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Abstract: The financial crises which occurred in the last several decades have demonstrated the
significant impact of market structural breaks on firms’ credit behavior. To incorporate the impact of
market structural break into the analysis of firms’ credit rating transitions and firms’ asset structure,
we develop a continuous-time modulated Markov model for firms’ credit rating transitions with
unobserved market structural breaks. The model takes a semi-parametric multiplicative regression
form, in which the effects of firms’ observable covariates and macroeconomic variables are represented
parametrically and nonparametrically, respectively, and the frailty effects of unobserved firm-specific
and market-wide variables are incorporated via the integration form of the model assumption.
We further develop a mixtured-estimating-equation approach to make inference on the effect of
market variations, baseline intensities of all firms’ credit rating transitions, and rating transition
intensities for each individual firm. We then use the developed model and inference procedure to
analyze the monthly credit rating of U.S. firms from January 1986 to December 2012, and study the
effect of market structural breaks on firms’ credit rating transitions.

Keywords: credit rating transitions; mixed estimating equations; multiplicative intensity model;
structural break

1. Introduction

Several structural breaks in financial market have occurred during the last several decades
so that market structural breaks seem to be common instead of exceptional. The most prominent
examples of structural breaks in financial market includes the stock market crash of 1987, the credit
market turmoil of 1998, the dot-com bubble burst and corporate scandals of 2001–2002, the global
financial crisis of 2007–2008 sparked by the U.S. subprime mortgage crisis, and the European debt
crisis since the end of 2009. It has been noticed that firms may face different levels of credit risk during
the periods of market structural breaks, even when firms’ capital structures do not change significantly;
hence, it is interesting to study the impact of market structural breaks on the relationship of firms’
credit risk and firms’ asset structures.

This article develops an econometric model that embeds the impact of financial market structural
breaks into firms’ credit risk and provides a statistical assessment of U.S. firms’ credit risk in the
presence of unknown market structural breaks. In particular, since there are no simple ways to
summarize market structural breaks as a risk factor or an economic time series, we treat the market
environment as a mechanism of firms’ risk factors affecting firms’ credit risk and characterize the
impact of market structural breaks on firms’ credit risk as changes of mechanisms, through which
a firm’s covariates affect its credit rating transitions. We then propose a multiplicative intensity
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model to extract and aggregate the information of market structural breaks from firms’ credit
rating and accounting records. We conduct an empirical analysis based on the credit rating and
accounting records of U.S. firms during 1986 and 2012, and show the following results. As a source of
credit risk that is different from commonly-used risk factors in corporates’ credit models, market
structural breaks cannot be econometrically represented as a macroeconomic covariate in firms’ credit
analysis. However, since market structural breaks affect a firm’s capital structure and then its credit
behavior, the information of market structural breaks is hidden in firms’ rating and accounting records.
Such information can be extracted and aggregated from all firms in credit market, although it is very
weak and hidden in each individual firm’s rating and accounting records.

Conventionally, credit risk models for firms assume that a firm’s conditional rating transition (or
default) probabilities (or intensities) depend on certain risk factors that can explain the movement
and co-movement of credit risk of the obligors (or more generally, the borrowers). As missing or
misspecifying an important risk factor to which the obligors are exposed will result in biased estimates
of credit risk, the literature has been very careful to identify and measure those risk factors. Depending
on whether the risk factors are observable, they can be included in credit risk models as explicit
covariates or frailty variables. Structural breaks or sudden shifts of financial markets change the
environment, within which firms need to fulfill their financial obligation in the future, and hence
influence firms’ credit risk. However, we notice that it is difficult to characterize the instability of
financial markets econometrically. One reason is that, although some economic theory has been
proposed to discuss financial market instability (Minsky 1982, 1986), no structural approach has
been proposed to characterize or measure such instability. Another reason is that, although various
macroeconomic variables or market indices are proposed to characterize the movement of some market
fundamentals, none of them are concerned with the effect of market structural changes on firms’ credit
risk. From this perspective, although instability in financial market is a source of the movement or
co-movement of firms’ credit risk, it cannot be represented as observed or unobserved risk factors,
as in commonly-used credit risk models.

This motivates us to consider a model that incorporates market structural breaks for corporates’
credit risk analysis. Since channels through which market structural breaks affect firms’ credit behavior
are too complex, we only consider in this article a statistical approach to model the effect of market
structural breaks on firms’ credit risk. The basic idea of our approach is to use a functional form of
credit rating transition models to represent the market environment so that the time-variation of the
functional form depicts the market instability. Specifically, we assume that the intensities of firms’ credit
rating transitions follow a semi-parametric multiplicative regression with time-varying coefficients,
in which the frailty effects are integrated out by the expectation assumption, the nonparametric
(or the baseline intensity) and parametric parts represent the effect of macroeconomic variables and
observed firm-specific covariates, respectively, and the time-varying parameters represents the market
instability. We then develop a mixed-estimating-equations approach to make inference on the effect of
market structural changes on firms’ credit behavior (i.e., time-varying coefficients) and the baseline
macroeconomic effect for firms’ credit rating transitions.

We use the proposed model and inference procedure to study the monthly credit ratings of U.S.
corporates from January 1985 to December 2012. We show that the market environment, characterized
via model parameters, is indeed unstable over time, and the estimated market structural breaks are
not only statistically significant but economically meaningful as well. The estimated time of structural
breaks match the times of several structural changes in the U.S. credit market. We also compute firms’
rating transition intensities and probability matrices in the presence of market structural breaks and
compare our result with the one without structural breaks assumption. Our comparison indicates that
some rating transition types are more sensitive to market structural breaks than others.

The remainder of the article is organized as follows. Section 2 explains the idea of our modeling
approach, and connects our work with the existing literature. Section 3 presents the details of our
model for firms’ rating transition intensities and develops an estimation procedure. In Section 4,
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we apply the proposed model and inference procedure to analyze U.S. firms’ rating transitions and
their covariates in the presence of unknown market structural breaks. Section 5 concludes the paper.

2. Our Modeling Approach and Related Literature

To further motivate our approach, we now briefly outline our specification and discuss the
connection between our model and the existing literature.

A corporate’s credit risk is usually modeled via structural or reduced-form approach. Structural
models provide an explicit relationship between a firm’s asset structure and its credit risk. Specifically,
a standard structural credit risk model assumes that a firm defaults when the market value of its assets
drops to a sufficiently low level relative to the firm’s liabilities. For instance, Black and Scholes (1973),
Merton (1974), Black and Cox (1976), Fisher et al. (1989) and Leland (1994) assumed that the market
value of a firm’s asset follows a geometric Brownian motion, so that a firm’s default probability depends
on the firm’s distance to default. Extensions of this approach to incorporate other complexities such as
assuming jump-diffusion process for asset values or stochastic interest rates are considered by Briys
and De Varenne (1997), Buonocore et al. (1987), Collin-Dufresne and Goldstein (2001), and Hilberink
and Rogers (2002).

Comparing to the structural approach that directly models the incentives or ability of
a corporate to pay its debt, a reduced form approach models the dependence of default
probabilities on explanatory variables through an econometric specification. Altman (1968) and
Beaver (1968) first used firms’ financial accounting data to estimate the likelihoods of firms’
default. Lee and Urrutia (1996) introduced a duration model of default based on Weibull distributed
default times, and McDonald and Van de Gucht (1999) extended it to include time-varying covariates.
Chava and Jarrow (2004), Hillegeist et al. (2004), and Shumway (2001) further used duration models
to predict firm’s bankruptcy. However, due to the interpretability issue, the explanatory variables
in reduced form models need to be carefully selected to have the spirit of structural default models.
Duffie and Lando (2001) modeled the conditional probability of a default time when a firm’s distance to
default is imperfectly observed, and suggested the existence of a default intensity process depending on
firms’ distance to default and other covariates may provide more information about the firm’s financial
condition. Duffie et al. (2007) modeled jointly the stochastic default intensities and the dynamics of the
dependent time-varying covariates, and introduced likelihood estimation of term structures of default
probabilities. These models did not discuss the issue of unobservable or missing covariates affecting
default probabilities. Assuming that the rating transition intensities depend on a common unobservable
factor, Koopman et al (2008) introduced dynamic frailty models of default. Duffie et al. (2009) extended
the frailty-based approach to incorporate the variables used by Duffie et al. (2007). Koopman et al. (2010)
further discussed the role of frailty in firms’ default during the recent financial crisis. Dionne et al.
(2011) used a reduced form model to study the effect of observed macroeconomic variables and
possible regime changes on firms’ yield spreads.

Different from the above literature, our purpose is to understand how firms’ risk-factors affect
firms’ credit risk in the presence of unknown market structural breaks. Xing et al. (2012) discussed
the effect of market structural breaks on homogeneous firms’ rating transition, and, in a further
study, Xing and Chen (2018) studied the issue whether or to what extent such sharp changes or
structural breaks in the market can be explained by economic and market fundamentals. To study
the effect of structural breaks on heterogeneous firms and further distinguish it from other risk
factors, we model the market variation though time-varying coefficients in the rating transition
intensity processes, and characterize observable and unobservable firm-specific and macroeconomic
variables through parametric, nonparametric, and integration forms. The advantage of our specification
is the way of handling the effects of unobserved risk factors in credit analysis. To separate the
effect of frailty variables from that of market instability, our model assumes the effect of unobserved
firm-specific covariates has been integrated out and models the effect of unobserved macroeconomic
variables nonparametrically, so that the issue of unobserved covariates is nicely handled. However,
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such convenience complicates the model inference procedure. First, due to the semiparametric feature
of the model, we have to discard the likelihood based inference procedure and consider an estimating
equation approach. Second, the inference on the effects of market instability requires us to estimate
the path of the point process, or more specifically, the piecewise constant coefficients and their jump
locations, numbers and amplitude during the sample period, while the conventional credit analysis
does not require estimates of the path of default (or rating transition) intensities. To overcome such
difficulties, we consider a mixed estimating equation approach which synthesizes two basic statistical
procedures that deal with two “degenerate cases” of the model. One degenerate case assumes the
market is stable and hence the time-varying coefficients in the semi-parametric model become constant,
and the other decomposes the jump process of coefficients into a series of disjoint events that correspond
to sets of jump times of general market conditions with probabilities. Then, combining these two cases
via a mixed estimating equation yields a inference procedure for the effect of market instability.

Our model extracts and integrates the information of market structural variation from firms’ rating
and accounting records, and the estimated time-varying coefficients demonstrate the extent of market
instability and the risk of market structural breaks. Therefore, the proposed model can be used by
regulatory agencies to analyze the risk of financial market instability. Another potential application of
the model is to help banks understand the instability risk arising from the “market” that consists of all
their counterparties and exposures. As the Basel Accords allow banks to build their internal rating
system to assess the risk of all their counterparties and exposures. The proposed model can also be
used to estimate the instability risk of a bank’s counterparties and exposures.

3. A Modulated Semi-Markov Model

3.1. Information Filtration

To specify an intensity model for firm’s rating transitions, we discuss econometrician’s information
filtration first. We assume a probability space (Ω,F ,P) and a complete information filtration
{Gt : t ≥ 0}. We note that there are three types of information sets in Gt at time t. The first type, denoted
asMt, consists of observed and unobserved macroeconomic variables or events. The second type,
denoted as Bt, is produced by the collection of all firms’ (or borrowers’) observed and unobserved
covariates and events up to time t. For convenience, we assume thatMt and Bt are independent.
Note that this assumption implies that market structural breaks in our model are independent
of behavior of a particular firm, i.e., our model does not handle the case that market structural
breaks caused by failures of one or several “too-big-to-fall” firms. The third type, denoted as St,
characterizes the time variation of market or economic environment, and summarizes the mechanism
that microeconomic variables or events interact with macroeconomic variables or events. One such
example of elements in St is that credit rating agencies’ rating criteria are not same during different
economic situations. Notice that traditional credit risk models assume the existence of this information
set implicitly, and they usually specify a functional form with constant coefficient as the only element
in St, that is, St = {Λθ}, where θ is a parameter vector and Λ is a functional for rating transition
intensities. GivenMt, Bt, and St, the complete-information filtration Gt is the σ-algebra generated by
these three sets, that is, Gt = σ{Mt ∪ Bt ∪ St}, and, by the setup itself,Mt, Bt and St are mutually
independent.

3.2. Conventional Models for Firms’ Rating Transition Intensities

For a firm l (l = 1, . . . , n), we suppose its rating transition process follows a K-state modulated
Markov process, that is, the arrival rates of rating transitions among two particular rating categories
depend on a vector of covariates. The rating transition process of firm l is allowed to be left-truncated
and right-censored, which corresponds to the cases of firm l entering and exiting the rating system,
respectively. Denote Pl(s, t) (l = 1, . . . , n) the rating transition probability matrix of firm l over the
period (s, t), in which the ijth element of Pl(s, t) represents the probability that a firm starting in state
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i at time s is in state j at time t. Let Al(t) be the rating category of firm l at time t, and N∗ijl(t) the
number of transitions from rating category i to rating category j of the firm l that occur over the interval
(0, t] for i, j ∈ {1, . . . , K}, j 6= i. If we know the intensity function of N∗ijl(t), then the transition matrices
Pl(s, t) can be computed from them (see (Kalbfleisch and Prentice 2002, sct. 8.3)).

Let {Xl(t)} be a d-dimensional observable firm-specific covariate process during the period
(el,0, el,1), in which el,0 is the first time that covariate X(t) appears in the data and el,1 is the exit
time of firm l. Let Bobs

ijl,t be the filtration generated by {Xl(s) : el,0 ≤ s ≤ t}, Nl,t the filtration

generated by {N∗ijl(s) : 1 ≤ i 6= j ≤ K, el,0 ≤ s ≤ t}, and λ
(i,j)
l (t) the intensity function of

N∗ijl(t) associated with Bobs
ijl,t ∪ Nl,t. Note that Bobs

t := ∪i,j,lBobs
ijl,t is only a subset of Bt, as it

does not contain firms’ unobserved covariates. To better explain our idea, we assume that Y(t)
is a vector of macroeconomic variables observed at time t and Mobs

t is the filtration generated
by Y(t). We denote Munobs

t the set of unobserved variables or events in Mt, then Mt is the
filtration generated by Mobs

t and Munobs
t . Let Fl,t be the information filtration generated by the

observed variables
{
∪i,j,l Bobs

ijl,s; el,0 ≤ s ≤ min(t, el,1)
}
∪
{
Mobs

s ; 0 ≤ s ≤ t
}

. Then, the econometrician’s
information filtration is the union of Fl,t and firm’s transition history Nl,t, that is, Fl,t ∪ Nl,t.
When market or economic condition is stable, conventional credit risk models assume the following
intensity functions for rating transitions,

E{dN∗ijl(t)
∣∣Fl,t,Nl,t,S} = λ(i,j)(Xl(t), Y(t); θ(i,j))dt, (1)

in which dN∗ijl(t) is the increment N∗ijl{(t + dt)} − N∗ijl(t) of N∗ijl(t) over the small interval [t, t + dt).
We note that the model in Equation (1) assumes that all covariates or risk factors are observable,
which introduces a downward biased estimate of tail portfolio losses. To relax such restriction,
the frailty correlated model in Duffie et al. (2009) drops the following assumption in Equation (1) that
all the influence of the prior events on future rating transitions (or default) is demonstrated through
observed covariates at time t, i.e.,

E{dN∗ijl(t)
∣∣Fl,t,Nl,t,S} = E{dN∗ijl(t)

∣∣Xl(t), Y(t),Nl,t,S},

and only assumes the following marginal intensity for rating transitions (or default),

E{dN∗ijl(t)
∣∣Xl(t), Y(t),Nl,t,S} = λ(i,j)(Xl(t), Y(t); θ(i,j))dt. (2)

Furthermore, Duffie et al. (2009) assumed parametric process for Y(t) and unobserved
macroeconomic and firm-specific covariates, and used Markov Chain Monte Carlo (MCMC) methods
to compute maximum likelihood estimates and conditional distributions of the frailty process.

3.3. Our Specification for Firms’ Rating Transition Intensities

As we only observe firms’ covariates Xl(t), we consider the intensity model based on
E{dN∗ijl(t)

∣∣Xl(t),S}. To incorporate the effect of unobserved macroeconomic and firm-specific
covariates, we consider an approach different from the parametric treatment in Duffie et al. (2007)
and Duffie et al. (2009). We further relax Equation (2) and allow the frailty effect absorbed into the
conditional expectation form. Specifically, we express the model as

E{dN∗ijl(t)
∣∣Xl(t),S} = exp

[
Xl(t)Tθ(i,j)

]
dΛ(i,j)

0 (t), (3)

in which Λ(i,j)
0 (·) is an unknown continuous function and θ(i,j) is a parameter vector. This specification

allows arbitrary dependence structure among rating transitions and is applicable to many processes
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for rating migrations. For example, the unobserved heterogeneity among firms can be characterized
through the frailty model

λ(i,j)(Xl(t), t) = exp
[
ηl(t) + Xl(t)Tθ(i,j)

]
λ
(i,j)
0 (t),

in which ηl(t) is an unobserved firm-specific random process independent of Xl , and this model falls
into the category of Equation (3). Furthermore, the assumption in Equation (3) merges the effect of
observed and unobserved macroeconomic variables into the unspecified function Λ(i,j)

0 (·). Note that
such treatment on observed and latent macroeconomic variables are different from Duffie et al. (2009),
in which the dynamics of observed and latent macroeconomic variables are specified explicitly in
the model.

We are now ready to characterize the effect of market structural breaks on a firm’s credit rating
transitions econometrically. We extend the constant market environment S to the time-varying case St,
which is a set of time varying functional forms. Specifically, we replace the constant coefficient θ(i,j) in
Equation (3) by a time-varying vector θ(i,j)(t). Denoting E{dN∗ijl(t)

∣∣Xl(t),St} by dΛ(i,j)
X (t), we obtain

a specification for firm l’s rating transition intensities with market structural breaks

E{dN∗ijl(t)
∣∣Xl(t),St} = exp

[
Xl(t)Tθ(i,j)(t)

]
dΛ(i,j)

0 (t), (4)

or

Λ(i,j)
X (t) =

∫ t

0
exp

[
Xl(u)Tθ(i,j)(u)

]
dΛ(i,j)

0 (u). (5)

in which the baseline rate Λ(i,j)
0 (·) is an unknown continuous function regarding unobserved

macroeconomic and firm-specific covariates (and observed macroeconomic covariates if they are
specified). Note that Λ(i,j)

X (t) = E{N∗ijl(t)|Xl(t),St} refers to the mean rate function of the transition
from rating category i to rating category j, as Xl(t) here do not involve firms’ rating transition history
(Kalbfleisch and Prentice 2002, p. 281). Otherwise, they can only be interpreted as the cumulative rates.

3.4. Dynamics of Market Structural Breaks

We now specify a time-varying scheme for parameter vector θ(i,j)(t). Since market structural
changes can be either gradual or abrupt, we assume that θ(i,j)(t) follows a compounded Poisson
process. This assumption best describes the time-varying feature of θ(i,j)(t), as both the number and
locations of structural breaks in θ(i,j)(t) and the pre- and post-change values of θ(i,j)(t) are unobserved.
Furthermore, this assumption captures abrupt and gradual changes of general market conditions via
large and small size jumps of θ(i,j)(t), respectively. Since the entire path of the jump process θ(i,j)(t)
need to be estimated in our model so that firms’ transition intensities or probabilities can be evaluated,
we consider the following assumptions for θ(i,j)(t),

(A1) The number of jumps in β(i,j)(t) follows a Poisson process {J(i,j)(t); t ≥ 0} with rate η and are
independent of Xl(t).

(A2) If a jump occurs at time t, the post-change value of θ(i,j)(t) is independent of its pre-change
value, in particular, denote θ(i,j)(t) = ω

(i,j)
J(i,j)(t)

, where ω
(i,j)
0 , ω

(i,j)
1 , ω

(i,j)
2 , . . . are independent and

identically distributed (i.i.d.) normal random vectors with mean µ(i,j) and covariance V(i,j).

Assumption (A1) implies that the duration between two adjacent jumps in θ(i,j)(t) follows
an exponential distribution with mean 1/η, and θ(i,j)(t) between two adjacent jumps are
constant. The prior assumption with mean µ(i,j) and covariance V(i,j) in Assumption (A2) allows
econometricians to incorporate their view on rating transmission channel into the model.

The models in Equations (4) and (5) with Assumptions (A1) and (A2) complete our model specification.
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4. Inference Procedure

The proposed model has two types of complexities: one is the semiparametric feature of
the intensity functions, and the other is the nonlinear dynamics of regression coefficients θ(i,j)(t).
To develop an inference procedure, we borrow the idea of mixed estimating equations developed by
Xing and Ying (2012). Specifically, we first consider an estimating equation for the case that there are no
structural breaks in θ(i,j)(t) during the period (t∗, t∗), and then we link all estimating-equation-based
estimates by mixtured weights that can be computed explicitly.

4.1. Inference When No Structural Breaks Exist

When θ(i,j)(t) is constant and does not undergo any structural breaks during the time interval
(t∗, t∗), i.e., θ(i,j)(t) ≡ θ(i,j), t ∈ (t∗, t∗), the model in Equation (4) can be reduced to

E{dN∗ijl(t)
∣∣Xl(t),S} = exp

[
Xl(t)Tθ(i,j)

]
dΛ(i,j)

0 (t), t ∈ (t∗, t∗),

which is same as the Cox’s regression model for counting process in Andersen and Gill (1982), except
that regression coefficients θ(i,j) is imposed a Normal prior distribution N(µ(i,j), V(i,j)). Beside the prior
mean µ(i,j) and the prior covariance V(i,j) can be informative from econometric perspective; they also
serve the shrinkage role when not enough data are available when the time interval (t∗, t∗) is too short.
As the Cox model without priors can be solved by standard estimating equation procedure, we extend
below the procedure by incorporating the prior distribution for θ(i,j). As Al(t) represents the rating
category of firm l at time t, we denote Yil(t) = I(Al(t−) = i, Ci ≥ t), i.e., the indicator that the lth
obligor is in state i and under observation at time t−, i ∈ {1, . . . , K}. For the n firms during the time
interval (t∗, t∗), we let

S(k)(θ(i,j), t) = n−1
n

∑
l=1

Yil(t)Xl(t)⊗k exp{Xl(t)Tθ(i,j)}, (6)

(k = 0, 1, 2), where a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . Let F(t∗ ,t∗) be the information set generated by
the observed variables during (t∗, t∗), i.e.,

{
∪i,j,l Bobs

ijl,s; max(t∗, el,0) ≤ s ≤ min(t∗, el,1)
}

, and define

X(θ(i,j), t) = S(1)(θ(i,j), t)
/

S(0)(θ(i,j), t). The partial likelihood score function for θ(i,j) with prior
distribution N(µ(i,j), V(i,j)) can be defined as follows

U(θ(i,j), t|F(t∗ ,t∗)) = [V(i,j)]−1(θ(i,j) − µ(i,j)) +
n

∑
l=1

∫ t

t∗

[
Xl(u)− X(θ(i,j), u)

]
dN(i,j)

l (u). (7)

Denote the solution to U(θ(i,j), t∗|F(t∗ ,t∗)) = 0 by θ̂
(i,j)
(t∗ ,t∗). A Newton–Raphson algorithm can be

used to calculate θ̂
(i,j)
(t∗ ,t∗) and we then estimate θ(i,j) by θ̂

(i,j)
(t∗ ,t∗). Furthermore, following the method in

(Lin et al. 2000, sct. 2), we can show that n1/2(θ̂(i,j)(t∗ ,t∗) − θ
)

converges in distribution to a d-variate
zero-mean normal random vector, whose covariance does not depend on the prior as the effect of prior
diminishes when n −→ ∞ and can be estimated from data.

4.2. Mixed Estimating Equations

We now consider the case that θ(i,j)(t) have structural breaks, or θ(i,j)(t) are piecewise
constant with unknown number of jumps, jump times, and jump amplitudes. Since firms’
rating and accounting records are in discrete time, we partition the period (0, T) as follows,
0 = t0 < t1 < · · · < tH = T with ti − ti−1 = T/H. We also assume that structural breaks can only happen
at times t1, . . . , tH , andm at each time th, there is at most one structural break. Let J1 = 1 and
Jh = J(th−)− J(th−1−) (h = 2, . . . , H), then if θij(t) has a structural break at th−1, Jh are independent
Bernoulli random variables with success probability p = 1− exp(−ηT/H).
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Let θ
(i,j)
(tm ,tk)

be the constant regression coefficient for t ∈ (tm, tk) when tm and tk are two adjacent

structural breaks around th. To estimate θ(i,j)(t) given F(0,tH), we first notice that, for any estimating
function U(·|F(0,tH)),

U(θ(i,j)(th)|F(0,tH)) = ∑
1≤m≤h≤k≤H

πmhkU(θ
(i,j)
(tm−1,tk)

|F(tm−1,tk)
), (8)

in which πmhk is the probability that two most recent change-times around th are tm and
tk (tm ≤ th < tk). We then compute the mixture probabilities {πmhk}. Let Rh = max{tm−1|Jm = 1, m ≤ l}
and ηm,h = P(Rh = tm−1|F(0,sh)

). Then, the conditional distribution of θ(i,j)(tl) given F(0,th)
is

expressed as

f (θ(i,j)(th)|F(0,th)
) =

l

∑
m=1

ηm,l f (θ(i,j)
(tm−1,th)

|F(tm−1,th)
), (9)

in which f (θ(i,j)
(tm−1,th)

|F(tm−1,th)
) is the conditional distribution of θ(th) given Rh = tm−1 and F(tm−1,th)

,

and the mixture probabilities are expressed as ηm,h = η∗m,h
/

∑h
u=1 η∗u,h, and

η∗m,h =

{
pψth ,th m = h,
(1− p)ηm,h−1ψtm ,th /ψtm ,th−1 m < h.

(10)

Note that ψtm ,th represents the likelihood of F(tm−1,tl)
given Rh = tm−1, for which we replace it by

the partial likelihood for observations in (tm−1, th) and evaluated at at θ̂
(i,j)
(tm−1,th)

.

Denote R̃l+1 = min{tk|Jk = 1, k > h} and η̃k,h+1 = P(R̃h+1 = tk|Fth+1,tH ), then the conditional
distribution of θ(i,j)(th) given F(th ,tH) is

f (θ(i,j)(th)|F(th ,tH)) = p f (θ(i,j)(th)|F0) + (1− p)
H

∑
k=h+1

η̃k,h+1 f (θ(i,j)
(th ,tk)

)|F(th ,tk)
), (11)

in which f (θ(i,j)(th)|F0) represents the density of θ(i,j)(th) without any observations, the mixture
probabilities η̃k,h+1 = η̃∗k,h+1

/
∑H

u=h+1 η̃∗u,h+1, and

η̃∗k,h+1 =

{
pψth+1,th+1 k = l + 1,
(1− p)ηh+2,kψth+1,tk /ψth+2,tk k > l + 1.

(12)

Finally we use the Bayes theorem to combine Equations (9) and (11) to obtain the conditional of
θ(i,j)(th) given all observations F(0,tH)

f (θ(i,j)(th)|F(0,tH)) = ∑
1≤m≤h≤k≤L

πmhk f (θ(i,j)
(tm−1,tk)

|F(tm−1,tk)
), (13)

in which πmhk = π∗mhk
/

∑1≤u≤h≤v≤H π∗uhv and

π∗mhk =

{
pηm,h m ≤ h = k,
(1− p)ηm,hη̃k,h+1ψtm ,tk

/(
ψtm ,th ψth+1,tk

)
m ≤ h < k.

(14)

The above mixed estimating equations provide explicit and recursive formulas to compute the
mixture weights {πmhk}, so we can use Equation (8) to construct an estimation procedure as follows.
First, we use Equations (10), (12), and (14) to compute the mixture probabilities {πmhk}, and then we
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use observations F(tm−1,tk)
to make inference on θ

(i,j)
(tm−1,tk)

. Denoting the estimate by θ̂
(i,j)
(tm−1,tk)

, we can

use Equation (8) to construct the estimate of θ(i,j)(th) given F(0,tH),

θ̂
(i,j)

(th) = ∑
1≤m≤h≤k≤H

πmhkθ̂
(i,j)
(tm−1,tk)

. (15)

and extend it to the whole sample period by θ̂
(i,j)

(t) = θ̂
(i,j)

(th), for t ∈ (th−1, th), h = 1, . . . , H.

Estimates for standard errors of θ̂
(i,j)

(th) can be constructed in the same spirit. Furthermore, we also
obtain a natural estimator for the baseline cumulative intensity Λ(i,j)

0 (t) which is given by the
Aalen–Breslow-type estimator

Λ̂(i,j)
0 (t) =

∫ t

0

dN̄(i,j)(u)

nS(0)(θ̂
(i,j)

(u), u)
, (16)

in which N̄(i,j)(u) = ∑n
l=1 N∗ijl(u) and S(0)(θ(i,j)(t), t) is defined via (6).

4.3. Estimation of Informative Prior

The preceding estimation procedure contain hyperparameters Φ = {η, µ(i,j), V(i,j); 1 ≤ i, j ≤ K, i 6= j}.
These informative prior represents the information of market structural changes, and can be estimated
by a quasi Expectation-Maximization algorithm; see Appendix A for details.

5. An Empirical Study

5.1. Data Description

The data were obtained from Compustat and consist of Standard and Poor monthly credit ratings,
long-term and short-term debt of U.S. firms over 23 years starting January 1986 and ending December
2012. As our model involves corporates’ credit rating and covariates, our empirical study only focuses
on corporates which have both credit rating and debt records in the sample period.

The original rating data we obtained consist of ten rating categories, A A A , A A , A , BBB, BB,
B, C C C , C C , C and D (default), and 25 rating subcategories. Each rating subcategory represents its
relative standing within its major rating categories, and is obtained by possibly adding “+” or “−” to
the letter grade of categories. We followed Xing et al. (2012) and cleaned the data as follows. Since not
many firms were rated in rating categories C , C C , and C C C , we aggregated these three rating
categories into one and denoted it as C C C . We also removed rating records of two invalid ratings
“N.M.” and “Suspended”. Then, we summarized the initial rating and transition information from
the rating records, and obtained 1814 initial rating and 2926 transition records covering 1172 firms,
and eight rating categories, A A A , A A , A , BBB, BB, B, C C C , and D . Note that Xing et al. (2012)
developed a stochastic structural model to study the nonstationarity of rating transitions in this
dataset, and estimated market structural breaks during the sample period. Here, we focus on the
impact of firm-specific risk factors on firms’ credit risk, hence we do not need to test the stationarity of
rating transitions.

For observable firms-specific covariates, we followed Duffie et al. (2009) and denoted firms’
distance to default and trailing one-year stock returns as Xl,1(t) and Xl,2(t), respectively. We use
the market equity data, Compustat book liability data (current liabilities, long-term debt, common
shares outstanding, total current liabilities, and stock price closed), and one-year Treasury bill rate
to construct this covariate. The construct method followed those used by Duffie and Lando (2001),
Duffie et al. (2009), and Hillegeist et al. (2004). The firm’s trailing one-year stock return is a covariate of
forecasting bankruptcy suggested by Shumway (2001).
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5.2. Effect of Firm-Specific Variables on Firms’ Credit Risk and Baseline Cumulative Intensities

To analyze the effect of firms’ distance-to-default and trailing returns on firms’ credit rating
transitions in the presence of unobserved market structural breaks, we applied the proposed model
and estimation method to the dataset described in Section 5.1. For comparison purpose, we also
used the model in Equation (3) as a benchmark model that does not assume the existence of market
structural breaks. To be consistent with the notation in Section 4, we denote the estimated time-varying
coefficients in the model in Equation (4) and constant coefficients in the model in Equation (3) as
θ
(i,j)
k (t) and θ

(i,j)
k , respectively.

We applied the inference procedure in Section 4 to estimate the model parameters Φ and mode
inference on the time-varying coefficients θ(i,j)(t). Note that, by our model assumptions, if there is no
market structural break, the effect of a firm’s risk factors on its credit risk (represented as the coefficient
θ(i,j)(t)) should behave as a constant; however, if the effect of a firm’s risk factors on her credit risk
changes significantly, it shows that market environment must experience a significant change (or
structural break). Figures 1 and 2 show the estimated time-varying regression coefficients, i.e., θ̂

(i,j)
1 (t)

and θ̂
(i,j)
2 (t), and their 95% confidence bands, respectively, indicating the impact of firms’ risk factors on

their credit risk varies with the stability of the market environment, in particular, we found significant
changes of such impact around October 1994, March 2001, April 2007, and January 2010. Comparing
the estimates θ̂

(i,j)
k (t) and θ̂

(i,j)
k (k = 1, 2), we notice that θ̂

(i,j)
k seems to be the average effect of the

time-varying coefficients θ̂
(i,j)
k (t). This is consistent with our intuition, as models with market structural

breaks essentially focus on the impact of risk factors at local time instead of the whole sample period.
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Figure 1. θ̂
(i,j)
1 (t) (solid) and their 95% confidence bands (dotted) for firms’ distance to default. Note that

the values of θ̂
(i,j)
1 for the corresponding transitions (from left to right and top to down) are 0.069, 0.039,

0.075, −0.004, −0.102, −0.204, −0.426, and −0.378, respectively.
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Another interesting result in Figures 1 and 2 is that the credit market in U.S. did experience big
changes during the sample period. From February 1994 to February 1995, the U.S. Federal Reserve
doubled short-term interest rates to 6% in a year, which made the US bond market suffer a major shock.
Around the beginning of 2001, the collapse of the Internet bubble reached its peak. Furthermore, the U.S.
financial market experienced a severe crisis starting from the housing bubble burst in the beginning
of 2007, and seemingly began to recover in the second half of 2009. Different from Duffie et al. (2009)
who found firm’s trailing returns provide a significant incremental explanatory power, we found that
all the 95% confidence bands of θ̂

(i,j)
2 (t) in Figure 2 include the value 0, indicating the effect of firms’

trailing one-year stock return is not significant. This may be because our model specification integrates
out all the frailty effects, while Duffie et al. (2007) only considered a specific dynamics as the frailty
effect in the model.
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Figure 2. θ̂
(i,j)
2 (t) (solid) and their 95% confidence bands (dotted) for firms’ trailing returns. Note that

the values of θ̂
(i,j)
2 for the corresponding transitions (from left to right and top to down) are −1.695,

−0.135, −1.277, −0.001, −1.272, −1.088, −1.164, and −4.052, respectively.

Figure 3 shows the estimated baseline cumulative intensities (solid lines) based on Equation (16).
To see the effect of structural breaks, we also plot the estimated baseline cumulative intensities (dotted
lines) when no structural breaks are assumed during the sample period. We see that, for some rating
transitions such as AAA → AA, AA → A and A → AA, the cumulative intensities with structural
break assumption are steeper than those without structural break assumption, while the other way
around for other cases such as A → BBB, BBB → B and C → D. This indicates that some rating
transitions are more sensitive to market structural breaks than others.
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Figure 3. Estimated baseline cumulative intensities with (solid) and without (dashed) structural breaks.

5.3. Firms’ Rating Transition Intensities and Probabilities

With the estimated θ(i,j)(t) and baseline intensities, we can use Equations (4) and (5) to compute
all types of rating transition intensities for each firm and furthermore the rating transition probabilities.
Note that the firm’s intensities given by Equations (4) and (5) are the mean functions after integrating
all random effects. For example, for the Costco Wholesale Corporation, Figure 4 plots the estimated
mean functions of cumulative intensities for different rating transitions with (solid) and without
(dashed) the assumptions of structural breaks. We notice that, for some rating transition types such as
AAA → AA, AA → A and A → AA, the cumulative intensities of Costco under structural breaks
assumption are smaller than the ones without structural breaks assumption, while larger for other
transitions types such as BB → B and C → D, which is contrary to the finding for baseline cumulative
intensities. This further confirms the significant effect of firms’ covariates on firms’ rating transitions.
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Figure 4. Mean functions of the Costco Wholesale Corporation’s cumulative intensities.
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We further compute Costco’s transition probability matrices for different periods and with
different assumptions. The first panel of Table 1 shows the estimated transition probability matrix
for the whole sample period without structural break assumption, and the second and third panels
show the estimated matrices for two periods with the structural break assumption. We chose these
two periods because both the estimated baseline and Costco’s cumulative intensities show big shifts
around these periods. We found that the transition probabilities from non-default ratings to the default
state are much smaller when the assumption of market structural break is incorporated.

Table 1. Estimated transition probability matrices of the Costco Wholesale Corporation.

A A A A A A BBB BB B C C C D

January 1986–September 2012 (without structural break assumption)

A A A 0.9993 7 × 10−4 3 × 10−6 2 × 10−8 2 × 10−10 2 × 10−11 1 × 10−12 2 × 10−14

A A 1 × 10−4 0.9927 7 × 10−3 9 × 10−5 8 × 10−7 1 × 10−7 9 × 10−9 1 × 10−10

A 9 × 10−8 0.0012 0.9742 0.0241 3 × 10−4 5 × 10−5 5 × 10−6 1 × 10−7

BBB 3 × 10−10 6 × 10−6 0.0098 0.9577 0.0274 0.0043 6 × 10−4 2 × 10−5

BB 1 × 10−12 4 × 10−8 9 × 10−5 0.0183 0.9173 0.0552 0.0087 2 × 10−4

B 7 × 10−15 3 × 10−10 8 × 10−7 2 × 10−4 0.0219 0.7215 0.2463 0.0100
C C C 3 × 10−17 1 × 10−12 5 × 10−9 2 × 10−6 3 × 10−4 0.0208 0.9066 0.0722

October 1994–March 2001 (with structural break assumption)

A A A 0.9998 2 × 10−4 3 × 10−7 6 × 10−10 2 × 10−13 1 × 10−14 2 × 10−20 5 × 10−24

A A 2 × 10−5 0.9968 0.0031 1 × 10−5 5 × 10−9 3 × 10−10 5 × 10−16 2 × 10−19

A 3 × 10−9 3 × 10−4 0.9933 0.0063 4 × 10−6 2 × 10−7 6 × 10−13 2 × 10−16

BBB 4 × 10−12 7 × 10−7 0.0041 0.9944 0.0013 8 × 10−5 3 × 10−10 9 × 10−14

BB 5 × 10−15 1 × 10−9 1 × 10−5 0.0055 0.9935 0.0010 4 × 10−9 1 × 10−12

B 3 × 10−18 9 × 10−12 1 × 10−8 8 × 10−6 0.0028 0.9971 8 × 10−6 2 × 10−9

C C C 2 × 10−23 7 × 10−18 1 × 10−13 1 × 10−10 6 × 10−8 4 × 10−5 0.9999 4 × 10−9

April 2007–January 2010 (with structural break assumption)

A A A 0.9999 1 × 10−4 1 × 10−8 7 × 10−12 3 × 10−15 3 × 10−17 5 × 10−23 9 × 10−27

A A 7 × 10−6 0.9998 0.0002 2 × 10−7 1 × 10−10 1 × 10−12 2 × 10−18 4 × 10−22

A 9 × 10−11 3 × 10−5 0.9981 0.0018 2 × 10−6 1 × 10−8 4 × 10−14 8 × 10−18

BBB 4 × 10−14 1 × 10−8 0.0011 0.9972 0.0017 2 × 10−5 6 × 10−11 1 × 10−14

BB 2 × 10−17 1 × 10−11 1 × 10−6 0.0023 0.9967 9 × 10−4 4 × 10−9 8 × 10−13

B 7 × 10−21 5 × 10−15 7 × 10−10 2 × 10−6 0.0016 0.9984 8 × 10−6 2 × 10−9

C C C 1 × 10−25 8 × 10−20 2 × 10−14 6 × 10−11 7 × 10−8 9 × 10−5 0.9999 1 × 10−5

6. Concluding Remarks

There have been many studies on how firms’ credit risk depends on risk factors, which are
usually summarized as observed or latent time series in reduced-form models of firms’ credit risk.
During the past decades, it was noticed that structural breaks or crisis in the financial market also
have significant impact on firms’ credit risk. However, modeling such effects is not easy, as structural
breaks in the market cannot be simply summarized as observed or latent time series (or risk factors).
To address this issue and incorporate the impact of market structural breaks on firm’s credit risk,
we propose a modulated semi-Markov model with unknown structural breaks to characterize the
relationship of firms’ credit rating transitions and firms’ covariates in the presence of unobserved
market structural breaks. We assume that, in our model, the number, locations, and magnitude of
structural breaks are unknown, which maximally mimics structural breaks in the market. Given the
fact that traditional inference procedures are not applicable here due to the complicated mechanism of
market structural breaks, we use a mixed estimating equation approach to estimate the time-varying
regression coefficients that represent the effect of market structural breaks, baseline rating transition
intensities for all firms and rating transition intensities for individual firms. The proposed inference
procedure is not only simple to implement, but also has nice asymptotic properties. We use the
developed model and inference procedure to analyze U.S. firms’ rating records and related firms’ risk
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factors (distance to default and trailing returns) from 1986 to 2012, and show that the relationship of
firms’ credit risk and firms’ covariates does undergo sudden shifts when market structural break occurs.

Besides modeling the firms’ credit rating transitions in the presence of market structural
breaks, our model also suggests a way to aggregates firm’s credit history, their accounting records,
and variations of market into a single model. This allows us to study further the impact of other
or more complicated risk factors on firms’ credit risk when market varies. For example, the current
study ignores the dynamic feature of risk factors and the feedback effect of changes of firms’ credit
risk, which should be investigated in further studies. The proposed model also has some limits. For
instance, as the model assumes that macroeconomic information is independent of firms’ behavior, it
fails to handle market structural breaks due to failures of one or several “too-big-to-fall" firms; issues
such as this should be studied further.
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Appendix A. A Quasi-EM Approach to Estimate Hyperparameters

Consider a quasi EM approach to make inference on Φ. First, we note that the partial
likelihood lc(Φ) of the complete data, which consists of all observations and time varying parameters
{θ(i,j)(t); 1 ≤ i 6= j ≤ K, 0 < t < T}, can be written as

lc(Φ) =
H

∑
h=1

K

∑
i=1

∑
j 6=i

n

∑
l=1

{
log P(dN(i,j)

l (th) = 1
∣∣dN(i,j)

· (th) ≥ 1,Fth−)
}

− 1
2

H

∑
h=1

K

∑
i=1

∑
j 6=i

l(i,j)c (Φ)
{
(θ(i,j)(th)− µ(i,j))T[V(i,j)]−1

(θ(i,j)(th)

− µ(i,j)) + log |V(i,j)|+ d log(2π)
}

1
{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

+
H

∑
h=1

{[
log(1− p)

]
1
{θ(i,j)

(th)=θ(i,j)
(th−1);1≤i 6=j≤K}

+ (log p)1
{θ(i,j)

(th) 6=θ(i,j)
(th−1);1≤i 6=j≤K}

}
.

(A1)

Note that the E-step of the EM algorithm involves the following conditional probabilities
or expectations,

(a) P
(
θ(i,j)(th) 6= θ(i,j)(th−1)

)
|F(0,tH)

)
.

(b) E
(

log P(dN(i,j)
l (th) = 1

∣∣dN(i,j)
· (th) = 1,Gth−)

∣∣F(0,tH)

)
.

(c) E
(
(θ(i,j)(th)− µ(i,j))T[V(i,j)]−1

(θ(i,j)(th)− µ(i,j))
∣∣F(0,tH)

)
.
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Then, in view of the above complete log partial likelihood, the M-step of the EM algorithm yields
the closed-form updating formulas

µ̂(i,j)
new =

∑H
h=1 E

(
θ(i,j)(th)1{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

∣∣F(0,tH), Φ̂old
)

∑H
h=1 P

(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

) ,

V̂(i,j)
new =

∑H
h=1 E

(
(θ(i,j)(th)− µ̂

(i,j)
old )⊗21

{θ(i,j)
(th) 6=θ(i,j)

(th−1)}
|F(0,tH), Φ̂old

)
∑H

h=1 P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

) ,

p̂new =
H

∑
h=1

P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH), Φ̂old

)/
H.

For the updating formulas above, we can show that

P
(
θ(i,j)(th) 6= θ(i,j)(th−1)|F(0,tH)

)
= ∑

h≤k≤H
πhkh.

E
(
θ(i,j)(th)1{θ(i,j)

(th) 6=θ(i,j)
(th−1)}

∣∣F(0,tH)

)
= ∑

h≤k≤H
πhkhE

(
θ
(i,j)
(th ,tk)

∣∣F(th ,tk)

)
,

and
E
(
(θ(i,j)(th)− µ̂

(i,j)
old )⊗21

{θ(i,j)
(th) 6=θ(i,j)

(th−1)}
|F(0,tH)

)
= ∑

h≤k≤H
πhkhE

(
(θ

(i,j)
(th ,tk)

− µ̂
(i,j)
old )⊗2|F(th ,tk)

)
.

We then approximate E
(
θ
(i,j)
(th ,tk)

∣∣F(th ,tk)

)
and E

[
θ
(i,j)
(th ,tk)

)⊗2
∣∣F(th ,tk)

]
by the first and second

moments of the asymptotic distributions of the estimate θ̂
(i,j)
(th ,tk)

.
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