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Abstract: We develop a government debt management model to study the optimal debt ceiling
when the ability of the government to generate primary surpluses to reduce the debt ratio is limited.
We succeed in finding a solution for the optimal debt ceiling. We study the conditions under which
a country is not able to reduce its debt ratio to reach its optimal debt ceiling, even in the long
run. In addition, this model with bounded intervention is consistent with the fact that, in reality,
countries that succeed in reducing their debt ratio do not do so immediately, but over some period of
time. To the best of our knowledge, this is the first theoretical model on the debt ceiling that accounts
for bounded interventions.

Keywords: debt crisis; government debt management; optimal government debt ceiling; government
debt ratio; stochastic control; decision analysis; risk management

1. Introduction

1.1. Economic Motivations

The recent debt crisis in the world has proved that controlling the debt ratio of a country is
of paramount importance. The literature on public debt management is abundant, from classical
theoretical references such as Domar (1944); Barro (1989, 1999); and Dornbusch and Draghi (1990),
to more applied ones such as Wheeler (2004); IMF (2002); IMF and World Bank (2001); IMF and World
Bank (2003); Ghosh et al. (2013); Huamán-Aguilar and Cadenillas (2015); Woo and Kumar (2015)
and Shah (2005). The theoretical literature deals with the optimal tax problem, and the effects of
government debt. The applied references provide useful guidelines for practitioners.

There is also literature on debt sustainability. There are two interpretations of this term: the long-
term meaning and the short-term meaning. The long-term meaning states that debt is sustainable if the
total discounted path of governments expenses equals the total discounted path taxes. The medium
term meaning defines that debt is sustainable if the debt-to-GDP ratio converges toward a target ratio
over some period of time. Among theoretical references, we have, for example, Bohn (1995) and
Blanchard et al. (2003). Among applied literature, we have, for instance, Balassone and Franco (2000)
and Neck and Sturm (2008).

As Balassone and Franco (2000) point out, “the absence of a clear-cut theoretical benchmark to
assess sustainability has often favoured the use of ad hoc definitions”. In 1992, the Maastricht Treaty
selected 60% as the upper bound for the debt-to-GDP ratio for countries to be members of the European
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Union1. In the USA, the nominal debt (measured in USA dollars, not debt-to-GDP ratio) has a ceiling
that is determined by its Congress. However, the selection of the debt ceiling by politicians is not
necessarily optimal. Indeed, Gersbach (2014) points out the following: “Politicians tend to push the
amount of public debt beyond socially desirable levels in order to increase their reelection chances”.

Inspired by the preceding discussion, we define debt ceiling as the maximum level of debt ratio at
which government intervention is not required. That is, if the debt ratio of a country is larger than its
debt ceiling, the government should reduce the debt ratio by generating fiscal surpluses. Otherwise,
the debt is said to be under control and there is no reason for interventions. This definition is consistent
with the intended meaning given to the 60% in the Maastricht Treaty (Article 104c). We remark that
the government debt ceiling that we study in this paper is different from the following topics related
to government debt management: optimal debt, credit ceiling, and debt limit2.

Uctum and Wickens (2000) study the debt sustainability for some countries considering the 60%
ceiling. In that research the debt ceiling is treated as exogenous. The literature in which the government
debt ceiling is endogenous is scarce. As far as we know, the only mathematically rigorous research
on the optimal government debt ceiling problem has been done by Cadenillas and Huamán-Aguilar
(2016) and Ferrari (2018). In both papers, the government debt ceiling is endogenous. Cadenillas and
Huamán-Aguilar (2016) study the optimal debt ceiling assuming that the interventions of a government
to reduce its debt ratio are unbounded3. They succeed in finding an explicit formula for the optimal
debt ceiling as a function of important macro-financial variables. Ferrari (2018) incorporates inflation
in the model of Cadenillas and Huamán-Aguilar (2016) but does not present an explicit solution.

We consider a country whose government wants to impose an upper bound on its debt ratio.
We assume that debt generates a disutility for the government of the country, which is an increasing
and convex function of the debt ratio. On the other hand, the government can reduce its debt ratio,
but there is a cost generated by this intervention. The government wants to minimize the expected
total discounted cost (the cost of debt reduction plus the disutility of debt) taking into account that its
ability to generate primary surpluses to reduce its debt ratio is limited. In such theoretical framework,
we have found a solution for the optimal debt ceiling, which depends on key macro-financial variables,
such as the interest rate on debt, the debt volatility, and the rate of economic growth. Moreover,
we have obtained an optimal debt policy based on the optimal debt ceiling. It works in the following
way. If the actual debt ratio of a country is below its optimal debt ceiling, then it is optimal for the
government not to intervene. Otherwise, the government should intervene at the maximal rate to
reduce its debt ratio. Given the constraint on the generation of primary surpluses, the controlled debt
ratio may be sometimes or always above the optimal debt ceiling. Having in mind a country with

1 That 60% was simply the median of the debt ratios of those European countries. Although it was not binding, it was
considered as a reference value. For more details, please see Footnote 3 of this paper.

2 Optimal debt is the debt ratio that arises as a result of welfare analysis considering that debt, on the one hand,
smooths consumption and, on the other hand, has negative effects in wealth distribution; see, for example,
Aiyagari and McGrattan (1998) or Barro (1999). Credit ceiling is the level of debt above which the country is not allowed to
borrow in the financial markets; see, for example, Eaton and Gersovitz (1981). Debt limit is the debt level at which a debt
crises takes place; see, for instance, Ostry et al. (2010).

3 Article 104c of the Maastricht Treaty Council of the European Communities (1992) says the following: “2. The Commission
shall monitor the development of the budgetary situation and of the stock of government debt in the Member States with a
view to identifying gross errors. In particular, it shall examine compliance with budgetary discipline on the basis of the
following two criteria: (a) whether the ratio of the planned or actual government deficit to gross domestic product exceeds a
reference value, unless either the ratio has declined substantially and continuously and reached a level that comes close to
the reference value;—or, alternatively, the excess over the reference value is only exceptional and temporary and the ratio
remains close to the reference value; (b) whether the ratio of government debt to gross domestic product exceeds a reference
value, unless the ratio is sufficiently diminishing and approaching the reference value at a satisfactory pace. The reference
values are specified in the protocol on the excessive deficit procedure annexed to this Treaty”. In the Maastricht Treaty,
the “ratio of the planned or actual government deficit to gross domestic product” is the debt ratio, and the “reference value”
is the debt ceiling (which was selected as 60%). Thus, the Maastricht Treaty does not mention explicitly any bound for the
government interventions. Similarly, the debate in the USA Senate about the selection of the debt ceiling does not mention
any bound for the government interventions.
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debt problems, we also study the time to reach its debt ceiling (not necessarily its optimal debt ceiling)
assuming that the current debt ratio is above its debt ceiling.

1.2. Contributions

We improve the results of Cadenillas and Huamán-Aguilar (2016) by studying the optimal
debt ceiling when the government interventions to reduce its debt ratio have an upper bound.
The motivation is that it is difficult for a country to obtain primary surpluses to reduce its debt
ratio. The 60% ceiling set in the Maastricht Treaty was part of the “convergence criteria”, in the
understanding that countries whose debt ratio were above that threshold should reach the 60% over a
number of years. The model presented in this paper accounts for the important fact that countries in
reality may or may not succeed in reaching their optimal debt ceilings. If they do, it takes some time to
reach that goal. Our quantitative results differ from those of Cadenillas and Huamán-Aguilar (2016).
For example, the optimal debt ceiling in our model is always smaller than the optimal debt ceiling
in the unbounded case. Our qualitative results differ as well. Indeed, if the bound on government
intervention is very large, then the debt ceiling is an increasing function of the volatility. That coincides
with the unbounded case studied by Cadenillas and Huamán-Aguilar (2016). However, if the bound
on government intervention is small, then the debt ceiling is a decreasing function of the volatility.
That differs from the unbounded case studied by Cadenillas and Huamán-Aguilar (2016). We find that
if the constraint to generate primary surpluses is severe (very low upper bound), a country may not
be able to reach its optimal debt ceiling, even in the long run. For those countries which succeed in
reaching their optimal debt ceiling, it may take some time to accomplish that goal. These findings are
some of the main results of this research.

This paper is organized as follows: we present the model for bounded government debt
management in Section 2. In Section 3, we present a verification theorem which states a sufficient
condition for a debt control policy to be optimal. In Section 4, we find a candidate for solution and
then verify that this candidate is indeed the solution. We study the time to reach a debt ceiling in
Section 5. In Sections 6 and 7, we perform an interesting economic analysis of the debt policy based on
the government debt ceiling. We write the conclusions in Section 8.

2. The Bounded Government Intervention Model

We use a Brownian motion to model the uncertainty in the debt ratio. Formally, we consider a
complete probability space (Ω,F , P) together with a filtration {Ft} = {Ft, t ∈ [0, ∞)}, which is the
P-augmentation of the filtration generated by a one-dimensional Brownian motion W.

We study the debt ratio X = {Xt, t ∈ [0, ∞)} of a country, which is defined by

Xt :=
gross public debt at time t

gross domestic product (GDP) at time t
.

This definition of the debt ratio is standard in the economics literature (see, for example,
Uctum and Wickens (2000)).

Let r denote the interest rate on debt and g the rate of economic growth. Section 22.2 (p. 460) of
Blanchard (2017), a standard reference on macroeconomics, states that

change of the debt ratio at time t

= (r− g)(debt ratio at time t) +
primary deficit at time t

gross domestic product (GDP) at time t
.

He assumes a discrete-time deterministic model in which r and g are constants.
The continuous-time version of Blanchard (2017) can be written in integral form as

Xt = x +
∫ t

0
(r− g)Xsds−

∫ t

0
usds, (1)
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where x ∈ (0, ∞) is the initial debt ratio, r ∈ [0, ∞) is the interest rate on debt, g ∈ (−∞,+∞) is the
rate of economic growth, and u = {ut, t ∈ [0, ∞)} is the rate of the primary balance (equivalently,
the negative of the primary deficit).

Motivated by the uncertainty of the economy, we generalize the deterministic model (1) to the
stochastic model

Xt = x +
∫ t

0
(r− g)Xsds +

∫ t

0
σXsdWs −

∫ t

0
usds. (2)

The term
∫ t

0 σXt dWs above accounts for the uncertainty in the economy, and models the empirical
fact that the bigger the debt, the bigger the risk. Here, σ ∈ (0, ∞) is the debt volatility.

The government intervenes to manage its debt ratio via the control process u = {ut, t ∈ [0, ∞)}.
This process represents the rate of intervention of the government, and it is associated with the
generation of primary surpluses with the specific goal of reducing the debt ratio. Unlike Cadenillas
and Huamán-Aguilar (2016), we assume that this control process is bounded. Indeed, for a fixed
U > 0, we assume that

ut ∈ [0, U], ∀t ≥ 0,

which means that the ability of the government to produce primary surpluses is limited, as it is in
reality. We allow each country to have a different bound U, which depends on its structural economic
and political characteristics.

The intervention of the government to reduce its debt ratio has a cost. This cost is generated
by fiscal adjustments, which can take the form of reducing expenses or raising taxes. We denote the
marginal cost of debt ratio reduction by k. That is, the government has to pay the cost k > 0 for
each unit of debt ratio reduction. Let λ stand for the government discount rate. Thus,

∫ ∞
0 e−λtk ut dt

represents the cumulative discounted cost of reducing the debt ratio.
There are also costs for having debt. High public debt has negative effects on the economy.

According to Blanchard (2017), high public debt means less growth of the capital stock and more tax
distortions. Furthermore, it can make the fiscal policy extremely difficult. Moreover, Das et al. (2010)
claim that it can generate a debt crisis, which, in turn, may lead to an economic crisis. On the other
hand, having public debt may be beneficial for the economy, see, for example, Holmstrong and Tirole
(1998). Since we are modelling a country that faces a debt problem, we disregard the positive effect
of debt.

We assume that the government has a disutility function h : [0, ∞)→ [0, ∞) defined by

h(y) = αym+1, where m ∈ {1, 2, 3, · · · }.

Here, the parameter m represents the aversion of the government towards the debt ratio y. For example,
countries which have never had a default (such as Canada and USA) have a lower parameter m than
countries which have suffered debt crises (such as Argentina and Greece). The function h has the
property of constant relative risk aversion (CRRA) equal to m (see Remark 1 below). We point out
that this disutility function generalizes the quadratic function that is widely used in economics (see,
for instance, Kydland and Prescott 1977, Taylor 1979, and Cadenillas and Zapatero 1999). On the other
hand, the importance of debt for the government is represented by the parameter α, and it is measured
in monetary units. The more important the debt, the larger the parameter α. The debt importance
reflects the concern of the government to debt, and is usually determined in its economic plan.

Remark 1. For a utility function u(y), the risk aversion is defined to be −yu′′(y)/u′(y) (see, for instance,
MasCollel et al. (1995) or Pratt (1964)). Similarly, for a disutility function h(y), we define the relative risk
aversion to be yh′′(y)/h′(y).
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Thus, the expected total discounted cost (the cost of debt reduction plus the disutility of debt) is
given by

J(x; u) := Ex

[∫ ∞

0
e−λth(Xt)dt +

∫ ∞

0
e−λtk ut dt

]
.

Here, Ex represents the conditional expected value given that X0 = x.

Definition 1. An adapted process u : [0, ∞) × Ω → [0, U] is called an admissible stochastic control if
J(x; u) < ∞. The set of all admissible controls is denoted by A(x).

Problem 1. The government wants to select the control u ∈ A(x) that minimizes the functional J(x; ·).

Thus, we can think of J as a loss function, a function that the government wants to minimize.

Proposition 1. For every x ∈ (0, ∞), A(x) is a convex set and the function J(x; ·) is strictly convex.
Furthermore, Problem 1 has at most one solution.

Proof. See Appendix A.

We observe that for every u ∈ A(x):

lim
T→ ∞

Ex

[
e−λTXm+1

T

]
= 0, (3)

because
∫ ∞

0
e−λtEx

[
αXm+1

t

]
dt =

∫ ∞

0
e−λtEx [h(Xt)] dt = Ex

[∫ ∞

0
e−λth(Xt)dt

]
< ∞.

We will use condition (3) in the proof of Theorem 1 below. Condition (3) is a classical transversality
condition.

We denote µ = r− g. Since we want the nonintervention policy to be admissible (see details in
Section 6.1), we assume the following condition on the discount rate:

λ > σ2m(m + 1)/2 + µ(m + 1). (4)

This condition is consistent with the empirical observation that for governments the present is more
important than the future. Condition (4) is similar to the ones imposed in economic models with
infinite horizon (see, for instance, Romer 2002).

3. The Value Function and the Verification Theorem

The value function V : (0, ∞)→ R is defined by

V(x) := inf
u∈A(x)

J(x; u).

It measures the minimum loss for the government because it is the smallest cost that can be achieved
when the initial debt ratio is x and we consider all the admissible controls.

Proposition 2. The value function is nonnegative, increasing and convex. Furthermore, V(0+) = 0, and it
satisfies the polynomial growth condition

V(x) ≤ Mxm+1 , (5)

for some constant M ∈ (0, ∞).
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Proof. See Appendix B.

We state a sufficient condition for a policy to be optimal. First, we introduce the corresponding
Hamilton–Jacobi–Bellman equation (HJB).

Let ϕ : (0, ∞)→ R be a function in C2(0, ∞). The differential operator L is defined by

Lu(ϕ(x)) :=
1
2

σ2x2 ϕ′′(x) + µxϕ′(x)− u ϕ′(x)− λϕ(x). (6)

We consider the Hamilton-Jacobi-Bellman (HJB) equation

inf
0≤ u≤U

{
Lu(v(x)) + k u + h(x)

}
= 0, (7)

where v : (0, ∞)→ R is a function in C2(0, ∞).
We next present a verification theorem that will be used to obtain the solution.

Other verification theorems for classical stochastic control problems can be found, for instance,
in Fleming and Soner (2006).

Theorem 1. Let v ∈ C2((0, ∞); [0, ∞)) be a convex function. If v satisfies the HJB Equation (7) and the
polynomial growth condition

v(x) ≤ Mxm+1 , (8)

for some constant M > 0, then for every u ∈ A(x):

v(x) ≤ J(x; u).

Moreover, if the control uv, defined by

uv := uv(Xt) = arg inf
u∈[0,U]

{
Lu(v(Xt)) + k u + h(Xt)

}
, (9)

is admissible, then

v(x) = J(x; uv).

That is, û := uv is the optimal control and V := v is the value function for Problem 1.

Proof. Let u ∈ A(x), and let X0 = x > 0. Since v is twice continuously differentiable, we may apply
Ito’s formula to obtain for every s > 0:

v(x) = e−λsv(Xs) −
∫ s

0
e−λt {Lut

(
v
(
Xt
))}

dt +
∫ s

0
e−λtv′(Xt)σdWt , (10)

where L is defined in Equation (6). From the HJB Equation (7), we have Lut(v(Xt)) + k ut + h(Xt) ≥ 0.
Thus,

v(x) ≤ e−λsv(Xs) +
∫ s

0
e−λth(Xt)dt +

∫ s

0
e−λtk utdt +

∫ s

0
e−λtv′(Xt)σdWt . (11)

Let c ∈ R, such that x < c < ∞. We define τc := inf{t ≥ 0 : Xt = c}. We denote a ∧ b := min(a, b),
where a and b are real numbers. Then, for every T ≥ 0,

v(x) ≤ e−λ(T∧τc)v(XT∧τc) +
∫ T∧τc

0
e−λth(Xt)dt +

∫ T∧τc

0
e−λtk utdt +

∫ T∧τc

0
e−λtv′(Xt)σdWt .
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Taking conditional expectation given that X0 = x, we obtain

v(x) ≤ Ex

[
e−λ(T∧τc)v(XT∧τc)

]
+ Ex

[∫ T∧τc
0 e−λth(Xt)dt

]
+ Ex

[∫ T∧τc
0 e−λtk utdt

]

+ Ex

[∫ T∧τc
0 e−λtv′(Xt)σdWt

]
.

(12)

Since v ∈ C2((0, ∞); [0, ∞)) and v is convex, we have v′(Xt) ≤ v′(c) for every t ∈ [0, T ∧ τc]. Thus,

Ex

[∫ T∧τc

0

(
e−λtv′(Xt)σ

)2
dt
]
≤ (v′(c))2σ2

∫ T

0
e−2λtdt < ∞.

Consequently, the stochastic integral

∫ T∧τc

0
e−λtv′(Xt)σdWt =

∫ T

0
e−λtv′(Xt)σI{t∈ [0,τc ]}dWt =: NT

is a square integrable martingale, and hence Ex[NT ] = N0 = 0. Here, IA is the indicator function of A.
Since v is a continuous function,

lim
c→∞

e−λ(T∧τc)v(XT∧τc) = e−λTv(XT) , P− a.s.

Moreover, due to the polynomial growth condition (8), the family of random variables
{e−λ(T∧τc)v(XT∧τc) : c > x} is uniformly integrable (see Appendix D in Fleming and Soner 2006),
and hence

lim
c→∞

Ex

[
e−λ(T∧τc)v(XT∧τc)

]
= Ex

[
e−λTv(XT)

]
.

The Monotone Convergence Theorem implies

lim
c→∞

Ex

[∫ T∧τc

0
e−λth(Xt)dt

]
= Ex

[∫ T

0
e−λth(Xt)dt

]

and

lim
c→∞

Ex

[∫ T∧τc

0
e−λtk utdt

]
= Ex

[∫ T

0
e−λtk utdt

]
.

Taking the limit as c→ ∞ in (12),

v(x) ≤ Ex

[
e−λTv(XT)

]
+ Ex

[∫ T

0
e−λth(Xt)dt

]
+ Ex

[∫ T

0
e−λtk utdt

]
. (13)

In view of (3), and the polynomial growth condition (8),

lim
T→∞

Ex

[
e−λTv(XT)

]
= 0.

Taking the limit as T → ∞ in (13), by the Monotone Convergence Theorem, we conclude

v(x) ≤ Ex

[∫ ∞

0
e−λth(Xt)dt +

∫ ∞

0
e−λtk ut dt

]
= J(x; u). (14)

This proves the first part of this theorem.
Next, we consider the second part of the theorem. Since u := uv satisfies Lu(ϕ(x))+ ku+ h(x) = 0,

inequality (11) becomes an equality. Hence, the inequality in (14) becomes an equality for the admissible
control u = uv. This completes the proof.
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4. The Solution

4.1. Construction of the Solution

Our goal in this subsection is to find a function that satisfies the conditions of Theorem 1. We note
that the HJB Equation (7) can be expressed equivalently as

{1
2

σ2 x2 v′′(x) + µ x v′(x)− λ v(x) + inf
u∈[0, U]

[(
k− v′(x)

)
u
]
+ h(x)

}
= 0 . (15)

Thus, we want to find a control that has the following form:

ût := arg inf
u∈ [0,U]

[(
k− v′(Xt)

)
ut

]
=

{
0, if v′(Xt) < k,
U, if v′(Xt) ≥ k .

(16)

Consequently, to solve the HJB Equation (15) is equivalent to solve

1
2

σ2 x2 v′′(x) + µ x v′(x)− λ v(x) + h(x) = 0 , (17)

for v′(x) < k ; and

1
2

σ2 x2 v′′(x) + µ x v′(x)− λ v(x) +
(

k− v′(x)
)

U + h(x) = 0 , (18)

for v′(x) ≥ k.
Thus, a solution v of the HJB equation defines the regions C = Cv and Σ = Σv by

C :=
{

x > 0 :
1
2

σ2 x2 v′′(x) + µ x v′(x)− λ v(x) + h(x) = 0, v′(x) < k
}

, (19)

Σ :=
{

x > 0 :
1
2

σ2 x2 v′′(x) + µ x v′(x)− λ v(x) +
(

k− v′(x)
)

U + h(x) = 0, v′(x) ≥ k
}

. (20)

We observe that the control û takes the value zero on the region C, whereas it takes the value U on
the region Σ. We conjecture that there exists a threshold b ∈ (0, ∞) such that the government should
intervene with û = U when the debt ratio X ≥ b, and should not intervene (equivalently, û = 0)
when the debt ratio X < b. Accordingly, if v satisfies the HJB equation, we will call C = (0, b) the
continuation region and Σ = [b, ∞) the intervention region. Thus, it is natural to define the debt ratio
ceiling as follows.

Definition 2. Let v be a function that satisfies the HJB Equation (15), and C the corresponding continuation
region. If C 6= ∅, the debt ratio ceiling b is

b := sup{x ∈ (0 , ∞) | x ∈ C}.

Furthermore, if v is equal to the value function, then b is said to be the optimal debt ceiling.

Hence, we need to find the value function to obtain the optimal debt ceiling. The general solution
of the HJB equation depends on whether we consider the continuation region C or the intervention
region Σ. We have applied the power series method to obtain the solution on the region Σ.

To simplify the notation, we consider the power series

Hypergeometric1F1(θ; η; z) :=

[
1 +

∞

∑
n=1

(θ)n

(η)n

1
n!

zn

]
, K(θ; η; x) :=

[
1 +

∞

∑
n=1

(θ)n

(η)n

1
n!

(
− 2U

σ2 x

)n]
. (21)
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Here, θ ∈ (−∞, ∞) and η ∈ (−∞, ∞) are constants, and we denote

(a)n := Πn−1
j=0 (a + j) = a(a + 1)(a + 2) · · · (a + n− 1), a ∈ R, n ∈ N.

This function Hypergeometric1F1(θ; η; z) belongs to the family of hypergeometric functions. For a
reference of these functions, and their relationship to second order differential equations, see,
for example, Bell (2004) and Kristensson (2010).

Thus, the solution of the HJB equation is given by

v(x) =





A1 xγ1 + A2 xγ2 + α ξ xm+1, if x ∈ C = (0, b),

f (x), if x ∈ Σ = [b, ∞),

with

f (x) =
m+1

∑
j=0

ζ j xj + B1 xγ2
( σ2

2U

)γ2

[
1 +

∞

∑
n=1

(−γ2)n

(c2)n

1
n!

(−2U
σ2 x

)n]

+ B2

( 2U
σ2 x

)c3

[
1 +

∞

∑
n=1

(c3)n

(2− c2)n

1
n!

(−2U
σ2 x

)n ]
(22)

=
m+1

∑
j=0

ζ j xj + B1 xγ2
( σ2

2U

)γ2
K (−γ2, c2, x ) + B2

( 2U
σ2 x

)c3
K (c3, 2− c2, x ) ,

where A1, A2, B1 and B2 are some constants to be found. Furthermore, we define

µ̃ := µ− 1
2

σ2 , (23)

γ1 :=
−µ̃−

√
µ̃2 + 2λσ2

σ2 < 0, (24)

γ2 :=
−µ̃ +

√
µ̃2 + 2λσ2

σ2 > 0, (25)

ξ :=
1

λ− σ2m(m + 1)/2− µ(m + 1)
> 0, (26)

c2 := 2
(

1− γ2 −
µ

σ2

)
, (27)

c3 := γ2 + 2
µ̃

σ2 , (28)

ζ j := −
(

m + 1
j

)
α (m + 1− j)! Um+1−j

∏m+1
i=j

(
iµ + i(i− 1)σ2/2− λ

) , ∀j ∈ {2, 3, · · · , m + 1}, (29)

ζ1 :=
2U

µ− λ
ζ2, (30)

ζ0 :=
k U
λ
− U

λ
ζ1. (31)
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Remark 2. By definition (21), one can verify that

lim
x→∞

K (−γ2, c2, x ) = 1,

lim
x→∞

K (c3, 2− c2, x ) = 1.

To guarantee the existence of the parameters {ζ j : j = 2, 3, · · · , m + 1} defined in (29), in addition
to condition (4), we need to assume

λ 6= j(j− 1)
σ2

2
+ jµ, j ∈ {2, 3, · · · , m}. (32)

We observe that, in the special case µ ≥ 0, the inequality (4) implies (32).

Lemma 1. The parameters of the model satisfy the following conditions:

(i) ξ > 0,
(ii) λ > µ,
(iii) γ2 > m + 1,
(iv) c3 > 0.

Proof. Part (i) follows immediately from (4). Part (iv) follows directly from the definition of γ2. Let us
show (ii). If µ > 0, then condition (4) implies that λ > µ. If µ ≤ 0, then λ > 0 ≥ µ.

To prove (iii), we define

f̃ (y) =
√

µ̃2 + 2yσ2

σ2 − µ̃

σ2 , (33)

where µ̃ = µ − 0.5σ2. We note that f̃ is strictly increasing. By definition, γ2 = f̃ (λ).

If µ̃ + σ2(m + 1) ≥ 0, then γ2 = f̃ (λ) > f̃
(
(m + 1)2σ2/2 + µ̃(m + 1)

)
= m + 1, where the inequality

follows from (4). If µ̃ + σ2(m + 1) < 0, then γ2 = f̃ (λ) > f̃ (0) > 2(m + 1), since λ > 0.

We recall that Proposition 2 implies V(0+) = 0, and that the value function V satisfies the
polynomial growth condition (5). Furthermore, we conjecture that v is twice continuously differentiable.
Then, the five constants A1, A2, B1, B2 and b can be found from the following five conditions:

v(0+) = 0 , (34)

v(x) ≤ Mxm+1 , (35)

v(b+) = v(b−) , (36)

v′(b+) = v′(b−) , (37)

v′′(b+) = v′′(b−). (38)

From Equations (19) and (20), we see that Equation (37) is equivalent to v′(b−) = k, which in turn
is equivalent to

A2γ2bγ2−1 + (m + 1)αξbm = k. (39)

Since γ1 < 0, condition (34) implies A1 = 0 in the equation for v. Moreover, in the lemma below,
we show that B1 = 0.

Lemma 2. Suppose f , defined in (22), is non-negative and satisfies the polynomial growth condition

f (x) ≤ Mxm+1,

for some M > 0. Then, B1 = 0.
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Proof. See Appendix C.

Hence, the candidate for value function is defined by

v(x) =

{
A2 xγ2 + α ξ xm+1, if x ∈ C = (0, b),
f1(x), if x ∈ Σ = [b, ∞),

(40)

with

f1(x) :=
m+1

∑
j=0

ζ j xj + B2

( 2U
σ2 x

)c3
K
(

c3, 2− c2, x
)

, (41)

where the remaining three constants A2, B2 and b are found by solving the system of nonlinear
Equations (36)–(38).

In summary, our candidate for value function is given by (40), and our candidate for optimal

control is given by ût :=

{
0, if Xt < b,
U, if Xt ≥ b.

Moreover, our candidate for optimal debt ceiling is

b. Naturally, we expect b to depend on the underlying parameters of the model (µ, σ, λ, k, α, m, U),
where µ = r− g.

Now, we describe a procedure to solve the system (36)–(38). Noting that

K′(θ; η; x) =
∞

∑
n=1

(θ)n

(η)n

1
(n− 1)!

σ2

2U

(
− 2U

σ2 x

)n+1

,

K′′(θ; η; x) =
∞

∑
n=1

(θ)n

(η)n

(n + 1)
(n− 1)!

(
σ2

2U

)2 (
− 2U

σ2 x

)n+2

,

we have

f ′1(x) =
m

∑
j=0

(j + 1)ζ j+1xj − B2c3

(
2U
σ2 x

)c3+1

K(c3; 2− c2; x) + B2

(
2U
σ2 x

)c3

K′(c3; 2− c2; x),

f ′′1 (x) =
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj + B2c3(c3 + 1)
(

2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)

−B2c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x) + B2

(
2U
σ2 x

)c3
K′′(c3; 2− c2; x)

=
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj

+B2

{
c3(c3 + 1)

(
2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)− c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x) +
(

2U
σ2 x

)c3
K′′(c3; 2− c2; x)

}
.

To simplify the notation, consider the functions R and S defined by

R(x) :=
(

2U
σ2 x

)c3

K(c3; 2− c2; x),

S(x) := c3(c3 + 1)
(

2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)

−c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x)

+

(
2U
σ2 x

)c3

K′′(c3; 2− c2; x).
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Then, Equation (36) can be rewritten as

A2 bγ2 + α ξ bm+1 =
m+1

∑
j=0

ζ jbj + B2R(b)

and Equation (38) can be rewritten as

A2 γ2(γ2 − 1)bγ2−2 + α ξ(m + 1)mbm−1 =
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj + B2S(b).

Thus, Equations (36) and (38) are equivalent to

A2 = A2(b)

=
(∑m+1

j=0 ζ jbj − α ξ bm+1)S(b) + (α ξ(m + 1)mbm−1 −∑m−1
j=0 (j + 2)(j + 1)ζ j+2bj)R(b)

bγ2 S(b)− γ2(γ2 − 1)bγ2−2R(b)
,

(42)

B2 = B2(b)

=
A2(b)bγ2 + α ξ bm+1 −∑m+1

j=0 ζ jbj

R(b)
.

(43)

Then, Equation (37), or equivalently Equation (39), can be rewritten as

A2(b)γ2bγ2−1 + (m + 1)αξbm = k.

Let us consider the function w : (0, ∞) 7−→ (−∞, ∞) defined by

w(y) := A2(y)γ2yγ2−1 + (m + 1)αξym.

The procedure to solve Equations (36)–(38) is first to solve equation

w(b) = k, (44)

and then obtain A2 and B2 from Equations (42) and (43), respectively.

4.2. Verification of the Solution

In this subsection, we will prove rigorously that our candidate for optimal control is indeed the
optimal control, and our candidate for value function is indeed the value function.

Theorem 2. Let b be solution of Equation (44), and A2 and B2 be constants determined by (42) and (43). Let us
define the function V : (0, ∞)→ [0, ∞) by

V(x) = v(x) =

{
A2 xγ2 + α ξ xm+1, if x ∈ (0, b),
f1(x), if x ∈ [b, ∞),

(45)

with f1 defined by Equation (41). Furthermore, let us define the process û by

ût := U I{X̂t≥b}(t) =

{
0, if X̂(t) < b,
U, if X̂(t) ≥ b.

(46)

If

∀x ∈ (0, ∞) : V′′(x) > 0, (47)
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then V is the value function, b is the optimal debt ceiling, and û is the debt policy generated by the optimal debt
ceiling. Here, IA is the indicator function of A.

Proof. It is sufficient to show that all the conditions of Theorem 1 are satisfied. We observe that
V(0+) = 0. By construction, we get immediately that V ∈ C2(0, ∞). In view of (47), V is strictly
convex. Thus, V′(x) is strictly increasing. Next, we will show that V′(0+) = 0. We note that for every
x ∈ (0, b):

V′(x) = xm
(
(m + 1)αξ + A2γ2xγ2−m−1

)
.

We recall that γ2 > m + 1 by Lemma 1. Thus, V′(0+) = 0. Consequently, V′(x) > 0 for every x > 0.
Hence, V is strictly increasing.

Next, we will show that V satisfies the HJB Equation (7). We recall that condition (39) is equivalent
to V′(b) = k. Since V′(x) > 0 for every x ∈ (0, ∞), we conclude 0 < V′(x) < k for every x ∈ (0, b),
and V′(x) > k for every x ∈ (b, ∞). By construction, V satisfies (17) on (0, b), and (18) on (b, ∞).
Hence, V satisfies the HJB equation for all x ∈ (0, ∞). This also shows that indeed C = (0, b) and
Σ = [b, ∞). Regarding the value function, it remains to verify that V satisfies the polynomial growth
condition (8). Since

lim
x→∞

K (c3, 2− c2, x ) = 1

by Remark 2, and c3 > 0 by Lemma 1, we obtain

lim
x→∞

B2

( 2U
σ2 x

)c3
K
(

c3, 2− c2, x
)
= 0.

This implies that V is bounded above by a polynomial of degree m + 1 on the interval [b, ∞).
On the other hand, on the interval (0, b), the function V is bounded above by |A2|bγ2 + αξbm+1.
Hence, V satisfies the polynomial growth condition (8). Consequently, by Theorem 1, V is the value
function. Since

J(x; û) ≤ J(x; 0) + Ex

[∫ ∞

0
e−λt Udt

]
= αξxm+1 + U

1
λ
< ∞,

by Section 6.1, we conclude that û is admissible. Therefore, û is the optimal debt policy. By Definition 2,
the constant b is the optimal debt ceiling. This completes the proof of this theorem.

4.3. The Debt Policy Generated by the Optimal Debt Ceiling

We observe that under the debt policy (46) generated by the optimal debt ceiling, the optimal debt
ratio is given by

X̂t = x +
∫ t

0
(r− g)X̂sds +

∫ t

0
σX̂s dWs −

∫ t

0
Ū I{X̂s≥b} ds. (48)

When the actual debt ratio X̂t is below the optimal debt ceiling b, the definition of debt control given
in Equation (46) states that û(t) = 0. Hence, the government does not generate primary surpluses to
reduce its debt ratio. When the debt ratio reaches b and tries to cross it, the optimal control states that
ût = U. In other words, the government intervenes to reduce the debt ratio with the maximal rate U
allowed. When the actual debt ratio X̂t is strictly greater than the optimal debt ceiling b, the optimal
debt policy in the bounded model states that the government reduces its debt ratio with the maximal
rate U.

Suppose that the actual debt ratio is below the optimal debt ceiling b. Then, the government might
or might not succeed in preventing the debt ratio from crossing b, the result depends on the values of
the underlying parameters of the model, in particular on U. Specifically, the higher the parameter U,
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the more likely the controlled debt ratio will remain below the optimal debt ceiling b (see Section 5).
This result differs from the unbounded case of Cadenillas and Huamán-Aguilar (2016) in which the
optimal policy states that once the actual debt ratio is below or equal to its debt ceiling, it will remain
there all the time.

On the other hand, if the current debt ratio is strictly greater than the optimal debt ceiling b,
the optimal debt policy states that the government should reduce the debt ratio with the maximal
rate U. Certainly, there is no guarantee that the resulting debt ratio will equal the debt ceiling b
immediately because it may take some time to accomplish that goal, if that ever happens. Indeed,
in Section 5, we present Example 2 in which the expected time to reach the optimal debt ceiling is
strictly positive. Furthermore, if the government constraint is too severe (very low U), there is a high
probability that the country will never reach its optimal debt ceiling (see Example 3 in Section 5).
In contrast, in the unbounded model of Cadenillas and Huamán-Aguilar (2016), the optimal debt
ceiling is reached immediately.

4.4. Numerical Solutions

The solution of the problem involves the numerical solution of the system of three
Equations (36)–(38) with three unknowns: A2, B2 and b. We have written a program in Mathematica
11.0 to solve numerically those equations (see Appendix E). We get immediate solutions in a standard
personal computer. We now present an example to illustrate the solution.

Example 1. Let us consider the parameter values

r = 0.10, g = 0.05, σ = 0.05, λ = 0.7, k = 1, U = 0.05, m = 3, α = 1. (49)

Solving numerically the Equation (44), we obtain b = 54.2756%. Alternatively, we can solve numerically the
system of Equations (36)–(38).

The graph of the corresponding value function is shown in Figure 1. We observe that condition (47)
is satisfied. Thus, the value function is increasing, strictly convex, and twice continuously differentiable.

The optimal debt ratio ceiling is 54.2756%. Thus, the corresponding debt policy is given by

ût =

{
0, if Xt < 54.2756%,
0.05, if Xt ≥ 54.2756%.

(50)

That is, if the actual debt ratio is below the level 54.2756%, the government should not intervene.
Otherwise, the government should intervene with the maximal allowed rate of 0.05. Given such
constraint, there is no guarantee that the resulting debt ratio after intervention of the government will
remain below 54.2756%; it may be the case that sometimes the debt ratio is above that threshold.

Remark 3. We conjecture that condition (47) in Theorem 2 is satisfied for every solution of the system of
Equations (36)–(38). This is actually the case in all the numerical examples that we have studied to calculate the
optimal debt ceiling (see Sections 4.4, 5.4, 6.2 and 6.3).
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5. Time to Reach the Debt Ceiling

We study the time to reach a debt ceiling c considering that the government follows the debt
policy u(c) defined by

u(c)
t :=

{
0, if Xt < c,
U, if Xt ≥ c.

(51)

We define the stopping time

τ := inf {t > 0 : X(t) = c} .

In this section, c > 0 is a constant real number that represents a ceiling for the debt ratio.
We emphasize that c is any debt ceiling, not necessarily the optimal debt ceiling found in the previous
section. In particular, c could be equal to the ceiling 60% imposed by the Maastricht Treaty for the
European Union.

5.1. The Theoretical Result

In general, the current or initial debt ratio of a country X0 = x could be below or above the debt
ceiling c. If a country selects c as its debt ceiling, and follows the debt policy u(c), the dynamics of the
debt ratio (2) becomes

X(c)
t =





x exp
{
(r− g− 0.5σ2)t + σWt

}
, if x < c, t ≤ τ,

x exp
{
(r− g− 0.5σ2)t + σWt

}
−U

∫ t
0

Vt
Vu

du, if x > c, t ≤ τ,

where
Vt := exp

{
(r− g− 0.5σ2)t + σWt

}
.

We can study the time τ to reach the debt ceiling for both cases, i.e., x < c or x > c. However,
given the debt problems that motivate this research, it is compelling to study the time to reach the debt
ceiling assuming x > c.
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5. Time to Reach the Debt Ceiling

We study the time to reach a debt ceiling c considering that the government follows the debt
policy u(c) defined by

u(c)
t :=

{
0, if Xt < c,
U, if Xt ≥ c.

(51)

We define the stopping time

τ := inf {t > 0 : X(t) = c} .

In this section, c > 0 is a constant real number that represents a ceiling for the debt ratio.
We emphasize that c is any debt ceiling, not necessarily the optimal debt ceiling found in the previous
section. In particular, c could be equal to the ceiling 60% imposed by the Maastricht Treaty for the
European Union.

5.1. The Theoretical Result

In general, the current or initial debt ratio of a country X0 = x could be below or above the debt
ceiling c. If a country selects c as its debt ceiling, and follows the debt policy u(c), the dynamics of the
debt ratio (2) becomes

X(c)
t =





x exp
{
(r− g− 0.5σ2)t + σWt

}
, if x < c, t ≤ τ,

x exp
{
(r− g− 0.5σ2)t + σWt

}
−U

∫ t
0

Vt
Vu

du, if x > c, t ≤ τ,

where
Vt := exp

{
(r− g− 0.5σ2)t + σWt

}
.

We can study the time τ to reach the debt ceiling for both cases, i.e., x < c or x > c. However,
given the debt problems that motivate this research, it is compelling to study the time to reach the debt
ceiling assuming x > c.



Risks 2018, 6, 138 16 of 28

We recall that µ̃ := r− g− 1
2 σ2. We need to distinguish two cases: µ̃ ≤ 0 and µ̃ > 0.

Proposition 3. Suppose x > c . The following assertions are valid:
(i) If µ̃ ≤ 0 or, equivalently, r− g ≤ σ2/2, then

Px {τ < ∞} = 1. (52)

(ii) If µ̃ > 0 or, equivalently, r− g > σ2/2, then

Px {τ < ∞} = Γ(ν− 1)− Γ(ν− 1, β/x)
Γ(ν− 1)− Γ(ν− 1, β/c)

, (53)

where ν = 2µ/σ2 and β = 2U/σ2, Γ(·) is the Gamma function, and Γ(·, ·) is the incomplete Gamma function
defined by

Γ(a, z) :=
∫ ∞

z
t(a−1)e−tdt, z ≥ 0, a > 0.

Furthermore,

lim
U→∞

Px{τ < ∞} = 1. (54)

Proof. See Appendix D.

Proposition 3 provides different conclusions depending on the parameters of the economy. Part (i)
is associated with countries that have a big economic growth, and Part (ii) with countries with moderate
economic growth.

5.2. Application 1: Countries with Big Economic Growth

If

g + σ2/2 ≥ r, (55)

Part (i) of Proposition 3 states that the debt ceiling is reached with probability one, regardless of
the level Ū of maximal rate. In other words, if the interest rate is lower that the rate of economic
growth, plus an adjustment by volatility, then the debt ratio tends to decrease until it reaches the
debt ceiling with probability one. The intuition behind the result is that the economic growth is
big enough to control the debt ratio. This is a consequence of the definition of debt ratio, namely,
debt ratio = debt in nominal currency/gross domestic product. Consequently, economies in which
the rate of economic growth satisfy the above condition will be successful in reaching the debt ceiling.

For economies that satisfy the above condition (55), we can compute the expected time to reach
the debt ceiling c. We illustrate this point in the following example.

Example 2. We consider a country with parameter values

r = 0.05, g = 0.10, σ = 0.05, U = 0.01,

and initial debt ratio x = 100%. Suppose that this country selects c = 80% as its debt ceiling.

For the above parameters, the expected time to reach the debt ceiling is E[τ] = 3.58, with a 95%
confidence interval given by [3.5540, 3.6136]. We have performed Monte Carlo simulations with 10, 000
sample paths and time steps equal to 0.001. That is, it takes 3.58 years on average to reach the debt
ceiling 80%, starting at the initial debt ratio of 100%, and assuming that the government can decrease
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the debt ratio at the maximal rate. For a reference on Monte Carlo simulations see, for instance,
Brandimarte (2002).

5.3. Application 2: Countries with Moderate Economic Growth

Now consider Part (ii) of Proposition 3. It refers to countries that have moderate economic growth
in the sense that they satisfy the condition µ̃ > 0 , which is equivalent to

g + σ2/2 < r. (56)

The probability to reach the optimal debt ceiling is given by the formula (53) that depends on
(r, g, σ, U, c). To illustrate the role played by the parameter U, we present a numerical example.

Example 3. To study the role played by Ū on the probability of reaching c, we set c = 60%, which is the ceiling
proposed by the Maastricht Treaty for the European Union. We consider the set of parameter values

r = 0.10, g = 0.05, σ = 0.05.

We consider two countries: Country A with initial debt ratio of 70% (approximately the current debt ratio
of Germany) and Country B with initial debt ratio of 170% (approximately the current debt ratio of Greece).
For simplicity, we assume that the other parameters values are the same for both countries.

In Table 1, we observe that, regardless of the type of country, there exist levels of the maximal rate
of intervention U for which a country has very low probability of reaching the debt ceiling. For instance,
if Ū = 2.5%, then Country B has zero probability of reaching the debt ceiling, while Country A has only
around 20% of probability of reaching it. That is, severe constraints to generate primary surpluses lead
to a high probability of never reaching the debt ceiling. Even worse, countries with severe constraints
and high initial debt ratios, such as Country B, have probabilities close to zero of ever reaching their
debt ceilings.

In addition, in Table 1, we observe that, as expected, the higher the maximal rate of intervention
U, the greater the probability of reaching the debt ceiling, regardless of the type of country. In addition,
there is a finite level of Ū such that the probability of reaching the optimal debt ceiling is one.
For Country B, such level is Ū = 0.15 and for Country A it is around Ū = 0.05.

Table 1. Effects of U on the probability of reaching the debt ceiling c (*).

c Country A Country B

U = 0.010 0.60 0.01538 0.00000
U = 0.025 0.60 0.19876 0.00000
U = 0.050 0.60 0.99542 0.00215
U = 0.100 0.60 1.00000 0.89679
U = 0.150 0.60 1.00000 0.99998

(*) The other parameters used in these computations are those of Example 3.

5.4. Application 3: Time to Reach the Optimal Debt Ceiling

Now, we study the time to reach the optimal debt ceiling b for countries with moderate economic
growth. That is, we consider the setting of Part (ii) of Proposition 3, taking c = b. To compute the
optimal debt ceiling, we consider the parameters (r, g, σ) given in Example 3, and in addition the
following parameter values:

λ = 0.7, k = 1, m = 1, α = 0.5. (57)
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As in the previous subsection, we consider Country A with initial debt ratio 70%, and Country B with
initial debt ratio 170%.

In Table 2, we present the optimal debt ceiling that corresponds to the parameters given above,
and the value of Ū given in the first column of that table. Then, for each set of parameters (r, g, σ, Ū, b),
we perform the calculations of the probability of reaching the optimal debt ceiling using Formula (53),
with c = b. The probabilities of reaching the optimal debt ceiling b for Country A and Country B are
presented in columns 3 and 4, respectively.

We note that the conclusions from Table 2 are the same as those from Table 1, namely, severe
constraints on Ū imply that a country may not be able to reach its optimal debt ceiling, and the
probability of eventually reaching its optimal debt ceiling increases with the value of Ū.

Table 2. Effects of U on the probability of reaching the optimal debt ceiling b (*).

b Country A Country B

U = 0.010 0.60982 0.02356 0.00000
U = 0.025 0.62576 0.29127 0.00000
U = 0.050 0.64324 0.99598 0.00215
U = 0.100 0.65495 1.00000 0.89679
U = 0.150 0.65808 1.00000 0.99998

(*) The other parameters used in these computations are those of Example 3, and Equation (57).

For a country with no severe constraint, that is able to reach its optimal debt ceiling, we have
computed the expected time to reach its optimal debt ceiling by Monte Carlo simulations. For instance,
for Country A with Ū = 0.1, the expected time of reaching its debt ceiling is 0.6877, while for Country
B, with Ū = 0.15, such value is 11.98.

To sum up, we conclude that countries with severe constraints to generate primary surpluses
(very low U) have zero or very low probability of ever reaching their debt ceilings. This is one of the
main results of this research, and represents a dramatic difference with the work of Cadenillas and
Huamán-Aguilar (2016), in which the corresponding optimal debt ceiling is reached immediately with
probability one.

6. Comparative Statics Analysis

In this section, we consider different parameter values in order to analyze the debt policy
associated with the optimal debt ceiling. Specifically, we are going to make the following three
analyses:

1. Compare the results of the debt policy associated with the optimal debt ceiling with the policy of
non-government intervention.

2. Compare the results of the debt policy associated with the optimal debt ceiling presented in this
paper with the policy derived in the unbounded model of Cadenillas and Huamán-Aguilar (2016).

3. Analyze the effects of some parameters on the optimal debt ceiling.

Unless otherwise stated, the basic parameter values that we will use in this section are given in
the following example.

Example 4. Let us consider the basic parameter values:

µ = 0.05, σ = 0.05, λ = 0.7, k = 1, U = 0.01, m = 1, α = 1.

Solving numerically Equations (36)–(38), we obtain b = 31.04266%.

We remark that, as Examples 1 and 4 show, the 60% proposed by the Maastricht Treaty is
not necessarily an optimal debt ceiling. In contrast to the 60% proposed by the Maastricht Treaty,
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the optimal debt ceiling proposed in our paper depends on the specific characteristics of the country,
which are reflected in the parameters’ values. We recall that that 60% was simply the median of the
debt ratio of some European countries.

6.1. The Debt Policy Associated with the Optimal Debt Ceiling versus the Non-Intervention Policy

We want to compare the policy obtained in Section 4 with the non-intervention policy. The latter
can be modeled as u ≡ 0, that is, u(t) = 0 for all t ≥ 0. If the government never intervenes, then

Xt = x exp
{(

µ− 1
2

σ2
)

t + σWt

}
. (58)

The total cost function is

J(x; 0) = Ex

[∫ ∞

0
e−λth(Xt)dt + 0

]
= Ex

[∫ ∞

0
e−λt(αXm+1

t
)
dt
]

=
∫ ∞

0
e−λtαEx

[
Xm+1

t

]
dt = α

∫ ∞

0
e−λtxm+1 exp

{(
σ2m/2 + µ

)
t(m + 1)

}
dt

= α ξ xm+1 ,

due to condition (4).
We recall that the value function V represents the minimum expected total discounted cost, and

is a function of the initial debt ratio. Thus, the cost J(x; 0) is greater than or equal to V(x). Indeed,
using the parameter values of Example 4 with U = 0.05, we plot these functions in Figure 2. We observe
that the expected relation is satisfied. Hence, we confirm that it is better to intervene optimally than to
not intervene at all. We point out that the larger the initial debt ratio, the greater the benefits of the
optimal intervention.

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

V

No Intervention

Bounded

Figure 2. The value function (for the bounded-intervention model) versus the total cost of the
non-intervention policy.

6.2. The Bounded Model versus the Unbounded Model

In this subsection, we compare our results to the ones obtained by Cadenillas and Huamán-Aguilar
(2016) for their model with unbounded government intervention. They proved that the optimal debt
ceiling b̃ for the unbounded intervention model is given by
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b̃ =

(
1

α ξ

k(γ2 − 1)
(γ2 −m− 1)(m + 1)

) 1
m

> 0, (59)

where

µ̃ = µ− 1
2

σ2,

γ2 =
−µ̃ +

√
µ̃2 + 2λσ2

σ2 > 0,

ξ =
1

λ− σ2m(m + 1)/2− µ(m + 1)
> 0.

In Table 3, we study the effect of the maximal rate of intervention U on the optimal debt ceiling.
We notice that the optimal debt ceiling b in the bounded model is always smaller than the optimal debt
ceiling b̃ in the unbounded case U = ∞, given by Equation (59). Moreover, we observe that, as the
maximal rate U increases, the optimal debt ceiling b for the bounded model increases towards the
optimal debt ceiling b̃ for the unbounded model. It is worth remarking that b̃ is an upper bound for b.
Furthermore, we conclude that, other things being equal, countries with severe constraints to control
their debt ratios should have low optimal debt ceilings.

Table 3. Effect of U on the optimal debt ceiling b (*).

U = 0.001 U = 0.01 U = 1 U = 5 U = ∞

b 0.300024 0.310426 0.331213 0.331325 0.331352

(*) The other parameters used in these computations are those of Example 4. The unbounded case U = ∞ is
calculated using the explicit Formula (59).

6.3. The Effects of α, g, and σ on the Optimal Debt Ceiling

We recall that α represents the importance of government debt. In Table 4 we observe that the
more important the government debt, the lower the optimal debt ceiling. In other words, the more
concerned the government is about its debt, the more control should be exerted. We note that this
result holds for every value of the maximal rate of intervention U.

Table 4. Effect of α, µ and σ on the optimal debt ceiling b (*).

α = 0.5 α = 1 α = 1.3

U = 0.01 0.609820 0.310426 0.241035
U = 2.00 0.662425 0.331283 0.254845
U = ∞ 0.662704 0.331352 0.254886

µ = 0.05 µ = 0.10 µ = 0.14

U = 0.01 0.310426 0.263990 0.253090
U = 2.00 0.331283 0.303408 0.282346
U = ∞ 0.331352 0.303466 0.282397

σ = 0.05 σ = 0.13 σ = 0.17

U = 0.01 0.310426 0.301363 0.295110
U = 2.00 0.331283 0.349697 0.359007
U = ∞ 0.331352 0.350220 0.359954

(*) The other parameters used in these computations are those of Example 4. The unbounded case U = ∞ is
calculated using the explicit Formula (59).

We recall the definition µ := r− g in order to analyze the effect of the rate of economic growth.
In Table 4, we observe that the larger the rate of economic growth, the larger the optimal debt ceiling.
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In other words, since the economic growth reduces the debt ratio (see Domar 1944), countries with
high economic growth are allowed to have a high debt ceiling. We point out that this behavior holds
regardless of the value of the maximal rate of intervention U.

In Table 4, we also show the effects of volatility. We observe mixed results. If the maximal rate of
intervention U is large, then the higher the debt volatility the larger the optimal debt ceiling. This is
consistent with the unbounded model (U = ∞) of Cadenillas and Huamán-Aguilar (2016). However,
if the maximal rate of intervention U is small, then the higher the debt volatility, the lower the optimal
debt ceiling. This establishes a dramatic difference with the unbounded model (U = ∞) of Cadenillas
and Huamán-Aguilar (2016).

We have also studied the effects of the parameters on the value function. We have found out that
an increase in the importance of the debt α for the government, or in the debt volatility σ, implies an
increase in the value function, thereby generating a bad result for the government. By contrast,
an increase in the rate of economic growth reduces the value function and, hence, improves the
government welfare.

7. Summary of Analysis

We have confirmed that the debt policy associated with the optimal debt ceiling is better than the
non-intervention policy. Furthermore, as expected, the debt policy associated with the optimal debt
ceiling under the bounded intervention model determines a higher cost than the debt policy associated
with the optimal debt ceiling for the unbounded intervention model.

In addition, we have studied the time to reach any debt ceiling (including the optimal debt ceiling),
when the initial debt ratio is higher than the debt ceiling. We have found out that a country may or
may not succeed in reaching its debt ceiling. Indeed, we have found out that countries with strong
constraints to generate primary superavits (low maximal rate U of intervention) may not be able to
reduce their debt ratios, and hence may not succeed in reaching their corresponding debt ceilings.
On the contrary, for countries with less constraints, we have estimated their finite expected times to
reach their debt ceilings. That is, governments that succeed in reducing their debt ratios to their debt
ceiling levels do not do so immediately, but over some period of time. These are the main results of
this research.

We have observed that our quantitative results are different from those of Cadenillas and
Huamán-Aguilar (2016) for the unbounded intervention model (U = ∞). For example, the optimal debt
ceiling in our model is smaller than the optimal debt ceiling in the unbounded case. Another important
difference is that the optimal debt policies differ and, hence, produce different results. Suppose the
initial debt ratio of a country is below the optimal debt ceiling. Then, as pointed out in Section 4.3,
sometimes the controlled debt ratio may be above its corresponding optimal debt ceiling, whereas,
in the unbounded model, it will always be equal to or less than the optimal debt ceiling.

We have also analyzed the effects of some parameters on the optimal debt ceiling. We have
shown that, when the importance of debt for the government increases (large α), the optimal debt
ceiling decreases. An increase in the rate of economic growth (large g) has the same qualitative effect.
However, the effect of the volatility (σ) on the optimal debt ceiling depends on the maximal rate (U) of
intervention. We have shown that, if the maximal rate of intervention U is large, then the higher the
debt volatility, the larger the optimal debt ceiling. Nevertheless, if the maximal rate of intervention U
is small, then the higher the debt volatility, the lower the optimal debt ceiling. This result is different
from the one obtained by Cadenillas and Huamán-Aguilar (2016).

8. Conclusions

In this paper, we study the optimal government debt ceiling considering that the generation
of primary superavits to reduce the debt ratio is bounded. The goal of the government is to find a
debt reduction policy that minimizes the expected total cost, given by the cost of reducing the debt
ratio plus the cost (disutility) of having debt. The debt problem is set as a stochastic control problem
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in continuous time with infinite horizon. We succeed in obtaining the optimal control debt policy.
The main contribution of this paper is to present for the first time a model that not only allows us to
compute analytically the optimal debt ceiling (as a function of macro-financial variables), but also
accounts for the constraints that governments face in reducing their debt ratios. We have shown that
this constraint plays a key role in explaining, for instance, why many countries fail to reduce their debt
ratios to their debt ceilings.

For future research, it would be interesting to generalize our model to the case in which the interest
rate and the GDP growth rate are stochastic processes. This could be complemented by empirical tests.
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Appendix A. Proof of Proposition 1

Proof. Let us consider the controls u1 and u2 with u1 6= u2. Let us denote by Xui
the debt ratio

controlled by ui, i ∈ {1, 2}. Let β ∈ (0, 1). From Equation (2), we observe that the debt ratio controlled
by βu1 + (1− β)u2 is given by

Xβu1+(1−β)u2
= βXu1

+ (1− β)Xu2
.

Since h is a strictly convex function,

h(Xβu1+(1−β)u2

t ) = h(βXu1

t + (1− β)Xu2

t ) < βh(Xu1

t ) + (1− β)h(Xu2

t ).

Then, for every x ∈ (0, ∞):

J(x, βu1 + (1− β)u2) = Ex

[∫ ∞

0
e−λth(Xβu1+(1−β)u2

t ) +
∫ ∞

0
e−λtk(βu1

t + (1− β)u2
t )dt

]

< βJ(x; u1) + (1− β)J(x; u2).

This proves that, if u1 ∈ A(x) and u2 ∈ A(x), then βu1 + (1− β)u2 ∈ A(x). Hence, A(x) is a convex
set. Furthermore, the function J(x, ·) is strictly convex.

Suppose that u1 ∈ A(x) and u2 ∈ A(x), with u1 6= u2, are two optimal controls. Then, J(x; u1) =

J(x; u2) ∈ (0, ∞). Since 1
2 u1 + 1

2 u2 ∈ A(x) and J(x, ·) is strictly convex,

J
(

x,
1
2

u1 +
1
2

u2
)

<
1
2

J(x; u1) +
1
2

J(x; u2) = J(x; u1).

This contradicts that u1 ∈ A(x) and u2 ∈ A(x) are optimal controls. Therefore, Problem 1 has at most
one solution.

Appendix B. Proof of Proposition 2

Proof. Since J is nonnegative, the value function V is nonnegative as well.
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Consider x1 < x2 and u(2) ∈ A(x2). Since h is a strictly increasing function, we have

V(x1) ≤ J(x1, u(2)) < J(x2, u(2)).

This implies u(2) ∈ A(x1) and then V(x1) ≤ V(x2). Hence, V is increasing.
Consider x1 ≤ x2 with associated controls u(1) ∈ A(x1) and u(2) ∈ A(x2), and γ ∈ [0, 1].

We define u(3) := γu(1) + (1− γ)u(2) and x3 := γx1 + (1− γ)x2. For every i = 1, 2, 3, we denote by
X(i) the trajectory that starts at xi and is determined by the control u(i). Thus, for every t ≥ 0:

X(3)
t = γX(1)

t + (1− γ)X(2)
t .

The convexity of the function h implies

∫ ∞

0
e−λth(X(3)

t )dt ≤
∫ ∞

0
e−λt

(
γh(X(1)

t ) + (1− γ)h(X(2)
t )
)

dt

= γ
( ∫ ∞

0
e−λth(X(1)

t )dt
)
+ (1− γ)

( ∫ ∞

0
e−λth(X(2)

t )dt
)

.

This implies

J(x3; u(3)) ≤ γJ(x1; u(1)) + (1− γ)J(x2; u(2)),

and hence u(3) ∈ A(x3). Thus,

V
(

γx1 + (1− γ)x2

)
≤ J

(
γx1 + (1− γ)x2, γu(1) + (1− γ)u(2)

)

= J(x3; u(3))

≤ γJ
(

x1, u(1))+ (1− γ)J
(
x2, u(2)).

Therefore,
V
(

γx1 + (1− γ)x2

)
≤ γV(x1) + (1− γ)V(x2),

which proves that V is a convex function.
It remains to prove that V(0+) = 0. Since V(x) is nonnegative, V(0+) ≥ 0. On the other hand,

by the result found in Section 6.1, we have

V(x) ≤ J(x; 0) = ξ α xm+1,

which implies V(0+) ≤ 0. Furthermore, there exists M = ξα ∈ (0, ∞) such that ∀x ∈ (0, ∞):

V(x) ≤ Mxm+1.

This completes the proof of this proposition.

Appendix C. Proof of Lemma 2

Proof. Let us consider the functions G and H defined by

G(x) := xγ2
( σ2

2U

)γ2
K (−γ2, c2, x )

and

H(x) :=
( 2U

σ2 x

)c3
K (c3, 2− c2, x ) .
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The function f , defined in (22), can be written as

f (x) =
m+1

∑
j=0

ζ j xj + B1G(x) + B2H(x), ∀x ∈ [b, ∞).

By Lemma 1, we note that γ2 > m + 1 and c3 > 0. Then, Remark 2 implies

lim
x→∞

B2H(x) = 0.

Consequently, there exists x̄ > b, such that for all x > x̄, we have −1 < B2H(x) < 1. Thus,

f (x) :=
m+1

∑
j=0

ζ j xj + B1G(x)− 1 < f (x) < f (x) :=
m+1

∑
j=0

ζ j xj + B1G(x) + 1.

Since γ2 > m + 1, using Remark 2, it follows that G does not satisfy any polynomial growth
condition of degree m + 1. That is, for every M2 > 0, there exists xM2 such that G(x) > M2(1 + xm+1)

for every x > xM2 .
Now, for a contradiction, suppose B1 > 0. Then, f does not satisfy the polynomial growth

condition of Lemma 2. However, this, in turn, implies that f does not satisfy that polynomial growth
condition either. This contradiction implies that B1 ≤ 0. Next, we show B1 ≥ 0. For a contradiction,
suppose B1 < 0. Then, there exists x big enough such that f (x) < 0. However, this contradicts the
fact that f is non-negative. Then, there must be the case that B1 ≥ 0. Combining these two results,
we conclude that B1 = 0.

Appendix D. Proof of Proposition 3

Proof. Proof of Part (i). Since x > c, we can rewrite τ as

τ = inf {t > 0 : Xt ≤ c} .

By definition of the debt policy u(c), the debt ratio ceiling follows

X(c)
t = x +

∫ t

0
µX(c)

s ds +
∫ t

0
σX(c)

s dWs −U t.

We define the auxiliary process {Yt} by

Yt = x +
∫ t

0
µYsds +

∫ t

0
σYsdWs,

and the auxiliary stopping time:

θ := inf{t > 0 : Y(t) ≤ c}.

Since U > 0, we have X(c)
t ≤ Yt. Then, τ ≤ θ. Hence, Px{θ < ∞} ≤ Px{τ < ∞}. Thus, it suffices to

show that Px{θ < ∞} = 1.
The stopping time θ can be written as

θ = inf {t > 0 : x exp{µ̃ t + σ Wt} ≤ c}

= inf {t > 0 : −µ̃ t + σ (−Wt) ≥ log x− log c} .
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Since −W is also a Brownian motion, the process −µ̃ t + σ (−Wt) is a Brownian motion with drift.
We may apply the methods in Section 8.4 of Ross (1996), and Section 7.5 of Karlin and Taylor (1975),
to show that if µ̃ ≤ 0, then Px{θ < ∞} = 1. This completes the proof of Part (i).

Proof of Part (ii). For −∞ < c < x < n < ∞, let us define the auxiliary stopping time

θ(c, n) := inf
{

t > 0 : x +
∫ t

0
µX(c)

s ds +
∫ t

0
σX(c)

s dWs −U t /∈ (c, n)
}

.

We claim that

Px{τ < ∞} = 1− lim
n→∞

Px{X(c)
θ(c,n) = n}.

Let us prove the claim. We note that, for n ∈ N,

⋃

n > c
{X(c)

θ(c,n) = c} = {X(c)
τ = c} = {τ < ∞}.

Since the events in the above union are monotone increasing in n, we have

Px{τ < ∞} = lim
n→∞

Px{X(c)
θ(c,n) = c} = 1 − lim

n→∞
Px{X(c)

θ(c,n) = n}. (A1)

Our goal now is to find an analytic expression for Px{X(c)
θ(c,n) = n} as a function of n, and the other

parameters. Let us define the functional f by

f (x) := Px{X(c)
θ(c,n) = n},

and the differential operator A by

Aψ(y) :=
1
2

σ2y2 d2ψ(y)
dy2 + (µy− Ū)

dψ(y)
dy

.

According to Section 3, Chapter 15 of Karlin and Taylor (1981), f satisfies the ordinary
differential equation,

A f (y) = 0,

with the boundary conditions f (c) = 0 and f (n) = 1. The solution of this differential equation is

f (x) =
Γ(α− 1, β/c)− Γ(α− 1, β/x)
Γ(α− 1, β/c)− Γ(α− 1, β/n)

,

where Γ(a, z) is the incomplete Gamma function, defined by

Γ(a, z) =
∫ ∞

z
t(a−1)e−tdt, z ≥ 0, a > 0.

Taking the limit, we obtain

lim
n→∞

f (x) =
Γ(α− 1, β/c)− Γ(α− 1, β/x)

Γ(α− 1, β/c)− Γ(α− 1)
.

Here, Γ(a) := Γ(a, 0), the Gamma function. From Equation (A1), the proof of (53) is complete.
Finally, let us show that

lim
U→∞

Px{τ < ∞} = 1.
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By definition of the incomplete Gamma function, we have that Γ(a, z) ↓ 0 as z ↑ ∞. Then,
the result follows.

Appendix E. Mathematica Code

Here is the Mathematica 11.0 code for solving numerically Equations (36)–(38). We create the
function ceiling whose output is the optimal debt ceiling b. As an illustration, on the bottom part of
the code, we apply that function to the parameter values of Example 1.
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Appendix E Mathematica Code540

Here is the Mathematica 11.0 code for solving numerically the equations (36)-(38). We create the541

function ceiling whose output is the optimal debt ceiling b. As an illustration, on the bottom part of542

the code, we apply that function to the parameter values of Example 1.543

ceiling@U0_, Μ0_, Σ0_, Λ0_, k0_, m0_, Α0_D :=

ModuleB8U = U0, Μ = Μ0, Σ = Σ0, Λ = Λ0, k = k0, m = m0,

Α = Α0, Γ2, c2, c3, Ξ, Ζ0, Ζ1, Ζ2, Μ1, v1, v2, A2, B2, n<,

Μ1 = Μ -

1

2
Σ

2; H* corresponds to Μ tilde in the paper *L

Γ2 =

-Μ1 + HΜ1L^2 + 2 Λ Σ
2

Σ
2

; c2 = 2 1 - Γ2 -

Μ

Σ
2

;

c3 = Γ2 + 2
Μ1

Σ
2

; Ζ2 = -Binomial@m + 1, 2D
2m

Α Um-1 Factorial@m - 1D

Ûi=2
m+1 I-2 Λ + 2 i Μ - i Σ

2
+ i2

Σ
2M

;

Ζ1 =

2 U

HΜ - ΛL
Ζ2; Ζ0 =

k U

Λ

-

U

Λ

Ζ1;

Ξ =

1

Λ - m Hm + 1L Σ
2 � 2 - Μ Hm + 1L

;

IfBΞ > 0, v1@x_, A2_D := A2 x^Γ2 + Α Ξ x^Hm + 1L;

v2@x_, B2_D := B2
2 U

x Σ
2

c3

Hypergeometric1F1Bc3, 2 - c2, -

2 U

x Σ
2

F +

Ζ0 + Ζ1 x + â
n=2

m+1

Hxn H-ΑL U^Hm + 1 - nL Binomial@m + 1, nD Factorial@m + 1 - nDL �

ä
j=n

m+1

Ij Μ + j Hj - 1L Σ
2 � 2 - ΛM ;

FindRoot@
8v1@b, A2D - v2@b, B2D � 0, D@v1@b, A2D, bD - D@v2@b, B2D, bD � 0,

D@v2@b, B2D, 8b, 2<D - D@v1@b, A2D, 8b, 2<D � 0<,
88b, 0.3<, 8A2, 1.0<, 8B2, 1.0<<, H* initial values*L
AccuracyGoal ® 6

D@@1DD,

Print@"Condition is not satisfied"DFF

In[63]:= H* executing the code for Example 1 *L
U = 0.05; r = 0.1; g = 0.05; Μ = r - g; Σ = 0.05; Λ = 0.7; k = 1; m = 3; Α = 1;
output = ceiling@U, Μ, Σ, Λ, k, m, ΑD

Out[64]= b ® 0.542756
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