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Abstract: In risk theory, risks are often modeled by risk measures which allow quantifying the risks
and estimating their possible outcomes. Risk measures rely on measure theory, where the risks are
assumed to be random variables with some distribution function. In this work, we derive a novel
topological-based representation of risks. Using this representation, we show the differences between
diversifiable and non-diversifiable. We show that topological risks should be modeled using two
quantities, the risk measure that quantifies the predicted amount of risk, and a distance metric which
quantifies the uncertainty of the risk.

Keywords: diversification; portfolio theory; risk measurement; risk measures; set-valued measures;
topology; topological spaces

1. Introduction

The mathematical formulation of risks is based purely on probability. Let Y be a random variable
on the probability space (Ω,F , P), where Ω represents the space of all possible outcomes, F is the
σ-algebra, and P is the probability measure. For a single outcome ω ∈ Ω, Y(ω) is the realization of Y.

The theory of risk measures aims to quantify the amount of loss for each investigated risk where
such a loss occurs with some level of uncertainty. Thus, risk measures are a powerful tool for any risk
management analysis. Financial institutions such as Banks and Insurance companies continuously use
risk measures to assess their risks and act to both protect their assets and to get the highest profit subject
to a certain level of risk. A risk measure ρ is a mapping from space R of a random variable Y, to the real
line R (see, Artzner et al. 1999; Föllmer and Schied 2002; Ane and Kharoubi 2003; Dhaene et al. 2008;
Bellini and Bignozzi 2015; Chen et al. 2016; Courbage et al. 2018)

ρ : R 3Y =⇒ ρ(Y) ∈ R. (1)

In general, ρ(Y) provides a non-random amount of loss for the risk Y. One of the most fundamental
and important risk measures is the value-at-risk (VaR) which provides a measure for the loss of the
risk about its tail distribution (Linsmeier and Pearson 2000). VaR is exactly the threshold value such
that the probability of a risk exceeds this value in a given probability level 1− α, α ∈ (0, 1),

VaRα(Y) = inf {y ∈ R : Pr (Y > y) ≤ 1− α} . (2)

Financial institutions and insurance companies commonly use α = 0.9, 0.95, 0.99.
In risk measurement and financial mathematics, the concept of acceptance set refers to a set that

is acceptable to both the regulator and the investor. Acceptance sets are studied in a vast number of
researches with clear applications in practice. The acceptance set, Aρ, for a scalar risk measure of some
risk Y, is given by

Aρ = {Y ∈ Lp : ρ (Y) ≤ 0} ,
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where Lp is the Lebesgue p-dimensional space. The above acceptance set considers only a single
risk Y. The set-valued risk measures were developed for quantifying and investigating systems
of dependent risks having certain acceptance sets (Jouini et al. 2004). These risk measures are
defined as a map from subset V of possible outcomes of losses Ω to the Euclidean space Rd,
and are defined by V ⊂ Ω =⇒ R (V) ∈ Rd (Jouini et al. 2004; Aubin and Frankowska 2009;
Hamel et al. 2011; Hamel et al. 2013; Landsman et al. 2016; Molchanov and Cascos 2016; Shushi 2018;
Landsman et al. 2018b). The acceptance set for set-valued risk measure R, is given by

AR = {V ⊂ Ω : R (0) ⊂ R (V)} .

In this paper, we extend the formulation of risks into a topological framework, which allows
analyzing more information about the risks such as their topological structure, a distance measure of
the risk with its risk measure, and a new type of acceptance set of the risks which takes into account
the uncertainty of the risk and not only its measure.

Definition 1. We define a topological risk (TR) space (X,R) as a random set X of any risk events and a family
R of subsets of X that satisfies:

(a) ∅, X ∈ R, where ∅ is the empty set.

(b) If {Ka}a∈A is a collection of sets such that Ka ∈ R for any a ∈ A, then also
⋃

a∈A
Ka ∈ R, and if K1, ..., Kn

is a finite collection of sets such that Kj ∈ R for any j = 1, 2, ..., n, then
⋂

1≤j≤n
Kj ∈ R.

(c) For any TR random set X, there exists a TR set-valued measure $ that quantifies the amount of loss
expected from the risk, and it is defined by $ : X ∈ R =⇒$ (X) ∈ R ⊆ Rd that is a d-dimensional
risk measure.

(d) Uncertainty. Any topological risk posses an uncertainty distance d : X× $ (X)→ [0, ∞] on X such that
d (x, $ (X)) is a random metric onR where x ∈ X ⊆ Rd is a d-dimensional random vector on the set X.
The distance metric d quantifies the variation of the risk with its risk measure. To quantify the uncertainty
measure, we take its expectation E (d (x, $ (X))) .

We then call X a topological risk (TR) on R, and sets inR are called open sets in X.
The acceptance set of TR consists of a distance measure, which we call it the uncertainty distance

d : X×X → [0, ∞] on X such that d (x, $ (X)) , x ∈ X, is a random metric onR. d (x, $ (X)) is the distance
from the point x to the set $ (X) . For example, the Euclidean distance is d (x, $ (X)) = ‖x− t‖.

The distance metric d quantifies the variation of the risk with its associated risk measure and is
defined as follows:

A$,d = {x ∈ X ⊆ R : d (x, $ (X)) ≤ q, $ (0) ⊂ $ (X)} ,

for some threshold level of uncertainty q ≥ 0. We would like to remark that, for a pair of TRs X, Y ∈ R,
if $ (X) = $ (Y), then it does not hold, in general, that X = Y for any type of equality (i.e., almost
surely, in distribution, etc.).

In the next section, we show how diversifiable and non-diversifiable risks can be characterized
explicitly by the topological risk measures. We also provide some basic properties of the proposed
topological risks. Section 3 deals with the pair ($, d) as a full characterization of the risks, and examines
different special cases. Section 4 proposes a conclusion to the paper.

2. Main Results

In risk theory and finance, the concept of diversification is the allocation of risk exposure or
capital in order to reduce the impact of a risk (Bettis and Hall 1982; Jorion 1985; Obstfeld 1992;
Cerreia-Vioglio et al. 2011; Goetz et al. 2016). We define diversifiable risk as a topological risk that can
be separated to at least two arbitrary closed non-empty and disjoint sets belonging toR. In general,



Risks 2018, 6, 134 3 of 11

risks can be divided into two types: diversifiable and non-diversifiable risks (Jorion 1985; Obstfeld 1992;
Goetz et al. 2016). Such classes are mostly defined qualitatively, without a rigorous mathematical
formalism.

We now present a special type of set-valued risk measures that classifies these two types using
concepts from general topology. The condition in the theorem is a sufficient condition, and not a
necessary condition.

Theorem 1. Diversifiable topological risks are topologies followed by a connected set, and non-diversifiable
topological risks followed by a non-connected set.

Proof. In general topology, we say that a set is connected if there are no sets U, V ⊆ X, that are closed,
non-empty and disjoint such that U ∪V = X (Engelking 1977). For TR that has a connected set, there
is no, in general, U, V such that their union is X, and thus $ (U ∪V) 6= $ (X) which implies that such
TR is not diversifiable. Finally, the diversifiable topological risks possess a non-connected set, which
means that there exist such U, V in which $ (U ∪V) = $ (X).

An important property of risk measures is called the subadditivity property which states
that holding risks simultaneously in a single portfolio is better than dealing with them separately
(Jouini et al. 2004; Danielsson et al. 2005; Song and Yan 2009; Cai et al. 2017). Similar to the standard
risk measure ρ, the TR measure can also be a subadditive measure. For a diversifiable TR, there exists
a measure $ (K) ∈ R, K ∈ R, such that for any U, V ⊆ X , U ∩V = ∅, we have

$ (U ∪V) ≤ $ (U) + $ (V) , (3)

which means that there must be some gain when combining the topological risks.
Let us now present some straightforward properties involving the union of diversifiable and

non-diversifiable topological risks.

Theorem 2. The union of a pair of disjoint diversifiable topological risks X1, X2 ∈ X is also diversifiable.

Proof. Since both X1, X2 are diversifiable sets, they are not connected sets, and thus their union
W = X1 ∪ X2 is also not a connected set (see, Engelking 1977; Kelley 2017), i.e., their union is a
diversifiable set.

The Euler characteristic is an important property of a topological space that is invariant under
homeomorphisms, i.e., it describes the shape of a topological space regardless of the way it is
bent. This measure is denoted by χ(A) of some set A ⊆ Ω, where Ω is the set of all outcomes
(Harer and Zagier 1986; Taylor and Adler 2003; Adler and Taylor 2009; Estrade and León 2014).
The Euler characteristic quantifies an inherent property of the topological risk that does not change
under continuous transformations, which is close to the homogeneity property of risk measures,
such as tail value-at-risk. Another characteristics are the Euler integrals which are defined by the
weighted-sum of Euler characteristics, we define the Euler integral, as follows:

∫
X

f dχ =
m

∑
j=0

cjχ(t ∈ R : f (t) ∈ Xj)

where cj, j = 1, ..., m, are integers, f is a real function of t ∈ R, and Xj, j = 1, ..., m are m different
topological risks.

For topological risks, the Euler characteristic becomes a random variable, and thus it has
to be considered in a statistical framework (for random Euler characteristic, see, for example,
Cheng and Xiao 2016). Suppose that we have a portfolio of m ≥ 1 topological risks that are defined
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by their topological representation X0, X1, ..., Xm. Then, we define the portfolio characteristic by the
following Euler integral,

Ξ (PX) := c−1
∫

X
Lossdχ =

m

∑
j=0

αjχ(t ∈ R : Loss(t) ∈ Xj), (4)

where PX denotes the collection of the TR random sets {Xj}m
j=0, PX={Xj}m

j=0, Loss is a real continuous
function Loss : t ∈ R =⇒ Loss (t) ∈ R that quantifies the loss of the portfolio subject to the parameter
t, and αj is a real value constant αj = cj/c ∈ R, j = 0, 1, ..., m, c > 0, such that α0 + α1 + ... + αm = 1,
which are the weights for each topological risk.

If one wishes to get the Euler characteristic, then one should take the TR sets Xj = φ for all j ≥ 1
and α0 = 1. Thus, the sum in Equation (4) reduces to

Ξ (PX) = χ(t ∈ R : Loss(t) ∈ X0) +
m

∑
j=1

αjχ(t ∈ R : Loss(t) ∈ φ)

= χ(t ∈ R : Loss(t) ∈ X0).

Theorem 3. The portfolio characteristic satisfies the following properties:

1. For sets Aj ∈ R and Bj ∈ R, j = 0, ..., n, the following additivity property holds

Ξ
(
{Aj ∪ Bj}m

j=0

)
= Ξ({Aj}m

j=0) + Ξ
(
{Bj}m

j=0

)
− Ξ

(
{Aj ∩ Bj}m

j=0

)
,

2. For empty sets X0, X1, ... = φ the portfolio characteristic Ξ is zero.
3. Ξ (PX) can be written as the sum of Betti numbers

Ξ (PX) =
m

∑
j=0

dim Mj

∑
k=0

(−1)k αjβk,j.

The Betti number, βk,j, is defined as a characteristic of k-dimensional connectivity of the topological space,
it is the number of holes on a k-dimensional topological surface, and it is a random variable for topological risks.

Proof. The additivity property is one of the main features of Euler characteristic χ. This property is
also preserved in Ξ for sets A and B

Ξ
(
{Aj ∪ Bj}m

j=1

)
=

m

∑
j=0

αjχ(t ∈ R : Loss(t) ∈ Aj ∪ Bj)

=
m

∑
j=0

αj[χ(t ∈ R : Loss(t) ∈ Aj) + χ(t ∈ R : Loss(t) ∈ Bj)

−χ(t ∈ R : Loss(t) ∈ Aj ∩ Bj)]

=
m

∑
j=0

αjχ(Aj) +
m

∑
j=0

αjχ(Bj)−
m

∑
j=0

αjχ(Aj ∩ Bj)

= Ξ({Aj}m
j=0) + Ξ

(
{Bj}m

j=0

)
− Ξ

(
{Aj ∩ Bj}m

j=0

)
.

The Euler characteristic of an empty space is zero, and thus,

Ξ (PX) =
m

∑
j=0

αjχ(φ) =
m

∑
j=0

0 = 0.
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In Taylor and Adler (2003), it was proved that the Euler characteristic can be defined as the
summation of Betti numbers

χLoss(M) =
dim M

∑
k=0

(−1)k βk.

Thus, Ξ also can be defined through Betti numbers by the double summation

Ξ (PX) =
m

∑
j=0

dim Mj

∑
k=0

(−1)k αjβk,j, (5)

where βk,j is the (k, j) Betti number.

The Lipschitz–Killing curvatures Li(A(Loss, M, X)), i = 0, 1, ..., dim(M) are another important
characteristics of the topological space. Since the topological risks are random, their Lipschitz–Killing
curvatures are random variables of the excursion sets (see, again, Adler and Taylor 2009) with

A(Loss, M, X) = {t ∈ M; Loss(t) ∈ X},

where M and X are a C2 stratified manifold in Rn and Rk, respectively. We note that a stratified
manifold is a set that can be partitioned into a union of disjoint manifolds, which can be written,
as follows:

M =
dim M⊔

j=0

∂j M.

For every index i, Li(A(Loss, M, X)) provides a different characteristic of the field Loss,
for instance, L0(A(Loss, M, X)) is the Euler characteristic χ(A(Loss, M, X)). The expectation of
Li(A(Loss, M, X)) over a stratified manifold was shown in Taylor and Adler (2003) in the
following form

E(Li(A(Loss, M, X))) =
dim M−i

∑
j=0

[
i + j

j

]
(2π)−j/2Li+j(M)Mj(X). (6)

Here,Mj(X) are certain Gaussian functionals which are defined in Taylor and Adler (2003).
Using the Lipschitz–Killing curvatures, we now present the expectation and variance of the

portfolio characteristic Ξ.

Theorem 4. The expectation and variance of Ξ (PX) , for stratified manifolds are, respectively,

E (Ξ (PX)) = αTE (χ(PX)) , (7)

and
Var (Ξ (PX)) = αTCov (χ(PX)) α. (8)

Here, α= (α1, α2, ..., αm)
T and

E (χ(PX)) =


∑dim M1

j=0 (2π)−j/2Lj(M1)M1,j(X1)

∑dim M2
j=0 (2π)−j/2Lj(M2)M2,j(X2)

...

∑dim MN
j=0 (2π)−j/2Lj(MN)MN,j(Xm)

 .
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Proof. By substituting (6) into the expectation of Ξ (PX) , E (Ξ (PX)) , we obtain the following
linear form

E (Ξ (PX)) = E

(
m

∑
j=0

αjχ(t ∈ R : Loss(t) ∈ Xj)

)
(9)

= αTE (χ(PX)) .

Furthermore, the variance of Ξ (PX) can also be computed straightforwardly,

Var (Ξ (PX)) = Var

(
m

∑
j=0

αjχ(t ∈ R : Loss(t) ∈ Xj)

)
= αTE[(χ(PX)− E (χ(PX))) · (χ(PX)− E (χ(PX)))

T ]α

=αTCov (χ(PX)) α.

Following the above properties of the portfolio Euler characteristic, we are able to calculate a
stochastic upper bound to Ξ (PX) that does not depend on the weights 0 ≤ αi ≤ 1, i = 0, 1, ..., m.

Theorem 5. Suppose Ξ (PX) is the Euler characteristic functional (Equation (4)) with weights 0 ≤ αi ≤ 1, i =
0, 1, ..., m, and non-negative values of the Euler characteristics χ(t ∈ R : Loss(t) ∈ Xj), j = 0, 1, ..., m. Then

Ξ (PX)
st
≤
√

m + 1 ‖χ‖∞ , (10)

where
st
≤ means that

√
m + 1 ‖χ‖∞ is stochastically greater than Ξ (PX) , i.e., Pr (Ξ (PX) ≥ v) ≤

Pr
(√

m + 1 ‖χ‖∞ ≥ v
)

for all v ∈ (−∞, ∞) .

Proof. From the Cauchy–Schwarz inequality, we know that for real a1, a2, ..., am and b1, b2, ..., bm

a1b1 + a2b2 + ... + ambm ≤
√

a2
1 + ... + a2

m

√
b2

1 + ... + b2
m,

therefore for the Euler characteristic functional Ξ (PX) the following stochastic inequality holds

Ξ (PX)
st
≤
√

α2
0 + ... + α2

m

√
χ(t ∈ R : Loss(t) ∈ X0)2 + ... + χ(t ∈ R : Loss(t) ∈ Xm)2,

thus for ‖χ‖∞ = max
j=0,1,...,m

|χ(t ∈ R : Loss(t) ∈ Xj)|, we conclude that Ξ (PX)
st
≤ c

√
(m + 1) ‖χ‖2

∞,

observing that 0 ≤
√

a2
0 + ... + a2

m ≤ 1, we finally conclude that

Ξ (PX)
st
≤
√

m + 1 ‖χ‖∞ .

3. From Topological Risks to ($, d) Risk Space

In modern portfolio theory, E (R) is the expected portfolio return and σR is the standard derivation
of the portfolio return, gives the uncertainty about the risk. Here, we generalize this concept into the
topological framework, where $ is the risk measure which gives the predicted risk, and d (x, $ (X)) ≥ 0,
x ∈ X, is the random distance metric which quantifies the uncertainty of the risk. Since d is stochastic,
we naturally consider its expected value, E (d (x, $ (X))) .
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Here are some special cases of the measure E (d (x, $ (X))) for the dispersion of the
topological risks.

Example 1. For a sample of m observations {x1, x2, ..., xm} and a sample mean Xm, we can define a quadratic
distance measure d as a distance between a vector of m observations x = (x1, x2, ..., xm)

T and their sample mean
xm =

(
Xm, Xm, ..., Xm

)T to get the sample variance

E (d (x, xm)) =
∑m

i=1
(
xi − Xm

)2

m− 1
= S2. (11)

A risk measure ρ1 is said to be conservative with respect to ρ2 iff ρ2 ≤ ρ1. A famous example is
the tail value-at-risk (TVaR) which is conservative with respect to VaR, since VaRα (Z) ≤ TVaRα (Z)
for any random variable Z and any quantile α ∈ (0, 1).

The sample variance is proportional to the quadratic sum of each observer minus the sample
mean. Using the concept of distance metric as a dispersion quantity, we allow building a dispersion
value that is more conservative than the sample variance. Instead of taking the same variance,
one can take the maximum difference between an observation and the sample mean instead of
each component of the same variance, i.e., ∑m

i=1
(
xi − X

)2
= ∑m

i=1 max
((

x1 − X
)2 , ...,

(
xm − X

)2
)
=

m ·max
((

x1 − X
)2 , ...,

(
xm − X

)2
)

. Then, we define the following quantity

D :=
m

m− 1
·max

((
x1 − X

)2 , ...,
(

xm − X
)2
)

, (12)

which is, of course, greater or equal to the sample variance, i.e., D ≥ S2.
The Riemannian distance metric is symmetric, i.e., d (X, Y) = d (Y, X) . Recall that we do not

restrict ourselves to the Riemannian metric, and thus, this equality does not hold in general. In the
following example, we give a dispersion measure of a risk X with sample x1, x2, ..., xm ∈ R, around the
mean of other risk Y with sample y1, y2, ..., ym′ ∈ R. This measure quantifies the differences between
each observation xi to the mean of an associated Y, which is relevant when we need to choose between
the risk that we hold X, in which we have its sample data, and a risk Y, where we only have its sample
mean Y.

Example 2. Non-symmetric dispersion measure. The following gives a dispersion measure for observations
xi, i = 1, 2, ..., m, of a risk X around the sample mean, Y, of another risk Y with observations yi, i = 1, 2, ..., m′,

C (x, ym) =
∑m

i=1
(

xi −Y
)2

m− 1
, (13)

where x = (x1, x2, ..., xm)
T and ym =

(
Y, Y, ..., Y

)T is m× 1 vector. In general, C (X, Y) 6= C (Y, X) so this
is a pseudo-Riemannian distance. It is not hard to prove that, if C (X, Y) = 0, then it is also true that C (Y, X)

is the sample variance of Y. Particularly, this can be proved by observing that for C (X, Y) = 0, since every
component of the sum is non-negative, xi = Y for any i = 1, 2, ..., m, and therefore, X = Y. Finally, substituting
Y instead of X in C (Y, X) , the result is then obtained.

Example 3. Using the concept of topological risks, we can define the topological value-at-risk (VaR) as a measure
of a random variable X with a pdf FX , with the addition of a distance measure that quantifies the dispersion of
the risk to some risk measure $ (X) , as follows:

$_VaRα,β (X) := inf {t ∈ R : FX (t) ≥ α, d (t, $ (X)) ≤ β} ,
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for the α-th percentile α ∈ (0, 1) and a parameter β ≥ 0. Notice that is it possible that there will be no such a
point t ∈ R such that both conditions FX (t) ≥ α and d (t, $ (X)) ≤ β will be satisfied for some constants α

and β. Unlike the standard VaR measure, we also included the condition d (t, $ (X)) ≤ β which means that the
uncertainty of the risk to its measure is less than or equal to some chosen parameter β, which allows controlling
the uncertainty regarding the risk. The $_VaRα,β (X) is different from VaR and does not claim to be a better
risk measure; it merely takes into account other information about the uncertainty of the risk compared to an
associated risk measure $ (X) . For different investors, we have different values of β which is the upper bound for
the uncertainty d. In particular, for more riskier investors, we would have a higher value of β. Similar to TVaR,
which is an upper bound for the VaR, we can derive a topological tail VaR which also gives an upper bound for
the topological VaR $_VaRα,β (X) . This measure is given by $_TVaRα,β (X) := E

(
X|X ≥ $_VaRα,β (X)

)
for some random variable X with pdf FX. From the monotonicity of the expectation measure, it can be easily
proved that $_VaRα,β (X) ≤ $_TVaRα,β (X) .

Example 4. The mean-variance (MV) model aims to find the best portfolio selection one should invest in order
to get the maximum expected portfolio return under a certain level of risk, or to minimize the risk under a certain
amount of expected return (see, for example, Ziemba and Mulvey 1998; Markowitz et al. 2000; Zenios 2002;
Landsman et al. 2018a). In the MV model, one considers the following measure E (R) + λVar (R) where
E (R) and Var (R) are the expected portfolio return and variance portfolio return, respectively, and λ > 0 is
the risk aversion parameter. Using the topological risk formulation, we are able to generalize the celebrated
mean-variance measure in a natural way. Let R ∈ R be the TR of a portfolio of risks such that ρ(R) =

π0ρ(X0) + π1ρ(X1) + ... + πmρ(Xm) ∈ R is the portfolio return measure with ß = (π0, π1, ..., πm) ∈ Rm+1

and PX= {Xj}m
j=0 an (m + 1)× 1 vector of weights and the collection of topological risks, respectively, where

each TR Xi ∈ R has the weight πi, i = 0, 1, ..., m. By taking ρ (R) instead of the portfolio expectation and
E (d (r, ρ (R))) instead of the variance of the portfolio, the following measure is then obtained,

T (R; (ρ, d)) := ρ (R) +λE (d (r, ρ (R))) , r ∈ R,

where ρ (R) is a set-valued risk measure fromR to the real line, ρ : R ∈ R =⇒ρ (R) ∈ R.

Numerical Illustration

Using the following numerical illustration, we show how one can use the theory of TR in practice.
Suppose that we have two risks, denoted by Y1, Y2 ∈ R, with historical data Data = {(ŷ1i, ŷ2i)}m

i=1 .
Then, we can plot the collected historical data Data.

In Figure 1, we observe that, in such example, the data are mainly divided by two different clusters.
To build a regression model, one may use linear or nonlinear regression models, but such models must
take into account that the data are of two separated clusters, and thus, for example, a linear regression
would not provide a good predictive model for the data. Furthermore, the topological structure of the
two clusters should also be considered. The following figure shows the topological structures of the
data set, showing a two topological structure.
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Figure 1. Illustration of the collected historical data in the Cartesian coordinates.

Figure 2 shows two topological risks for the two clusters of the dataset. As can be seen,
the below-left cluster is illustrated by a genus-2 topological surface and the above-right cluster is
illustrated by a torus. These two topologies construct the set of predicted outcomes for the pair (Y1, Y2) .
Thus, any regression model for the risks should take into account such inner structure of the clusters.
Furthermore, any risk measure $ ((Y1, Y2)) ∈ R2 would be on the domain of the topological risks.
For example, the following topological-based risk measure can be obtained by taking the conditional
expectation of the risks Y1, Y2, as follows:

$ ((Y1, Y2)) = E
(
(Y1, Y2)

T | (Y1, Y2) ∈ Top (Y)
)

,

where Top(Y) is the topological structure of the data; in our example, it is the orange area in Figure 2
with a torus and genus-2 structures.

Figure 2. The two clusters of the data set and their topological risks.
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4. Discussion

In this paper, we have investigated the use of topology for studying risks. We have shown
how topological risks can be divided into two general classes of risks, namely, diversifiable and
non-diversifiable risks, and we have presented a rigorous foundation for the topological risk theory.
Although it is an intuitive result, using the theory provided here, we have shown that combining a pair
of disjoint diversifiable topological risks into a single topological risk is also diversifiable. Furthermore,
we have investigated the Euler characteristic for a portfolio of topological risks with applications
in the theory of risks and provided some of its fundamental properties. We then presented some
special dispersion measures that are based on the concept of a distance metric of the topological sets.
The presented theory of topological risks provides a new formalism in risk measurement that has the
potential for a future research.
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