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Abstract: In this paper, the generalized Pareto distribution (GPD) copula approach is utilized to solve
the conditional value-at-risk (CVaR) portfolio problem. Particularly, this approach used (i) copula to
model the complete linear and non-linear correlation dependence structure, (ii) Pareto tails to capture
the estimates of the parametric Pareto lower tail, the non-parametric kernel-smoothed interior and
the parametric Pareto upper tail and (iii) Value-at-Risk (VaR) to quantify risk measure. The simulated
sample covers the G7, BRICS (association of Brazil, Russia, India, China and South Africa) and
14 popular emerging stock-market returns for the period between 1997 and 2018. Our results suggest
that the efficient frontier with the minimizing CVaR measure and simulated copula returns combined
outperforms the risk/return of domestic portfolios, such as the US stock market. This result improves
international diversification at the global level. We also show that the Gaussian and t-copula simulated
returns give very similar but not identical results. Furthermore, the copula simulation provides more
accurate market-risk estimates than historical simulation. Finally, the results support the notion that
G7 countries can provide an important opportunity for diversification. These results are important to
investors and policymakers.
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JEL Classification: G11; G17

1. Introduction

Since Markowitz published his seminal paper in 1952 (Markowitz 1952), the mean-variance
(MV) optimization framework has been an effective way to measure and compare the risk/return
trade-off among various portfolios. However, despite its success, this approach has many limitations,
which include, but are not limited to, the abnormal distributed returns in recent times. The copula
is a very useful tool for dealing with non-standard distribution (see Clemente and Romano 2004;
Rockafellar and Uryasev 2000; among others). Furthermore, it has become increasingly popular for
modelling the dependence structure of financial risks. On the other hand, the number and intensity of
crises (including, for example, the terrorist attacks on 11 September 2001, the Iraq invasion in 2003,
the 2007–2009 global financial crisis sparked by US subprime market failures, the 2009–2013 European
sovereign-debt crises etc.) that have occurred in the past decades have made the measurement of
market risk a primary concern of regulators and academics.
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In the literature, tail-related risk measures, such as the VaR and conditional value-at-risk (CVaR),
have become the most widely used measures of market risk (see Cherubini et al. 2004; Komang 2013;
Rockafellar and Uryasev 2002; among others). Our work is thus broadly related to these studies.
Our objective is to discuss for US investors the adequacy of a global stock portfolio invested in three
categories of markets: the G7, BRICS and the most popular emerging countries. Beyond the classical
portfolio characteristics, we consider additional portfolio characteristics such as CVaR and copula
theory. In particular, we apply a Gaussian copula and the Student’s t-copula model to create a joint
distribution of returns and then use VaR and CVaR measures for portfolio selection. Finally, the VaR
and CVaR portfolios produced by the copula simulation are compared to those produced from the
historical record.

To that end, extreme value theory (EVT) is applied to estimate the tails of abnormally distributed
marginal density functions (see Embrechts et al. 1997; Hotta et al. 2008; among others). The distribution
of each return series is fitted semi-parametrically. A benefit of this approach is that it requires estimating
the lower and upper tails parametrically, while the interior is estimated by the non-parametric,
kernel-smoothed interior method. Our data cover the G7 group (the United States (US), Canada,
France, the United Kingdom (UK), Italy, Japan and Germany), the BRICS group (Brazil (Bra), Russia
(RS), China, India, South Africa (SA)) and 14 popular emerging stock-market returns other than the
BRICS group (Chile, Mexico, Peru, Czech Republic (Czech.R), Greece, Hungary, Poland, United Arab
Emirates (UAE), Indonesia, Korea, Malaysia, Philippines, Taiwan and Thailand). The sample data
recorded during the period between 31 March 1997 and 30 April 2018 were used to compose the
global portfolio.

The empirical results show that the historical simulation model produced aggressive VaR and
CVaR estimates compared to those provided by copula simulations. This result thus makes VaR and
copulas attractive and efficient tools for portfolio selection, as they can capture the extreme events
that characterize our recent economic conditions. Furthermore, we find that US investors can find a
minimum CVaR portfolio in developed economies rather than in many other developing or emerging
stock markets.

2. Literature Review

Portfolio selection is peculiarly susceptible to model the risk and the profit/loss distribution
density. Errors in describing or estimating the probability distribution can profoundly affect investor’s
welfare. In portfolio analysis, an incorrect model risk can lead to an incorrect implementation of a
diversification and hedging strategies.

Since its adoption by Basel II in 1996, VaR has become the most widely used measure of financial
risk compared to the standard deviation. A back-testing procedure is used to count VaR ‘violations’,
i.e., the number of times the actual return fell below the VaR forecast. However, VaR fails to satisfy
mathematical principles characterizing coherent risk measures (Chen 2018). In addition to ignoring
losses beyond a designated threshold, VaR lacks subadditivity. In financial regulatory (i.e., Basel II
and III), expected shortfall and expectiles are now used by the most financial institutions to offset the
weaknesses of VaR in assessing credit risk (for a detailed discussion of computation and forecasting
methods of VaR and CVaR measures as Basel II and III accords, please see Natalia and Ziegel (2017);
Bellini et al. (2017); Chen (2018); among others).

CVaR/VaR are also used in the area of portfolio optimization for a relatively long period of time with
many solution methods, including decomposition of the model, linear approximation, heuristic algorithms,
etc. (for more details see Zhang 2016). According to some sources (e.g., Rockafellar and Uryasev 2000, 2002;
Krokhmal et al. 2003; Alexander Siddharth and Li 2006; Cox et al. 2009; Najafi and Mushakhian 2015;
among others), CVaR is used as an alternative measure that does quantify the losses that might be
encountered in the tail. Rockafellar and Uryasev (2000, 2002); Krokhmal et al. (2003) are the pioneers in
developing efficient algorithms of portfolio allocation that take in account CVaR as a risk measure to be
minimized in the objective function. This approach corresponds to the Markowitz Mean-Variance model
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(MV model). While compared to VaR optimization, the main benefit of a CVaR optimization is that it can
be implemented as a linear programming problem (Alexander Siddharth and Li 2006). Cox et al. (2009)
extended the Krokhmal, Palmquist, and Uryasev’s approach by using CVaR-like constraints in the
traditional portfolio optimization problem to reshape either the left or right tail of a portfolio return
distribution. Najafi and Mushakhian (2015) suggested a multi-period portfolio selection model with
CVaR at a given confidence level α. In line with these extensions, Cao (2015) presented a CVaR portfolio
model based on a combination of capital gains rate not assuming a normal distribution, with the Mean
Absolute Deviation (MAD) model as a constraint, realized volatility measure limit, spend a convex utility
function as a constraint, indicating risk asset transaction costs. Li and Xu (2013) developed the mean-CVaR
portfolio selection problem in a continuous-time dynamic setting. When expected return is replaced by
expected utility, the maximization of a utility function that balances CVaR against return is also studied
in a continuous-time dynamic setting by Gandy (2005) and Zheng (2009). Note that the VaR/CVaR risk
measures can be also found in other literature focused on systemic risk such as Acharya et al. (2009);
Chen et al. (2013) and Adrian and Brunnermeier (2016).

In addition to the violation of the standard deviation as a risk measure, there are more discussions
on the bias of the linear correlation between assets. In financial literature, to circumvent this problem
an alternative approach has been suggested based on Copula theory. This theory takes mainly in
account the presence of linear and non-linear interdependence between assets. More importantly,
CVaR can be readily estimated in capturing by copula the non-linear interdependence at the tails
between the marginal returns. He and Gong (2009) constructed a copula-CVaR model for credit risks
of listed company on Chinese security market and this model can exactly measure the coupled risks in
financial market. Huang et al. (2009), Chen and Tu (2013) and Boubaker and Sghaier (2013) used the
conditional Copula Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model to
describe the financial assets joint distribution included in portfolio. More recently, Nikusokhan (2018)
employed the CVaR Glosten-Jagannathan-Runkle (GJR) Copula method and the emerging market
data for portfolio risk identification and portfolio optimization. The empirical evidence suggests that
the performance of the GJR-Copula-CVaR method is relatively more accurate and more flexible than
other common methods of optimization. Sahamkhadam et al. (2018) used GARCH-EVT-copula and
Auto-Regressive-Moving-Average (ARMA)-GARCH-EVT-copula models to perform out-of-sample
forecasts and simulate one-day-ahead returns for 10 stock indexes. They constructed optimal portfolios
based on the global minimum variance (GMV), minimum conditional value-at-risk (Min-CVaR) and
certainty equivalence tangency (CET) criteria, and modeled the dependence structure between stock
market returns by employing elliptical (Student-t and Gaussian) and Archimedean (Clayton, Frank and
Gumbel) copulas. Their main finding is that the CET portfolio, based on ARMA-GARCH-EVT-copula
forecasts, outperforms the benchmark portfolio based on historical returns. Moreover, the regression
analyses show that GARCH-EVT forecasting models, which use Gaussian or Student-t copulas, are best
at reducing the portfolio risk. Fernando et al. (2017) mixed Archimedean copula function and the CVaR
minimization model to obtain efficient portfolios. Using data from the S&P500 stocks from 1990 to
2015, their empirical analysis shows that the Mixed Copula-CVaR approach generates portfolios with
better downside risk statistics for any rebalancing period and it is more profitable than the Gaussian
Copula-CVaR and the 1/N portfolios for daily and weekly rebalancing.

Beyond the existing literature, our main contribution is in combining the Generalized Pareto
distribution copula approach and VaR/CVaR risk measures to find an empirical evidence of efficient
portfolios (i.e., along the efficient frontiers) using data of many developed and developing or emerging
stock markets.
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3. Methodology

3.1. Generalized Pareto Distribution Copula Approach

It has been known since the work of Sklar (1959) that a joint distribution function H with continuous
marginal distributions F and G can be characterized by a unique copula function C, such that, for all
x, y in R, H(x, y) = C(F(x), G(y)). Many multivariate models for dependence can be generated by
parametric families of copulas. In this study, two types of copulas are proposed: the Gaussian copula
and the t-copula (i.e., the elliptical copula family). The Gaussian copula is formally defined as:

C(u1, . . . un; Λ) = φk
(
φ−1(u1), . . . , φ−1(un); Λ

)
. (1)

The copula function is defined by the standard multivariate normal distribution (φk) and the linear
correlation matrix (Λ). This approach has been lately heavily criticized by academics and practitioners
because it fails to capture dependence in the tail of distributions. This approach has, indeed, a zero
coefficient for tail dependence, which means that events occur independently far enough in the tails of
the joint distribution. Therefore, the use of another copula is highly recommended when considering
extreme events. We propose the use of the t-copula because it presents symmetric lower and upper tail
dependence coefficients.

The t-copula is closely related to the Gaussian copula with CDF:

Cψn
(
u; Ωψ; v

)
= ψn

(
ψ−1(u1, v), . . . ,ψ−1(un; v); Ωψ, v

)
, (2)

where ψn denotes the CDF of an n-variate Student’s t distribution with correlation Ωψ, the degree of
freedom parameters v > 2 and ψ−1 is the inverse of the CDF for the univariate Student’s t distribution
with mean zero and the dispersion parameter is equal to 1.

For the t-copula, it is useful to fit the distribution of returns of each stock-index series using a
piecewise distribution that is semi-parametric with generalized Pareto tails to model the tail behavior
by means of the generalized Pareto distribution (GPD) approach. The Pareto tails capture the estimates
of the parametric Pareto lower tail, the non-parametric kernel-smoothed interior and the parametric
Pareto upper tail.

According to EVT, GPDs can be applied to model the tail behavior of returns in financial
series exceeding the high thresholds x−λ. As shown by Scarrott and MacDonald (2012), the GPD is
parameterized by scale and shape parameters σλ > 0 and θ and can equivalently be specified in terms
of exceedances x > λ as:

Gθ(x\λ, σλ) =


1−

[
1 + θ

(
x−λ
σλ

)]
+
−

1
θ f or θ , 0

1−
[
e−

x−λ
σλ

]
+

f or θ = 0
, (3)

where y+ = max(y, 0). When θ < 0, there is an upper end point, so λ < x < λ− σλ
θ (for more details,

see Scarrott and MacDonald 2012).

3.2. Portfolio Optimization

We used VaR and CVaR measures to quantify the US investor’s risk exposure. In this case,
VaR represents maximum potential loss l in the value of a portfolio with a given probability ‘X’
over a specified horizon. For the given confidence level α ∈ (0, 1), the VaR of a portfolio is then
given by the smallest number l such that the probability that the loss L ≈ f (w, r) exceeds l is no
greater than (1− α) (Demarta and McNeil 2005). Hence, VaRα = in f

{
l ∈ R : P(L < l) ≤ l− α

}
=

in f {∈ R : Fl ≤ α}, where (w, r) denote the weights of the portfolio and the expected return of each stock
market, respectively.
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CVaR is a supplement or an alternative to VaR. It is also another percentile risk measure.
For continuous distributions, CVaR is defined as the conditional expected loss under the condition that
it exceeds VaR. Following Rockafellar and Uryasev (2000, 2002), the CVaR(α) of the loss associated
with any w, it is found that

CVaR(α) = l +
1

1− α

∫
max

{
( f (w, r) − l)

}
p(r)dr . (4)

The problem of minimizing the CVaR can thus be formulated as follows:

minimize CVaR(α), (5)

Subject to
n∑

i=1

wi = 1, (6)

−wTE(r) ≤ −r∗, (7)

where Equation (6) is the weight constrain condition, Equation (7) the expected return of the portfolio
and p(r) is the joint distribution of the uncertain return of stocks exceeding a certain amount r∗.

In this work, the portfolio optimization was carried out with the minimization of CVaR subject to
a constraint on expected return. A big advantage of CVaR over VaR in that context is the preservation
of convexity. In this case the feasibility set satisfying Equations (6) and (7) is a convex region, due to
linearity in constraints.

4. Results and Interpretations

Figure 1 shows plots of the distribution probabilities produced with the returns of two arbitrary
markets (i.e., Brazil and Italy). It is important to note in this figure that the Pareto-distribution
probability fits the data better than is the case with any other method, such as the normal distribution.
In particular, we can show that the returns of the Brazilian and Italian stock indexes have a heavy left
tail, which corresponds to the Pareto tail distribution with negative shape parameters.
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Modelling the correlation structures of economic variables is also an important part of managing
market risk. The easiest method is to use historical returns in this modelling. Such a procedure
assumes the normal distribution of the returns. Figure 2 depicts the scatterplots of the pairwise linear
correlation matrices between each pair of countries from the same set of observations (the results for
BRICS are integrated into emerging markets) and corresponding distribution. The diagonal line is
converted to display the distribution of historical returns.

The pairwise correlation between the two stocks is a value between −1 and 1 that indicates how
likely the two stock markets are to move in the same direction. Not surprisingly, there is a significant
positive correlation between the considered countries, with the exception of the US stock market with
other markets (including the G7, BRICS and the most popular emerging countries), which have a
low correlation. Additionally, the UAE and China also have a weak and negative correlation with
most emerging countries. Thus, for US investors, a diversified portfolio that includes foreign equities
optimizes the diversification risk/return rule. In other terms, this result may improve diversification at
the global level. Indeed, despite its volatility profile, the emerging market offers diversification to US
investors (see Ted 2016). Nevertheless, it is essential to note that the correlation estimations in Figure 2
have to be considered with great caution because, while they measure the linear dependence, other
types of dependences (e.g., tail dependence) may not be captured. To alleviate this problem, we used a
copula approach.

Although the calibration of the linear correlation matrix of a Gaussian copula is straightforward,
the calibration of a t-copula is not. For this reason, we transformed t-centered returns to uniform
variates by the piecewise, semi-parametric CDFs derived above (Note that the transformed dataset
and corresponding distribution are available upon request).

The transformed marginal distribution, which was modelled on the basis of GDP, was then used
to fit the Gaussian and t-copulas.

Figure 3 presents an accurate and interpretable characterization of the local dependence of the
Gaussian and t-copula by means of a red/blue surface plot (Please see Appendix A for more details on
elliptical copula parameters). This makes the interpretation much easier. As may be seen from Panels
A and B, that the Gaussian and t-copula give very similar results. Moreover, the dependence structure
among the US and considered stock markets is somewhat different. This dependence-structure
distinction plays an important role in portfolio construction. More specifically, there is a blue color
(i.e., low dependence) between the US and the most popular emerging stock markets; that is, there is
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low tail dependence among these markets. Likewise, a low tail dependence is also shown for the UAE
and China with the rest of the most popular emerging markets. For BRICS countries, the blue color is
also related to Russia and China. In the case of G7 countries, however, the blue color is essentially
associated with Japan’s stock market. The tail dependence of other co-developed countries is mainly
between yellow and red. These findings are not shown by the linear relationship. It is important to
note that there is a greater non-linear and tail-dependence structure between financial markets over
the past decade. The elliptical copula thus confirms its superiority (i.e., red color or high coefficients)
to best fit this dependence structure, mainly among G7 as well as Eastern European stock markets
(i.e., Czech.R, Hungary and Poland).Risks 2019, 7, x FOR PEER REVIEW 7 of 22 
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The Pareto-copula coefficients allow for estimating the new pricewise correlation matrices. Table 1
presents the GPD parameters (shape and scale) at the upper and lower tails for each individual country.

Table 1. Piecewise distribution (lower and upper tails) of G7, BRICS and emerging markets over the
period 1997–2018.

Panel A. G7 Economies

Lower Tail Upper Tail

US −Inf < x < −0.05 −0.04 (0.03) 0.05 < x < Inf −0.50 (0.02)
Canada −Inf < x < −0.06 0.36 (0.02) 0.07 < x < Inf 0.40 (0.01)

UK −Inf < x < −0.07 0.26 (0.04) 0.08 < x < Inf 0.08 (0.02)
France −Inf < x < −0.07 −0.47 (0.09) 0.07 < x < Inf 0.00 (0.02)
Italy −Inf < x < −0.09 −0.25 (0.06) 0.09 < x < Inf −0.09 (0.02)

Germany −Inf < x < −0.07 −0.30 (0.09) 0.08 < x < Inf −0.01 (0.01)
Japan −Inf < x < −0.06 0.06 (0.02) 0.06 < x < Inf −0.57 (0.05)

Panel B. BRICS Economies

Brazil −Inf < x < −0.12 −0.36 (0.14) 0.14 < x < Inf −0.68 (0.08)
Russia −Inf < x < −0.11 −0.37 (0.09) 0.14 < x < Inf 0.16 (0.06)
India −Inf < x < −0.10 −0.21 (0.08) 0.10 < x < Inf 0.10 (0.04)
China −Inf < x < −0.09 −0.54 (0.11) 0.10 < x < Inf −0.24 (0.05)

South Africa −Inf < x < −0.15 0.16 (0.06) 0.15 < x < Inf −0.23 (0.07)

Panel C. Emerging Economies

Brazil −Inf < x < −0.12 −0.36 (0.14) 0.14 < x < Inf −0.68 (0.08)
Russia −Inf < x < −0.11 −0.37 (0.09) 0.13 < x < Inf 0.16 (0.03)
India −Inf < x < −0.09 0.21 (0.08) 0.10 < x < Inf 0.04 (0.04)
China −Inf < x < −0.09 −0.54 (0.11) 0.10 < x < Inf 0.10 (0.03)

South Africa −Inf < x < −0.15 0.16 (0.05) 0.15 < x < Inf −0.23 (0.07)
Chile −Inf < x < −0.07 0.05 (0.05) 0.08< x < Inf −0.01 (0.03)

Mexico −Inf < x < −0.07 0.04 (0.06) 0.10 < x < Inf −0.33 (0.05)
Peru −Inf < x < −0.08 0.29 (0.03) 0.12 < x < Inf 0.26 (0.03)

Czech Republic −Inf < x < −0.07 0.03 (0.07) 0.09 < x < Inf 0.06 (0.03)
Greece −Inf < x < −0.14 0.13 (0.05) 0.12 < x < Inf −0.64 (0.07)

Hungary −Inf < x < −0.09 0.12 (0.07) 0.11 < x < Inf −0.11 (0.04)
Poland −Inf < x < −0.10 0.39 (0.03) 0.11 < x < Inf −0.24 (0.04)
UAE −Inf < x < −0.08 −0.45 (0.11) 0.09 < x < Inf −0.46 (0.04)

Indonesia −Inf < x < −0.08 0.31 (0.04) 0.10 < x < Inf −0.13 (0.07)
Korea −Inf < x < −0.08 0.01 (0.05) 0.10 < x < Inf −0.34 (0.02)

Malaysia −Inf < x < −0.05 −0.16 (0.04) 0.06 < x < Inf −0.20 (0.03)
Philippines −Inf < x < −0.07 0.10 (0.05) 0.09 < x < Inf −0.53 (0.04)

Taiwan −Inf < x < −0.09 −0.00 (0.05) 0.09 < x < Inf −0.15 (0.04)
Thailand −Inf < x < −0.07 0.37 (0.02) 0.10 < x < Inf −0.23 (0.03)
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Figures 4 and 5 depict scatterplot correlation matrices using Gaussian and t-copula simulated
returns. Judging from the results in Figures 4 and 5, it would appear that the novel estimated correlation
matrices, including copula simulations (i.e., Gaussian and t-copula), are quite similar but not identical
to the linear correlation matrices reported in Figure 2 (The average value of pairwise correlations using
Gaussian and t-copula simulations are available upon request). The efficient frontier is used as a means
of determining the desired portfolio of risky securities, each having an expected mean CVaR and a
pairwise correlation matrix, among the securities’ returns comprising the portfolio. The efficient frontier
can be generated for the risky portfolio that provides the maximum return and the minimum CVaR.

Figure 6 shows the efficient-frontier graphs using Gaussian (Panel A) and t-copula (Panel B)
estimations for various sets of observations. We assume equally weighted portfolios and α = 99%
as a level for VaR and CVaR computation. In this figure, the dominance of the expected return of
investment portfolios that included emerging markets was obvious (i.e., compared to domestic portfolios).
This agrees with previous studies that support the performance of an investment in emerging markets
(e.g., Aloui et al. 2011; Goetzmann et al. 2005; Hallinan 2011; among others). Additionally, one can
observe the dominance of the minimum risk of portfolios that included only developed markets.
On the other hand, there is no major difference between the efficient frontiers generated by the Gaussian
and t-copula approaches.
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This result can also be seen in Table 2, following the structures of optimal portfolios in terms of VaR
and CoVaR measures. More precisely, the portfolios’ VaR and CVaR risks formed by simulating copulas
were quite different, but with the minimum t-copula risk being superior to that of the Gaussian copula.
This is due to the fact that the Gaussian copula and the t-copula come from the same family. However,
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this agreement between the two copulas should not mislead one into concluding that a copula from
the same family will produce the same result. The obtained results depend on the characteristics of the
dataset. On the other hand, Table 2 supports the conclusion that developed stock markets are a more
effective tool in reducing portfolio risks than are many emerging stock markets. When extreme market
events are taken into account, however, the emerging markets are more volatile.

Referring again to Table 2, it may be seen that the structures of the optimum portfolio given by
the multivariate normal distribution are significantly different from those of the optimum portfolios
created by simulating copulas. This kind of information may be of interest to the risk manager who
wishes to formulate a hedging plan (e.g., derivatives) against potential losses.Risks 2019, 7, x FOR PEER REVIEW 15 of 22 
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Table 2. Value-at-Risk VaR and Conditional VaR (CVaR) results.

Multivariate Normal VaR t-Copula VaR Gaussian Copula VaR

Panel A. G7 Stock Markets

99% VaR 11.81% 14.67% 14.65%
99%CVaR 13.48% 18.35% 18.01%

Panel B. BRICS Markets

99% VaR 15.10% 19.33% 18.53%
99%CVaR 17.30% 23.09% 21.77%

Panel C. Emerging Markets

99% VaR 12.77% 15.21% 14.90%
99%CVaR 14.59% 19.71% 19.06%

5. Conclusions

This paper combines the CVaR and copula approaches for market-risk measurement of portfolios
among three sets of stock markets, including the advanced nations that make up the G7 and BRICS and
the most popular emerging stock markets. The empirical results show that the historical simulation
model produced aggressive VaR and CVaR estimates compared to those provided by copula simulations.
This result thus demonstrates that VaR and copulas are attractive and efficient tools for portfolio
selection, as they can capture the extreme events that characterize our recent economic conditions.
Furthermore, we find that US investors can find a minimum CVaR portfolio in developed economies
rather than in many other developing or emerging stock markets.

Considering the literature of portfolio selection, our results also showed a difference between the
multivariate normal distribution and copula simulation. Precisely, the copula method was superior
than multivariate normal distribution, in describing the efficient frontier. Thus, developing a consistent
methodology to construct an efficient frontier based on copula and CVaR measures, as we did in this
paper, could be viewed as an incremental contribution to the literature in portfolio selection.

Finally, all these results are important to portfolio managers who are looking for adequate methods
to estimate risk premiums, explicitly recognize extreme risks, to formulate a hedging plan, and to
control gains rate fluctuations or risks.

However, it is important to note that Gaussian and t-copulas derived from elliptical probability
distributions retain their underlying families’ essential characteristic of symmetry. In technical terms,
this means that these copulas can handle differences in the even-numbered moments of a distribution,
especially variance and kurtosis, but not skewness. To circumvent this problem, we suggest further
research on the use of copulas that allow for the modelling of different tail dependences, such as the
Archimedean (McNeil and Nešlehová 2009) and vine copulas (Bedford and Cooke 2002).

Author Contributions: The first author collected the data. Both authors contributed to the drafting of all sections
of the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Elliptical Copula Parameters

� The bivariate Gaussian copula (N)—it has no tail dependence, hence τU = τL = 0. Therefore,
modeling the dependence structure of the series by a Gaussian (normal) copula is consistent
with the estimation of this dependence by the linear correlation coefficient such that −1 < ρ < 1.
The copula density is given by (see e.g., Cherubini et al. (2004))

CN(u, v
∣∣∣ρ) = Φ−1(u)∫

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
·exp

{
−(r2

− 2ρrs + s2)

2(1− ρ2)

}
drds,
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where Φ(·) represents the univariate standard normal distribution function with correlation
ρ ∈ (−1, 1).

� The t-copula—it also has a correlation coefficient such that −1 < ρ < 1 however, it shows some
tail dependence. Specifically, it has symmetric tail dependence. It may be expressed as follows
(see e.g., Cherubini et al. (2004)):

CST(u, v
∣∣∣ρ,ϑ) =

∫ t−1
ϑ
(u)

−∞

∫ t−1
ϑ
(v)

−∞

1

2π
√

1− ρ2
·exp

{
−(r2

− 2ρrs + s2)

2(1− ρ2)

}
drds,

where tϑ(·) is a univariate Student-t distribution function with ϑ+ 1 degrees of freedom and

ρ ∈ (−1, 1). The symmetric tail dependence is τU = τL = 2tϑ+1

(
−
√
ϑ+ 1

√
1− ρ/

√
1 + ρ

)
> 0.

As the t-copula allows for symmetric non-zero dependence in the tails and it represents a
generalization of the Gaussian-copula.

Table A1. Description parameters of Copula.

Family Parameters

Upper Tail Dependence Lower Tail Dependence

Gaussian-copula τU = 0 τL = 0
t-copula τU = 2tϑ+1

(
−
√
ϑ+ 1

√
1− ρ/

√
1 + ρ

)
τL = 2tϑ+1

(
−
√
ϑ+ 1

√
1− ρ/

√
1 + ρ

)
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