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Abstract: Based on a rich dataset of recoveries donated by a debt collection business, recovery rates
for non-performing loans taken from a single European country are modelled using linear regression,
linear regression with Lasso, beta regression and inflated beta regression. We also propose a two-stage
model: beta mixture model combined with a logistic regression model. The proposed model allowed
us to model the multimodal distribution we found for these recovery rates. All models were built
using loan characteristics, default data and collections data prior to purchase by the debt collection
business. The intended use of the models was to estimate future recovery rates for improved risk
assessment, capital requirement calculations and bad debt management. They were compared using
a range of quantitative performance measures under K-fold cross validation. Among all the models,
we found that the proposed two-stage beta mixture model performs best.
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1. Introduction

In Basel II, an internal ratings-based (IRB) approach was proposed by the Basel Committee in 2001
to determine capital requirements for credit risk (Bank for International Settlements 2001). This IRB
approach grants banks permission to use their own risk models or assessments to calculate regulatory
capital. Under the IRB approach, banks are required to estimate the following risk components:
probability of default (PD), loss given default (LGD), exposure at default (EAD) and maturity (M)
(Bank for International Settlements 2001). Since Basel II’s capital requirement calculation depends
heavily on LGD, financial institutions have put more emphasis on modelling LGD in recent years.
Unlike the estimation of PD, which is well-established, LGD is not so well-understood and still subject
to research. Improving LGD modelling can help financial institutions assess their risk and regulatory
capital requirement more precisely, as well as improving debt management.

LGD is defined as the proportion of money financial institutions fail to collect during the collection
period, given the borrower has already defaulted. Conversely, Recovery Rate (RR) is defined as the
proportion of money financial institutions successfully collected minus the administration fees during
the collection period, given the borrower has already defaulted. Equations (1) and (2) give formal
definitions of RR and LGD, respectively:

• Suppose individual i has already defaulted on a loan, let EADi be the exposure at default for this
individual i.

• Let Ai be the administration costs (e.g., letters, phone calls, visits, lawyers and legal work)
incurred for individual i.

• Let Ri be the amount recovered for individual i.

Then,

Recovery Rate =
Ri − Ai
EADi

=
∑ Collections−∑ Admin Fee

Outstanding Balance at Default
(1)
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and
Loss Given Default = 1− Recovery Rate = 1− Ri − Ai

EADi
(2)

RR mainly lies in the interval [0, 1] and typically has high concentrations at the boundary points
0 and 1. It is possible for RR to be negative if recoveries are less than administration costs, Ai > Ri,
and greater than 1 if recoveries exceed exposure plus administration costs, Ri > EADi + Ai. Typically,
however, RR is truncated within the interval [0, 1] when developing LGD models.

The main challenge in estimating LGD is the bimodal property with high concentrations at 0
and 1 typically present in LGD empirical distributions, where people either repay in full or repay
nothing. For the dataset we used in this study, we found our LGD distribution is actually tri-modal.
Therefore, regression models have been studied that specifically deal with this problem. For example,
Bellotti and Crook (2012) built Tobit and decision tree models along with beta and fractional logit
transformation of the RR response variable to forecast the LGD based on a dataset of 55,000 defaulted
credit cards in the UK from 1999 to 2005. They concluded that ordinary least squares regression
with macroeconomic variables performed the best in terms of forecast performance. Calabrese (2012)
proposed a mixed continuous-discrete model, where the boundary values 0 and 1 are modelled
by Bernoulli random variables and the continuous part of the RR is modelled by a Beta random
variable. This model is then applied to predict RR of Bank of Italy’s loans from 1985 to 1999. The
result is compared with Papke and Wooldrige’s fractional response model with log-log, logistic and
complementary log-log link functions (Papke and Wooldridge 1996) and linear regression. The mixed
continuous and discrete model achieves the best performance . Qi and Zhao (2011) applied four linear
models, namely ordinary least squares regression, fractional response regression, inverse Gaussian
regression, and inverse Gaussian regression with beta transformation, and two non-linear models,
namely regression tree and neural network, to model the LGD of 3751 defaulted bank loans and
bonds in the US from 1985 to 2008. They concluded that fractional response regression is slightly
better than the ordinary least squares regression. Moreover, they reported that non-linear models
perform best. Loterman et al. (2012) performed a benchmark study of LGD by comparing twenty-four
different models using six datasets extracted from international banks. They concluded that non-linear
models, such as neural network, support vector machine and mixture models perform better than
linear models.

For this project, we specifically modelled and predicted RR for data from a single European
country provided by a debt collection company. Due to reasons of commercial confidentiality and data
protection, the debt collection company will remain anonymous and some aspects of the data were
also anonymised, including the country of origin. Consequently, the data cannot be made publicly
available. We applied some of the models that have already been studied previously and also extended
the existing models, proposing a new beta mixture model to improve the accuracy of RR prediction.
A good prediction of RR would help the debt collection company to determine collection policy for
new debt portfolios. It is important to note that the RR we modelled is different from most RR, as the
data only contain positive repayments and no administration fee was recorded. Therefore, all the RRs
in our data lie in the range (0, 1] instead of [0, 1]. Figure 1 shows a histogram of RR for the data. We
can clearly see that there are modes at 0, 0.55 (approximately) and a high spike at boundary value 1.
Since the shape of the empirical RR distribution demonstrates a trimodal feature, it is reasonable to
assume that the recovery rate is a mixed type random variable. The multi-modality of RR is a natural
consequence of different groups of bad debts being serviced using different strategies; e.g., one strategy
may be that some bad debts are allowed to be written off if the debtor paid back some agreed fixed
percentage of the outstanding balance. Having outcome RR within (0, 1] motivated the use of the beta
regression model and the multi-modal nature of RR motivates the use of a mixture model within this
context.

The beta mixture model has been applied successfully within several other application domains.
Ji et al. (2005) showed how to apply the beta mixture regression model in several bioinformatics
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applications such as meta-analysis of gene expression data and to cluster correlation coefficients
between gene expressions. Laurila et al. (2011) used a beta mixture model to describe DNA methylation
patterns, helping to reduce the dimensionality of microarray data. Moustafa et al. (2018) used a beta
mixture model as the basis of an anomaly detection system. Their network data are typically bounded,
which suggests a beta distribution, and the use of the beta mixture allowed them to identify latent
clusters in normal network use.

Figure 1. Histogram of recovery rates for 8237 loans after pre-preprocessing described in Section 2.
The stack of 1s shows frequency of RR = 1, but the stack at 0 shows frequency for small RR > 0.

Inspired by Calabrese’s mixed continuous-discrete model (Calabrese 2012), we propose a
two-stage model composed of:

• A beta mixture model is parameterised by mean and precision based on two sets of predictor
variables on the interval of (0, 1) in order to model the two modes located at just after 0 and
around 0.55.

• A logistic regression model is used for the mode at boundary value 1.

The above proposed model allows representation of the trimodal feature of the data. The beta
mixture component groups the clients into two clusters for RR < 1, based on their personal information,
debt conditions and repayment history, which may become useful information for other business
analysis and decision-making, and then uses logistic regression to model the third case RR = 1.
In addition, we also used linear regression, linear regression with Lasso, beta regression and inflated
beta regression to model RR. Model performance was measured by mean squared error, mean absolute
error and mean aggregate absolute error under K-fold cross validation.

To our knowledge, this is the first study for estimating RR for portfolios of non-performing loans
using a statistical model, and the first use of a beta mixture model for LGD. We also developed a novel
procedure for predicting an expected value of outcome from a beta mixture model based on assigning
a new observation to one of the clusters in the mixture. The remainder of the article is organised as
follows: Section 2 provides a detailed data overview. Section 3 introduces the modelling methodology
with great emphasis on the proposed beta mixture model combined with logistic regression model.
Section 4 analyses some important features of the models and reports the model performance and
Section 5 concludes with key findings and future recommendations.
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2. Data

Three datasets were provided by the debt collection company:

Dataset 1 provides 48 predictor variables of personal information including socio-demographic
variables, Credit Bureau Score and debt status for 120,699 individuals for loans originating
between January 1998 and May 2014 from several different financial institutions.
Overall, 97.5% of them have credit card debt and only 2.5% are refinanced credit cards
(product = “R”). Partial information was extracted from a Bad Debt Bureau. Each record
corresponds to a bad loan and has a unique key Loan.Ref.

Dataset 2 records all the recoveries made by the bank before the debt collection company purchased
the debt portfolio. It contains 15 predictor variables about historical collection information,
which includes number of calls, contacts and visits made by the bank to collect the debt.
It also includes repayments in the format of monthly summary. In total, there are 42,832
individuals’ records in Dataset 2, among which only 34,807 individuals can be matched
to Dataset 1 by Loan.Ref. Numbers of calls, contacts, visits, repayment and some other
monthly activities are aggregated by summing for each loan identified by Loan.Ref.

Dataset 3 records all the recoveries made by the debt collection company after they purchased the
debt portfolio from the bank. It includes 12 predictor variables about the ongoing collection
information. There are 8281 individuals in total, among which only 8237 individuals are
from Dataset 1. Since only positive repayments are recorded, all the recovery rates we
calculated are strictly greater than 0. Therefore, in the modelling section, we only focus on
the recovery modelling in the interval (0, 1], which is slightly different from the usual RR
defined in [0, 1]. The debt collection period recorded in this dataset is from January 2015 to
end of November 2016.

Figure 2 shows how the data were joined. There are 8237 data points presented in Dataset 3,
but only 7161 individual historical collection information are recorded in Dataset 2. In these cases,
there are no historical recoveries by bank, i.e., no calls, contacts, visits or payments for the remaining
1076 individuals. Therefore, a value of 0 was assigned to aggregate recoveries in Dataset 2 for the
remaining 1076 individuals. The modified Dataset 2 was then joined to Datasets 1 and 3 by the unique
key Loan.Ref and we obtained a table of 8237 data points with 61 variables.

Table A1 gives descriptive statistics for each of the variables in the joined dataset used in the
statistical modelling. The predictor variable Pre-Recovery Rate is the bank’s RR before the debt
portfolio was purchased. The minimum value is −0.130, which is negative due to the substantial
amount of administration fee exceeding repayments incurred during the collection period. The
predictor variable Credit Bureau Score is a generic credit score provided by a credit bureau.
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Dataset 1: Basic Personal Information
120699 individuals, 48 variables8237 34807

Dataset 2: Pre-Purchase Recovery Rate
(Recoveries made by bank)

42832 individuals, 15 variables
Only 34807 references from Dataset 1

7161

8025 references
from

unknown source

Dataset 3: After-Purchase Recovery Rate
8281 individuals, 12 variables

8237 from Dataset 1
7161 from Dataset 2

(1076 data points were missing from
Dataset 2: substitute with 0)

44 unique Loan.Ref
from

unknown source

Joined dataset:
8237 Data points

Recovery Rate Model

Figure 2. Joining the three datasets.

Recovery Rate Calculation

Since the repayments in Datasets 2 and 3 were recorded in the format of monthly activity
summaries, each individual may have several repayments for the same loan. Therefore, we defined
the recovery rate as the sum of repayments minus the administration fee (if available) over the original
balance of the loan, which is also equivalent to the difference between original balance and ending
balance over the original balance. For each individual i, RR is calculated using:

Recovery Ratei =
∑ Repaymentsi− AdminFeei

Original Balancei
=

Original Balancei − Ending Balancei
Original Balancei

(3)

Figure 1 is the empirical RR histogram calculated based on Equation (3), for the 8237 data points
after pre-processing. The remaining 112,462 data points not included in the analysis essentially have
RR = 0, but we do not know whether they have been serviced or not, thus they were not included in the
analysis. Essentially, the goal of our model is to estimate RR computed from Dataset 3 (post-purchase),
based on pre-purchase information given in Datasets 1 and 2.

3. Modelling Methodology

We applied various models to estimate RR. In all cases, model performance was measured within
a K-fold cross validation framework. We first tried using ordinary least squares linear regression,
with and without stepwise backward variable selection using the AIC criterion. In the following
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sub-sections, we list the other modelling approaches we explored. Let y indicate the outcome variable,
recovery rate, and X is a corresponding vector of predictor variables.

3.1. Linear Regression with Lasso

We applied linear regression with a Lasso (Least Absolute Shrinkage and Selection Operator)
penalty. The model structure is

y = β0 + βββTX + ε

where β0 and βββ are intercept and coefficients to be estimated and ε is the error term. Then, estimation
using least squares error with Lasso is given by the optimisation problem on a training dataset of N
observations:

(β̂0, β̂̂β̂β) = argmin
β0,βββ

[
1
N

N

∑
i=1

(
yi − β0 − βββTXi

)2
+ λ

p

∑
j=1
|β j|
]

, (4)

where λ > 0 is a tuning parameter controlling the size of regularisation. Regression with Lasso will tend
to shrink coefficient estimates to zero and hence is a form of variable selection (Friedman et al. 2010).
The value of λ is chosen using K-fold cross validation. For this project, the R packages “lars”
(Hastie and Efron 2013) and “glmnet” (Friedman et al. 2010) were used to estimate linear regression
with Lasso.

3.2. Multivariate Beta Regression

The problem with linear regression is that it does not take account of the particular distribution of
RR, which is between 0 and 1. The beta distribution, with two shape parameters α and β, allows us to
model RR in the open interval (0, 1):

f (yi; αi, βi) =
Γ(αi + βi)

Γ(αi)Γ(βi)
yαi−1

i (1− yi)
βi−1, 0 < yi < 1, (5)

where α, β > 0 are the shape parameters and Γ(·) is the Gamma function. The beta distribution is
reparameterised by mean and precision parameters, denoting by µ and φ, respectively, following
Ferrari and Cribari-Neto (2004), since this parameterisation meaningfully express the expected value
and variance:

φi = αi + βi, E(yi) = µi =
αi

αi + βi
, Var(yi) =

µi(1− µi)

φi + 1
, (6)

The reparameterised beta distribution is then

f (yi; µi, φi) =
Γ(φi)

Γ(µiφi)Γ((1− µi)φi
yµiφi−1

i (1− yi)
(1−µi)φi−1, 0 < yi < 1, (7)

with 0 < µi < 1 and φi > 0. Figure 3a demonstrates three examples of the beta distribution with fixed
φ = 5 and different µ. The variance is maximised at µ = 0.5. Figure 3b demonstrates another three
examples of beta distribution with fixed µ = 0.5 and different φ.

The precision parameter φ is negatively correlated with Var(yi), given a fixed µ. Furthermore,
the variance of Y is a function of µ, which enables the regression to model heteroskedasticity. RR is
modelled as yi ∼ B(µi,φi) for i ∈ (1, · · · , N) for sample size N. The multivariate beta regression model
(Cribari-Neto and Zeileis 2010) is defined as:

F1(µi) = ηTXi = ξ1i,

F2(φi) = γTWi = ξ2i,

where η is a vector of parameters which needs to be estimated corresponding to predictor variables X
and γ is a vector of parameters which needs to be estimated corresponding to predictor variables W.
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The predictor variables in W may be the same as in X, or a subset, or contain different variables.
For this study, W will have a subset of predictor variables determined using stepwise variable selection.
The link function ensures that µi ∈ (0, 1) and φi > 0. We applied Logit and Log link function to µi and
φi, respectively:

µi =
1

1 + e−ηT Xi
, φi = e−γ

TWi .

With this multivariate beta regression model, η and γ can be estimated by maximum likelihood
estimation, where the log-likelihood function is

L(η, γ) =
N

∑
i=1

[
log Γ(φi)− log Γ(µiφi)− log Γ((1− µi)φi)

+ (µiφi − 1) log yi + ((1− µi)φi − 1) log(1− yi)
]
. (8)

By substituting µi = F−1
1 (ηTXi) and φi = F−1

2 (γTWi) into Equation (8), the
log-likelihood is obtained as a function of η and γ. The parameters can be estimated using
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method, which is considered to be the
most appropriate method (Mittelhammer et al. 2000; Nocedal and Wright 1999).

(a) (b)
Figure 3. Beta distribution. (a) Beta Distribution with Fixed φ; (b) Beta Distribution with Fixed µ.

3.3. Inflated Beta Regression

The disadvantage of beta regression is that it does not include the boundary values 0 or 1.
Therefore, a modification is required before fitting the model. To better represent RR on the boundaries
0 and 1, Calabrese (2012) suggested considering RR as a mixture of Bernoulli random variables for the
boundary 0 and 1, and a Beta random variable for the open interval (0, 1). The distribution for this
inflated beta regression on [0, 1] is then defined as

fY(y) =


p0, if y = 0

(1− p0 − p1) fB(y; α, β), if 0 < y < 1

p1, if y = 1

(9)
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for y ∈ [0, 1], p0 = P(y = 0), p1 = P(y = 1), 0 < p0 + p1 < 1 and fB(y) is the beta distribution defined
in Section 3.2. Moreover, if RR y ∈ (0, 1], i.e., it only inflates at one, as our data do, then the distribution
is just

fY(y) =

{
(1− p1) fB(y; α, β), if 0 < y < 1

p1, if y = 1
(10)

We used maximum likelihood estimation to estimate parameters for Bernoulli random variable
and Beta random variables, parameterising the discrete part in the following way (Calabrese 2012):

si =
p1

p1 + p0
, di = p0 + p1,

The log-likelihood function is then

L(s, d, α, β) = ∑
yi=0

log(1− si) + ∑
yi=0

log(di) + ∑
yi=1

log(si) + ∑
yi=1

log(di)

+ ∑
0<yi<1

log(1− di) + ∑
0<yi<1

log( fB(y; αi, βi)). (11)

The continuous beta random variables can be parameterised in the same way as described in
Section 3.2.

3.4. Beta Mixture Model combined with Logistic Regression

Examining the distribution of RR shown in Figure 1, it can be seen that the distribution between 0
and 1 is bimodal. For this reason, we consider a beta mixture model to deal with what appears to be
two different groups of recoveries. We propose a two-stage model: beta mixture model combined with
logistic regression. The beta mixture model allows us to model the multimodality of RR in the interval
(0, 1). This is similar to the two-stage (decision tree) model used by Bellotti and Crook (2012), but with
a beta mixture used for regression.

Firstly, RR is classified into ones and non-ones using logistic regression. Secondly, within the
non-ones group, a mixture of beta distributions is used to model RR in the range (0, 1). In general, a
mixture of beta distribution consists of m components where each component follows a parametric
beta distribution. The prior probability of component j is denoted as πj, where j ∈ (1, · · · , m). Let
Mj denote the jth component/cluster in the beta mixture model. The beta mixture model with m
components is defined as:

g(y; µ, φ) =
m

∑
j=1

πj f j(y; X, µj, φj)

=
m

∑
j=1

πj f j(y; X, W, F−1
1 (ηT

j Xi), F−1
2 (γT

j Wi))

=
m

∑
j=1

πj f j(y; X, W, ηj, γj),

where f j is the beta distribution corresponding to the jth component with separate parameter vectors
ηj and γj. The same link functions are used as in Section 3.2. The prior probabilities, πj, need to satisfy
the following conditions:

m

∑
j=1

πj = 1, πj ≥ 0.

The iterative Expectation-Maximisation (EM) algorithm was used to estimate the parameters of
the beta mixture model, as described by (Leisch 2004). In particular, R package “flexmix” (Leisch 2004;
Gruen and Leisch 2007, 2008) embedded in R package “betareg” (Cribari-Neto and Zeileis 2010; Gruen
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et al. 2012) was applied to estimate the model. Figure 4 illustrates the two-stage mixture model as a
decision tree.

Is Recovery Rate = 1?

Recovery Rate = 1 0< Recovery Rate <1

Beta Mixture Regression:
model the modality in (0,1)

Logistic Regression:
categorise

1s and non-1s

Figure 4. Estimate the expected value of RR using two-stage decision tree model.

The choice of m in the model depends on the number of clusters expected in the data. Based on
our analysis of the recoveries for the dataset we used, m = 2 was used since this corresponded to the
two modes we see in the RR distribution for RR < 1, as shown in Figure 1. If it is not clear how many
clusters may exist, approaches based on AIC can be used.

Predictions Using the Beta Mixture Model

Given the beta mixture model, we need to predict the RR for new clients based on their
information, i.e., Xnew and Wnew. Figure 5 shows a flowchart explaining how to calculate the estimated
RR from the beta mixture model. This gives an expected value of RR y conditional on the cluster Mj.
Therefore, we need to first identify which cluster the new observation belongs to. Even though the
R package “betareg” (Cribari-Neto and Zeileis 2010; Gruen et al. 2012) can compute the conditional
expectation for us, it does not identify which cluster the new points should be assigned to. Therefore,
we propose a method to do this. In general, there are two feasible approaches to assign a new
observation to Mj:

1. Assign the new observation to the cluster that achieves the highest log-likelihood. This is a hard
clustering approach, which assigns the observation to exactly one cluster (Fraley and Raftery. 2002).

2. Assign the new observation to each cluster j with probability P(Mj). This is a soft clustering
approach, which assigns the observation to a percentage weighted cluster (Leisch 2004).

Decomposing the expected value of y using the Law of Total Expectation, we get

E(y | xi) =
m

∑
j=1

P(Mj|xi)E(y|xi, Mj) (12)

where E(y|xi, Mj) is calculated from the beta mixture model prediction (refer to Figure 5). We can

replace P(Mj|xi) =
f (xi |Mj)P(Mj)

f (xi)
where f (xi) = ∑m

j=1 f (xi|Mj)P(Mj), to get

E(y | xi) =
∑m

j=1 f (xi|Mj)P(Mj)E(y|xi, Mj)

f (xi)
(13)

where P(Mj) is the prior probability of belonging to cluster Mj. The density f (xi|Mj) is estimated
using kernel density estimation,

f̂ (xnew) =
n

∑
i=1

1
n ∏d

k=1 hi,k

d

∏
k=1

K(
xnew

k − xi,k

hi,k
)
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where K(·) is the Gaussian kernel (Azzalini and Menardi 2014) and d is the number of dimensions
in data x. In addition, xi may be high-dimensional, which makes the kernel density estimation
computationally expensive. As a remedy, we applied Principal Component Analysis (PCA) to reduce
the dimension of xi, and then kernel density estimation was performed in the reduced dimension
space.

EM algorithm estimates ηj
and γj for each cluster Mj

Plug in new observations, Xnew and Wnew

µnew
j = F−1

1 (ηT
j Xnew)

φnew
j = F−1

2 (γT
j Wnew)

αnew
j = µnew

j φnew
j

βnew
j = φnew

j (1− µnew
j )

Ej(y|Mj) =
αnew

j
αnew

j +βnew
j

Figure 5. Prediction of RR conditional on each cluster Mj.

Approach 1: Maximum log-likelihood.

Given a new observation xi, choose j that maximises the density:

arg max
j

log f (y|xi, Mj),

which is computed using the log-likelihood function. If the objective function is maximised with
respect to Cluster Mj, then set

P(Mj|xi) = 1 and P(Mk|xi) = 0 for all k 6= j

and hence, from Equation (12), the expected value of y is given by E(y|xi, M1).

Approach 2: Prior Probability.

Treat P(Mj) as a prior estimated using methods given in Table 1 and use in Equation (13) for soft
clustering. By substituting P(Mj) given in Table 1 into Equation (13), we can compute E(y | x) for
y ∈ (0, 1).
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Table 1. Determining P(Mj) in Approach 2.

Approach 2 P(M1) P(M2)

πj prior
Extract πj from the
EM algorithm πj[1]

Extract πj from the
EM algorithm πj[2]

Prior based on
training set

cluster size ratio

Cluster 1 size
Total sample size

Cluster 2 size
Total sample size

Indifferent
Prior

1
2

1
2

After calculating E(y | x) for the interval (0, 1) using the beta mixture model, the boundary 1
needs to be taken into consideration using a logistic regression model. From the decision tree defined
in Figure 4, the logistic regression can provide the estimates at the first leaf node: P(y = 1 | X = x).
Then, the overall expectation of RR y ∈ (0, 1] is

E(y | x) = P(y = 1 | x)E(y | x, y = 1) + P(0 < y < 1 | x)E(y | x, 0 < y < 1) (14)

= P(y = 1 | x)× 1 + (1− P(y = 1 | x)) E(y | x, 0 < y < 1)

= P(y = 1 | x) + (1− P(y = 1 | x)) E(y | x, 0 < y < 1)

where E(y | x, 0 < y < 1) is the predicted RR from the beta mixture model using Approach 1 or 2.

4. Results

The linear model had an adjusted R2 of 0.69, which was considerably higher than most models
of RR (e.g., see Bellotti and Crook (2012); Loterman et al. (2012)), which could be explained by the
richness of data, especially collections information. We expected that the linear regression model was
misspecified, due to the range of the outcome variable and this is confirmed in the residual vs. fitted
plot for the model and a Breusch-Pagan test for heteroscedasticity (p < 0.0001).

For the beta mixture model, we used all variables for X, but variable selection for W based firstly
on the output of stepwise selection using AIC in linear regression and then on a series of likelihood
ratio tests. The result was the selection of four variables for W: pre-recovery rate, post balance,
customer payment frequency and credit bureau score. Table 2 shows parameter estimates for η and γ

for the two clusters, along with coefficient estimates under standard beta regression in the interval
(0, 1) for comparison.

In Table 2, there are “NA” values for some of the p-values in the beta mixture model. This is
because the estimation algorithm could not produce reliable standard errors in these cases. We can see
that the significance of variables was diluted by the two clusters. For instance, credit bureau score was
significant in the standard beta regression with a p-value of 0.0022, but in the beta mixture model, it was
not significant for either of the clusters, taking a significance level of 5%. The direction of association
of coefficient estimates in beta mixture model for both clusters were mostly consistent, where the
estimates were significant (at 5% level), although magnitude of association differed. Pre-Recovery
Rate for γ component was the only exception to this observation. The model also demonstrated
some interesting significant associations between some variables and RR: taking insurance showed
higher recoveries and having a record at the bad debt bureau was associated with lower recovery rates.
In addition, the recoveries, pre-purchase, were positively correlated with future RR, although total
number of calls to customer had a negative association, perhaps because these were difficult customers
from whom to collect, hence requiring more intervention.
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Table 2. η and γ estimated by EM algorithm. M1 and M2 represent Clusters 1 and 2.

Beta Mixture Model in (0, 1) Beta Regression in (0, 1)

Variables M1 Estimate Pr(>|z|) M2 Estimate Pr(>|z|) Betareg Estimate Pr(>|z|)

η
(Intercept) −0.67015 <0.0001 −2.62862 <0.0001 −1.80064 <0.0001
Product R −0.03376 0.47711 −0.00766 0.59733 0.02270 0.41766
Principal 0.00056 NA 0.00114 NA 0.00081 0.00000
Interest 0.00065 <0.0001 0.00118 NA 0.00097 0.00000

Insurance 0.00082 <0.0001 0.00116 <0.0001 0.00086 <0.0001
Late Charges 0.00042 0.00578 0.00115 <0.0001 0.00072 <0.0001

Overlimit Fees −0.00105 0.07594 0.00145 <0.0001 0.00018 0.52533
Credit limit 0.00004 NA −0.00001 NA −0.00003 <0.0001
Sex = Male 0.03659 0.17453 −0.01412 0.13364 0.00969 0.43796

Marital status =
Divorced −0.01175 0.85305 −0.01427 0.47359 −0.03144 0.25840
Married −0.06356 0.10819 −0.01476 0.16836 −0.03850 0.01957
Single 0.00982 0.83178 0.00695 0.63324 0.00332 0.86926

Widow −0.14627 0.19497 0.02311 0.51404 −0.03869 0.45314
Other 0.12328 0.17954 −0.03476 0.22384 0.04570 0.24125
Age −0.00273 0.05378 −0.00038 0.42389 −0.00115 0.07159

Credit Bureau Score 0.00059 0.10337 0.00007 0.07890 0.00038 0.00222
Bureau bad debt −0.32990 0.01290 -0.06936 <0.0001 −0.24123 0.00000

Cust Payment Freq 0.06530 <0.0001 0.03506 <0.0001 0.05046 <0.0001
Post Balance −0.00106 NA −0.00127 NA −0.00103 0.00000

Total Paid Amount 0.00004 NA −0.00038 NA −0.00014 <0.0001
Total Calls −0.00044 0.00515 −0.00023 0.00275 −0.00032 <0.0001

Total Contacts −0.00136 0.03257 0.00040 0.08116 −0.00031 0.28402
Bank report Freq −0.01719 <0.0001 −0.00407 <0.0001 −0.01117 <0.0001
Pre recovery Rate 0.56850 <0.0001 3.63447 <0.0001 2.26212 <0.0001
EmployerNoInfo −0.04457 0.63820 −0.01277 0.65487 0.03439 0.38375

Total Number −0.00949 0.16151 −0.00169 0.42951 −0.00776 0.00651
γ

(Intercept) 1.60514 <0.0001 2.64737 <0.0001 1.45450 0.00000
Pre recovery Rate 0.49096 0.00025 −2.11510 <0.0001 −0.18488 0.01538

Post Balance 0.00039 <0.0001 0.00018 NA 0.00031 0.00000
Cust Payment Freq 0.02949 <0.0001 0.17612 <0.0001 0.07759 0.00000
Credit Bureau Score −0.00058 0.00458 −0.00033 0.09534 −0.00028 0.01388

Following the procedure in Figure 5, the expected value of RR conditional on Cluster Mj was
calculated based on the parameters η and γ estimated in Table 2. Since it was too time consuming to
perform kernel density estimation on 29 variables, we reduced the dimension to six by employing PCA
analysis, which greatly shortened the running time for two clusters’ density estimations. Nevertheless,
it is inevitable that information is lost during the dimension reduction process, which may result in
weaker estimates. Figure 6 shows histograms of expected value of RR conditional on each jth cluster
for the test dataset. The shapes of the two clusters are similar, except Cluster 2 has more estimates in
the range 0.2 to 0.6.

Figure 7 shows four histograms of predicted RR corresponding to the four different priors defined
in Table 1, in contrast to the true RR. The predicted value of beta mixture model combined with logistic
regression model was calculated by applying the formula derived in Equation (14). Models with the
different priors performed in a similar way. Importantly, they were all able to model the bimodal
nature of the RR. The figure shows that none of the models ewre good at predicting the extreme values
of RR close to 0 or 1, but this naturally follows from the fact that these predictions are estimates of
expected values of RR, through Equation (12), albeit conditional on predictor variables, and thus do not
represent the extremes in the distribution well. Further detail can be seen in Figure 8, which shows
predicted RR against true RR. The strong correlation between predicted and true RR is clear. However,
it is noticeable that, when true RR was around 0.6, the model tended to under-estimate for some
observations. This was because the model was not perfect at detecting observations in Cluster 2. This
suggests future improvements to the model to enhance its capacity to predict the correct latent cluster.
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(a) (b)
Figure 6. E(y|Mj, Xnew) based on the Test dataset, for the two clusters (m = 2). (a) E(y|M1, Xnew); (b)
E(y|M2, Xnew).

Figure 7. Predicted RR on test data (n = 2746) using beta mixture with four different priors, combined
with logistic regression.
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Figure 8. Predicted RR against true RR on test data (n = 2746) using beta mixture with the indifferent
prior, combined with logistic regression.

Model Performance

Predictive performance was measured using K-fold cross validation with three performance
measures popular in the literature on RR estimation: mean squared error (MSE), mean absolute error
(MAE) and mean aggregate absolute error (MAAE). Since the sample size (8237) was relatively large
and model estimation time was long, K = 3 was chosen. Let n be the sample size. Then,

MSE =
1
K

K

∑
k=1

1
n/K

n/K

∑
i=1
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2 =

1
n

K
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2,
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n
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|ŷki − yi|.

MAAE is the MAE at segment level (Thomas and Bijak 2015) and defined here as

MAAE =
1
V

V

∑
i=1

1
|Si|

∣∣∣∣∣∑j∈Si

(yj − ŷj))

∣∣∣∣∣
where V is the number of segments expressed as disjoint index sets S1, · · · , SV . The segments could
express different characteristics, e.g., risk bands. However, for this study, each segment was a different
random sample from the test data with approximately the same sample size and jointly exhaustive.
We used V = 100 since this gave a balance of number of segments approximately equal to number of
observations in each segment. MSE, MAE and MAAE are all penalty measures, thus the smaller the
value, the better the model. Since the RR is a financial ratio between 0 and 1, the MAE can reflect the
size of the error in a more intuitive and direct way. If one is interested in the segment portfolio level,
then the MAAE should be used.

All models were trained on the same partitions of data into cross validation folds, to avoid bias
being introduced due to different samples. Table 3 shows the results. There was little difference between
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results for the various linear regressions, with or without variable selection or Lasso penalty, in terms
of predictive performance. The last linear model, “excluding Dataset 2”, was built without predictor
variables from Dataset 2. This showed noticeably worse performance than the other linear models,
especially for MAE, which demonstrates that including past recoveries data (i.e., Dataset 2) improved
performance. The standard beta regression model, with and without zero-inflation, performed much
worse than linear regression, but the beta mixture model with logistic regression gave the best
performance on all three measures. The different priors gave slightly different performances but
are not very much different, although Approach 1 method for selecting cluster assignment (max
log-likelihood) was slightly worse than Approach 2, soft clustering methods.

Table 3. Predictive results using three-fold cross validation.

Model MSE MAE MAAE

Linear Regression

Linear regression 0.024984 0.114268 0.025894
Stepwise linear regression 0.024752 0.113621 0.025700
Linear regression with Lasso 0.025228 0.114847 0.023739
Linear regression, excluding Dataset 2 0.026822 0.121385 0.026303
Beta regression

Standard beta regression 0.085630 0.260459 0.161366
Inflated beta regression 0.076650 0.216374 0.048466
Beta mixture model combined with logistic regression

Max log-likelihood 0.018750 0.095432 0.030629
Prior based on R Flexmix πj 0.018460 0.091833 0.023991
Prior based on training set cluster size ratio 0.019325 0.092225 0.022594
Indifferent Prior 0.018030 0.092399 0.026298

5. Conclusions

Linear regression, beta regression, inflated beta regression, and a beta mixture model combined
with logistic regression were applied to model the recovery rate of non-performing loans. The models’
predictive performances were measured using mean squared error, mean absolute error and mean
aggregate absolute error under three-fold cross validation. To produce predictions from the beta
mixture model, methods of hard and soft clustering were developed and the soft clustering approaches
gave marginally better predictive performance. Theoretically, the proposed model, beta mixture model
combined with logistic regression model, should be a suitable model to predict recovery rate for this
data since it allows us to model the multimodality in the dataset and takes extra consideration of the
boundary value. Indeed, we found that it achieved the best results amongst the models. Stepwise linear
regression also achieved relatively good performance; however, the normality and homoscedasticity
assumptions did not hold. In our experiments, we also found that inclusion of previous collections
data boosted predictive performance.

We believe the beta mixture model is useful for modelling RR because it is explaining different
servicing strategies. In the case of our study, the cluster with mode around 0.55 is likely expressing
those loans for which the debt servicer has agreed with the borrower to repay just a proportion of
the outstanding debt. There may be servicing strategies in other bad debt portfolios that could be
discovered using a similar mixture model or clustering approach. We developed a technique to predict
the correct latent cluster for new observations and this works well. However, results suggest that
further work to refine this aspect of the use of the model could yield improved performance.
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Abbreviations

The following abbreviations are used in this manuscript:

IRB Internal ratings based
RR Recovery rate
LGD Loss given default
PD Probability of default
EAD Exposure at default
EM Expectation-Maximisation (algorithm)
MSE Mean square error
MAE Mean absolute error
MAAE Mean absolute aggregate error

Appendix A

Table A1. Descriptive statistics. n = 8237. For numeric variables: min, mean (standard deviation), max.
For factors, frequency (%age) for each level. All predictive data is collected prior to servicing.

Variable Type Description Statistics

RR post numeric Recovery rate (outcome variable) 0.000508, 0.280 (0.283), 1
Product factor Type of loan C:7468 (90.7%), R:769 (9.3%)
Principal numeric Original loan amount 0, 3120 (2330), 15000
Interest numeric Interest payments 0, 551 (439), 3380
Insurance numeric Insurance fees 0, 42 (84.6), 953
Late charges numeric Late charge fees 0, 269 (109), 1470
Overlimit fees numeric Over credit limit fees 0, 13.3 (24.6), 315
Creditlimit numeric Credit limit 0, 4560 (2660), 13800
Sex factor Sex F:3196 (38.8%), M:5041 (61.2%)
Married factor Marriage status 0:1201 (14.6%), D:518 (6.3%), M:3929

(47.7%), O:217 (2.6%), S:2230 (27.1%),
W:142 (1.7%)

Age numeric Age 1, 48.7 (11.1), 87
DelphiScore integer Credit bureau score 0, 298 (138), 443
Bureau Sub 1 factor Loan is in the servicer’s bureau (1 =

True)
0: 1520 (18.5%), 1: 6717 (81.5%)

CustPaymentFreq integer Customer repayment frequency 1, 7.56 (5.59), 29
Post Balance numeric Exposure amount at start of servicing 0, 3130 (2630), 15900
Total paid amount numeric Total net paid amount −275, 1200 (1100), 11200
Total calls numeric Total number of calls 0, 104 (106), 911
Total contacts numeric Total number of contacts (except

calls)
0, 28.5 (26.5), 196

Bankreport Freq numeric Bank reporting frequency 0, 11.6 (7.92), 26
Pre recovery rate numeric Recovery rate −0.130, 0.258 (0.217), 2.89
Employer factor Employer known EmployerProvided:8053 (97.8%),

NoInfo:184 (2.2%)
Total number integer Total number of loan accounts 0, 2.3 (2.43), 68
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