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Abstract: This is Part III of a series of papers which focus on a general framework for portfolio
theory. Here, we extend a general framework for portfolio theory in a one-period financial market
as introduced in Part I [Maier-Paape and Zhu, Risks 2018, 6(2), 53] to multi-period markets. This
extension is reasonable for applications. More importantly, we take a new approach, the “modular
portfolio theory”, which is built from the interaction among four related modules: (a) multi period
market model; (b) trading strategies; (c) risk and utility functions (performance criteria); and (d) the
optimization problem (efficient frontier and efficient portfolio). An important concept that allows
dealing with the more general framework discussed here is a trading strategy generating function.
This concept limits the discussion to a special class of manageable trading strategies, which is still
wide enough to cover many frequently used trading strategies, for instance “constant weight” (fixed
fraction). As application, we discuss the utility function of compounded return and the risk measure
of relative log drawdowns.

Keywords: portfolio theory; modular portfolio theory; efficient frontier; trading strategy;
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1. Introduction

This is Part III of a series of papers which focus on a general framework for portfolio theory.
We laid out a general framework for portfolio theory in a one-period financial market for trading-off
between reward and risk in Part I (Maier-Paape and Zhu 2018a) and addressed specifically drawdown
risk measures in Part II (Maier-Paape and Zhu 2018b). Furthermore, a fourth part is planned where
we provide a case study on how to implement the general framework in real financial markets. Here,
in Part III, we extend the general framework for one-period financial markets to multi-period financial
markets and go beyond the setting of a finite sample space.

In addition to extending the framework in Part I (Maier-Paape and Zhu 2018a) to more
general settings, we now take a modular approach in organizing this more general framework
for portfolio/trading theory. We recognize the problem of trading-off between higher reward and
lower risk using portfolio/trading strategies within four modular blocks (modular portfolio theory):
(a) multi-period market model; (b) trading strategies; (c) risk and utility functions; and (d) the
optimization problem.

The multi-period market is assumed to consist of one risk-free and M ∈ N risky assets. The trading
strategy is parameter dependent and specifies how the investor, once started the investment, wants to
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trade the portfolio over time. Based on this, a (convex) risk function r and a (concave) reward/utility
function u can be defined, which manifest in an optimization problem of the form

min
x∈A

r(x) subject to u(x) ≥ µ, S>0 x = β, (1)

where A ⊂ RM+1, µ ∈ R and β > 0 are fixed and S0 ∈ RM+1 gives the initial price values of the M + 1
assets. This just sketches the situation discussed here. Especially the role of the trading strategy and
the meaning of the vector x ∈ RM+1 are discussed in more detail below.

Using a one-period market, there is nothing to do in Block (b) because the portfolio just consists
of a simple portfolio vector x, which gives the weights. This one-period case is extensively studied
in the literature. One of the first discussions on optimization problems of the form of Equation (1)
was done by Markowitz (1952, 1959), the so-called modern portfolio theory, and afterwards with the
capital asset pricing model (CAPM) by Lintner (1965); Mossin (1966); Sharpe (1964). In both settings,
the risk function is defined by the standard deviation of the returns of the portfolio and the utility
function is the mean return of the portfolio. The only part which can be chosen in this work could be
the specific one-period market model because Block (b) is trivial, Block (c) is already fixed and Block (d)
is of the form of Equation (1), in general with A = RM+1. Decades later, Rockafellar et al. (2006) and
also Part I (Maier-Paape and Zhu 2018a) discussed a more general setting where Block (c) gets more
degrees of freedom regarding the choice of the risk function and the utility function. In Rockafellar
et al. (2006), the risk function is allowed to be more general with some specific assumptions, so-called
deviation measures, but the utility function still is the (arithmetic) mean return. In Maier-Paape and
Zhu (2018a), in addition, the utility function is of more general form with some reasonable assumptions
and the one-period market model is assumed to be defined on a finite probability space. In both cases
the optimization problem is of the form of Equation (1) as well. The idea of using a multi-period
market model together with trading strategies as building blocks for a modular portfolio theory was
firstly introduced by Platen (2018). Accordingly, we here enhance on this idea and develop an in itself
complete and compact approach to this new aspect of portfolio theory. Of course, multi-period market
models have been used before, though not in the context of portfolio theory. For an introduction to
this topic we refer to (Föllmer and Schied 2016, Section 5.1) and also (Carr and Zhu 2018, Chapter 3).

The generalization to multi-period markets for portfolio purposes is important in applications.
In practice, investors and regulators always need to make decisions at different phases of financial
markets under different policy environments. Moreover, many important market operations
such as hedging and pricing of options and other contingent claims have to be dealt with in
a multi-period financial market setting. Finally, the multi-period financial market model is
crucial in adequately modeling certain important reward and risk measures such as compounded
return and drawdown related risk measures. The absolute drawdown was already discussed,
e.g., by Chekhlov et al. (2003, 2005); Goldberg and Mahmoud (2017) and Zabarankin et al. (2014).
The risk functions used therein are based on the ideas of the value at risk but applied to the absolute
drawdown. The relative drawdown is much more involved and rarely discussed in the literature.
Grossman and Zhou (1993) studied an optimization problem using the maximum relative drawdown
and a geometric Brownian motion with drift as market model where just one risky and also one
risk-free asset are assumed. Cvitanić and Karatzas (1995) extended the results for more than one risky
asset and Cherny and Obłój (2013) discussed the setting using an abstract semimartingale financial
market and more general utility and risk functions. Properties on the mean of the logarithm of
the relative drawdown are discussed in Part II (Maier-Paape and Zhu 2018b), where a one-period
market model is used with a finite probability space and independent and identically distributed
returns. The trick to construct the drawdown measure is to generate short equity curves by random
drawings from the return distribution and to subsequently calculate the drawdowns of the equity
curves. The relative drawdown for a more general market model was also discussed by Platen (2018).
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A more technical challenge of our extension is that the space of random variables on the sample
space that represents the payoff is no longer a finite dimensional space and, therefore, no longer
enjoys local compactness properties. We circumvent this difficulty by introducing a trading strategy
generating function. Doing so, we limit ourselves to a special class of manageable trading strategies.
We illustrate by examples that the class of trading strategies we study here is wide enough to include
many frequently used trading strategies such as “buy and hold” or “constant weight” (fixed fractions).
Another strategy could be to fix the amount of money invested over time, which was discussed by
Platen (2018). Although the here used strategies seem to be simple, it still shows the potential behind
this new building block in portfolio theory.

The paper is arranged as follows. In Section 2, we layout the multi-period market models
(Building Block (a)) and trading strategies (Building Block (b)) and derive several basic properties
such as the fundamental characterization of a multi-period market with no nontrivial risk-free trading
strategy (see Theorem 1). In Section 3, we discuss our main results according to the modular approach.
After giving examples for the risk and utility functions (Building Block (c)) based on Blocks (a)
and (b) in Section 3.1, the optimization problem (Building Block (d)) is introduced in Section 3.2.
The corresponding notion of efficient frontier is extensively studied, e.g., in terms of graphs (see
Section 3.3) and the main theorems for the existence (and uniqueness) of solutions are derived in
Section 3.4. An application of the theory for the compounded return and the expected log relative
drawdown is discussed in detail in Section 4. To measure the return in risk and utility function as
relative log returns has two reasons. Firstly, it yields the necessary convexity and concavity, respectively.
Secondly, it guarantees that drawdowns and runups are measured equally. For instance, a drawdown
of 50 % needs a runup of 100% for compensation. Taking log relative returns, the absolute value of
both movements is equal. The paper ends with some conclusions in Section 5.

Before we continue, we would like to emphasize once more that this Part III is an advancement
of Parts I and II Maier-Paape and Zhu (2018a, 2018b). Although this Part III is self-contained,
complications stemming from the multi-period market model and the general probability space
make this Part III more involved. Therefore, the reader might it find helpful to compare results
here with the “easy” case in Parts I and II (see Maier-Paape and Zhu (2018a, 2018b)). For instance,
the “core” theory here on optimization problems such as in Equation (1) and efficient portfolios is
very much in the spirit of Part I (Maier-Paape and Zhu 2018a) (cf. Sections 3.2, 3.3 and 3.4). Similarly,
Sections 3.1 and 4, where we lift the drawdown risk measures to multi-period markets, use many
ideas of Part II (Maier-Paape and Zhu 2018b). On the other hand, the contents of Section 2 on theory
of multi-period markets and trading strategies has no counterpart in Parts I and II Maier-Paape and
Zhu (2018a, 2018b) but many connections to classical financial mathematics (e.g., Föllmer and Schied
(2016)). As a matter of fact, Section 2 is a bit technical. However, since it only provides the framework
for the core theory later on, it might help at first reading to concentrate oneself in Section 2 solely on
the definitions.

2. Multi-Period Market and Trading Strategies

In this section, we describe a multi-period (financial) market model. In such a model,
investment decisions are made over several periods with potentially different investment environments
characterized by different economic, financial and policy situations. The role of portfolios is replaced
by trading strategies which can be viewed as a sequence of portfolios varying in time according to an a
priori given, but possibly random, strategy. The information on the investment environment is revealed
with the progress of time and the action of the trading strategy is contingent on the existing information.
The availability of the information is modeled by a filtration. This section lays a foundation for the
subsequent analysis.
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2.1. Definitions

The following notion of a multi-period market is closely related to (Föllmer and Schied 2016,
Section 5.1) and (Platen 2018, Sections 2.1.2, 2.2.1, and 2.2.2). We assume that M + 1 financial
instruments (one risk-free asset with index 0 and M ∈ N risky assets with indexes 1, . . . , M) are
given. Their initial prices are denoted by S0 := (S0

0, S1
0, . . . , SM

0 ) ∈ RM+1
>0 . A model for N ∈ N future

time steps is of the following form:
Let (Ω, Σ, P) be a probability space. By L2 := L2(Ω, Σ, P) := L2(Ω, Σ, P;R) we denote the set

of all random variables X : Ω→ R with finite norm ‖X‖L2 := (E [X2])
1/2, where 〈X, Y〉L2 := E [XY]

for X, Y ∈ L2 is the inner product. For a set of M + 1 assets, we define L2(Ω, Σ, P;RM+1) where each
of the M + 1 components of the elements are in L2. This could model a one-period market. For a
multi-period market model, let (Ω, Σ, {Fn}0≤n≤N , P) be a filtered probability space with filtration
{Fn}0≤n≤N which satisfies

{∅, Ω} =: F0 ⊂ F1 ⊂ · · · ⊂ FN−1 ⊂ FN := Σ.

Define

L2
(

N;RM
)

:= L2
(

Ω, Σ, {Fn}0≤n≤N , P;RM
)

:=
N

×
n=0
L2
(

Ω,Fn, P;RM
)

and L2(N) := L2(N;R) with corresponding set of positive processes

L2
(

N;RM
>0

)
:= L2

(
Ω, Σ, {Fn}0≤n≤N , P;RM

>0

)
:=

N

×
n=0
L2
(

Ω,Fn, P;RM
>0

)
⊂ L2

(
N;RM

)
.

Analogously, L0 denotes the set of all random variables and L1 the random variables with finite
(absolute) expectation. In most cases, we use L2, which, however, often is not required. In these cases,
one could also use, e.g., L0.

Firstly, we define the notion of risk-free which means that there is no uncertainty and the price
development is (not necessarily strictly) monotone increasing.

Definition 1 (Risk-free asset). The stochastic process Z := (Z0, Z1, . . . , ZN) ∈ L2(N) is called risk-free if
Zn is constant almost surely (a.s.) for n = 0, 1, . . . , N and Zn ≥ Zn−1 > 0 a.s. for n = 1, . . . , N.

Definition 2 (Multi-period market model, cf. (Föllmer and Schied 2016, Section 5.1)). For M ∈ N let
S := (Sn)0≤n≤N ∈ L2(N;RM+1

>0 ) with

Sn :=
(

S0
n, S1

n, . . . , SM
n

)>
∈ R>0 ×L2

(
Ω,Fn, P;RM

>0

)
⊂ L2

(
Ω,Fn, P;RM+1

>0

)
, (2)

where (S0
0, S0

1, . . . , S0
N) ∈ L2(N), i.e., the asset with index zero, is risk-free. The stochastic process S is called a

multi-period market model of size M + 1 with N time steps.

A portfolio in a one-period market model just contains of a single vector which gives the weights
for each asset. In a multi-period market model the situation is much more complex. After each time
step we can change the weights. We even can change the weights, say after time step n, based on
information of all past time steps up to step n. Hence, in our situation, we denote a series of time
varying portfolios by a trading strategy as follows.
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Definition 3 (Trading strategy). For M, N ∈ N let S := (Sn)0≤n≤N ∈ L2(N;RM+1
>0 ) be a market model.

A time dependent vector

X := (xn)1≤n≤N ∈ L
0
(

N − 1;RM+1
)

:=
N−1

×
n=0
L0
(

Ω,Fn, P;RM+1
)

,

for the same filtered probability space (Ω, Σ, {Fn}0≤n≤N , P) from the market model, with

xn :=
(

x0
n, x1

n, . . . , xM
n

)>
∈ L0

(
Ω,Fn−1, P;RM+1

)
, (3)

for n = 1, . . . , N, is called a trading strategy.

We still need to give the trading strategy a meaning and a real connection to the market model S.
The values of a trading strategy X = (xn)1≤n≤N have the following interpretation:

• xn may depend on S0, . . . , Sn−1 but not on later prices;
• Si

n absolute price of the ith asset at time n;
• xi

n: number of shares invested into the ith asset from time step n− 1 to n;
• Si

n−1xi
n: amount of money invested into the ith asset;

• Si
nxi

n: absolute value of this investment after the time step from n− 1 to n; and
• S>n xn = ∑M

i=0 Si
nxi

n: absolute value of all investments after the time step from n− 1 to n.

Note that Equations (2) and (3) imply that Sn is Fn measurable while xn is Fn−1 measurable.
The reason is that xn are the number of shares for each asset hold from time step n− 1 to n. This must
be known at time step n− 1 where the shares have to be bought. Hence, it must be Fn−1 measurable.
The prices Sn, of course, are known not before time n, i.e., it must be Fn measurable. Using this, we
can define the wealth process realized by a trading strategy applied to the market model.

Definition 4 (Wealth of trading strategy). Let S ∈ L2(N;RM+1
>0 ) be a market model andW0 ∈ R>0 the

investor’s fixed initial wealth. For a trading strategy X = (xn)1≤n≤N ∈ L0(N − 1;RM+1), the wealth
processW(X) ∈ L0(N) is defined by

W0(X) :=W0

Wn(X) :=Wn(x1, . . . , xn) :=Wn−1(X) + (Sn − Sn−1)
>xn =W0 +

n

∑
k=1

(Sk − Sk−1)
>xk

(4)

for n = 1, . . . , N. Hence,W : L0(N − 1;RM+1)→ L0(N) is an affine linear functional.

Note, that, whenever X ∈ L2(N − 1;RM+1), then, by the Cauchy–Schwarz inequality, we obtain
thatW(X) ∈ L1(N).

Even though the market model consists of positive stochastic processes, we may open short
positions using a trading strategy. Hence, total ruin may occur. Since we always try to avoid a ruin, we
define the set of admissible trading strategies.

Definition 5 (Admissible trading strategy). A trading strategy X which satisfies Wn(X) > 0 a.s. for
n = 1, . . . , N is called admissible. The set of all admissible trading strategies is denoted by A = A(S) ⊂
L0(N − 1;RM+1).

Note that A is a convex set.
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2.2. Properties of the Multi-Period Market Model

The most important scenario we try to avoid is total ruin. This strongly depends on the trading
strategy. However, the opposite should also be impossible, i.e., it should not be possible to gain
money without risk, namely arbitrage. This property strongly depends on the market model itself.
The literature mostly discusses the notion of arbitrage, where an arbitrage opportunity beats the
risk-free asset with positive probability while it is never worse than the risk-free asset. In Part I
(see (Maier-Paape and Zhu 2018a, Section 3.1)), the notion of a risk-free portfolio is introduced for
the one-period market and a finite probability space. A risk-free portfolio is almost the same as
an arbitrage opportunity but does not have to beat the risk-free asset with positive probability.
We discuss this kind of extension for the more general case with multi-period market models
(cf. also (Platen 2018, Section 2.2.3 and Section 2.2.4) for more details).

When discussing arbitrage, the notion of self-financing is often used (see, e.g., (Föllmer and Schied
2016, Definition 5.4)), which means that all money which has been invested initially stays invested and
no fresh money is invested afterwards.

Definition 6 (Self-financing, see (Föllmer and Schied 2016, Definition 5.4)). Let S ∈ L2(N;RM+1
>0 ) be a

market model for N ≥ 2. A trading strategy X := (xn)1≤n≤N with

S>n xn = S>n xn+1 (5)

for all n = 1, . . . , N − 1 is called self-financing.

The space of self-financing trading strategies is linear and simplifies the wealth process as follows.

Proposition 1. Let S ∈ L2(N;RM+1
>0 ), N ≥ 2, be a market model. A trading strategy X is self-financing if

and only if
Wn(X) =W0 +

(
S>n xn − S>0 x1

)
(6)

for all n = 1, . . . , N. If S>0 x1 =W0, then Equation (6) becomesWn(X) = S>n xn.

Proof. If X is self-financing, then Equation (4) becomes a telescoping sum and directly gives
Equation (6). On the other hand, if Equation (6) holds true, then, by Equation (6), we get

Wn+1(X) =W0 +
(

S>n+1xn+1 − S>0 x1

)
and, by Equation (4) together with Equation (6), we obtain

Wn+1(X) =Wn(X) + (Sn+1 − Sn)
>xn+1 =W0 +

(
S>n xn − S>0 x1

)
+ (Sn+1 − Sn)

>xn+1

for n = 1, . . . , N − 1. Equating both expressions gives Snxn = Snxn+1 for all n = 1, . . . , N − 1, i.e., X is
self-financing.

Remark 1 (Bond). Let Z := (zn)1≤n≤N be the trading strategy which represents the bond, i.e.,

zn :=

(
W0

S0
0

, 0, . . . , 0

)>
for n = 1, . . . , N. (7)

Of course, Z is self-financing with S>0 z1 =W0. Therefore, Proposition 1 gives

Wn(Z) = S>n zn =W0
S0

n

S0
0

for n = 1, . . . , N, (8)
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A trading strategy X is called trivial, if X̂ ≡ 0 a.s., where X̂ := (x̂n)1≤n≤N with x̂n := (x1
n, . . . , xM

n )>

denotes the risky part of X. Analogously, we define the risky part of S := (Sn)0≤n≤N by Ŝ :=

(Ŝn)0≤n≤N , where Ŝn := (S1
n, . . . , SM

n )
>.

The following notion of arbitrage opportunity, bond replicating and risk-free trading strategy is
related to (Föllmer and Schied 2016, Definition 5.10), see (Platen 2018, Remark 2.2.17).

Definition 7 (Arbitrage opportunity, bond replicating, and risk-free). Let S ∈ L2(N;RM+1
>0 ) for

M, N ∈ N be a market model and X := (xn)1≤n≤N a trading strategy.

(a) We say X is risk-free if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N and WN(X) ≥ W0
S0

N
S0

0
a.s. (9)

We say market model S has no nontrivial risk-free trading strategy if there does not exist a risk-free
trading strategy X with X̂ 6≡ 0 (i.e., besides the trivial ones with X̂ = 0 a.s. there are no risk-free trading
strategies).

(b) We say X is an arbitrage opportunity if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N, WN(X) ≥ W0
S0

N
S0

0
a.s.,

and

P

(
WN(X) >W0

S0
N

S0
0

)
> 0.

We say market model S is arbitrage-free, if there does not exist any arbitrage opportunity.
(c) We say X is bond replicating if

S>n−1xn ≤ Wn−1(X) a.s. for all n = 1, . . . , N and WN(X) =W0
S0

N
S0

0
a.s.

We say market model S has no nontrivial bond replicating trading strategy, if there does not exist a
bond replicating trading strategy X with X̂ 6≡ 0 (i.e., besides the trivial ones with X̂ = 0 a.s. there are
no bond replicating trading strategies).

Remark 2 (Interpretation of Definition 7). The first property of a risk-free trading strategy in Equation (9)
says that, at time step n− 1, no more than the available capital is invested. The second property in Equation (9)
means that the final wealth of the trading strategy is always at least as much as the final wealth of the bond
strategy according to Remark 1.

An arbitrage opportunity has the same properties, but on top of that the strategy wins strictly more than
the bond strategy with positive probability.

A bond replicating trading strategy is also not allowed to invest more than the available capital. In this
case, the final wealth has to be exactly the same as for the bond strategy.

The next result gives necessary and sufficient conditions for a market model having no nontrivial
risk-free trading strategy. Those conditions are important when looking at properties for risk and
utility measures on such market models. Another essential property regarding uniqueness is that two
different trading strategies should result in two different wealth processes, which is ensured by the
addition in the next result.
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Theorem 1 (Multi-period market model with no nontrivial risk-free trading strategy). The following
assertions are equivalent:
(a) S has no nontrivial risk-free trading strategy.
(b) S is arbitrage-free and has no nontrivial bond replicating trading strategy.
(c) For all n = 1, . . . , N and all η ∈ L0(Ω,Fn−1, P;RM+1) with η̂ 6≡ 0 it is

P

(Sn −
S0

n

S0
n−1

Sn−1

)>
η < 0

 > 0. (10)

(d) S is arbitrage-free and the following holds for all trading strategies X and Y:

W(X) =W(Y) a.s. implies X̂ = Ŷ a.s. (11)

If in addition S0
n > S0

n−1 for all n = 1, . . . , N and one of the (a), (b), (c) or (d) holds, then the mappingW
is injective, i.e.,W(X) =W(Y) a.s. implies X = Y a.s.

Proof. The equivalence of (a) and (b) directly follows from Definition 7.
Proof of implication from (a) to (c): Assume this implication is wrong, i.e., assume there exist

n0 ∈ {1, . . . , N} and η∗ ∈ L0(Ω,Fn0−1, P;RM+1) with η̂∗ 6≡ 0 such that

1 = P

(Sn0 −
S0

n0

S0
n0−1

Sn0−1

)>
η∗ ≥ 0

 = P

(Ŝn0 −
S0

n0

S0
n0−1

Ŝn0−1

)>
η̂∗ ≥ 0

, (12)

or, equivalently, S>n0
η∗ ≥ (S0

n0
/S0

n0−1)S
>
n0−1η∗ a.s. Let trading strategy Z := (zn)1≤n≤N represent

the bond (see Remark 1). Define Y := (yn)1≤n≤N by yn0 := η∗ and yn := zn for n 6= n0. Observe
that for 1 ≤ n ≤ n0 − 1 by Equation (8) now Wn(Y) = Wn(Z) = W0S0

n/S0
0 holds true. Since the

property in Equation (12) of η∗ is independent on its risk-free part, we can choose, without loss
of generality (w.l.o.g.), the bond part η0 ∈ L0(Ω,Fn0−1, P) of η∗ such that S>n0−1yn0 = S>n0−1η∗ =

S0
n0−1η0 + Ŝ>n0−1η̂∗ = Wn0−1(Y) = Wn0−1(Z) = S>n0−1zn0 . For n0 ≤ n ≤ N, it follows from

Equations (4), (7) and (8) that

Wn(Y) =Wn(Z)−
(
Sn0 − Sn0−1

)>zn0 +
(
Sn0 − Sn0−1

)>
η∗

=W0
S0

n

S0
0
−W0

S0
n0
− S0

n0−1

S0
0

+ S>n0
η∗ − S>n0−1η∗

≥ W0
S0

n

S0
0
−W0

S0
n0
− S0

n0−1

S0
0

+
S0

n0

S0
n0−1

S>n0−1η∗ − S>n0−1η∗ =W0
S0

n

S0
0
=Wn(Z)

(13)

holds a.s. and using S>n−1yn = S>n−1zn =Wn−1(Z) one easily obtains with Equation (13) that S>n−1yn ≤
Wn−1(Y) a.s. for all n = 1, . . . , N. In particular, using Equation (13) for n = N, trading strategy Y must
be risk-free and nontrivial. This contradicts (a). Hence, there cannot be such an η∗, i.e., (c) must hold.

Proof of implication from (c) to (a): Let (c) hold and assume there exists a nontrivial risk-free
trading strategy X := (xn)1≤n≤N , i.e., X satisfies Equation (9) and X̂ 6≡ 0. Let n0 ∈ {1, . . . , N} be
minimal with the property x̂n0 6≡ 0. Before time n0, trading strategy X can at most invest into the bond.
Hence,

S>n0−1xn0 ≤ Wn0−1(X) ≤ W0S0
n0−1/S0

0 a.s. (14)
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because of the first property in Equation (9). From (c) we get that xn0 satisfies Equation (10) for η := xn0

and n = n0. Hence, using Equations (4), (10) and (14), we obtain that the following holds true with
positive probability:

Wn0(X) =Wn0−1(X) +
(
Sn0 − Sn0−1

)>xn0 <Wn0−1(X) +

(
S0

n0

S0
n0−1

− 1

)
S>n0−1xn0 ≤ W0

S0
n0

S0
0

.

Because of the second property in Equation (9), it must be n0 < N and there must exist a maximal
n1 ∈ {n0 + 1, . . . , N} such that

P

(
Wn1−1(X) <W0

S0
n1−1

S0
0

)
> 0 and P

(
Wn1(X) ≥ W0

S0
n1

S0
0
| Wn1−1(X) <W0

S0
n1−1

S0
0

)
= 1.

Define

η# :=

xn1 , ifWn1−1(X) <W0
S0

n1−1

S0
0

,

(W0/S0
0, 0, . . . , 0)>, otherwise.

Observe that x̂n1 6≡ 0 and hence η̂# 6≡ 0. Using Equations (4) and (9) it can then be shown that(
Sn1 −

S0
n1

S0
n1−1

Sn1−1

)>
η# =

(
Sn1 − Sn1−1

)>
η# −

S0
n1
− S0

n1−1

S0
n1−1

S>n1−1η# ≥ 0 a.s.

which contradicts (c). Hence, S has no nontrivial risk-free trading strategy.
Proof of implication from (a)–(c) to (d): We just need to show Equation (11) for an arbitrage-free

market S. Let X := (xn)1≤n≤N and Y := (yn)1≤n≤N fulfillW(X) = W(Y) a.s. From Equation (4) it
follows that (Sn − Sn−1)

>(xn − yn) = 0 a.s. for n = 1, . . . , N. Now, let n ∈ {1, . . . , N} be arbitrary.
W.l.o.g. it is S>n−1(xn− yn) ≤ 0. Define η† := xn− yn +(c, 0, . . . , 0)> with c := −S>n−1(xn− yn)/S0

n−1 ≥
0. We have S>n−1η† = 0 and therefore

0 ≤ (Sn − Sn−1)
>η† =

(
Sn −

S0
n

S0
n−1

Sn−1

)>
η† a.s.

Because of (c), we then must have η̂† = x̂n − ŷn ≡ 0 a.s. Since n was arbitrary X̂ ≡ Ŷ a.s. must
hold, which proves Equation (11).

It remains to show the implication from (d) to (c): Since S is arbitrage-free, we firstly can show
that for all n = 1, . . . , N and all η ∈ L0(Ω,Fn−1, P;RM+1) with η̂ 6≡ 0 it is

P

(Sn −
S0

n

S0
n−1

Sn−1

)>
η < 0

 > 0 or

(
Sn −

S0
n

S0
n−1

Sn−1

)>
η = 0 a.s. (15)

Assume not, then there exists an n0 ∈ {1, . . . , N} and η∗ with η̂∗ 6≡ 0 such that

1 = P

(Sn0 −
S0

n0

S0
n0−1

Sn0−1

)>
η∗ ≥ 0

 and P

(Sn0 −
S0

n0

S0
n0−1

Sn0−1

)>
η∗ > 0

 > 0. (16)

We can proceed as in the proof for the implication from (a) to (c) if we replace Equation (12) by
Equation (16). Then, the so-constructed Y is still risk-free and nontrivial. In particular, Equation (13)
for n = N still holds true and due to Equation (16) it even holds true with a strict inequality, at least
with positive probability. This implies that the corresponding Y is an arbitrage opportunity. Since this
is a contradiction, there cannot be such an η∗.
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To show (c), i.e., to show that Equation (10) must hold true, we need to exclude the second property
in Equation (15) by using Equation (11). We proof this indirectly: Assume there exist n0 ∈ {1, . . . , N}
and η# ∈ L0(Ω,Fn0−1, P;RM+1) with η̂# 6≡ 0 such that

(
Sn0 −

S0
n0

S0
n0−1

Sn0−1

)>
η# = 0 a.s.,

i.e., S>n0
η# = (S0

n0
/S0

n0−1)S
>
n0−1η# a.s. Using this η#, we can build a trading strategy Y exactly as in the

proof for the implication from (a) to (c) where again, w.l.o.g., S>n0−1η# = Wn0−1(Y) = Wn0−1(Z) =
W0S0

n0−1/S0
0. Then, Equation (13) holds true for η∗ = η# with equality for all n0 ≤ n ≤ N but in

particular for n = N, i.e., Y is nontrivial and bond replicating. We conclude that even Wn(Y) =

W0S0
n/S0

0 = Wn(Z) a.s. for n = 1, . . . , N, i.e.,W(Y) = W(Z) a.s. Then, Equation (11) implies Ŷ = Ẑ
a.s., which is a contradiction, because Ŷ 6≡ 0 ≡ Ẑ. Hence, (c) must hold true.

The additional result in the case S0
n > S0

n−1 for all n = 1, . . . , N remains to be proved: Let
W(X) = W(Y) a.s., X̂ = Ŷ a.s. and assume X 6≡ Y. Then, using Equation (4), we get 0 = Wn(X)−
Wn(Y) = (S0

n − S0
n−1)(x0

n − y0
n) for all n = 1, . . . , N, a contradiction. Hence, wheneverW(X) =W(Y)

a.s. and X̂ = Ŷ a.s. it must be X = Y a.s., which completes the proof.

Remark 3 (Connection to (Maier-Paape and Zhu 2018a, Section 3.1)). In the one-period case N = 1, we
can define R := S0

1/S0
0 and x := x1. If we have S>0 x =W0, then we obtain from Equation (4) that

WN(X)−W0
S0

N
S0

0
=W0 + (S1 − S0)

>x− RW0 = (S1 − RS0)
>x.

Hence, for all x such that S>0 x = W0 Definition 7 is equivalent to the definitions in (Maier-Paape and
Zhu 2018a, Definition 4).

Moreover, Theorem 1 implies the result (Maier-Paape and Zhu 2018a, Theorem 2) in the one-period case
with finite probability space for the case R ≥ 1 and therefore can be seen as a generalization of (Maier-Paape and
Zhu 2018a, Theorem 2). Note, that Assertion (ii) in (Maier-Paape and Zhu 2018a, Theorem 2), which corresponds
to (c) in Theorem 1, includes the assumption that S is arbitrage-free. This assumption is not required in (c) of
Theorem 1. See also (Platen 2018, Corollary 2.2.24) for more details.

2.3. Trading Strategy Generating Function

In most cases, an investor already has a fixed strategy to trade the M risky assets and the bond
when the initial weights vector is known. For instance, one could want to freeze the fractions of capital
invested in the portfolio assets. The investor’s strategy then is to reallocate the portfolio after each
time step such that these fixed fractions are reestablished. Hence, we are not interested in finding the
“optimal” trading strategy over all possibilities, but in the “optimal” initial weights for our fixed and
well-known strategy. To have a mathematical formalism for this, we make the following definition.

Definition 8 (Trading strategy generating function). Let M, N ∈ N, A ⊂ RM+1 and a market model
S ∈ L2(N;RM+1

>0 ) be given. We call a function v : A→ L0(N − 1;RM+1), which maps a vector y ∈ A to a
trading strategy, a trading strategy generating function X = v(y), where

v(y) := (v1(y), . . . , vN(y)), vn(y) ∈ L0
(

Ω,Fn−1, P;RM+1
)

for n = 1, . . . , N.

We say the set A ⊂ RM+1 is admissible, if v(y) ∈ A(S) is an admissible trading strategy for all y ∈ A,
i.e., v(A) ⊂ A(S) (see Definition 5).
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When dealing with a one-period market model, there are always some constraints. One of the
most reasonable conditions is to require that all wealth is invested into the M + 1 assets and there
is no cash (or the bond may simulate the cash position). In a multi-period market, the same holds
true, i.e., the initial investment x1 = v1(y) should also be fixed by, e.g., β ∈ R (e.g., β = W0), such
that S>0 v1(y) = β. If the trading strategy generating function v in addition always gives self-financing
portfolios (see Definition 6), and β = W0, we know that after each time step the complete wealth
is invested.

Under some reasonable assumptions, the following result gives the boundedness of admissible
sets under the constraint S>0 v1(y) = β. Note that (Maier-Paape and Zhu 2018a, Lemma 2) shows a
related result for a one-period market using a general class of expected utility functions. Here, we only
focus on a general trading strategy and its admissible sets. Such a result is also shown in (Platen 2018,
Lemma 2.2.29).

Lemma 1. Assume the market model S ∈ L2(N;RM+1
>0 ) has no nontrivial risk-free trading strategy.

Let v : RM+1 → L0(N − 1;RM+1) be a trading strategy generating function and assume there is a
matrix B ∈ R(M+1)×(M+1) with full rank such that v1(y) = By for all y ∈ RM+1. Define Aβ :=
{y ∈ RM+1 : S>0 (By) = β} for some fixed β > 0. Then, each admissible subset A ⊂ Aβ is bounded.

Proof. We use an indirect proof. Assume the assertion does not hold and A is unbounded. Then, there
must be a sequence (ym)m∈N ⊂ A with S>0 (Bym) = β and ‖ym‖ → ∞ as m→ ∞. Then, for (xm)m∈N :=
(Bym)m∈N, we also have ‖xm‖ → ∞ as m → ∞, because ‖ym‖ = ‖B−1Bym‖ ≤ ‖B−1‖‖xm‖ and
‖B−1‖ > 0. The assumption of v, the definition of admissible in Definition 5, and Equation (4) give

W1(v(ym)) =W0 + (S1 − S0)
>v1(ym) =W0 + (S1 − S0)

>xm > 0 (17)

a.s. for all m ∈ N.
Property S>0 xm = β implies that ‖x̂m‖ → ∞ as m → ∞. Then, there exists a subsequence

(w.l.o.g. the original sequence) such that xm/‖x̂m‖ → x∗ = (x∗0 , (x̂∗)>)> ∈ RM+1 as m → ∞ where
‖x̂∗‖ = 1 and x∗0 = −S>0 x̂∗/S0

0. Consequently, we have S>0 x∗ = 0. Dividing Equation (17) by ‖x̂m‖
and taking the limit as m→ ∞ yields S>1 x∗ ≥ 0 a.s. Therefore, it must be

P

(S1 −
S0

1
S0

0
S0

)>
x∗ < 0

 = P
(

S>1 x∗ < 0
)
= 0,

which is a contradiction, because by assumption the market has no nontrivial risk-free trading strategy
(cf. Theorem 1 (c)).

Now, we give two examples for trading strategy generating functions.

Example 1 (Buy and hold; constant number of shares). The buy and hold (bnh) strategy simply buys the
assets at the beginning and does not change the number of shares for each asset in the subsequent time steps.
Hence, the corresponding trading strategy generating function is defined by

vbnh : RM+1 → L0
(

N − 1;RM+1
)

, y 7→ X = (xn)1≤n≤N with xn := y for n = 1, . . . , N.

Obviously, the trading strategy X = vbnh(y) is self-financing for each y ∈ RM+1 (cf. Definition 6).
Therefore, Equation (4) in Definition 4 and Proposition 1 give

Wn(vbnh(y)) =W0 +
n

∑
k=1

(Sk − Sk−1)
>y =W0 + (Sn − S0)

>y (18)
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for n = 1, . . . , N. The largest admissible set for vbnh according to Definition 8 is given by

Abnh :=
{

y ∈ RM+1 : S>0 y−W0 < S>n y a.s. for n = 1, . . . , N
}

.

For this example, Lemma 1 can directly be applied using B = Id ∈ R(M+1)×(M+1) if the market model S has no
nontrivial risk-free trading strategy. Then, for β > 0 fixed, the set Abnh ∩ {y ∈ RM+1 : S>0 y = β} is bounded.

Example 2 (Constant weight/fixed fraction). Constant weights means, that the fractions invested into the
assets stay constant in time. For this, it is needed that the portfolio is reallocated after each time step.

First, we define the rates of return T of the multi-period market model S by

Tn :=
(

T0
n , T1

n , . . . , TM
n

)>
, Ti

n :=
Si

n

Si
n−1
− 1 > −1 a.s., i = 0, 1, . . . , M, (19)

for time steps n = 1, . . . , N (cf. Definition 2).
For the corresponding trading strategy generating function, which we denote by vtwr, we need to make

sure that after each time step, the same fractions of wealth, given by some fixed f ∈ RM+1, are invested into the
assets. Using trading strategy X = vtwr( f ), this should result into a wealth process

Wn(vtwr( f )) =Wn−1(vtwr( f )) ·
(

1 + T>n f
)
=W0

n

∏
k=1

(
1 + T>k f

)
(20)

for n = 1, . . . , N, which is related to the terminal wealth relative (TWR) (see, e.g., Vince (2009)). To achieve
this, we first define f 7→ X = vtwr( f ) by

vtwr( f ) := ((vtwr)1( f ), . . . , (vtwr)N( f )), (vtwr)n( f ) :=
(
(vtwr)

0
n, (vtwr)

1
n, . . . , (vtwr)

M
n

)
,

for n = 1, . . . , N where

(vtwr)
i
1( f ) :=

fi

Si
0
W0, (vtwr)

i
n( f ) :=

fi

Si
n−1
Wn−1(vtwr( f )) =

fi

Si
n−1
W0

n−1

∏
k=1

(
1 + T>k f

)
(21)

for n = 2, . . . , N and i = 0, 1, . . . , M. Here, for instance, (vtwr)i
1( f ) denotes the amount of shares of the ith

asset that have to be bought initially to invest the fraction fi of the initial wealthW0 into this asset for the first
time step.

Now, we need to show that this indeed yields Equation (20). Inserting Equation (21) into the definition of
the wealth (see Definition 4) and using Equation (19), we obtain

Wn(vtwr( f )) =Wn−1(vtwr( f )) + (Sn − Sn−1)
>(vtwr( f ))n

=Wn−1(vtwr( f )) ·
(

1 +
M

∑
i=1

(
Si

n − Si
n−1

) fi

Si
n−1

)
=Wn−1(vtwr( f )) ·

(
1 + T>n f

)
for n = 1, . . . , N and Equation (20) follows by induction. Of course, this only makes sense for admissible trading
strategies. Therefore, we define

Atwr :=
{

f ∈ RM+1 : 1 + T>n f > 0 a.s. for n = 1, . . . , N
}

. (22)

Note that, in general, vtwr is nonlinear for N ≥ 2.
In addition, in this case, we can apply Lemma 1 directly if the market model S has no nontrivial risk-free

trading strategy using a diagonal matrix B with diagonal entries bii =W0/Si
0 > 0 for i = 0, 1, . . . , M.
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Remark 4. Let the situation of Example 2 for N ≥ 2 be given and f ∈ RM+1 be fixed. Assume there exists
some n ∈ {1, . . . , N− 1} such that P (1 + T>n f 6= 1) > 0. Then, one can show that vtwr( f ) is self-financing if
and only if ∑M

i=0 fi = 1. In addition, note that ∑M
i=0 fi = 1 if and only ifW0 = S>0 (vtwr)1( f ). A proof can be

found in (Platen 2018, Proposition 2.2.32).

3. Efficient Portfolios

Having the multi-period financial market set up in the previous section, we are ready to focus on
the main theme of the paper. In this section, we extend the general framework for portfolio theory
from Part I (Maier-Paape and Zhu 2018a) to the setting of multi-period financial markets. We derive
a characterization of the efficient frontier for trading-off risk and reward using admissible trading
strategies. Furthermore, we also discuss the relationship between points on this efficient frontier
and their corresponding trading strategies. We do so using the modular approach alluded to in the
introduction. The general portfolio/trading strategy trade-off problem is considered in the light of
the interaction among four related modules. While we already discussed Blocks (a) (multi-period
market) and (b) (trading strategies) in the last section, we now want to concentrate on Blocks
(c) (risk and utility function) (performance criteria; see Section 3.1) and (d) (the optimization problem)
(including discussion of efficient frontier and efficient portfolios; see Sections 3.2, 3.3 and 3.4).

3.1. Performance Criteria

In Part I (Maier-Paape and Zhu 2018a), we chose to introduce risk and utility functions to measure
performance criteria in an axiomatic way. This is not necessary here. Indeed, for our modular portfolio
theory, it suffices to assume the risk functions to be (closed) proper convex and the utility function to
be (closed) proper concave. Clearly, this is more general than often used assumptions like for instance
positive homogeneous risk functions.

One reason to choose a multi-period market model over a one-period market model could be
the possibility to involve complex trading strategies. Another and possibly more important reason
could be path-dependent risk measures, which cannot be directly used on a one-period market.
One well-known path-dependent risk measure is the drawdown, which can be defined in different
ways and different variants.

Definition 9 (Absolute/relative drawdown process). Assume we have a model for a wealth process
W := (Wn)0≤n≤N ∈ L2(N), e.g., W =W(X) for some trading strategy X and a multi-period market model S
(see Definitions 3 and 4). The absolute drawdown process Dabs = ((Dabs)1, . . . , (Dabs)N) is defined by

(Dabs)n(W) := max
0≤`≤n

{W`} −Wn ≥ 0, (23)

for n = 0, 1, . . . , N. The relative drawdown process Drel = ((Drel)1, . . . , (Drel)N) is defined for positive
wealth processes (e.g., when using admissible trading strategies) by

(Drel)n(W) :=
(Dabs)n(W)

max
0≤`≤n

{W`}
= 1− Wn

max
0≤`≤n

{W`}
= 1− min

0≤`≤n

{
Wn

W`

}
∈ [0, 1), (24)

for n = 0, 1, . . . , N. Both Dabs and Drel are stochastic processes and no risk measures up to now.

Chekhlov et al. (2003, 2005) studied the absolute drawdown for a simple trading strategy
and a finite probability space. The risk measure they defined is called conditional drawdown
at risk (CDaR) and can be seen as a conditional value at risk of the absolute drawdown process.
Later, Zabarankin et al. (2014) proposed using the absolute drawdown but this time on a rolling frame
of size τ ∈ N, i.e., they use

(Dabs,τ)n(W) := max
nτ≤`≤n

{W`} −Wn
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for n = 1, . . . , N, where nτ := max{1, n− τ}. Again, they used the concept of the conditional value
at risk.

Goldberg and Mahmoud (2017) defined the so-called conditional expected Drawdown (CED),
which is similarly defined as CDaR. The CED is the conditional value at risk of the maximum absolute
drawdown over all scenarios, where the market model is defined in a continuous time setting.

Maier-Paape and Zhu (2018b) studied the expected value of the logarithm of the relative
drawdown at time step N (called current drawdown) in a finite probability space. Therein, the
multi-period market is constructed using a one-period market model by K ∈ N iid drawings. We want
to use this variant, but in our more general setting with a multi-period market model and using a
general trading strategy generating function. It is defined as follows:

Definition 10 (Multi-path expected log drawdown). Let S ∈ L2(N;RM+1
>0 ) be the market model and v

be a trading strategy generating function with domain A ⊂ RM+1 and with wealth processW(v(x)), x ∈ A.
Then, the multi-path expected log drawdown is defined by

ρln : A→ [0, ∞], x 7→
{

E [− ln (1− (Drel)N(W(v(x))))], if v(x) is admissible (cf. Definition 5),

∞, otherwise.

Remark 5. Assuming the range of S is bounded (which is reasonable for real markets) and the trading strategy
generating function v is continuous as a function from A to L2(N), then x 7→ W(v(x)) is continuous and,
therefore, so is ρln.

A reasonable utility function (corresponding to the drawdown in Definition 10) may have the form

u : A→ R, x 7→ E [WN(v(x))−W0]. (25)

Using the buy and hold strategy, we obtain

ubnh(x) := E [WN(vbnh(x))−W0] = E [SN − S0]
>x, (26)

which is linear. Another variant uses the terminal wealth relative (TWR), which, in our setting,
is defined by

TWR( f ) :=
N

∏
n=1

(
1 + T>n f

)
∈ L0(R>0), f ∈ Atwr (cf. Equation (22)),

with the rates of return T from Equation (19). Note that, because of Equation (20) in Example 2,
we have

TWR( f ) =
WN(vtwr( f ))

W0
, (27)

i.e., it is the quotient of end and start capital and the vtwr trading strategy is strongly related to the
variant used in Vince (2009). As a utility function for the TWR, we define

ulogTWR : RM+1 → [−∞, ∞], f 7→
{

E [ln (TWR( f ))], f ∈ Atwr,

−∞, f /∈ Atwr,
(28)

with Atwr from Equation (22). Inserting the above characterizations of TWR gives

ulogTWR( f ) = E [ln (WN(vtwr( f )))− ln (W0)] = E [ln (∏N
n=1 (1 + T>n f ))] = ∑N

n=1 E [ln (1 + T>n f )] (29)
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for f ∈ Atwr. A corresponding risk function would be the drawdown in Definition 10 with
v := vtwr. With

TWRb
a( f ) :=

b

∏
n=a

(
1 + T>n f

)
∈ L0(R>0), for 1 ≤ a ≤ b ≤ N, (30)

and using Equation (20), we get

ρln( f ) = E
[
− ln

(
min

0≤`≤N

{
WN(vtwr( f ))
W`(vtwr( f ))

})]
= E

[
− ln

(
min

{
1, min

1≤`≤N

{
TWRN

` ( f )
}})]

= E
[

max
{

0, max
1≤`≤N

{
− ln

(
TWRN

` ( f )
)}}]

.

(31)

for f ∈ Atwr (see also (Maier-Paape and Zhu 2018b, Definition 6 and Theorem 8)). Under reasonable
assumptions on the market, we show below (see Section 4) that ρln is proper convex and can therefore be
used as a risk function. Similarly, we find that ulogTWR is proper concave and use it as a utility function.

3.2. Optimization

At the core of our framework for the portfolio/trading strategy theory is an optimal trade-off
between the two competing performance criteria risk and reward. This subsection discusses two
related optimization problems: either minimizing the risk with a lower bound for the reward or
maximizing the reward with an upper bound for the risk under the setting below.

Setting 1. Assume we have the following:
(i) Multi-period market model S ∈ L2(N;RM+1

>0 ), M, N ∈ N (see Definition 2).
(ii) Trading strategy, which is defined by a given trading strategy generating function v : A →

L0(N − 1;RM+1) as in Definition 8 with non-empty and convex domain A ⊂ RM+1.
(iii) Utility function u : A→ R∪ {−∞}, which is assumed to be proper concave.
(iv) Risk function r : A→ R∪ {∞}, which is assumed to be proper convex.

We always assume that dom(u) ∩ dom(r) 6= ∅ holds, where dom(u) = {x ∈ A : u(x) > −∞} and
dom(r) = {x ∈ A : r(x) < ∞} are both convex sets.

Here, technically both u and r are defined on A. In practice, they are functions of the trading
strategy payoff, i.e., they depend on the trading strategy generating function v. Thus, the properties of
u and r in fact may require, e.g., continuity of v.

Problem 1. Assume we have given Setting 1. We are looking at the two following problems:
(a) Let β > 0 and µ ∈ R be fixed. The minimum risk optimization problem is defined by

min
x∈A

r(x) subject to u(x) ≥ µ, S>0 v1(x) = β. (MinR)

(b) Let β > 0 and r ∈ R be fixed. The maximum utility optimization problem is defined by

max
x∈A

u(x) subject to r(x) ≤ r, S>0 v1(x) = β. (MaxU)

Note that v1(x) represents the initial portfolio allocation at time t = 0 and thus by S>0 v1(x) = β

the initial investment size is fixed.
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3.3. Efficient Frontier

In this section, we define the efficient frontier related to Problem 1 and develop several helpful
characterizations of this frontier. This generalizes several results known for the one-period model
(see, e.g., Maier-Paape and Zhu (2018a)) to multi-period markets with trading strategy (see also
(Platen 2018, Section 2.4.2)).

Definition 11 (Risk utility space). Let Setting 1 be given. The sublevel and superlevel sets of r and u for
thresholds r, µ ∈ R are denoted by

Br,A(r) := {x ∈ A : r(x) ≤ r} ⊂ dom(r) and Bu,A(µ) := {x ∈ A : u(x) ≥ µ} ⊂ dom(u),

respectively. For its intersection, we write

Br,u,A(r, µ) := {x ∈ A : r(x) ≤ r and u(x) ≥ µ} = Br,A(r) ∩ Bu,A(µ) ⊂ A.

Then,
G(r, u; A) := {(r, µ) : Br,u,A(r, µ) 6= ∅} ⊂ R2 (32)

is the set of valid risk and utility levels in the risk utility space.

Remark 6. We need u and r to be upper and lower semi-continuous, respectively, where both functions,
in practice, should be defined on top of a trading strategy generating function v. Note that then it is reasonable
that v is continuous. Otherwise, it might be impossible for u and r to have these semi-continuity properties.

Remark 7. Instead of (Maier-Paape and Zhu 2018a, Assumption 4), which states that either Br,A(r) or
Bu,A(µ) is compact for all r, µ ∈ R, respectively, we here often require in the following that Br,u,A(r, µ) is
compact for all r, µ ∈ R, which is less, see Proposition 2 (b) in the following.

The following is an analog result to (Maier-Paape and Zhu 2018a, Proposition 7) and (Platen 2018,
Proposition 2.4.6).

Proposition 2 (Properties in risk utility space). Let Setting 1 be given. Then, the following holds true:
(a) r is closed proper convex if and only if Br,A(r) is closed for all r ∈ R.

u is closed proper concave if and only if Bu,A(µ) is closed for all µ ∈ R.
(b) Assume Bu,A(µ) and Br,A(r) are closed for all µ, r ∈ R. If either Bu,A(µ) is compact for all µ ∈ R or

Br,A(r) is compact for all r ∈ R, then Br,u,A(r, µ) is convex and compact for all r, µ ∈ R.
(c) G(r, u; A) is convex and (r, µ) ∈ G(r, u; A) implies that, for any k > 0, we have (r + k, µ) ∈ G(r, u; A)

and (r, µ− k) ∈ G(r, u; A).
(d) If Br,u,A(r, µ) is compact for all r, µ ∈ R, then G(r, u; A) is closed.

Proof. Proof of (a): Note that r is by definition closed proper convex, if it is proper convex and
moreover its epigraph epi(r) = {(x, s) ∈ A×R : r(x) ≤ s} is closed. Thus, the claim here follows
from a classical result from convex analysis, see (Rockafellar 1972, Theorem 7.1). The same holds true
for − u which gives the statement for u.

Proof of (b): The compactness of Br,u,A(r, µ) follows directly. The convexity of Br,u,A(r, µ) follows
from convexity of Br,A(r) and Bu,A(µ) (see (Rockafellar 1972, Theorem 4.6)).

Proof of (c): Clearly, (r, µ) ∈ G(r, u; A) implies directly from the definition that, for any k > 0,
we have (r + k, µ) ∈ G(r, u; A) and (r, µ− k) ∈ G(r, u; A). Furthermore, convexity of G(r, u; A) follows
directly from the convexity of r and the concavity of u.

Proof of (d): Let ((rn, µn))n∈N ⊂ G(r, u; A) be an arbitrary convergent sequence with (rn, µn)→
(r, µ) ∈ R2 as n→ ∞. Then, there exists a sequence (xn)n∈N ⊂ A with xn ∈ Br,u,A(rn, µn) ⊂ dom(u)∩
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dom(r), i.e., r(xn) ≤ rn and u(xn) ≥ µn. For all ε > 0, there exists n0 ∈ N such that rn < r + ε and
µn > µ− ε and, therefore, xn ∈ Br,u,A(r + ε, µ− ε) for all n ≥ n0. By assumption, Br,u,A(r + 1, µ− 1)
is compact. Then, there must be a convergent subsequence, w.l.o.g. the original sequence, with xn → x
as n → ∞ with x ∈ Br,u,A(r + 1, µ− 1). Moreover, compactness of Br,u,A(r + ε, µ− ε) yields that r
restricted to {x ∈ A : u(x) ≥ µ− ε} is lower semi-continuous (cf. (Rockafellar 1972, Theorem 7.1)).
Similarly, u restricted to {x ∈ A : r(x) ≤ r + ε} is upper semi-continuous. Thus, r(x) ≤ r + ε and
u(x) ≥ µ− ε follow for all ε > 0. For this, it must be x ∈ Br,u,A(r, µ) and, hence, (r, µ) ∈ G(r, u; A).

As in (Maier-Paape and Zhu 2018a, Definition 5), we define the efficient frontier.

Definition 12 (Efficient portfolio and efficient frontier). In the situation of Setting 1, we say an element
x ∈ A is called efficient provided that there does not exist any x′ ∈ A such that either[

r(x′) ≤ r(x) and u(x′) > u(x)
]

or
[
r(x′) < r(x) and u(x′) ≥ u(x)

]
.

We call set

Geff(r, u; A) :=
{
(r(x), u(x)) ∈ R2 : x ∈ A is efficient

}
⊂ G(r, u; A)

the efficient frontier.

An important property is that the efficient frontier lies on the boundary of the set of valid risk and
utility levels, which is shown next; see (Maier-Paape and Zhu 2018a, Theorem 3) for the one-period
case with finite probability space and also (Platen 2018, Theorem 2.4.8) for more details.

Theorem 2 (Properties of efficient frontier). Assume we are in the situation of Setting 1.
(a) The efficient frontier Geff(r, u; A) is located in the boundary of G(r, u; A) and has no vertical and no

horizontal line segments.
(b) If Br,u,A(r, µ) is compact for all r, µ ∈ R, then Geff(r, u; A) is non-empty and equals to the non-vertical

and non-horizontal part of the boundary of G(r, u; A), i.e.,

Geff(r, u; A) = {(r, µ) ∈ ∂G(r, u; A) : (r− k, µ), (r, µ + k) /∈ ∂G(r, u; A) ∀k > 0}, (33)

where ∂G(r, u; A) denotes the boundary of G(r, u; A) in R2.
(c) If B ⊂ A is convex, then Geff(r, u; A) ∩ G(r, u; B) ⊂ Geff(r, u; B).

Proof. For proof of (a) and (c), see the proof in (Maier-Paape and Zhu 2018a, Theorem 3). It remains to
prove (b) (see (Platen 2018, Theorem 2.4.8) for more details):

1. “⊂” follows from (a).
2. Show “⊃”: Let (r0, µ0) ∈ {(r, µ) ∈ ∂G(r, u; A) : (r− k, µ), (r, µ + k) /∈ ∂G(r, u; A) ∀k > 0} be

arbitrary. Then, since G(r, u; A) is closed by Proposition 2 (d), it has to be (r0, µ0) ∈ G(r, u; A).
Hence, there must exist an x0 ∈ A such that r(x0) ≤ r0 and u(x0) ≥ µ0. In addition, it must be
(r, µ) /∈ G(r, u; A) for all r ≤ r0 and µ ≥ µ0 with (r, µ) 6= (r0, µ0), because G(r, u; A) is convex
and unbounded from below and unbounded to the right by Proposition 2 (c). Consequently,
even r(x0) = r0 and u(x0) = µ0 must hold and x0 thus is efficient, i.e., x0 ∈ Geff(r, u; A).

3. Show Geff(r, u; A) 6= ∅: Because of Setting 1, we have dom(u) ∩ dom(r) 6= ∅, i.e., there exists
x1 ∈ dom(u) ∩ dom(r) and it is (r1, µ1) := (r(x1), u(x1)) ∈ G(r, u; A). Since r is convex and u is
concave, r is bounded below and u is bounded above on each compact set. The set Br,u,A(r1, µ1)

is compact by assumption. Hence, by definition of Br,u,A(r1, µ1), the function r on Br,u,A(r1, µ1) is
contained in say [r∗, r1] and the function u on Br,u,A(r1, µ1) is contained in say [µ1, µ∗]. Therefore,
the image of (r, u) restricted on Br,u,A(r1, µ1) is a subset of G(r, u; A) and ∅ 6= G(r, u; A) ∩ Q ⊂
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[r∗, r1]× [µ1, µ∗] for Q = {(r′, µ′) : r′ ≤ r1, µ′ ≥ µ1}, see Figure 1. Clearly, there must be a point
(r2, µ2) ∈ ∂G(r, u; A) ∩ Q such that (r2 − k, µ2) and (r2, µ + k) do not belong to G(r, u; A) for
all k > 0. Since G(r, u; A) is closed, by Equation (33), the point (r2, µ2) belongs to Geff(r, u; A),
i.e., Geff(r, u; A) 6= ∅.

µ∗

µ1

r1r∗

G(r, u; A) ∩Q

∂G(r, u; A)

r

µ

Figure 1. Illustration to show Geff(r, u; A) 6= ∅.

This completes the proof.

As indicated by the last theorem, the efficient frontier Geff(r, u; A) is not necessarily the whole
boundary of G(r, u; A). As a consequence, Geff(r, u; A) might be bounded. The corresponding bounds
are defined as follows.

Definition 13. In the situation of Setting 1, assume that Geff(r, u; A) is non-empty. Define the bounds for risk
and utility of efficient elements by

rmin := inf
(r,µ)∈Geff(r,u;A)

{r}, µmin := inf
(r,µ)∈Geff(r,u;A)

{µ}, (34a)

rmax := sup
(r,µ)∈Geff(r,u;A)

{r}, µmax := sup
(r,µ)∈Geff(r,u;A)

{µ}, (34b)

respectively.

The following alternative representation is similar as the one in (Maier-Paape and Zhu 2018a,
Proposition 9) for the one-period market (see also (Platen 2018, Lemma 2.4.10)).

Lemma 2 (Infima/Suprema of Geff(r, u; A)). Let Setting 1 be given and assume Br,u,A(r, µ) is compact for
all r, µ ∈ R, so that by Theorem 2 (b) in particular Geff(r, u; A) is non-empty. Then,

rmin = inf
x∈dom(u)∩dom(r)

{r(x)} < ∞,

µmax = sup
x∈dom(u)∩dom(r)

{u(x)} > −∞,

and, depending on rmin and µmax, we have

rmax =

 min
x∈Bu,A(µmax)

{r(x)}, if µmax < ∞ and Bu,A(µmax) ∩ dom(r) 6= ∅,

∞, otherwise.

µmin =

 max
x∈Br,A(rmin)

{u(x)}, if rmin > −∞ and Br,A(rmin) ∩ dom(u) 6= ∅,

−∞, otherwise,

If Br,A(r) is compact for all r ∈ R, then rmin > −∞ and Br,A(rmin) 6= ∅. If Bu,A(µ) is compact for all
µ ∈ R, then µmax < ∞ and Bu,A(µmax) 6= ∅.
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Proof. We define B := dom(u) ∩ dom(r). By assumption, B 6= ∅. Since the vertical part of ∂G(r, u; A),
if it exists, does not change the infimum in r, we get

rmin = inf
(r,µ)∈Geff(r,u;A)

{r} = inf
(r,µ)∈∂G(r,u;A)

{r} = inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈B
{r(x)} < ∞. (35)

Analogously, the horizontal part of ∂G(r, u; A), if it exists, does not change the supremum in µ

and therefore

µmax = sup
(r,µ)∈Geff(r,u;A)

{µ} = sup
(r,µ)∈∂G(r,u;A)

{µ} = sup
(r,µ)∈G(r,u;A)

{µ} = sup
x∈B
{u(x)} > −∞. (36)

We next show the properties of rmax and µmin. Since the properties of µmin can be shown similarly,
we only show it for rmax.

Firstly, assume that µmax < ∞ and Bu,A(µmax) ∩ dom(r) 6= ∅. Then, there exists x0 ∈ Bu,A(µmax)

such that r(x0) ∈ R. Of course, (r(x0), u(x0)) = (r(x0), µmax) is on the horizontal part of ∂G(r, u; A),
see Figure 2. By assumption, Geff(r, u; A) 6= ∅ and hence the set {(r, µmax) : r ∈ R} cannot be a
subset of G(r, u; A). Therefore, and since G(r, u; A) is closed by Proposition 2 (d), we obtain r∗ :=
min {r : (r, µmax) ∈ G(r, u; A)} > −∞. Using Equation (33), we get (r∗, µmax) ∈ Geff(r, u; A) yielding
an efficient portfolio x1 ∈ A with (r(x1), u(x1)) = (r∗, µmax). From Equation (34b), we conclude
rmax = r∗ = min {r(x) : x ∈ Bu,A(µmax)} and the assertion is proved.

µmax

r(x0)

G(r, u; A)

r

µ

Figure 2. Illustration for the proof of Lemma 2.

Now, assume that µmax = ∞ or Bu,A(µmax) ∩ dom(r) = ∅. In both cases, the supremum µmax of
the µ values of Geff(r, u; A) is not attained in the risk utility space. Since G(r, u; A) is closed and convex
by Proposition 2 (c) and (d), there cannot be a horizontal part of ∂G(r, u; A). In addition, Geff(r, u; A) 6=
∅ by Theorem 2 (b) and because of Equation (33) there is a sequence [(rn, µn)]n∈N ⊂ Geff(r, u; A) such
that µn → µmax as n → ∞, which is, w.l.o.g., strictly increasing in µn. Then, this sequence must be
strictly increasing in rn as well, otherwise, (rn, µn) would not belong to an efficient element in A.
If µmax = ∞, it then must be rmax = ∞ because G(r, u; A) is convex. If Bu,A(µmax) ∩ dom(r) = ∅
(and µmax < ∞) it must be rmax = ∞ as well, because otherwise, (r, µmax) ∈ ∂G(r, u; A) for all r > rmax

but (r, µmax) /∈ G(r, u; A), which contradicts that G(r, u; A) is closed.
It remains to show the result in the special situation when Br,A(r) is compact for all r ∈ R.

Then, r is lower semi-continuous (see, e.g., (Rockafellar 1972, Theorem 4.6 and 7.1)). Let x′ ∈
dom(r) be arbitrary. Since Br,A(r(x′)) is compact, the minimum of r is attained in Br,A(r(x′))
(see, e.g., (Barbu and Precupanu 2012, Theorem 2.8)).

The case when Bu,A(µ) is compact again can be shown similarly.

Related to the bounds, we define next all relevant risk and utility levels of the efficient frontier.

Definition 14. For Setting 1, we define the projection of Geff(r, u; A) to the r- and µ-axis by

I :=
{

r ∈ R : ∃ µ ∈ R s.t. (r, µ) ∈ Geff(r, u; A)
}

,

J :=
{

µ ∈ R : ∃ r ∈ R s.t. (r, µ) ∈ Geff(r, u; A)
}

,

respectively.
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From Lemma 2, we already obtain the possibilities for the intervals I and J, see (Maier-Paape and
Zhu 2018a, Corollary 2) for a related result in the one-period case.

Corollary 1. In the situation of Lemma 2, we have rmin = inf(I), rmax = sup(I), µmin = inf(J) and
µmax = sup(J). Furthermore, exactly one of the following situations holds true depending on the situation:
• I = [rmin, rmax] and J = [µmin, µmax];
• I = [rmin, ∞) and J = [µmin, µmax), where µmax = ∞ is possible;
• I = (rmin, rmax] and J = (−∞, µmax], where rmin = −∞ is possible; or
• I = (rmin, ∞) and J = (−∞, µmax), where µmax = ∞ and/or rmin = −∞ is possible.

In particular, I and J are non-empty intervals. Figure 3 shows some examples.

Proof. This is a direct consequence from Lemma 2.

µmax

µmin

rmaxrmin

G(r, u; A)

Geff(r, u; A)

r

µ

(a)
I = [rmin, rmax]

J = [µmin, µmax]

µmax

µmin

rmin

G(r, u; A)

Geff(r, u; A)

r

µ

(b)
I = [rmin, ∞)

J = [µmin, µmax)

µmax

rmaxrmin

G(r, u; A)

Geff(r, u; A)

r

µ

(c)
I = (rmin, rmax]

J = (−∞, µmax]

G(r, u; A)

Geff(r, u; A)

r

µ

(d)
I = (−∞, ∞)

J = (−∞, ∞)

Figure 3. Illustration of efficient frontiers for different cases of the intervals I and J.

In Definition 14, we define all valid r and µ values (separated from each other and not the
combinations of them) of the efficient frontier Geff(r, u; A), which must be on the boundary of G(r, u; A)

according to Theorem 2. Within the valid r and µ area, this boundary is defined by the two functions

ν : I → R, r 7→ sup
(r,µ)∈G(r,u;A)

{µ} = sup
x∈Br,A(r)

{u(x)}, (37a)

γ : J → R, µ 7→ inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈Bu,A(µ)

{r(x)}, (37b)

where I and J are from Definition 14. Next, we show some important properties for both functions,
see (Maier-Paape and Zhu 2018a, Proposition 8) for the one-period case and see also (Platen 2018,
Proposition 2.4.15).

Proposition 3 (Functions related to efficient frontier). In the situation of Setting 1, assume that Br,u,A(r, µ)

is compact for all r, µ ∈ R. Then, the functions ν : I → R and γ : J → R from Equation (37) are well-defined
and continuous. Furthermore, we have

ν(r) = max
(r,µ)∈G(r,u;A)

{µ} = max
x∈Br,A(r)

{u(x)}, for all r ∈ I, (38a)

γ(µ) = min
(r,µ)∈G(r,u;A)

{r} = min
x∈Bu,A(µ)

{r(x)}, for all µ ∈ J, (38b)

while ν is increasing and concave and γ is increasing and convex.

Proof. We show only the properties of γ. The proof for ν can be done similarly.
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Let µ ∈ J be arbitrary. From µmax in Lemma 2 and Definition 14, we know that there must
exist x∗ ∈ dom(u) ∩ dom(r) (note that dom(u) ∩ dom(r) 6= ∅) such that µ ≤ u(x∗) ≤ µmax and
r∗ := r(x∗) ∈ R. We then have x∗ ∈ Br,u,A(r∗, µ) 6= ∅ and

γ(µ) = inf
(r,µ)∈G(r,u;A)

{r} = inf
x∈Bu,A(µ)

{r(x)} = inf
x∈Br,u,A(r∗ ,µ)

{r(x)}. (39)

The function r restricted to the compact set Br,u,A(r∗, µ) ⊂ dom(r) must have closed (even
compact) sublevel sets and hence is lower semi-continuous on Br,u,A(r∗, µ) (see (Rockafellar 1972,
Theorem 7.1)). Consequently the infimum in Equation (39) becomes a minimum. Hence, Equation (38b)
follows and γ is well-defined. The function γ is increasing which directly follows from the definition
in Equation (37b) because Bu,A(µ1) ⊃ Bu,A(µ2) for all µ1 < µ2.

Obviously, (γ(µ), µ) ∈ ∂G(r, u; A) for all µ ∈ J. Hence, convexity of γ follows from
convexity of G(r, u; A). Then, we already know that γ is continuous in the interior of the domain J
(see (Rockafellar 1972, Theorem 10.1)). Closedness of G(r, u; A) (see Proposition 2 (d)), together with
the possibilities for I and J (see Corollary 1), implies closedness of the epigraph of γ. Therefore, γ

must be lower semi-continuous (see (Rockafellar 1972, Theorem 7.1)). Since γ is convex, it must even
be continuous on J.

An important consequence of the last result is the representation of Geff(r, u; A) as graph of ν and
(after interchanging coordinates) of γ, see (Maier-Paape and Zhu 2018a, Theorem 4) for the one-period
case and also (Platen 2018, Corollary 2.4.16).

Corollary 2 (Parametrization of efficient frontier as graph). Let Setting 1 be given and assume that
Br,u,A(r, µ) is compact for all r, µ ∈ R. Then, the efficient frontier has the representation

Geff(r, u; A) = {(r, ν(r)) : r ∈ I} = {(γ(µ), µ) : µ ∈ J}. (40)

Moreover, ν and γ are strictly increasing and ν = γ−1, i.e., ν(γ(µ)) = µ for all µ ∈ J and γ(ν(r)) = r
for all r ∈ I.

Proof. Theorem 2 (b) (see Equation (33)) and the definitions of I and J (see Definition 14) imply
Geff(r, u; A) = ∂G(r, u; A) ∩ (I × J). Because of Proposition 2 (c) together with Equation (33), there
is exactly one element (r∗(µ), µ) ∈ Geff(r, u; A) for each fixed µ ∈ J and there is exactly one element
(r, µ∗(r)) ∈ Geff(r, u; A) for each fixed r ∈ I. Obviously, it must be r∗(µ) = γ(µ) and µ∗(r) = ν(r).
Uniqueness of the elements implies Equation (40).

Because of Equation (40) it directly follows that ν = γ−1. Hence, ν and γ are bijective and, because
of Proposition 3, increasing. Consequently, they must even be strictly increasing.

This gives many reasonable results which we can use to show solvability of the two optimization
problems in Equations (MinR) and (MaxU).

3.4. Efficient Portfolios

This final subsection links points on the efficient frontier to their corresponding portfolio/trading
strategy. The first result gives the existence of solutions (see (Platen 2018, Theorem 2.4.19) for
similar results). Note that from now on we formally “hide” the side condition S>0 v1(x) = β of
Equations (MinR) and (MaxU) in the set A.

Theorem 3 (Existence for Problem 1). Let Setting 1 and β > 0 be given and assume A ⊂ {x ∈ RM+1 :
S>0 v1(x) = β} is non-empty and convex. Suppose Br,u,A(r, µ) is compact for all r, µ ∈ R and let I, J ⊂ R be
the intervals from Definition 14.
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(a) For each µ ∈ J, there exists an efficient element xµ ∈ A with u(xµ) = µ. The element xµ also solves
Equation (MinR).

(b) For each r ∈ I, there exists an efficient element yr ∈ A with r(yr) = r. The element yr also solves
Equation (MaxU).

(c) Each solution of Equation (MinR) for µ ∈ J and each solution of Equation (MaxU) for r ∈ I is efficient.
Moreover, each efficient element x∗ ∈ A solves Equation (MinR) for µ = u(x∗) and Equation (MaxU)
for r = r(x∗).

Proof. Statements (a) and (b) follow from Corollary 2. For instance, by Equation (40), for every r ∈ I,
there exists some yr ∈ A with r(yr) = r and u(yr) = ν(r). Clearly, S>0 v1(yr) = β by assumption on A.
Using Equation (38a), we conclude

u(yr) = ν(r) = max
x∈A
{u(x) : r(x) ≤ r}

yielding that yr solves Equation (MaxU) and, moreover, each efficient element x∗ ∈ A with risk value
r solves Equation (MaxU) as well. Conversely, any (other) solution y′r of Equation (MaxU) for r ∈ I
satisfies u(y′r) = ν(r) = u(yr) and r(y′r) ≤ r. Since yr is efficient, r(y′r) < r is not possible, i.e., we must
have r(y′r) = r. Therefore, y′r is efficient as well. The claim for µ ∈ J follows similarly.

For uniqueness, more assumptions are required. If either u is strictly concave or r is strictly convex,
the uniqueness is guaranteed, see (Maier-Paape and Zhu 2018a, Theorem 5) for the one-period case
with finite probability space and also (Platen 2018, Theorem 2.4.20) for a similar result.

Theorem 4 (Uniqueness and efficient portfolio path). Let the situation in Theorem 3 be given. Furthermore,
assume that either u is strictly concave in dom(u) or r is strictly convex in dom(r). Then, the following holds.
(a) For each µ ∈ J, there is exactly one efficient element xµ ∈ A with u(xµ) = µ, which in addition is the

unique solution of Equation (MinR).
Furthermore, the mapping γ̃ : J → A, µ 7→ xµ is continuous.
For each µ /∈ J and µ ≥ µmax = sup J, there does not exist any solution of Equation (MinR).
If µmin > −∞, then for µ /∈ J and µ ≤ µmin (i.e., µ < µmin, see Corollary 1) the solution of
Equation (MinR) is not necessarily unique and can be an element in A which is not efficient.

(b) For each r ∈ I, there is exactly one efficient element yr ∈ A with r(yr) = r, which in addition is the
unique solution of Equation (MaxU).
Furthermore, the mapping ν̃ : I → A, r 7→ yr is continuous.
For each r /∈ I and r ≤ rmin = inf I, there does not exist any solution of Equation (MaxU).
If rmax < ∞, then for r /∈ I and r ≥ rmax (i.e., r > rmax) the solution of Equation (MaxU) is not
necessarily unique and can be an element in A, which is not efficient.

Proof. The existence of efficient elements is already guaranteed by Theorem 3. Let (r∗, µ∗) ∈
Geff(r, u; A) be arbitrary. The uniqueness of an efficient element x∗ ∈ A with (r(x∗), u(x∗)) = (r∗, µ∗)

follows from strict convexity of r or strict concavity of u, respectively, which we show next: Assume
the solution x∗ is not unique. Then, there is an efficient element x′ ∈ A with x′ 6= x∗ and
(r(x′), u(x′)) = (r∗, µ∗) = (r(x∗), u(x∗)). For x0 := (x∗ + x′)/2 we have

r(x0) ≤
1
2
r(x∗) +

1
2
r(x′) = r∗ and u(x0) ≥

1
2
u(x∗) +

1
2
u(x′) = µ∗. (41)

Since either r is strictly convex or u is strictly concave, one of the two inequalities in Equation (41)
must be strict, which contradicts (r∗, µ∗) ∈ Geff(r, u; A). Hence, the efficient portfolio for (r∗, µ∗) ∈
Geff(r, u; A) is unique.

Furthermore, γ̃ and ν̃ are well-defined. Next, we show continuity. We only show this for γ̃

(continuity for ν̃ can be shown similarly). Suppose γ̃ is discontinuous at some point µ0 ∈ J. Then,
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there exist c > 0 and a sequence (µn)n∈N ⊂ J with µn → µ0 as n → ∞ and ‖γ̃(µn) − γ̃(µ0)‖ ≥
c for all n ∈ N. Since γ is continuous, see Proposition 3, we obtain that (r(γ̃(µn)), u(γ̃(µn))) =

(γ(µn), µn) → (γ(µ0), µ0) as n → ∞. Hence, for all ε > 0 there exists n0(ε) ∈ N such that γ̃(µn) ∈
Br,u,A(γ(µ0) + ε, µ0 − ε) for all n ≥ n0(ε). Since, e.g., Br,u,A(γ(µ0) + 1, µ0 − 1) is compact, there exists
a convergent subsequence of (γ̃(µn))n∈N with limit x∗ ∈ Br,u,A(γ(µ0) + 1, µ0 − 1). Using again lower
semi-continuity of r restricted to Br,u,A(γ(µ0) + 1, µ0 − 1) and upper semi-continuity of u restricted
to Br,u,A(γ(µ0) + 1, µ0 − 1) as in the proof of Proposition 2 (d) gives x∗ ∈ Br,u,A(γ(µ0), µ0). Then,
x∗ must be efficient, because (γ(µ0), µ0) ∈ Geff(r, u; A), and we have (r(x∗), u(x∗)) = (γ(µ0), µ0),
i.e., x∗ = γ̃(µ0). This is a contradiction, because it must be ‖x∗ − γ̃(µ0)‖ ≥ c > 0. Consequently, γ̃

is continuous.
The situations where µ /∈ J or r /∈ I follow easily: For instance, in case µ ≥ µmax and µ /∈ J, there

is no portfolio x ∈ A such that u(x) ≥ µ, see Equation (36). In the case −∞ < µ < µmin, there is
an efficient element (which also solves Equation (MinR)), namely γ̃(µmin), but there might also be a
solution of Equation (MinR), e.g., x′ ∈ A, such that r(x′) = r(γ̃(µmin)) and µ ≤ u(x′) < u(γ̃(µmin)) =

µmin. However, this element x′ is not efficient.

Remark 8 (Connection to (Maier-Paape and Zhu 2018a, Theorem 5)). In (Maier-Paape and Zhu 2018a,
Theorem 5), a related result is shown for the one-period case N = 1 for a finite probability space. The utility
function therein is of the form u(x) = E [u(S>1 x)], for some concave function u : R→ R∪ {−∞}, and the risk
function r must be non-negative, convex and independent of x0. Additional assumptions are that Br,A(r) is
compact for all r ∈ R or Bu,A(µ) is compact for all µ ∈ R. This implies that Br,u,A(r, µ) is compact for all
r, µ ∈ R (cf. Proposition 2 (b)). Since (Maier-Paape and Zhu 2018a, Theorem 5) assumes moreover unit initial
cost (i.e., S>0 x = 1), this already gives all assumptions for Theorem 3 in the case that v1(x) := x for all x ∈ A.

However, the result in (Maier-Paape and Zhu 2018a, Theorem 5) is also a uniqueness result and therefore
requires additional assumptions on u and/or r. For this, either u must be strictly concave or r must be strictly
convex in the risky part (note that (c3) in (Maier-Paape and Zhu 2018a, Theorem 5) implies that r2 is strictly
convex in the risky part). (Maier-Paape and Zhu 2018a, Theorem 5) then gives uniqueness.

Since Theorems 3 and 4 with v1(x) = x are restricted to the set Aβ := {x ∈ RM+1 : S>0 x = β},
e.g., for β = 1, this additional assumption on r (being strictly convex in the risky part) implies, that the function
r restricted to the set Aβ ∩ A is strictly convex (and not only strictly convex on the risky part). Hence, the
assumptions of (Maier-Paape and Zhu 2018a, Theorem 5) are stronger than the assumptions in Theorem 4 and
give a similar result. Therefore, Theorem 4 is a full generalization of (Maier-Paape and Zhu 2018a, Theorem 5).

Note that the assumption in (Maier-Paape and Zhu 2018a, Theorem 5) that u is strictly concave, is not
enough to obtain strict concavity of u in the setting of (Maier-Paape and Zhu 2018a, Theorem 5). Hence,
Assumption (c1) in (Maier-Paape and Zhu 2018a, Theorem 5) may not be enough to obtain uniqueness
(other than falsely stated there). However, e.g., if S has no nontrivial risk-free portfolio, then u(x) = E [u(S>1 x)]
is strictly concave (see (Maier-Paape and Zhu 2018a, Proposition 6)), and uniqueness follows.

4. Application

Let us focus on Example 2 with the trading strategy generating function vtwr which ensures that
the portfolio weights are constant after each time step. Our admissible set is given by

Atwr =
{

f ∈ RM+1 : 1 + T>n f > 0 a.s. for n = 1, . . . , N
}

, (42)

see Equation (22).
Looking at Problem 1 for some special risk and utility functions, we also need to ensure the second

constraint. Using Equation (21), this constraint reads

S>0 (vtwr)1( f ) =W0

M

∑
i=0

fi = β.
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The risk and utility functions we are looking at in the following are independent onW0. Hence,
w.l.o.g., we may setW0 := 1. The set of all vectors fulfilling the second constraint in Problem 1 is then
given by

Aβ :=
{

f ∈ RM+1 : S>0 (vtwr)1( f ) = β
}
=

{
f ∈ RM+1 :

M

∑
i=0

fi = β

}
. (43)

Lemma 3 (utility function; logarithm of TWR). Let the multi-period market model S be given and assume
that Tn ∈ L1(Ω,Fn, P;RM+1) for n = 1, . . . , N, where Tn is from Equation (19) in Example 2. Define
ulogTWR as in Equation (28), i.e.,

ulogTWR( f ) = E [ln (TWR( f ))] =
N

∑
n=1

E
[
ln
(

1 + T>n f
)]

(44)

for f ∈ Atwr and ulogTWR( f ) = −∞ for all f /∈ Atwr.
Then, ulogTWR is proper concave and ulogTWR < ∞. Furthermore, if S has no nontrivial risk-free trading

strategy, then ulogTWR restricted to dom(ulogTWR) ∩ Aβ, with Aβ from Equation (43), is strictly concave and
BulogTWR,Aβ

(µ) is bounded for all µ ∈ R and all β > 0.

Proof. Since ln(1 + s) ≤ s for all s > −1 and Tn has a finite expectation by assumption, we have for
all f ∈ Atwr that

ulogTWR( f ) =
N

∑
n=1

E
[
ln
(

1 + T>n f
)]
≤

N

∑
n=1

E [Tn]
> f < ∞ (45)

Of course, we also have ulogTWR( f ) = −∞ < ∞ for all f /∈ Atwr.
The mapping f 7→ ln (1 + Tn(ω)> f ) is concave for each ω ∈ Ω. Because of linearity and

monotonicity of the expectation, the mapping f 7→ E [ln (1 + T>n f )] is concave. The same holds true
for ulogTWR. Obviously, 0 ∈ dom(ulogTWR) because ulogTWR(0) = 0 and therefore we obtain that the
function ulogTWR is proper concave.

Now, assume that S has no nontrivial risk-free trading strategy. Because of Theorem 1 (d),W is
injective in the risky part. Using the definition of vtwr in Equation (21), we obtain thatW(vtwr( f )) =
W(vtwr( f ′)) a.s. for f , f ′ ∈ Aβ implies f̂ = f̂ ′. Since f , f ′ ∈ Aβ, it even must be f = f ′ ifW(vtwr( f )) =
W(vtwr( f ′)) a.s.

Consequently, for arbitrary f , f ′ ∈ dom(ulogTWR) ∩ Aβ with f 6= f ′ there exists n ∈ {1, . . . , N}
such that T>n f 6≡ T>n f ′, i.e., T>n f 6= T>n f ′ with positive probability (see Equation (20)). Therefore, for
all λ ∈ (0, 1), we obtain from strict concavity of ln that

P
(

ln
(

1 + T>n
(
λ f + (1− λ) f ′

))
> λ ln

(
1 + T>n f

)
+ (1− λ) ln

(
1 + T>n f ′

))
> 0.

It follows that

E
[
ln
(

1 + T>n
(
λ f + (1− λ) f ′

))]
> E

[
λ ln

(
1 + T>n f

)
+ (1− λ) ln

(
1 + T>n f ′

)]
.

This implies strict concavity for at least one summand of ulogTWR which directly gives strict
concavity of ulogTWR restricted to dom(ulogTWR) ∩ Aβ.

The boundedness of BulogTWR,Aβ
(µ) ⊂ dom(ulogTWR)∩ Aβ directly follows from Lemma 1, because

dom(ulogTWR) ∩ Aβ ⊂ Atwr ∩ Aβ is admissible for the trading strategy generating function vtwr

(see Definition 8 and Equation (20)) and the corresponding matrix B in Lemma 1 for this example
is a diagonal matrix with positive entries bii = W0/Si

0 > 0, for i = 0, 1, . . . , M, on the diagonal
(see Equation (21)).
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Lemma 4 (risk function; logarithm of TWR). As in Lemma 3, let the multi-period market model S be given
and assume that Tn ∈ L1(Ω,Fn, P;RM+1) for n = 1, . . . , N, where Tn is from Equation (19) in Example 2.
Define the log drawdown function ρln (see Equation (31)), by

ρln( f ) = E
[

max
{

0, max
1≤`≤N

{
− ln

(
TWRN

` ( f )
)}}]

= E

[
max

{
0, max

1≤`≤N

{
−

N

∑
n=`

ln
(

1 + T>n f
)}}]

,

for f ∈ Atwr and ρln( f ) = ∞ for all f /∈ Atwr. Then, ρln is proper convex, ρln ≥ 0 and dom(ρln) =

dom(ulogTWR). If S has no nontrivial risk-free trading strategy, then Bρln,Aβ
(r) is bounded for all r ∈ R and

all β > 0.

Proof. The property ρln ≥ 0 is obvious. Since f 7→ − ln (1 + T>n f ) is convex and the maximum of
convex functions again is convex, it follows that ρln is convex as well. In addition, ρln(0) = 0 and
therefore 0 ∈ dom(ρln). Hence, ρln is proper convex.

Inserting the known characterizations of ulogTWR and ρln from above and using the properties of
the logarithm yield for f ∈ Atwr that

ulogTWR( f ) + ρln( f ) = E

[
N

∑
n=1

ln
(

1 + T>n f
)
+ max

{
0, max

1≤`≤N

{
−

N

∑
n=`

ln
(

1 + T>n f
)}}]

= E

[
max

{
0, max

1≤`≤N

{
`

∑
n=1

ln
(

1 + T>n f
)}}]

≤ E

[
N

∑
n=1

∣∣∣T>n f
∣∣∣] < ∞,

because Tn ∈ L1(Ω,Fn, P;RM+1). Of course, we directly see from this that we also have ulogTWR( f ) +
ρln( f ) ≥ 0. Hence, whenever ulogTWR( f ) ∈ R, it must be ρln( f ) ∈ R and vice versa. It directly follows
that dom(ρln) = dom(ulogTWR). As in the proof of Lemma 3, the boundedness of Bρln,Aβ

(r) ⊂ Aβ

directly follows from Lemma 1.

It is worth noting that ρln may not be strictly convex.

Remark 9 (Connection to Maier-Paape and Zhu (2018b)). Maier-Paape and Zhu (2018b) proved properties
such as convexity for risk functions involving the relative drawdown but for a one-period market model.
The function rcur discussed therein corresponds to ρln from Lemma 4 in the case we have a finite and discrete
market model where the rates of returns are iid.

Assume we want to solve an optimization such as Equation (MinR) or Equation (MaxU) using
the utility and risk functions from Lemmas 3 and 4, respectively, and the corresponding trading
strategy generating function vtwr. All requirements for Setting 1 are then fulfilled (note that 0 ∈
dom(ulogTWR) = dom(ρln) 6= ∅). To be able to apply Theorem 3 or Theorem 4, we need that
Bρln,ulogTWR,Aβ

(r, µ) is compact for all r, µ ∈ R. From Lemma 3, we obtain boundedness in case S
has no nontrivial risk-free trading strategy. However, in general, it is not clear whether or not the
superlevel sets of ulogTWR are closed. Moreover, we do not know whether dom(ρln) = Atwr holds
true. Before we discuss the solutions of the corresponding optimization problems in Equations (MinR)
and (MaxU), we firstly need to take care of these assumptions. We start with a more specific situation
where we can ensure the compactness of Bρln,ulogTWR,Aβ

(r, µ).
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Remark 10 (ρln and ulogTWR in finite probability space). Assume the probability space is finite, e.g., with
Ω := {ω1, . . . , ωK} for some fixed K ∈ N and pk := P ({ωk}) > 0 for all k = 1, . . . , K. Then, Atwr in
Equation (42) becomes

Atwr =
{

f ∈ RM+1 : 1 + Tn(ωk)
> f > 0 for n = 1, . . . , N and k = 1, . . . , K

}
, (46)

where Tn(ωk) ∈ RM+1 for each n = 1, . . . , N and k = 1, . . . , K is a vector fixed for a given market (see
Equation (19)). Clearly, 0 ∈ Atwr. Furthermore, ulogTWR in Equation (44) becomes

ulogTWR( f ) =
N

∑
n=1

[
K

∑
k=1

pk ln
(

1 + Tn(ωk)
> f
)]

(47)

for f ∈ Atwr. Then, we obviously get dom(ulogTWR) = Atwr because by definition ulogTWR
∣∣

Ac
twr

= −∞.
Now, let ( f m)m∈N ⊂ Atwr be a sequence such that f m → f ∗ ∈ ∂Atwr as m→ ∞. Then, there exist n ∈

{1, . . . , N} and k ∈ {1, . . . , K} such that 1 + Tn(ωk)
> f ∗ = 0. In this case, we obtain ulogTWR( f m)→ −∞

as m → ∞. From this we, can conclude that Atwr is open and non-empty and, moreover, by Equation (47),
ulogTWR

∣∣
Atwr

is continuous. In particular, the superlevel sets of ulogTWR are closed. Consequently, we also must
have that BulogTWR,A(µ) is closed for all closed sets A and all µ ∈ R.

Analogously, we obtain dom(ρln) = Atwr = dom(ulogTWR) where the sublevel sets of ρln and also
Bρln,A(r) must be closed for all closed sets A and all r ∈ R. Then, Proposition 2 (a) and Lemmas 3 and 4 yield
that ulogTWR is closed proper concave and ρln is closed proper convex.

In general, however, when Ω is not finite ulogTWR might not be closed proper concave and ρln
might not be closed proper convex. Since we assume these properties in the existence and uniqueness
theorem (see Theorem 5 below), we make some more remarks to have a better understanding also in
the general situation.

Remark 11 (Notes on dom(ulogTWR) and Atwr).

(a) Clearly dom(ulogTWR) ⊂ Atwr.
(b) If f ∈ Atwr, then, using Equation (20), it follows thatWn(vtwr( f )) = W0 ∏n

k=1 (1 + T>k f ) > 0 a.s.
Of course, this is trivial and directly follows from the definition of Atwr in Equation (42). In fact, Atwr is
defined as the admissible set of vtwr (see Example 2).

(c) We have

dom(ulogTWR) =
{

f ∈ RM+1 : E
[
ln
(

1 + T>n f
)]

> −∞ for all n = 1, . . . , N
}

=

{
f ∈ RM+1 :

∫
Ω

ln
(

1 + Tn(ω)> f
)

d P(ω) > −∞ for all n = 1, . . . , N
}

.

Proof: The second equality holds by definition. For the first one, the relation “⊃” is obvious. Let now
f ∈ dom(ulogTWR) ⊂ Atwr be arbitrary. Since ulogTWR( f ) < ∞ by Lemma 3 we have ulogTWR( f ) ∈
R. In addition, E [ln (1 + T>n f )] < ∞ holds for n = 1, . . . , N (cf. Equation (45)). Hence, it must be
E [ln (1 + T>n f )] > −∞ for n = 1, . . . , N, which shows the relation “⊂” and therefore the equality.

(d) Define

A∗twr :=
{

f ∈ RM+1 : there exists ε > 0 such that 1 + T>n f ≥ ε a.s. for all n = 1, . . . , N
}

.

Then, we obtain A∗twr ⊂ dom(ulogTWR).
Proof: Let f ∈ A∗twr be arbitrary. Then, ln (1 + T>n f ) ≥ ln(ε) > −∞ a.s. This, of course,
gives E [ln (1 + T>n f )] ≥ ln(ε) > −∞.
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Now, we can show the result for the optimization problems in Equations (MinR) and (MaxU)
when using r := ρln and u := ulogTWR.

Theorem 5 (Existence and uniqueness for ulogTWR and ρln). Assume the multi-period market model S has
no nontrivial risk-free trading strategy and Tn ∈ L1(Ω,Fn, P;RM+1) for n = 1, . . . , N, where Tn is from
Equation (19) in Example 2. Let the trading strategy generating function be given by vtwr (constant weights)
from Example 2, with admissible set Atwr as in Equation (42). Assume that ρln and ulogTWR restricted to
some convex and non-empty set A ⊂ dom(ulogTWR) ∩ Aβ are closed proper convex and closed proper concave,
respectively. We define the minimum log drawdown optimization problem for fixed µ ∈ R by

min
f∈A

ρln( f ) subject to ulogTWR( f ) ≥ µ, S>0 (vtwr)1( f ) = β. (MinDD)

We define the maximum log TWR optimization problem for fixed r ∈ R by

max
f∈A

ulogTWR( f ) subject to ρln( f ) ≤ r, S>0 (vtwr)1( f ) = β. (MaxTWR)

The following holds true:

(a) (Growth optimal trading strategy) The problem in Equation (MaxTWR) without risk restriction, i.e.,

max
f∈A

ulogTWR( f ) subject to S>0 (vtwr)1( f ) = β (48)

has a unique solution f ∗max ∈ A. Moreover, we have µmax = ulogTWR( f ∗max) ∈ R and rmax =

ρln( f ∗max) ∈ R≥0, where µmax and rmax represent the suprema of Geff(r, u; A) from Definition 13 for
r = ρln and u = ulogTWR.

(b) (Risk minimal trading strategy) The problem in Equation (MinDD) without utility restriction, i.e.,

min
f∈A

ρln( f ) subject to S>0 (vtwr)1( f ) = β, (49)

has a finite minimum risk value rmin ∈ R≥0. Furthermore, among all f ∈ A which solve Equation (49),
there is a unique element f ∗min ∈ A with maximal ulogTWR value. In particular, rmin = ρln( f ∗min) ∈
R≥0, but moreover µmin = ulogTWR( f ∗min) ∈ R hold true, where rmin and µmin represent the infima of
Geff(r, u; A) from Definition 13 for r = ρln and u = ulogTWR.

(c) For each µ ∈ J = [µmin, µmax] 6= ∅, there is exactly one efficient element f ∗µ ∈ A with ulogTWR( f ∗µ ) =
µ, which is also the unique solution of Equation (MinDD). The mapping γ̃ : J → A, µ 7→ f ∗µ is
continuous.

(d) For each r ∈ I = [rmin, rmax] 6= ∅, there is exactly one efficient element f̃ ∗r ∈ A with ρln( f̃ ∗r ) = r,
which is also the unique solution of Equation (MaxTWR). The mapping ν̃ : I → A, µ 7→ f̃ ∗µ is
continuous.

Proof. By assumption, ulogTWR and ρln, both restricted to A, are closed proper concave and closed
proper convex, respectively. Using Lemma 3, we in addition obtain that ulogTWR is strictly concave in
the set A ⊂ dom(ulogTWR)∩ Aβ. Moreover, BulogTWR,A(µ) = BulogTWR,Aβ

(µ)∩ A is compact for all µ ∈ R
because of Lemma 3 and Proposition 2 (a). Analogously, Bρln,A(r) is compact for all r ∈ R because
of Lemma 4 and Proposition 2 (a). Consequently, Proposition 2 (b) yields that Bρln,ulogTWR,A(r, µ) is
compact for all r, µ ∈ R. Theorem 4 can then be applied, which proves (c) and (d), if we can show that
I = [rmin, rmax], J = [µmin, µmax]. This is shown in the proofs of (a) and (b).

Proof of (a): Since ulogTWR is closed proper concave on A, we know that ulogTWR must be upper
semi-continuous (cf. (Rockafellar 1972, Theorem 7.1)). In addition, BulogTWR,A(µ) is compact and
non-empty for some µ ∈ R. Hence, there must be a solution of Equation (48) (see (Barbu and
Precupanu 2012, Theorem 2.8)). Uniqueness follows from strict concavity of ulogTWR restricted to
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A ⊂ dom(ulogTWR). Furthermore, Lemma 2 yields that µmax = ulogTWR( f ∗max) ∈ R and, since
dom(ulogTWR) = dom(ρln) by Lemma 4, that rmax = ρln( f ∗max) ∈ [0, ∞) (also by Lemma 2, note
that BulogTWR,A(µmax) contains only f ∗max).

Proof of (b): The function ρln is closed proper convex on A by assumption and, hence,
it is lower semi-continuous (cf. (Rockafellar 1972, Theorem 7.1)). In addition, Bρln,A(r) is
compact and non-empty for some r ∈ R. Then, there must be a solution of Equation (49)
(see (Barbu and Precupanu 2012, Theorem 2.8)). Maximizing ulogTWR over all those solutions then,
similar to in the proof of (a), gives a unique solution denoted by f ∗min. As above, Lemma 2 yields
that rmin = ρln( f ∗min) ∈ [0, ∞). Since dom(ulogTWR) = dom(ρln), we get µmin = ulogTWR( f ∗min) ∈ R.
Altogether, we obtain that I = [rmin, rmax] and J = [µmin, µmax], which completes the proof.

Note that Aβ ∩dom(ulogTWR) 6= ∅ because obviously (β, 0, . . . , 0)> ∈ Aβ ∩dom(ulogTWR). Hence,
there exists such a subset A ⊂ Aβ with the above required properties, e.g., A = Aβ ∩ dom(ulogTWR).
Furthermore, the “local” (closed) proper convexity of ρln on A and the “local” (closed) proper concavity
of ulogTWR on A, which are relevant according to Setting 1 (because of the domain of definition of both
functions) and Theorem 5, can be provided for instance as follows by “global” assumptions.

Lemma 5. In the situation of Lemma 3 and Lemma 4 assume that ρln is closed proper convex and ulogTWR is
closed proper concave. For Aβ from Equation (43) with fixed β > 0 let A′ ⊂ Aβ be closed and convex such
that A := A′ ∩ dom(ulogTWR) is non-empty. Then, A ⊂ dom(ulogTWR) ∩ Aβ is convex and non-empty.
Furthermore, ρln restricted to A is closed proper convex and ulogTWR restricted to A is closed proper concave.

Proof. First note that ulogTWR is closed proper concave and ρln is closed proper convex but by
definition both on RM+1. Of course, ulogTWR is proper concave and ρln is proper convex on A
as well. Since BulogTWR,A(µ) = { f ∈ A : ulogTWR( f ) ≥ µ} ⊂ dom(ulogTWR) we can also write
BulogTWR,A(µ) = { f ∈ RM+1 : ulogTWR( f ) ≥ µ} ∩ A′. Hence, BulogTWR,A(µ) must be closed because
{ f ∈ RM+1 : ulogTWR( f ) ≥ µ} is closed (cf. Proposition 2 (a) when replacing A by RM+1 therein) and
A′ is closed by assumption. Proposition 2 (a) then tells us that ulogTWR restricted to A is closed proper
concave. A similar argumentation yields that ρln restricted to A is closed proper convex.

We have seen in Theorem 5 and Lemma 5 that one of the main ingredients to the existence and
uniqueness theory for trading off risk and reward with ρln and ulogTWR is that ρln is closed proper
convex and that ulogTWR is closed proper concave. While for finite probability space Ω this is already
derived in Remark 10, in general this is not obvious. Lemma 4 and Lemma 3 just yield proper convex
and proper concave, respectively. The following discussion closes this gap under reasonable conditions.

Lemma 6. For n ∈ {1, . . . , N} fixed let Tn ∈ L1(Ω,Fn, P;RM+1). Define

hn( f ) :=

{
E [ln (1 + T>n f )], f ∈ Dn,

−∞, f /∈ Dn,

where Dn := dom(hn) = { f ∈ RM+1 : E [ln (1 + T>n f )] > −∞}. Assume that 0 ∈ int(Dn),
where int(Dn) is the interior of Dn. Then, hn is closed proper concave.

Proof. Note that, according to Lemma 3, the function hn : RM+1 → R ∪ {−∞} is proper concave
and thus Dn is convex. Therefore, hn is continuous in the interior of Dn (cf. (Rockafellar 1972,
Theorem 10.4)).

By assumption, f0 := 0 ∈ int(Dn) and hn( f0) = ln(1) = 0. Using (Rockafellar 1972, Theorem 7.5),
the closure of hn is of the form

h̄n( f ) = lim
λ↗1

hn((1− λ) f0 + λ f ) = lim
λ↗1

hn(λ f ), f ∈ RM+1. (50)
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The function h̄n is known to be closed proper concave (see (Rockafellar 1972, Theorem 7.5.1)) with
h̄n ≥ hn and, moreover, h̄n coincides with hn everywhere except possibly on ∂Dn (see (Rockafellar
1972, Theorem 7.4)).

If we can show that h̄n( f ∗) = hn( f ∗) for all f ∗ ∈ ∂Dn, then h̄n = hn on RM+1 and thus hn is
closed proper concave as well. To see that, we fix f ∗ ∈ ∂Dn and set λm := 1− 1/m↗ 1 (as m→ ∞).
Since the limit in Equation (50) is independent of the sequence realizing λ↗ 1, we have

h̄n( f ∗) = lim
m→∞

hn(λm f ∗) ∈ R∪ {−∞}.

Define the random variables Z+
m := max {0, ln (1 + T>n f ∗λm)} and Z−m :=

min {0, ln (1 + T>n f ∗λm)}. By assumption, Tn ∈ L1(Ω,Fn, P;RM+1) and, hence, as in Equation (45),

Z+
m = max

{
0, ln

(
1 + T>n f ∗λm

)}
≤ max

{
0, T>n f ∗λm

}
≤ max

{
0, T>n f ∗

}
.

Therefore, 0 ≤ E [Z+
m ] ≤ E [max {0, T>n f ∗}] =: Mn < ∞ which gives

h̄n( f ∗) = lim
m→∞

E
[
ln
(

1 + T>n f ∗λm

)]
= lim

m→∞
E
[
Z−m
]
+ lim

m→∞
E
[
Z+

m
]
.

Since ln is increasing, Z−m is monotonically decreasing in m (i.e., Z−m+1 ≤ Z−m ≤ 0 a.s.) and Z+
m is

monotonically increasing in m (i.e., 0 ≤ Z+
m ≤ Z+

m+1 a.s.). Hence, the monotone convergence theorem
(see (Fristedt and Gray 1997, Section 8.2, Theorem 6)) implies

h̄n( f ∗) = E
[

lim
m→∞

Z−m
]
+ E

[
lim

m→∞
Z+

m

]
= E

[
ln
(

1 + T>n f ∗
)]

= hn( f ∗), (51)

which completes the proof.

Note that in Equation (51) the limit might be finite (i.e., f ∗ ∈ ∂Dn ∩Dn) or−∞ (i.e., f ∗ ∈ ∂Dn ∩Dc
n,

where Dc
n = RM+1 \ Dn). In the latter case the transition of hn from Dn to Dc

n at the point f ∗ is smooth,
whereas in the first case hn jumps at f ∗ (but still maintains upper semi-continuity). Both cases indeed
occur as we show in Example 3 below.

Corollary 3. Let S be a multi-period market model such that Tn ∈ L1(Ω,Fn, P;RM+1) for n = 1, . . . , N,
where Tn is from Equation (19) in Example 2. Assume that 0 ∈ int (dom(ulogTWR)). Then, ρln defined in
Lemma 4 is closed proper convex and ulogTWR from Lemma 3 is closed proper concave.

Proof. Using Lemma 6, hn for n = 1, . . . , N are closed proper concave and thus, in particular, upper
semi-continuous (see (Rockafellar 1972, Theorem 7.1)). Hence, ulogTWR( f ) = ∑N

n=1 hn( f ), f ∈ RM+1,
inherits these properties. The proof for ρln is similar.

We close this section with the already mentioned example.

Example 3 (dom(ulogTWR), Atwr and A∗twr). With Remark 11 (a) and (d), we already know that A∗twr ⊂
dom(ulogTWR) ⊂ Atwr. We want to show at specific examples that A∗twr $ dom(ulogTWR) as well as
dom(ulogTWR) $ Atwr is possible. In all examples below we use ω = t ∈ (0, 1) =: Ω with P = λ(0,1) and
M = N = 1 and, for simplicity, we ignore the risk-free asset.
(a) Let T1(t) := exp(−1/t)− 1 ∈ (−1, 0) for t ∈ (0, 1). Then

ulogTWR( f ) = h1( f ) =
∫ 1

0
ln (1 + T1(t) f )dt, f ∈ dom(h1) = dom(ulogTWR).
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For f ∈ (−∞, 1), there exists some M > 0 such that 1 + T1(t) f ≥ M > 0 for all t ∈ (0, 1),
but for f ∈ (1, ∞) we have 1 + T1(t) f < 0 for t with positive measure. Hence, A∗twr = (−∞, 1) and
Atwr = (−∞, 1]. Calculating

h1(1) =
∫ 1

0
ln(1 + T1(t))dt =

∫ 1

0
−1

t
dt = −∞,

we find f ∗ := 1 /∈ dom(h1) = dom(ulogTWR) = (−∞, 1). In this example, we thus have
dom(ulogTWR) $ Atwr. Moreover, since 0 ∈ int (dom(ulogTWR)), by Corollary 3, we obtain that
ulogTWR is closed proper concave.

(b) Let T̃1(t) := exp(−1/
√

t)− 1 ∈ (−1, 0) for t ∈ (0, 1). Reasoning as in (a), we again get Ã∗twr =

(−∞, 1) and Ãtwr = (−∞, 1]. However, this time

h̃1(1) =
∫ 1

0
ln(1 + T̃1(t))dt =

∫ 1

0
− 1√

t
dt = −2.

Hence, f ∗ := 1 ∈ dom(h̃1) = dom(ulogTWR) = (−∞, 1] and therefore Ã∗twr $ dom(ulogTWR).
Again ulogTWR is closed proper concave by Corollary 3.

5. Conclusions and Outlook

In this Part III of our series of papers on a general framework on the portfolio theory, we
extend the results from Part I (Maier-Paape and Zhu 2018a) for the one-period financial market to a
multi-period market model. We do so by using a modular approach that separates the framework
into the four related modules: (a) multi-period market model; (b) trading strategy; (c) risk and utility
function; and (d) optimization problem. This work provides an in itself complete general framework
for handling the trade-off between competing performance criteria on reward and risk for trading
strategies. This framework provides a foundation for implementation which is an interesting direction
for further exploration.

Building Block (a) gives a lot of freedom for the market model. The most important assumption on
the model should be that there is no nontrivial risk-free trading strategy. Block (b) gives the liberty for
choosing a trading strategy. Even more complex trading strategies (besides the buy and hold strategy
in Example 1 and fixed fraction strategy in Example 2) are possible, for instance the turtle trading
strategy. This allows a more direct link between the portfolio theory and the real implementation
of the optimal portfolios/trading strategies. Since Block (a) allows multi-period market models, the
definition of the risk function (and also the utility function) in Block (c) can be path-dependent. This is
essential for drawdown risk functions. Although so far we added lots of freedom, Block (d), i.e., the
optimization block, is at least formally still very much in the spirit of Markowitz (1952, 1959). As such,
this block is fixed in this work. However, different optimization problems might also be possible.

Clearly, with Parts I–III (see Maier-Paape and Zhu (2018a, 2018b)) we by now have a whole zoo of
possibilities for how to trade off risk and reward in order to obtain efficient portfolios. Nevertheless,
at this point, it is not yet clear what this added variety of possibilities yields when it comes to trading
in real financial markets. This last and most important question will be discussed in a subsequent part
of our series still to come.
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