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Abstract: Value at Risk (VaR) is used to illustrate the maximum potential loss under a given
confidence level, and is just a single indicator to evaluate risk ignoring any information about
income. The present paper will generalize one-dimensional VaR to two-dimensional VaR with
income-risk double indicators. We first construct a double-VaR with (µ, σ2) (or (µ, VaR2)) indicators,
and deduce the joint confidence region of (µ, σ2) (or (µ, VaR2)) by virtue of the two-dimensional
likelihood ratio method. Finally, an example to cover the empirical analysis of two double-VaR
models is stated.
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1. Introduction

In the early 1990s, the international economic and financial consultancy G30 published the report
“derivatives practices and principles” based on the research on financial derivatives, and then proposed
Value at Risk (VaR) model to measure the market risk. JP Morgan Bank then launched the VaR risk
measurement and control model. Since VaR is accurate and comprehensive to the application of
risk measurement and makes up the deficiency of Markowitz mean-variance model, it is generally
welcomed by the international financial community, including regulatory authorities, and has become
a standard to manage and control financial risk. Furthermore, VaR is widely used to measure credit
risks and trading risks.

The biggest benefit of VaR is the ability to critically analyze risk through systematic analysis.
The organization can control the front end and back end of the business by calculating VaR to
understand the financial risks it faces and establish an independent risk management mechanism.

However, VaR also has its own limitations. Mausser and Rosen (1999) put forward the most
obvious limitations of VaR: it does not provide absolute maximum loss value, which can only be
expected in a certain confidence level. Another drawback of VaR is that when the calculation is
based on historical data, the future situation of any event should be duplicated or fitted by historical
data. However, the reality is that we cannot guarantee the future case of an event is just as old as.
In addition, some researchers such as Artzner et al. (1999) criticized the VaR model because it does not
meet sub-additivity.

The obvious limitation existing in VaR is that it is only used to illustrate the maximum possible
loss for the given conditions and is only a single index to characterize the risk, which provides less
information to users about other information such as income. In practice, what people usually care
about is how much profit they can get while taking risks.
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Based on the above considerations, we hope to follow the definition of VaR and Markowitz’s
portfolio theory, and then construct a double-VaR, that is, we will extend one-dimensional single-risk
monitoring indicator-VaR to two-dimensional revenue-risk monitoring indicators-VaR (or double-VaR
for short).

There is abundant literature about VaR. Here, the main research literature involved in this paper
is described briefly as follows.

Duffie and Pan (1997) made a detailed background description of VaR, characteristics, applications,
and the entire VaR-system. Beder (1995) used eight different models to calculate VaR values and
compare them. Some foreign scholars studied mainly the calculation of VaR, such as Jorion (1996);
Linsmeier and Pearson (1996); Duffie and Pan (1997); Engle and Manganelli (1999). Based on different
situations, they arrived at many calculation skills such as the variance-covariance matrix method,
historical simulation, and Monte Carlo simulation method, and the related characteristics of VaR, etc.

After 1999, there are an increasing number of new VaR models in the financial, industrial,
and other different applied areas. Potters and Bouchaud (1999) proposed how to use the normality
of asset volatilities to calculate the VaR of nonlinear combination. Some other scholars studying the
nature of VaR and other risk measurement methods, such as Artzner et al. (1999), proposed VaR
does not meet sub-additivity; Wang (1999) studied the characteristics of dynamic risk measures;
Mausser and Rosen (1999) proposed that if a small-probability event happened in the case of loss
exceeding the VaR, then VaR models cannot measure the size of potential losses; Chen et al. (2014)
studied future cash arbitrage with VaR-portfolio problems; Tang et al. (2018) investigated the
no-arbitrage problem with VaR-like arguments; Cong and Zhao (2018; 2019) posed a non-cash risk
measure and a generalized non-cash risk measure, respectively, which improved in some sense VaR
under the distribution of any random variable that is uncertain. In addition, some scholars extended
the classical Markowitz mean-variance model to the mean-VaR model; for instance, Pearson (2002)
and Jorion (2007) used these models with constraints to manage the risk-profit for a fund company.

In addition, many scholars have proposed a series of improved calculation methods based on
different markets and different assumptions. Berkowitz (1999) proposed a new method for evaluation
of VaR. Taylor et al. (2000) proposed to use the t distribution to fit the income sequence; Hu (2012)
based their research on the mixed Copula model to study the evaluation value of VaR; Ze-To (2013)
used the Heath-Jarrow-Morton model to measure the value of VaR, and pointed out that the model
can capture the non-normal income distribution well and can accurately provide the value of VaR;
Li et al. (2017) confirmed that using the Bootstrap method to calculate VaR and CVaR can effectively
improve the estimation accuracy.

Meanwhile, many foreign scholars have also attached great importance to the empirical
applications of VaR. Jackson et al. (1997) studied how to apply VaR into bank reserves.
Berkowitz and O’Brien (2002) proposed how to evaluate the transaction risk of commercial banks
through the prediction accuracy of the VaR model. Basak and Shapiro (2001) analyzed the optimal
dynamic portfolio risks with VaR model.

In the present paper, we will extend one-dimensional single-risk monitoring indicator—VaR—to
two-dimensional benefit-risk monitoring indicators—double-VaR.

Firstly, a reasonable definition of two-dimensional VaR (double-VaR) is given. For a better
understanding of double-VaR we choose mean µ and variance σ as the parameters to build the first
double-VaR model. Thus, for a given confidence level α, one can not only know the scope of asset
risks but also can know their income range. Such indicators are better able to make trade-offs to the
risk-return of assets.

Secondly, to solve the first model—double-VaR with respect to (µ, σ2)—we extend the
one-dimensional likelihood ratio method to two-dimensional likelihood ratio method, and derive
the joint confidence region containing the unknown parameters. Then, we can solve a specific joint
confidence region with ideal point method and area minimization method as well as to compare the
results of these two methods.
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Finally, according to the accuracy theory of VaR we study the double-VaR based on (µ, VaR2) so
that for a given confidence interval we cannot only know the biggest value of possible asset loss but
we can also get the gain range. In this situation a better trade-off of the asset is possible.

The organization of the paper is as follows. Section 2 introduces some necessary conditions and
terminologies. Section 3 is devoted to constructing double-VaR models with (µ, σ2) and (µ, VaR2).
Section 4 confirms that the double-VaR models are effective via some examples.

2. Preliminaries

2.1. VaR

2.1.1. Definitions and Basic Descriptions

Definition 1. The basic meaning of VaR is the maximum potential loss of risk assets under normal market
conditions, for a given confidence level α and holding period t. One can describe it as follows

P(∆p > VaR) = α

where ∆p is the loss of risk asset W within the holding period t and VaR is the value at risk under the confidence
level α.

Remark 1. Under a normal market environment and a given confidence level α, let the probability distribution
density function of a risky asset value be f (w), the initial value of a risky asset be w0, the lowest value of a risky
asset under a confidence level α be w∗ and the yield on holding period t be r, then we have

VaR = E[w]− w∗ (1)

where w = w0(1 + r) and w∗ can be achieved with the following two formulas

α =
∫ ∞

w∗
f (w)dw or 1− α =

∫ w∗

−∞
f (w)dw (2)

In particular, when the distribution of the risk asset yield r is a normal distribution, that is,
r ∼ N(µ, σ2), then one can get VaR of the risk asset by the following steps:

Let

1− α =
∫ −ξ∗

−∞
φ(ε)dε (3)

where φ is the probability density function of a standard normal distribution. According to (2) and (3),
we can get ∫ −ξ∗

−∞
φ(ε)dε =

∫ w∗

−∞
f (w)dw =

∫ r∗

−∞
g(r)dr (4)

where g(r) is the normal probability density function of the risk asset with yield r. Since one has

∫ −ξ∗

−∞
φ(ε)dε =

∫ w∗

−∞

1√
2π

e−
ε2
2 dε (5)

and ∫ r∗

−∞
g(r)dr =

∫ r∗

−∞

1√
2πσ

e−
(r−µ)2

2σ2 dr =
∫ r∗−µ

σ

−∞

1√
2π

e−
1
2 t2

dt (6)

where t = r−µ
σ and t ∼ N(0, 1). We arrive here by (4) and (5)

r∗ = µ− σξ∗ (7)
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Substitute (7) into (1), we then have

VaR = E[w]− w∗ = w0 + w0E[r]− (w0 + w0r∗) = w0σξ∗

that is, there holds
VaR = w0σξ∗ (8)

More generally, if one considers the time factor for VaR, then the Formula (8) can be written as
VaR = w0σξ∗

√
∆t.

In other words, when the yield on a risk asset follows a normal distribution, VaR measure of the
risk is equivalent to the variance measure.

2.1.2. Properties of VaR

VaR has the following properties:
(1) Transformation invariance
For any c ∈ R and positive x, there holds VaR(x + c) = VaR(x) + c.
(2) Positive homogeneity
For any c > 0, there holds VaR(cx) = cVaR(x).
(3) Co-monotonic additivity
For any x, y is co-monotonic, there holds VaR(x + y) = VaR(x) + VaR(y).
(4) First-order stochastic dominance
For x, y, if the first order of x is better than that of y, there holds VaR(x1) ≤ VaR(x2).
(5) Discontinuity on the confidence level
With respect to the confidence level 1− α, VaR is not continuous.
(6) Convexity is not satisfied
This property means that the local minimizer of an optimizing problem with VaR as an objective
function is not unique.
(7) Sub-additivity is not satisfied
This means that VaR for a portfolio is not less than the sum of VaR of all risky assets.

3. Double-VaR

3.1. Introduction of Double-VaR

We now chose the mean and variance as two proposed parameters-based on Markowitz’s portfolio
theory to form a revenue-risk region D. Then we can define VaR-like as follows

P{(µ, σ2) ∈ D} = 1− α

Remark 2. It is not hard to speculate that the role of the revenue-risk region D in fact is similar to that of VaR.
For convenience, we may call the boundary (or partial boundary) of D a double-VaR with respect to indexes µ

and σ2. A detailed definition of double-VaR will be given later.
Its real economic significance is under the normal market environment and a given confidence level, an area

in which the maximum possible loss (expressed by var σ2) and the benefits (expressed by mean µ) of an asset
within a certain time in the future falls.

3.2. Double-VaR Model with Respect to (µ, σ2)

3.2.1. Two-Dimensional Likelihood Ratio Argument

Chen and Jiang (2017) proposed and studied a high-dimensional likelihood method for normal
distribution. However, for the use of the two-dimensional likelihood method for the derivation of the
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joint confidence domain, we have not found relevant literature. Thus, we innovate based on learning
their ideas to solve the two-dimensional joint confidence region for double-VaR problem.

Assume that the total distribution of ξ follows a distribution whose density function is f (x; θ),
where the parameters θ = (θ1, θ2) are unknown. For the given sample observations, it is easy to get
the likelihood function:

L(θ1, θ2) = L(x1, x2, · · · , xn; θ1, θ2) =
n

∏
i=1

f (xi; θ).

If the maximum likelihood estimation of (θ1, θ2) is (θ̂1, θ̂2) that is, L(θ̂1, θ̂2) = sup
θ∈Θ

(θ1, θ2), Θ is the

parameter space of θ, the likelihood ratio can be defined as

R = R(x1, x2, · · · , xn; θ1, θ2) =
L(θ1, θ2)

L(θ̂1, θ̂2)
.

For a given confidence level, the joint confidence region D of the parameter θ = (θ1, θ2) can be
calculated by R.

When the total ξ ∼ N(µ, σ2), where (x1, x2, · · · , xn) is a set of sample values and the confidence
level is 1− α, the joint confidence region of (µ, σ2) can be gained by the following two-dimensional
likelihood ratio, where the unknown parameter is θ = (µ, σ2).

In fact, we have known the maximum likelihood estimations of mean µ and variance σ2 are

respectively by µ̂ = x̄ and σ̂2 = s2 = 1
n

n
∑

i=1
(xi − x̄)2. Then we get

L(µ, σ2) = (2πσ2)−
n
2 exp

{
− 1

2σ2

n

∑
i=1

(xi − µ)2},

L(µ̂, σ̂2) = (2πs2)−
n
2 exp

{
− 1

2s2

n

∑
i=1

(xi − x̄)2}.

Next we can get the likelihood ratio

R =
L(θ1, θ2)

L(θ̂1, θ̂2)
=
( s2

σ2

) n
2 exp

{
− 1

2σ2

n

∑
i=1

(xi − µ)2 +
1

2s2

n

∑
i=1

(xi − x̄)2} (9)

Since

n

∑
i=1

(xi − µ)2 =
n

∑
i=1

x2
i + nµ2 − 2µ

n

∑
i=1

xi =
n

∑
i=1

x2
i + nµ2 − 2nµx̄ =

n

∑
i=1

x2
i − nx̄2 + n(x̄− µ)2.

Denote by x̄−µ

σ/
√

n =̂M and ns2

σ2 =̂T, thus we get the following

− 1
2σ2

n

∑
i=1

(xi − µ)2 = − 1
2σ2

n

∑
i=1

(x2
i − nx̄2)− n

2σ2 (x̄− µ)2 = − 1
2σ2

n

∑
i=1

(x2
i − nx̄2)− 1

2
M2.
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Substitute the formula above into (9) and get

R =
(T

n
) n

2 exp
{
− 1

2σ2

n

∑
i=1

(x2
i − nx̄2)− 1

2
M2 +

n
2
}

=
(T

n
) n

2
{
−

n
∑

i=1
(x2

i − nx̄2)T

2ns2 − 1
2

M2 +
n
2
}

=
(T

n
) n

2 exp
{
− 1

2
T − 1

2
M2 +

n
2
}

Since
∂R
∂T

= n−
n
2
(n

2
T

n
2−1 − 1

2
T

n
2
)
exp
{
− 1

2
T − 1

2
M2 +

n
2
}

,

and T 6= 0, if we let ∂R
∂T = 0, then there holds T0 = n. Since

∂R
∂M

=
(T

n
) n

2 (−M)exp
{
− 1

2
T − 1

2
M2 +

n
2
}

,

and M 6= 0. Let ∂R
∂M = 0, we arrive at M0 = 0. For convenience, we denote by

A=̂
∂2R
∂2M
|(M0,T0)

=
(T

n
) n

2 (M2 − 1)exp
{
− 1

2
T − 1

2
M2 +

n
2
}
= −1,

B=̂
∂2R

∂T∂M
|(M0,T0)

= n−
n
2
(n

2
T

n
2−1 − 1

2
T

n
2
)
(−M)exp

{
− 1

2
T − 1

2
M2 +

n
2
}
= 0,

C=̂
∂2R
∂2T
|(M0,T0)

= n−
n
2 exp

{
− 1

2
T − 1

2
M2 +

n
2
}[(n

2
T

n
2−1 − 1

2
T

n
2
)
(−1

2
)

+
n
2
(

n
2
− 1)T

n
2−2 − n

4
T

n
2−1] = − 1

2n
.

It is obvious that there holds
AC− B2 =

1
2n
− 0 > 0.

By a sufficient condition of two-dimensional extreme points, we can know R has a strict maximum at
the point (M0, T0). Thus, for the constant C, there exists a region D so that P{R ≥ C} = P{(M, T) ∈ D}.
According to the meaning of likelihood ratio, let P{R ≥ C} = 1− α, then P{(M, T) ∈ D} = 1− α. Since

M ∼ N(0, 1), T ∼ χ2
n−1,

there exist three positive constants a, b and c(b < c), so that

P{(M, T) ∈ D} = P{|M| ≤ a, b ≤ T ≤ c} = P
{∣∣ x̄− µ

σ/
√

n

∣∣ ≤ a, b ≤ ns2

σ2 ≤ c
}
= 1− α.

Since two statistics M, T are i.i.d, there holds

P
{∣∣ x̄− µ

σ/
√

n

∣∣ ≤ a, b ≤ ns2

σ2 ≤ c
}
= P

{∣∣ x̄− µ

σ/
√

n

∣∣ ≤ a
}
· P
{

b ≤ ns2

σ2 ≤ c
}
= 1− α (10)

That is
(2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,
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where χ2
n−1(b) is the function value of χ2

n−1 distribution whose freedom is n − 1 at the point b.
Arrange (10) and get the joint confidence region of (µ, σ2) as below

{
(µ, σ2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

,
ns2

c
≤ σ2 ≤ ns2

b
}

(11)

Obviously, there are unknowns a, b, and c in the joint confidence domain under the confidence
level required by this paper. Therefore, to find these three unknowns, we can determine the specific
joint confidence domain after given n and sample variance.

Definition 2. Assume that X ∈ Rn is a random vector, and (µ, σ2) are two index parameters, for given
confidence level α (0 ≤ α ≤ 1), one can define double-VaR of X ∈ Rn with respect to indexes (µ, σ2) as

VaRα
(µ,σ2)(X)=̂∂

{
(µ, σ2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

,
ns2

c
≤ σ2 ≤ ns2

b
}

.

In the above definition, a, b, c are unknown. However, in Section 3.2.2, we use the ideal method
to find the joint confidence domain. Thus, the unknown parameters a, b, c are solved. We can look up
Tables 1 and 2 to find the value of a, b, c.

Remark 3. Noticing that the joint confidence region (see Figure 1 below) and combining with Markowitz’s
portfolio theory, the right boundary of the banded region in Figure 1 can be regarded the dobule-VaR,
VaRα

(µ,σ2)
(X), with (µ, σ2).

That is to say, one can have the following two basic understandings:
(1) For a given risk level nS2

d (b ≤ d ≤ c), VaRα
(µ,σ2)

(X)=̂VaR|α
σ2(µ; X) can be regarded as VaR in the

sense of Markowitz’s portfolio with a given confidence level α;
(2) For a given benefit level µ(≥ x̄), VaRα

(µ,σ2)
(X)=̂VaR|αµ(σ2; X) can also be regarded as VaR in the

sense of Markowitz’s portfolio with a given confidence level α.

3.2.2. Solution to Joint Confidence Region on (µ, σ2)

We adopt the so-called ideal point method to solve the joint confidence region.

{
(µ, σ2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

,
ns2

c
≤ σ2 ≤ ns2

b
}

. (12)

It is well known that the joint confidence region of (µ, σ2) is just as (12). It is now we evaluate a, b
and c.

Firstly, one can analyze Figure 1 of this joint confidence region of (µ, σ2) as below:

Figure 1. The joint confidence region of (µ, σ2).
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Given the confidence level 1− α, to minimize the area of this joint confidence region, it implies
that if the two straights σ2 = ns2

b and σ2 = ns2

c deciding the size of shaded area are closed enough,

which shows min ns2

b and max ns2

c . At the same time, we hope to make the parabolic narrower, that is,

one considers the problem: max n
a2 and min ns2

b . The parabolic σ2 = n
a2 (x̄− µ)2 can be regarded as an

effective frontier of Markowitz portfolio in (µ, σ2)-coordinate system.
Then we need to solve the following optimization model

max n
a2 ,

min ns2

b ,
max ns2

c ,
s.t. (2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

a, b, c ≥ 0.

(13)

To solve problem (13), we first refer consider three single-objective optimization models,
respectively, as follows 

max n
a2 ,

s.t. (2Φ(a)− 1)(χ2
n−1(c)− χ2

n−1(b)) = 1− α,
a, b, c ≥ 0.
min ns2

b ,
s.t. (2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

a, b, c ≥ 0.
max ns2

c ,
s.t. (2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

a, b, c ≥ 0.

After knowing n and the variance of samples S2, these three optimization problems can be
simplified as below 

max 1
a2 ,

s.t. (2Φ(a)− 1)(χ2
n−1(c)− χ2

n−1(b)) = 1− α,
a, b, c ≥ 0.

(14)


min 1

b ,
s.t. (2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

a, b, c ≥ 0.
(15)


max 1

c ,
s.t. (2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

a, b, c ≥ 0.
(16)

Now assume that the solutions of these three problems above are respectively denoted by a = ã,
b = b̃, c = c̃. We set (ã, b̃, c̃) and call it an ideal point of (13), but it is obvious that the ideal point is not
necessarily a solution to (13). In fact, we want to get the Euclidean distance between this extremum
point and the ideal point is as small as possible. That is, we wish to consider the following

min
√
(a− ã)2 + (b− b̃)2 + (c− c̃)2,

s.t. (2Φ(a)− 1)(χ2
n−1(c)− χ2

n−1(b)) = 1− α,
a, b, c ≥ 0.

(17)
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There is also a point that deserves to be noticed in the theory of probability and statistics when the
variance of population is unknown; estimating the mean of population can be divided into two cases:

(1) When the number of sample observations is less than 30, we often choose t distribution to
make a parameter estimation of the mean; when the number of sample observations is more than
30, we chose the normal distribution to estimate the parameters. To have a more accurate estimation
the number of observations of more than 30 in this article, so we will use the normal distribution to
estimate the mean in the process of solving the joint confidence region.

In addition, we notice that freedom n is usually less than 45 in any χ2 distribution, because when
n is more than 45 it is close to a normal distribution N(n, 2n). Thus, this article first studies the case
when 30 < n < 45.

(2) When the number of sample observations is n > 45, we will make a further study.
Now we can solve the above optimization problem (17) with fmincon function in MATLAB

and get the unknowns a, b, and c when the confidence level is respectively 99%, 95%, and 90% for
30 < n < 45. By the way, the value zz (zz = a(b−

3
2 − c−

3
2 )) used later is also gained as below

Tables 1 and 2.

Table 1. Ideal point method (confidence level is 99% and 95%).

Ideal Point (Confidence Level: 99%) Ideal Point (Confidence Level: 95%)

n a b c zz a b c zz

31 3.6185 13.0228 52.5124 0.0675 3.2248 15.9692 45.8943 0.0402

32 3.6284 13.6810 53.8337 0.0625 3.2340 16.7118 47.1456 0.0373

33 3.6373 14.3476 55.1539 0.0580 3.2427 17.4595 48.3940 0.0348

34 3.6454 15.0216 56.4719 0.0540 3.2510 18.2119 49.6392 0.0325

35 3.6529 15.7018 57.7869 0.0504 3.2590 18.9685 50.8812 0.0305

36 3.6601 16.3877 59.0984 0.0471 3.2666 19.7289 52.1197 0.0286

37 3.6668 17.0785 60.4060 0.0441 3.2740 20.4929 53.3550 0.0269

38 3.6734 17.7739 61.7097 0.0414 3.2812 21.2604 54.5870 0.0253

39 3.6797 18.4736 63.0094 0.0390 3.2882 22.0311 55.8159 0.0239

40 3.6858 19.1774 64.3053 0.0367 3.2949 22.8048 57.0417 0.0226

41 3.6918 19.8851 65.5974 0.0347 3.3015 23.5816 58.2646 0.0214

42 3.6975 20.5965 66.8858 0.0328 3.3079 24.3612 59.4847 0.0203

43 3.7032 21.3115 68.1707 0.0311 3.3141 25.1435 60.7021 0.0193

44 3.7086 22.0299 69.4522 0.0295 3.3202 25.9285 61.9168 0.0183

45 3.7140 22.7516 70.7304 0.0280 3.3261 26.7160 63.1291 0.0175
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Table 2. Ideal point method (confidence level is 90%).

n a b c zz

31 3.0444 17.6622 42.7490 0.0301

32 3.0539 18.4464 43.9610 0.0281

33 3.0629 19.2348 45.1702 0.0262

34 3.0715 20.0270 46.3766 0.0245

35 3.0799 20.8225 47.5800 0.0230

36 3.0879 21.6213 48.7805 0.0217

37 3.0957 22.4231 49.9782 0.0204

38 3.1033 23.2277 51.1732 0.0192

39 3.1106 24.0351 52.3654 0.0182

40 3.1178 24.8451 53.5552 0.0172

41 3.1247 25.6575 54.7424 0.0163

42 3.1314 26.4724 55.9273 0.0155

43 3.1380 27.2895 57.1099 0.0147

44 3.1444 28.1089 58.2902 0.0140

45 3.1507 28.9304 59.4685 0.0134

3.3. Double-VaR Model Based on (µ, VaR2)

According to the theory of VaR, we will consider the joint confidence region of (µ, VaR2) is
reasonable and significant.

3.3.1. Accuracy Measurement of VaR

By the description in Section 2.1.1, we can know VaR = w0σξ∗, that is, if the initial value of asset
and the confidence level has been known, VaR is only related to standard deviation σ. Because σ

is decided by the choice of sample observations there exits statistical errors in the solving of VaR.
Different lengths of confidence sections provide different accuracy of VaR. It is very important to get
the length of the confidence section.

3.3.2. (µ, VaR2)-Model

According to the definition of joint confidence region we have

P{(µ, VaR2) ∈ D} = 1− α

where D is the joint confidence region of (µ, VaR2) when the confidence level 1− α has been known.
In particular, the given confidence level of the joint confidence region of (µ, VaR2) is not related to
the confidence level of VaR itself 1− β. If the confidence level of VaR is 99% and the confidence level
of the joint confidence region of (µ, VaR2) is 95%, the object studied in this article can be explained
as: the return of an asset in one day µ and the biggest 99% loss of VaR are in the area D with the
probability 95%.

When the total ξ ∼ N(µ, σ2), (x1, · · · , xn) are a set of sample values and the confidence level is
1− α, the joint confidence region of (µ, VaR2) can be gained by the likelihood ratio method.

In fact, by the argument of maximum likelihood estimations, the mean µ and variance σ2 are

estimated as µ̂ = x̄, σ̂2 = S2 = 1
n

n
∑

i=1
(xi − x̄)2. Since VaR = w0σξ∗ (where ξ∗ is the quantile of standard

normal distribution when the confidence level of VaR itself is 1− β and ξ∗ can be known by checking
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the corresponding table if β is given), if w0 and ξ∗ are known we can get the maximum likelihood
estimation of VaR2 as below

V̂aR
2
= ̂w0σξ∗

2
= (w− 0ξ∗)2σ̂2 = (w0ξ∗)2S2 = (w0ξ∗)2 1

n

n

∑
i=1

(xi − x̄)2.

Likelihood function is

L(µ, σ2) = (2πσ2)−
n
2 exp{− 1

2σ2

n

∑
i=1

(xi − µ)2}

L(µ̂, σ̂2) = (2πS2)−
n
2 exp{− 1

2S2

n

∑
i=1

(xi − x̄)2}

and likelihood ratio is

R =
L(µ, σ2)

L(µ̂, σ̂2)
=
(S2

σ2

) n
2 exp

{
− 1

2σ2

n

∑
i=1

(xi − µ)2 +
1

2S2

n

∑
i=1

(xi − x̄)2} (18)

Similarly, we get the joint confidence region D of (µ, VaR2) is

{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ (w0ξ∗)2σ2 ≤ (w0ξ∗)2 nS2

b
}

=
{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ VaR2 ≤ (w0ξ∗)2 nS2

b
}

, (19)

From (18), one can define the so-called double-VaR with respect to (µ, VaR2) as below.

Definition 3. Assume that X ∈ Rn is a random vector, and (µ, VaR2) are two index parameters, for given
confidence level α(0 ≤ α ≤ 1), one can define double-VaR of X ∈ Rn with respect to indexes (µ, VaR2) as

VaRα
(µ,VaR2)(X)=̂∂

{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ VaR2 ≤ (w0ξ∗)2 nS2

b
}

.

whose figure is as Figure 2.

Figure 2. The joint confidence region of (µ, VaR2).

Remark 4. Noticing the joint confidence region (see Figure 2) and combining with Markowitz’s portfolio
theory, the right boundary of the banded region in Figure 2 can be regarded the dobule-VaR, VaRα

(µ,VaR2)
(X),

with (µ, VaR2). That is to say, one can have the following two basic understandings:
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(1) For a given risk level (w0ξ∗)2 nS2

d (b ≤ d ≤ c), VaRα
(µ,VaR2)

(X)=̂VaR|αVaR2(µ; X) can be regarded as
VaR in the sense of Markowitz’s portfolio with a given confidence level α;

(2) For a given benefit level µ(≥ x̄), VaRα
(µ,VaR2)

(X)=̂VaR|αµ(VaR2; X) can also be regarded as VaR in
the sense of Markowitz’s portfolio with a given confidence level α.

Clearly, we have

P{(µ, VaR2) ∈ D} = P
{∣∣ x̄− µ

σ/
√

n

∣∣ ≤ a, b ≤ nS2

σ2 ≤ c
}

= P
{∣∣ x̄− µ

σ/
√

n

∣∣ ≤ a
}
· P
{

b ≤ nS2

σ2 ≤ c
}
= 1− α

That is, there holds
(2Φ(a)− 1)(χ2

n−1(c)− χ2
n−1(b)) = 1− α,

where χ2
n−1(b) (or χ2

n−1(c)) is the function value of χ2 distribution at the point b (or c) when the
freedom is n− 1. Now we solve the unknowns a, b and c by area minimization method.

The area of joint confidence region of (µ, VaR2) can be calculated by double integrals:

∫ nS2∆t
b

nS2∆t
c

∫ x̄∆t+ aσ
√

∆t√
n

x̄∆t+ aσ
√

∆t√
n

d(µ∆t)d(σ2∆t) = (∆t)2
∫ nS2∆t

b

nS2∆t
c

2a
√

∆t
√

σ2
√

n
dσ2 =

4
3

nS3(∆t)4a(b−
3
2 − c−

3
2 )

Thus, after knowing n, α, S2, w0, ξ∗, we can solve the joint confidence region of (µ, VaR2) by the
following optimization problem:{

min 4
3 n(w0ξ∗)2S3a(b−

3
2 − c−

3
2 )

s.t. (2Φ(a)− 1)(χ2
n−1(c)− χ2

n−1(b)) = 1− α

Similarly, we can now solve the above optimization problem with fsolve function in MATLAB
and get the unknowns a, b, and c when the confidence level is respectively 99%, 95%, and 90% for
30 < n < 45. By the way, the value zz (zz = a(b−

3
2 − c−

3
2 )) belonging to the area 4

3 nS3a(b−
3
2 − c−

3
2 ) is

also be gained as below.
At the same time, one can now solve the above optimization problem with fmincon function

to solve constrained nonlinear minimization problem in MATLAB and get the unknowns a, b, and c
when the confidence level is respectively 99%,95%, and 90% for n > 45. Incidentally, the value
zz (zz = a(b−

3
2 − c−

3
2 )) belonging to the area 4

3 nS3a(b−
3
2 − c−

3
2 ) can also be gained as below.

We can see the result of this model is similar to that under the area minimizing model; then there
holds the following:

Theorem 1. If the confidence levels are respectively 99%, 95%, 90%, 30 < n < 45. At the same time,
the mean x̄, the variance S2 of samples, w0 and ξ∗ have been known. We can inquire of the unknowns a, b, c in
Tables 3 and 4 and put them into

{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ VaR2 ≤ (w0ξ∗)2 nS2

b
}

to get the joint confidence region of (µ, VaR2).
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Table 3. Minimizing area method (confidence level is 99% and 95%).

Min-Area (Confidence Level: 99%) Min-Area (Confidence Level: 95%)

n a b c zz a b c zz

31 2.9246 14.1512 63.8981 0.0492 2.3414 17.1303 56.5295 0.0275

32 2.9215 14.8181 65.1849 0.0457 2.3384 17.8670 57.7614 0.0256

33 2.9185 15.4917 66.4687 0.0425 2.3356 18.6088 58.9919 0.0239

34 2.9152 16.1680 67.7464 0.0396 2.3328 19.3513 60.2205 0.0224

35 2.9123 16.8527 69.0219 0.0370 2.3301 20.0984 61.4518 0.0210

36 2.9100 17.5339 70.3055 0.0347 2.3279 20.8511 62.6723 0.0198

37 2.9070 18.2239 71.5778 0.0326 2.3255 21.6032 63.8980 0.0186

38 2.9050 18.9163 72.8532 0.0306 2.3233 22.3595 65.1167 0.0176

39 2.9024 19.6137 74.1233 0.0289 2.3212 23.1191 66.3364 0.0166

40 2.9005 20.3139 75.3969 0.0272 2.3192 23.8815 67.5544 0.0157

41 2.8969 21.0252 76.6403 0.0257 2.3175 24.6494 68.7771 0.0149

42 2.8968 21.7419 77.9333 0.0244 2.3155 25.4145 69.9847 0.0141

43 2.8946 22.4362 79.1883 0.0231 2.3137 26.1851 71.2024 0.0134

44 2.8902 23.1570 80.4262 0.0219 2.3121 26.9580 72.4080 0.0128

45 2.8918 23.8752 81.7268 0.0209 2.3105 27.7325 73.6185 0.0122

Table 4. Minimizing area point method (confidence level is 90%).

n a b c zz

31 2.0457 18.7961 53.0159 0.0198

32 2.0428 19.5671 54.2198 0.0185

33 2.0401 20.3418 55.4228 0.0173

34 2.0375 21.1193 56.6243 0.0162

35 2.0351 21.9005 57.8240 0.0152

36 2.0328 22.6834 59.0225 0.0143

37 2.0307 23.4694 60.2189 0.0135

38 2.0286 24.2587 61.4147 0.0128

39 2.0267 25.0498 62.6071 0.0121

40 2.0248 25.8426 63.7978 0.0114

41 2.0230 26.6392 64.9906 0.0109

42 2.0213 27.4365 66.1760 0.0103

43 2.0197 28.2368 67.3628 0.0098

44 2.0182 29.0392 68.5481 0.0093

45 2.0167 29.8436 69.7319 0.0089

If the confidence level is not in the chart we can get the results by changing parameters in
the program.

Theorem 2. If the confidence levels are respectively 99%, 95%, 90%, n > 45. At the same time the mean
x̄, the variance S2 of samples, w0 and ξ∗ have been known. We can inquiry the unknowns a, b, c in the
Tables 5 and 6 and put them into

{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ VaR2 ≤ (w0ξ∗)2 nS2

b
}

to get the joint confidence region of (µ, VaR2).
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Table 5. Minimizing area method (confidence level is 99% and 95%).

Min-Area (Confidence Level: 99%) Min-Area (Confidence Level: 95%)

n a b c zz a b c zz

46 3.0064 21.7720 78.4073 0.0253 2.3977 27.4369 72.2900 0.0128

47 3.0024 22.4891 79.6858 0.0239 2.3941 28.2136 73.5112 0.0122

48 2.9983 23.2131 80.9560 0.0227 2.3910 28.9950 74.7342 0.0116

49 2.9944 23.9403 82.2217 0.0215 2.3880 29.7792 75.9545 0.0111

50 2.9882 24.6870 83.4624 0.0204 2.3853 30.5680 77.1736 0.0106

60 3.1182 30.7638 87.6602 0.0145 2.3613 38.5214 89.2508 0.0071

70 2.9378 39.7032 108.3873 0.0091 2.3443 46.6338 101.1698 0.0051

80 3.2519 34.5137 108.8108 0.0132 2.3312 54.8651 112.9622 0.0038

90 1.1088 24.1613 27.8069 0.0018 1.0750 24.1328 27.6881 0.0017

100 5.5409 23.9661 26.2147 0.0059 5.5450 23.9705 26.2556 0.0060

Table 6. Minimizing area point method (confidence level is 90%).

n a b c zz

46 2.0912 30.2984 69.2514 0.0089

47 2.0884 31.1074 70.4505 0.0085

48 2.0857 31.9191 71.6481 0.0081

49 2.0831 32.7310 72.8427 0.0078

50 2.0806 33.5453 74.0353 0.0074

60 2.0598 41.7726 85.8687 0.0050

70 2.0447 50.1308 97.5564 0.0036

80 2.0333 58.5941 109.1282 0.0027

90 1.0479 24.0945 27.5455 0.0016

100 5.5482 23.9796 26.3103 0.0061

4. Empirical Analysis

4.1. Description of Sample Data

This subsection analyzes the sample data from the historical stock quotes in Merchants Bank
(600036) of the Sohu securities network. The holding period is a month and there are a total of 40 pieces
of data regarding closing prices in the observation period from 23 January 2009 to 27 April 2012. Now we
want to predict at a given confidence level the mean and range of risks to China Merchants Bank stock
yields at the end of May 2012, that is to solve the joint confidence region of (µ, σ2).

Here we use the logarithmic gain: Rt = ln(Pt/Pt−1), where Pt is the closing price of stock at time
t. Thus, we can get 39 yields as below Table 7.
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Table 7. Sample data year and month closing price yield.

Sample Data Sample Data Sample Data

Y-M price yield Y-M price yield Y-M price yield

0901 13.51 - 1001 15.17 −0.173826 1101 12.63 −0.014151

0902 14.27 0.054729 1002 15.90 0.046999 1102 12.87 0.018824

0903 15.93 0.110045 1003 16.28 0.023618 1103 14.09 0.090566

0904 15.50 −0.027364 1004 14.27 −0.131778 1104 14.46 0.025921

0905 16.86 0.084104 1005 13.23 −0.075672 1105 13.91 −0.038778

0906 22.41 0.284563 1006 13.01 −0.016769 1106 13.02 −0.066121

0907 19.64 −0.131939 1007 14.52 0.109809 1107 12.35 −0.052831

0908 13.63 −0.365295 1008 13.54 −0.069879 1108 11.85 −0.041328

0909 14.78 0.081002 1009 12.95 −0.044552 1109 11.06 −0.068993

0910 17.77 0.184237 1010 14.57 0.117869 1110 12.10 0.089870

0911 17.29 −0.027383 1011 13.05 −0.110176 1111 11.21 −0.076399

0912 18.05 0.043017 1012 12.81 −0.018562 1112 11.87 0.057208

- - - - - - 1201 12.65 0.063643

- - - - - - 1202 12.87 0.017242

- - - - - - 1203 11.90 −0.078361

- - - - - - 1204 12.20 0.024898

By AVERAGE and VAR function in Excel we can get the MLE: x̄ and S2 of mean µ and variance
σ2 are, respectively, −0.002615 and 0.011898.

4.2. (µ, σ2)-Model

Effect between Ideal Point Method and the Method of the Smallest

Now we respectively use ideal point method and area minimization method to solve the joint
confidence region of at the given confidence level and make a contrast of the results from these
two methods.

By checking the corresponding tables when n = 39 in this paper we have the following
Tables 8 and 9:

Table 8. n = 39 (confidence level 99% and 95%).

Confidence Level 99% Confidence Level 95%

Method a b c zz a b c zz

ideal point 3.6797 18.4736 63.0094 0.0390 3.2882 22.0311 55.8159 0.0239

Min-area 2.9024 19.6137 74.1233 0.0289 2.3212 23.1191 66.3364 0.0166

Table 9. n = 39 (confidence level is 90%).

Method a b c zz

ideal point 3.1106 24.0351 52.3654 0.0182

Min-area 2.0267 25.0498 62.6071 0.0121
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Put these values into the following formula and get the joint confidence region of (µ, σ2) as below

{
(µ, σ2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ σ2 ≤ (w0ξ∗)2 nS2

b
}

whose figure is the area enclosed by two horizontal lines and a parabola line
(1) α = 1% (confidence level is 99%) (Figures 3–5)
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Figure 3. The joint confidence region of (µ, σ2) by ideal point method.
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Figure 4. The joint confidence region of (µ, σ2) by area minimization method.
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Figure 5. The contrast of two methods.

where the solid line is the result of area minimization method and the broken line is the result of ideal
point method.

(2) α = 5% (confidence level is 95%) (Figures 6–8)
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Figure 6. The joint confidence region of (µ, σ2) by ideal point method.
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Figure 7. The joint confidence region of (µ, σ2) by area minimization method.
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Figure 8. The contrast of two methods.

where the solid line is the result of area minimization method and the broken line is the result of ideal
point method.

(3) α = 10% (confidence level is 90%) (Figures 9–11)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2

2 2

2=0.01931

2=0.00886

Figure 9. The joint confidence region of (µ, σ2) by ideal point method.
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Figure 10. The joint confidence region of (µ, σ2) by area minimization method.
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Figure 11. The contrast of two methods.

where the solid line is the result of area minimization method and the broken line is the result of ideal
point method.

According to these results, we can know the area by area minimization method is smaller, so at a
given confidence level area minimization method has a better effect to solve the joint confidence region
of (µ, σ2).

4.3. (µ, VaR2)-Model

Suppose a customer buys shares of China Merchants Bank whose initial assets is w0 = 1 and the
confidence level of VaR is 95% that is ξ∗ = 1.645. By Theorem 1 and the corresponding tables we have
Table 10 as below.

Table 10. n = 39.

α a b c zz

1% 2.9024 19.6137 74.1233 0.0289

5% 2.3212 23.1191 66.3364 0.0166

10% 2.0267 25.0498 62.6071 0.0121

Put these values into the following formula and get the joint confidence region of (µ, VaR2) below

{
(µ, VaR2) : x̄− aσ√

n
≤ µ ≤ x̄ +

aσ√
n

, (w0ξ∗)2 nS2

c
≤ VaR2 ≤ (w0ξ∗)2 nS2

b
}

whose figure is the area enclosed by two horizontal lines and a parabola line.
(1) α = 1% (confidence level is 99%) (Figure 12)
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Figure 12. The joint confidence region of (µ, VaR2) when α = 1%.

(2) α = 5% (confidence level is 95%) (Figure 13)
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Figure 13. The joint confidence region of (µ, VaR2) when α = 5%.

(3) α = 10% (confidence level is 90%) (Figure 14)
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Figure 14. The joint confidence region of (µ, VaR2) when α = 10%.
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5. Conclusions

VaR is just a single indicator value to characterize risk, providing less information to the user,
and the risk warning function is too thin. In practice, people often need to know both the benefits they
may receive and the risks they are involved with. Therefore, this paper studies and constructs the
double VaR according to the definition and research methods of VaR, expanding the one-dimensional
single-risk monitoring indicator-VaR into a two-dimensional revenue-risk monitoring indicator.

This paper selects (µ, σ2) and (µ, VaR2) as the models of the double-VaR. It shows the
risk/maximum loss of an asset at a given time in the future and the area in which the revenue is located.
Such indicators can better weigh the risk–return of assets, and deduce the joint confidence region of
(µ, σ2) (or (µ, VaR2)) by virtue of the two-dimensional likelihood ratio method. Then, the ideal joint
method and the area minimization method are used to solve the specific joint confidence domain,
and the solution effect of the two methods is compared. The obtained area minimization method is
more accurate and better. After the VaR is double-expanded, users can know more information and
better evaluate assets and avoid certain financial risks.

In this paper, only the normal distribution is considered in terms of its own knowledge structure
and time. In fact, the author has great interest in risk management in the case of market with fat
tails and the probability of extreme events, which will have important practical significance. We will
discuss this in the next article on VaR.
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