (26) is obtained from (A4) and (A1) in the Appendix A,
and from (18).

The s.f.s. of Z0 is given by

τZ0(t; x, F) =
∂

∂ε
Pxε[Z0 ≥ t]

∣∣∣
ε=0

.

Thus, it follows from (21) that

τZ(t; x, F) = τZ0(t; x, F)(1− p0).

This justifies (24) in the theorem.

Remark 1. Another approximation to the s.f.s. of Z can be obtained by generalizing the remainder term given
in Theorem 1. This yields the approximation at t 6= E[Z0] given by

−φ(r)
{

rṙx

s
−
(

ṙx

r2 −
ṡx

s2

)}
(1− p0),

where

ṡx =
vt

s

{
−K̇′Z0x(vt)

(
1 +

vt

2

K′′′Z0
(vt)

K′′Z0
(vt)

)
+

vt

2
K̇′′Z0x(vt)

}
, (29)

and with other quantities given in Theorem 2. The derivatives appearing in (29) are given by (28), (19),

K′′′Z0
(vt) = t

{
M′′′N (K(vt)){K′(vt)}2+3M′′N(K(vt))K′′(vt)

M′N(K(vt))
+ K′′′(vt)

K′(vt)

−3
(

M′′N(K(vt))K′(vt)

M′N(K(vt))
+ K′′(vt)

K′(vt)

)
t + 2t2

}
,

(30)
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and by

K̇′′Z0x(vt) = t
{

M′′′N (K(vt))K̇x(vt)K′(vt)+2M′′N(K(vt))K̇′x(vt)

M′N(K(vt))
+

M′′N(K(vt))K̇x(vt)K′′(vt)

M′N(K(vt))K′(vt)

+ K̇′′x (vt)
K′(vt)

−
(

3 M′′N(K(vt))K̇x(vt)

M′N(K(vt))
+ 2 K̇′x(vt)

K′(vt)
+ K′′(vt)K̇x(vt)

{K′(vt)}2

)
t + 2 K̇x(vt)

K′(vt)
t2
}

.
(31)

K̇x(vt), K̇′x(vt), and K̇′′x (vt) in (31) can be found respectively in (A1), (A2), and (A3) in the Appendix A.
The justification follows the proof of Theorem 1. By denoting s = s(F), we have

ṡx =
∂

∂ε
s(Fxε)

∣∣∣
ε=0

= v̇tx{K′′Z0
(vt)}

1
2 +

vt

2
{K′′Z0

(vt)}−
1
2

∂

∂ε
K′′Z0xε(vtxε)

∣∣∣
ε=0

.

From the multivariate chain rule we obtain

∂

∂ε
K′′Z0xε(vtxε)

∣∣∣
ε=0

= K′′′Z0
(vt)v̇tx + K̇′′Z0x(vt).

These two last expressions and (27) give (29). Then, (30) follows from (A8), (28) follows from (A5), and (31)
follows from (A7).

3. Numerical Illustrations

This section provides numerical illustrations of the results of Section 2.2 for two important
aggregate loss models: the Poisson number of occurrences with gamma individual claim amounts,
in Section 3.1, and the geometric number of occurrences with Weibull individual claim amounts, in
Section 3.2.

This numerical study was performed with Matlab (R2017b, The MathWorks, Natick, MA, USA),
and the function fminsearch was used for computing the saddlepoint. Matlab’s programs used for
these computations are available at http://www.stat.unibe.ch.

3.1. Poisson-Gamma Total Claim Amount

Assume that the total number of claims of an insurance company that occur during a fixed time
horizon, denoted by N, is Poisson-distributed with parameter λ > 0; viz. pn = P[N = n] = e−λλn/n!,
for n = 0, 1, . . .. Let v ∈ R. The m.g.f. of N and its derivatives are given by

MN(v) = exp{λ(ev − 1)}, M′N(v) = λev exp{λ(ev − 1)} and M′′N(v) = λev(1 + λev) exp{λ(ev − 1)}.

Assume that the individual claim amounts or losses X1, X2, . . . are gamma-distributed,
with density f (y) = βα/Γ(α)yα−1e−βy, ∀y > 0, for some parameters α, β > 0. Let v < β. The c.g.f. of
X1 and its derivatives are given by

K(v) = α log
β

β− v
, K′(v) =

α

β− v
and K′′(v) =

α

(β− v)2 .

The m.g.f. of the aggregate loss Z = ∑N
j=0 Xj is given by

MZ(v) = exp
{

λ

[(
β

β− v

)α

− 1
]}

,

and so the c.g.f. of Z0, viz. Z given N > 0, is given by

KZ0(v) = log
exp

{
λ
(

β
β−v

)α}
− 1

eλ − 1
.

http://www.stat.unibe.ch
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With these formulae we can obtain the values of s, r, and ṙx required in Theorem 2. So, we can
compute the s.f.s. τ̃(t; x, F) given in (24).

For the numerical illustration, we fixed λ = 2, α = 2, and β = 3. The results are shown in Figure 1.
The dashed curve shows the saddlepoint approximation ḠZ(t) to the s.f. (see (22)) for all relevant
values of t. The four solid curves of Figure 1 show the approximation to the stability τ̃Z(t; x, F), for the
perturbation points x = 1, 2, 5, 10, and for relevant values of t. The highest curves correspond to the
largest values of x. This is what we would have expected. A large perturbation point x yields a large
increase of the upper tail probability, and thus a large value of the stability. A vanishing perturbation
point x yields either a small increase or a decrease of the upper tail probability, and thus a small
value of the stability. We should note that the numerical computation of these curves is very fast.
Thus, the proposed approximation to the s.f.s. inherits the well-known computational efficiency of the
saddlepoint approximation. Any purely numerical technique (e.g., Monte Carlo simulation) would be
computationally intensive and thus slower.

0 5 10 15 20 25

-0.5

0

0.5

1

1.5

2

2.5

3

t

Figure 1. Poisson with λ = 2 compound sum of independent gamma with α = 2 and β = 3 random
variables. Dashed curve: s.f. Continuous curve, from lowest to highest curve: approximate stabilities
for perturbation points x = 1, 2, 5, 10, respectively.

For a practical illustration, consider the following values from the setting of Figure 1: ḠZ(14.75) =
0.0099 ' 1% and τ̃Z(14.75; 10, F) = 0.7639. If the insurance believes that additional claim amounts
of x = 10 with small frequency ε = 1‰ have to be considered, then the tail probability of the
non-perturbed model would rise by 7%, because 0.0099 + 0.001× 0.7636 = 0.0107.

3.2. Geometric-Weibull Total Claim Amount

The suggested approximation was tested with a different aggregate loss model. Assume that the
total number of claims N follows the geometric distribution with parameter ρ ∈ (0, 1), precisely pn =

P[N = n] = ρ(1− ρ)n, for n = 0, 1, . . .. The m.g.f. of N and its derivatives at v < − log(1− ρ) are
given by

MN(v) =
ρ

1− (1− ρ)ev , M′N(v) =
ρ(1− ρ)ev

{1− (1− ρ)ev}2 , and M′′N(v) =
ρ (1− ρ) ev {1 + (1− ρ) ev}

{1− (1− ρ) ev}3 .

Assume the individual losses X1, X2, . . . follow the Weibull distribution with density
f (y) = αyα−1 exp{−yα}, ∀y > 0, for some α > 0. We can easily compute its moments µk = E[Xk

1] =
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Γ(1+ k/α), for k = 1, 2, . . .. The m.g.f. of the Weibull distribution M(v) =
∫ ∞

0 exp{vx1/α − x}dx exists
for all v over a neighborhood of zero iff α ≥ 1. Thus, the Weibull distribution is light-tailed in this sense
iff α ≥ 1. Therefore, the power series representation M(v) = ∑∞

k=0 µkvk/k! holds for any v within a
neighborhood of zero. Moreover, for v in this neighborhood,

M(l)(v) =
∞

∑
k=0

Γ
(

1 +
l + k

α

)
vk

k!
, for l = 0, 1, . . . ,

with M(0) = M. With this, the m.g.f. of the aggregate loss can be expressed as Z = ∑N
j=0 Xj is given by

MZ(v) =

{
1− ρ

∞

∑
k=0

Γ
(

1 +
k
α

)
vk

k!

}−1

,

and the c.g.f. of Z0 can be written as

KZ0(v) = log

{
1− ρ ∑∞

k=0 Γ
(

1 + k
α

)
vk

k!

}−1
− ρ

1− ρ
.

These formulae allow us to compute s, r, and ṙx of Theorem 2, and thus we can compute the s.f.s.
τ̃(t; x, F) given in (24).

For the numerical example, we considered ρ = 3/10 and α = 3. Figure 2 shows the
numerical results. The dashed curve indicates the saddlepoint approximation ḠZ(t) to the s.f.,
cf. (22), for all relevant values of t. The four solid curves of Figure 2 show the approximation
to the s.f.s. τ̃Z(t; x, F), for the perturbation points x = 1/2, 3/2, 3, 7, and for relevant values of t.
The highest curves correspond to the largest values of x. The numerical evaluation of the above series
representations of m.g.f. and c.g.f. does not give any particular problem: after only a few summands,
numerical convergence is obtained. We note that the numerical results are similar to the ones of
the Poisson-gamma aggregate loss of Section 3.1. Additionally, as with the Poisson-gamma model,
the approximate s.f.s. can be computed very quickly. Thus, it can be conveniently applied to practical
problems and it provides an additional indicator of the reliability of the model under uncertainty.

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

1

1.5

2

2.5

3

t

Figure 2. Geometric with ρ = 3/10 compound sum of independent Weibull with α = 3 random
variables. Dashed curve: s.f. Continuous curve, from lowest to highest curve: approximate stabilities
for perturbation points x = 1/2, 3/2, 3, 7, respectively.
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Appendix A

This appendix provides various elementary but long derivatives appearing in the
previous developments.

Appendix A.1. Derivatives of the Cumulant Generating Function of the Perturbed Summand

Recall that M and K denote the m.g.f. and the c.g.f. of X1. This section gives some derivatives of
K(v) under the ε-perturbation, viz. of Kxε(v) = log((1− ε)M(v) + εevx), w.r.t. to v and ε. The results
are the following:

∂

∂ε
Kxε(v) =

evx −M(v)
(1− ε)M(v) + εevx ,

K̇x(v) =
evx

M(v)
− 1 = evx−K(v) − 1, (A1)

K′xε(v) =
(1− ε) M′ (v) + εxevx

(1− ε) M (v) + εevx ,

∂

∂ε
K′xε(v) =

−M′ (v) + xevx

(1− ε) M (v) + εevx −
((1− ε) M′ (v) + εxevx) (−M (v) + evx)

((1− ε) M (v) + εevx)2 ,

K̇′x(v) =
evx (M (v) x−M′ (v))

M2 (v)
= evx−K(v)(x− K′(v)), (A2)

K′′xε(v) =
(1− ε) M′′(v) + εx2evx

(1− ε) M (v) + εevx − ((1− ε) M′ (v) + εxevx)2

((1− ε) M (v) + εevx)2 ,

∂

∂ε
K′′xε(v) =

−M′′(v) + x2evx

(1− ε) M (v) + εevx −
(
(1− ε) M′′(v) + εx2evx) (−M (v) + evx)

((1− ε) M (v) + εevx)2

− 2
((1− ε) M′ (v) + εxevx) (−M′ (v) + xevx)

((1− ε) M (v) + εevx)2

+ 2
((1− ε) M′ (v) + εxevx)2 (−M (v) + evx)

((1− ε) M (v) + εevx)3 ,

and

K̇′′x (v) =
M2 (v) x2evx −M′′(v) M (v) evx − 2 M (v) M′ (v) xevx + 2 (M′ (v))2 evx

M3 (v)

= evx−K(v)((x− K′(v))2 − K′′(v)). (A3)
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Appendix A.2. Derivatives of the Cumulant Generating Function of the Perturbed Compound Sum

Recall that MN , K, and KZ0 denote the m.g.f. of N and the c.g.f. of X1 and of Z0. This section
gives some derivatives of KZ0(v) under ε-perturbation of the distribution of X1, viz. of KZ0xε(v) =
log (MN (Kxε(v))− p0)− log (1− p0), w.r.t. to v and ε. The following results are expressed in terms of
the derivatives of Appendix A.1:

∂

∂ε
KZ0xε(v) =

M′N (Kxε (v)) ∂
∂ε Kxε (v)

MN (Kxε (v))− p0
,

K̇Z0x(v) =
M′N (K (v)) K̇x (v)
MN (K (v))− p0

, (A4)

K′Z0xε(v) =
M′N (Kxε (v))K′xε (v)

MN (Kxε(v))− p0
,

∂

∂ε
K′Z0xε(v) =

M′′N (Kxε (v)) ∂
∂ε Kxε (v)K′xε(v)

MN (Kxε (v))− p0
+

M′N (Kxε (v)) ∂
∂ε K′xε (v)

MN (Kxε (v))− p0

−
(

M′N (Kxε (v))
)2 K′xε (v)

∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2 ,

K̇′Z0x(v) =
M′′N (K (v)) K̇x(v)K′(v)

MN (K (v))− p0
+

M′N (K (v)) K̇′x(v)
MN (K (v))− p0

−
(

M′N (K (v))
)2 K′(v)K̇x (v)

(MN (K (v))− p0)
2 , (A5)

K′′Z0xε(v) =
M′′N (Kxε (v)) (K′xε (v))

2

MN (Kxε (v))− p0
+

M′N (Kxε (v))K′′xε (v)
MN (Kxε (v))− p0

−
(

M′N (Kxε (v))
)2

(K′xε (v))
2

(MN (Kxε (v))− p0)
2 , (A6)

∂

∂ε
K′′Z0xε(v) =

M′′′N (Kxε (v)) ∂
∂ε Kxε (v) (K′xε (v))

2

MN (Kxε (v))− p0
+ 2

M′′N (Kxε (v))K′xε (v)
∂
∂ε K′xε (v)

MN (Kxε (v))− p0

− 3
M′′N (Kxε (v)) (K′xε (v))

2 M′N (Kxε (v)) ∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2

+
M′′N (Kxε (v)) ∂

∂ε Kxε (v)K′′xε (v)
MN (Kxε (v))− p0

+
M′N (Kxε (v)) ∂

∂ε K′′xε(v)
MN (Kxε(v))− p0

−
(

M′N (Kxε (v))
)2 K′′xε (v)

∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2 − 2

(
M′N (Kxε (v))

)2 K′xε (v)
∂
∂ε K′xε (v)

(MN (Kxε (v))− p0)
2

+ 2

(
M′N (Kxε (v))

)3
(K′xε (v))

2 ∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
3 ,

K̇′′Z0x(v) =
M′′′N (K(v))K̇x(v)(K′(v))

2

MN(K(v))−p0
+ 2 M′′N(K(v))K′(v)K̇′x(v)

MN(K(v))−p0

−3 M′′N(K(v))(K′(v))2 M′N(K(v))K̇x(v)
(MN(K(v))−p0)

2 +
M′′N(K(v))K̇x(v)K′′(v)

MN(K(v))−p0

+
M′N(K(v))K̇′′x (v)
MN(K(v))−p0

− (M′N(K(v)))
2
K′′(v)K̇x(v)

(MN(K(v))−p0)
2

−2 (M′N(K(v)))
2
K′(v)K̇′x(v)

(MN(K(v))−p0)
2 + 2 (M′N(K(v)))

3
(K′(v))2K̇x(v)

(MN(K(v))−p0)
3 ,

(A7)
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and

K′′′Z0
(v) =

M′′′N (K (v)) (K′ (v))3

MN (K (v))− p0
+ 3

M′′N (K (v))K′ (v)K′′ (v)
MN (K (v))− p0

− 3
M′′N (K (v)) (K′ (v))3 M′N (K (v))

(MN (K (v))− p0)
2 +

M′N (K (v))K′′′ (v)
MN (K (v))− p0

(A8)

− 3

(
M′N (K (v))

)2 K′′ (v)K′ (v)

(MN (K (v))− p0)
2 + 2

(
M′N (K (v))

)3
(K′ (v))3

(MN (K (v))− p0)
3 .
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