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Abstract: This study proposes an efficacious approach to analyze the over-dispersed insurance
frequency data as it is imperative for the insurers to have decisive informative insights for precisely
underwriting and pricing insurance products, retaining existing customer base and gaining an edge
in the highly competitive retail insurance market. The delta boosting implementation of the negative
binomial regression, both by one-parameter estimation and a novel two-parameter estimation, was
tested on the empirical data. Accurate parameter estimation of the negative binomial regression
is complicated with considerations of incomplete insurance exposures, negative convexity, and
co-linearity. The issues mainly originate from the unique nature of insurance operations and the
adoption of distribution outside the exponential family. We studied how the issues could significantly
impact the quality of estimation. In addition to a novel approach to simultaneously estimate two
parameters in regression through boosting, we further enrich the study by proposing an alteration of
the base algorithm to address the problems. The algorithm was able to withstand the competition
against popular regression methodologies in a real-life dataset. Common diagnostics were applied
to compare the performance of the relevant candidates, leading to our conclusion to move from
light-tail Poisson to negative binomial for over-dispersed data, from generalized linear model (GLM)
to boosting for non-linear and interaction patterns, from one-parameter to two-parameter estimation
to reflect more closely the reality.

Keywords: boosting trees; gradient boosting; predictive modeling; insurance; machine learning;
negative binomial

1. Introduction

The rising awareness among consumers about safety concerns has propelled them to buy
insurance products with zeal and consistency, resulting in a barrage of insurance data in the
retail insurance industry. The generally competitive markets of the retail insurance business
have made it imperative for insurers to retain their customer base along with gaining an edge
in the highly competitive retail insurance market. However, for actuaries and insurers to
remain relevant in the insurance domain, a necessary evolution is required on their part to
revamp the fundamentals of data collection and processing, identify novel rate-making and
underwriting techniques and align those elements to better anticipate changes in the business
circumstances. To deflect the underwriting risks and analyze the over-dispersed insurance
frequency data adeptly, actuaries have been developing actuarial rate-making model with robust
mathematical and statistical concepts like generalized linear models (Werner and Modlin 2010),
generalized additive models (Lee and Antonio 2015), Markov chain Monte Carlo and Bayesian
inference Using Gibbs Sampling (Scollnik 2001), neural networks (Lee and Antonio 2015), decision
trees (Lee and Antonio 2015), and boosting machines (Lee and Lin 2015). Contrary to the pursuit
of predictive risk models through complex machine learning, Casualty Actuarial and Statistical
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Task Force (2019) depicts principles that suggest the deployment of candid and efficient algorithms
to enable more effective scrutiny for regulators and the management of insurers. It further
recommends the predictive models be intuitive for pricing, and straightforward for system integration
as these predictive algorithms can help return customer’s premium queries within a fraction of a
second (Majumdar et al. 2019). In the era of digital experience, a transparent and seamless experience
is imperative. The purpose of this study was to formulate and apply the novel actuarial rate-making
methodology with special consideration on incomplete exposures abundant in real-life insurance
frequency data and the negative convexity and co-linearity due to the adoption of the negative
binomial distribution, along with comparing it against competitive modeling techniques.

We reviewed the literature of related works in Section 2. Section 3 started with the introduction
of the core components of our proposed algorithm, the delta boosting machine and negative
binomial regression. Although mainly used as one-parameter regression, the negative binomial is a
two-parameter distribution. Section 4 first characterized the more popular one-parameter regression
implemented in the delta boosting machine and Section 5 relaxed the assumption of the fixed shape
parameter and detailed the mathematics in deriving the algorithm for simultaneous estimation of both
scale and shape parameters. We continued to identify the risk of naive deployment of machine learning
in rate-making as insurance data is filled with incomplete exposures. As negative binomial is not a
member of the two-parameter exponential family, some features that are beneficial in regression are
not present by default. We studied the risk introduced in the two-parameter estimation and proposed
an arrangement to address the concerns.

The objective of Section 6 is to put the algorithm into the test with real-life data and compare the
implementation with other competitive and related modeling candidates. Common diagnostics were
utilized to set as benchmarking tools for comparison.

Section 7 concluded the paper with key insights from this study and offered directions on a
potential area for further exploration.

2. Literature Review

The frequency–severity method, which involves separate consideration of frequency and
severity (Anderson et al. 2007; Henckaerts et al. 2019) to calculate the indicated cost, is one of the
two fundamental actuarial pricing processes. The cost calculations are achieved by multiplying the
conditional expectation of severity with expected claim frequency. Henceforth, the frequency modeling
of claims represents an essential step in non-life insurance rate-making. A frequency regression
analysis permits the identification of risk factors and the prediction of the expected frequency of claims
given risk characteristics (Boucher et al. 2009; Ridout et al. 1998; Yip and Yau 2005). The Poisson
regression is a member of generalized linear models (GLMs) and was first developed by Nelder and
Wedderburn (1972), detailed later in Gourieroux et al. (1984a, 1984b) and Teugels and Vynckie (1996)
as the modeling archetype of claim frequency. Gagnon et al. (2008) described in the trauma research of
behavioral outcomes, where Poisson regression provided readily interpretable results as rate ratios
when applied to the count data.

Despite its popularity, the assumption of equality in observations’ mean and variance limits its
application on the over-dispersed insurance frequency data (Boucher et al. 2009; Ridout et al. 1998; Yip
and Yau 2005), in which the variance is generally higher than the expectation.

Several studies have shown a considerable improvement in precision by switching from Poisson
to the alternative heavier tailed extension like negative binomial, quasi-Poisson, and zero-inflated
regression (ZIP)(Ismail and Jemain 2007; Naya et al. 2008; Ver Hoef and Boveng 2007).
The aforementioned distributions are either compound or mixture of Poisson. For instance, Breslow
(1990) demonstrated using Monte Carlo simulation methods, a process of random sampling to estimate
numerically unknown parameters, quasi-likelihood models can produce approximately unbiased
estimates of the regression coefficients. Ver Hoef and Boveng (2007) illustrated the restriction of
Poisson in modeling count data in ecology and suggested relative merits in quasi-Poisson regression
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and negative binomial regression over Poisson. When tests were conducted on the motor claim
insurance frequency data, the negative binomial model was found to correct the overdispersion and
presented a better fit for the data (David and Jemna 2015). In Naya et al. (2008), the authors compared
the performance of Poisson and ZIP models under four simulation scenarios to analyze field data and
established that the ZIP models gave better estimates than the Poisson models.

Negative binomial and ZIP are both extensions to Poisson (Lim et al. 2014; Teugels and Vynckie
1996), featuring inflated variances for any given expectations, and are particularly desirable for
insurance pricing application (Teugels and Vynckie 1996). However, the ZIP model has a complicated
output representation, with a combination of logistic and log-link transformation, that restricts its
practical application whereas the parameters of negative binomial regression are both log-link and
hence multiplicative. It offers a simpler real-life deployment and parameter interpretation.

Utilizing machine learning for predictive modeling enhances the pricing model validity through
the GLM, which is a preeminently popular technique in actuarial practice owing to its strong statistical
foundation and simplicity (Haberman and Renshaw 1996). Nevertheless, actuaries are provoked
to pursue more reliable actuarial pricing models to gain a competitive edge in highly competitive
markets. In Wuthrich and Buser (2019), various techniques were implemented including Adaboost,
gradient boosting, regression tree boosting, GLM and generalized additive model (GAM) for a suitable
non-life insurance actuarial pricing model. The authors summed up that the generalized additive
model was able to outperform the generalized linear model for non-log-linear components. Similarly,
Lee and Antonio (2015) and Henckaerts et al. (2019) compared the performance of GLM, GAM,
bagging, random forest, and Gradient boosting (GB). When full tariff insurance plans were created,
gradient boosting outperformed GLMs allowing the insurers to form profitable portfolios along with
guarding them against any adverse risk selection. Gradient boosting algorithm outperformed Tweedie
GLM when empirical tests were conducted by implementing it on the flexible non-linear Tweedie
model, this method generated a more accurate insurance premium predictions (Yang et al. 2018).
Thomas et al. (2018) elaborated that when a gradient boosting algorithm was implemented on GAMLSS
i.e., generalized additive models for location, scale and size to generate boosted GAMLSS, it increased
the flexibility of variable selection, time efficiency, and fewer boosting iterations were needed.

Lee and Lin (2015) introduced a novel modeling approach called delta boosting (DB) which is a
forward stage-wise additive model that reduces the loss at each iteration and helps in enhancing the
predictive quality. Instead of relying on the negative gradient as in the case for GB, DB adopts the loss
minimizer of the basis. The commonly adopted modeling approach is to assume the over-dispersion
parameter to be given or estimated through moment matching or maximum likelihood (JO 2007 and
reference therein).

Exposure is the basic unit of risk that underlies the insurance premium and is heavily
analyzed in traditional actuarial studies on aggregated data. It is a concept fairly unique to
actuarial science. For example, written exposures, earned exposures, unearned exposures and
in-force exposures (Werner and Modlin 2010) are defined for specific purposes. However, except for
De Jong and Heller (2008) where simple yet effective handling of exposure for Bernoulli and Poisson
is proposed, there has been little research on the optimal handling of incomplete exposures.

3. Delta Boosting Implementation of Negative Binomial Regression

The negative binomial distribution, a member of mixed Poisson, offers an effective way to handle
over-dispersed insurance frequency data whereas DB is a member of boosting family which uses
individual loss minimizers instead of gradients as the basis of regression. In this study, an adapted
negative binomial regression implemented by the delta boosting algorithm is empirically tested by
applying it to the real-time insurance frequency data.

The mathematical illustrations and proofs rely heavily on notations. To facilitate the discussion,
all the key notations used in the paper are defined in Table 1.
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3.1. Notation

The mathematical illustrations and proofs involve heavily on notations. To facilitate the discussion,
all the key notations used in the paper are defined in Table 1.

Table 1. Key notation and definitions in this paper.

Notation Description

M Total number of observations for training
h(xi; a) In decision tree, h(·, ·) is a step function with a as the split point.
Nj Index set of observation in Partition (can also be called Node or Leaf) j

induced by h(xi; a)
Gt(xi) = log(αi,t) αi,t as the shape parameter in the case of negative binomial regression.
Ft(xi) = log(βi,t) βi,t as the scale parameter in the case of negative binomial regression.
Φ(yi, F̄t(xi)) The Loss function of observation i for DB regression. Ft(xi) can be a

vector of parameters. In negative binomial regression, the loss function
is presented as Φ(yi, Gt(xi), Ft(xi))

Φ(y, Ft(x)) Aggregate loss function for one parameter regression , equivalent to
∑M

i Φ(yi, Ft(xi))

Φ′F,i,t and Φ′G,i,t Φ′F,i,t as an abbreviation of ∂
∂Ft(xi )

Φ(yi , Ft(xi ), Gt(xi )). Similar for Φ′G,i,t

Φ′′FF,i,t, Φ′′FG,i,t ,Φ′′GG,i,t Φ′′GG,i,t as an abbreviation of ∂2

∂G2(xi )
Φ(yi , Ft(xi ), Gt(xi )). Similar for

Φ′FF,i,t and Φ′FG,i,t
wi The exposure length of observation i
Φ
′

F,i,t(s, v) The abbreviation of ∂
∂Ft(xi )

Φ(yi , Ft(xi ) + s, Gt(xi ) + v), analogy for other

first and second derivatives.
δi Loss minimizer(delta) for observation i in the case of a single parameter

estimation: δi = argmin
s

Φ(yi, l, (F̂t−1(xi) + s))

∆j Loss minimizer for observations in Node j: ∆j =

argmin
s

∑i∈Nj
Φ(yi, g−1(F̂t−1(xi) + s))

NL Partition that has a smaller Aj in the case of a 2-node partition (Stunt)
NR Partition that has a larger Aj in the case of a 2-node partition (Stunt)
∆L ∆ for observations in NL
∆R ∆ for observations in NR

3.2. Generic Delta Boosting Algorithms

Introduced in Lee and Lin (2015), delta boosting, a close sibling of gradient boosting, is a
ensembling technique that consists of three main steps: basis, regression and adjust (Algorithm 1).

Loss functions are the ex-ante belief in evaluating the cost of inaccurate estimation (Lee and Lin
2018). Friedman (2001) studied the common choices of loss functions including mean-squared errors,
mean-absolute errors or the negative log-likelihood of assumed distribution. This paper adopted the
last option and compare the loss under Poisson and the negative binomial distribution respectively.
In addition, practitioners also find appending penalty functions that temper the magnitudes of
parameters helpful to address the overfitting problem Girosi et al. (1995).

There are two remarks in the delta boosting machine proposed in Lee and Lin (2015). First, DB is
the optimal boosting member for many popular distributions including Poisson, Gamma, Tweedie,
normal, Huber and more. Second, as δ and ∆ are designed such that the adjust step can be integrated
with regression, the calculation is more efficient.
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Algorithm 1 Delta boosting for a single parameter estimation.

1. Initialize F0(x) to be a constant, F0(x) = argmin
β

∑M
i=1 Φ(yi, β)

2. For t = 1 to T Do

(a) Basis: Compute the individual loss minimizer as the working response

δi = argmin
s

Φ(yi, F̂t−1(xi) + s), i = {1, . . . , M}

Apply strictly monotonic transformation κ(·) on δ if necessary.

(b) Regression: Obtain at = argmin
a

∑M
i=1 ∑i∈Nj

Φ(yi, Ft−1(xi) + ∆jh(xi; a)) with ∆j defined in

Table 1
(c) Adjust: It is integrated with Regression step with βt,at = ∆j for i ∈ Nj.
(d) Update Ft(xi) = Ft−1(xi) + βt,at h(xi; at)

3. End For
4. Output F̂(xi) = F̂T(xi)

3.3. Asymptotic DBM

The condition for DB to be optimal does not apply in the case of negative binomial as it does not
meet the condition required. To cope with this, Lee and Lin (2015) offers an asymptotic alternative
that is asymptotically optimal as the iteration grows. The sorting basis and the adjustment factor are
replaced by δ∗ and ∆∗ respectively which are defined as follow

δ∗i = − Φ
′
(yi, Ft−1(xi))

Φ′′(yi, Ft−1(xi))

∆∗j = −
∑i∈Nj

Φ
′
(yi, Ft−1(xi))

∑i∈Nj
Φ′′(yi, Ft−1(xi))

,

where Nj stands for the j-th node of partition. We can also establish a relation between ∆∗ and
δ∗ through

∆∗j =
∑i∈Nj

Φ
′′
(yi, Ft−1(xi))δ

∗
i

∑i∈Nj
Φ′′(yi, Ft−1(xi))

.

For common regression with Poisson, Bernoulli or Gaussian distribution, Φ
′′
(yi, Ft−1(xi))

represents the variance of the sufficient statistics and are always positive. Thus, we can view ∆∗

as a weighted average of δ∗ with the convexity of the loss function. In the rest of the paper, we assume
the base learner to be a 2-node stunt without loss of generality.

3.4. Negative Binomial Regression

The negative binomial regression, defined as a posterior distribution of Poisson with gamma as
the secondary distribution proffers an efficacious way of handling discrete data where the distribution
variance is greater than its mean.
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Assume Y ∼ Poisson(λ) where λ ∼ Gamma(α, β), then

P(Y = k) =
∫ ∞

0

λke−λ

k!
λα−1e−λ/β

βαΓ(α)
dλ

=
∫ ∞

0

λk+α−1e−λ(1+1/β)

k!βαΓ(α)
dλ

=
Γ(α + k)
k!Γ(α)

(
1

β + 1

)α ( β

β + 1

)k
. (1)

It is trivial that E(Y) = αβ and Var(Y) = αβ(1 + β), implying Var(Y) > E(Y). Thus, the negative
binomial distribution is over-dispersed is more suitable than Poisson, for the insurance frequency data
modeling where excessive zeros are common.

Both α and β are limited to be positive. The common regression practice is to impose a log-link
transformation so that the transformed parameters can take any real numbers. In this paper, we will
denote G and F to be the transformed parameters respectively so that

α(x) = eG(x) , α̂(x) = eĜ(x)

β(x) = eF(x) , β̂(x) = eF̂(x).

For negative binomial regression, the loss function, Φ(y, G(x), F(x)), is set to be the negative
log-likelihood of the distribution.

Φ(y, G(x), F(x)) = −
M

∑
i=1

log(P(Yi = yi|xi))

=
M

∑
i=1
−ψ(eG(xi) + yi) + ψ(eG(xi))− yiF(xi) + (yi + eG(xi)) log(eF(xi) + 1). (2)

Various regression approach can be used to estimate F(x) and G(x). In GLM, F(xi) is approximated in the
form w0 + ∑K

j=1 wjxij whereas the GAM approximation of F(xi) is w0 + ∑K
j=1 fi(xij).

4. Delta Boosting Implementation of One-Parameter Negative Binomial Regression

In negative binomial regression, it is a common practice to assume that α is identical for all observations.
The estimation of α can be done through maximum likelihood estimate or moment matching, and also can be
done upfront or alternately with β during the regression. In this subsection, we derive the functional form of F̂(x)
through the DB approach assuming a reliable estimate of α is provided.

4.1. Adaptation to Partial Exposure

In personal insurance, most of the data is structured with partial exposures, which means that the policies
are not recorded in a complete policy term, normally 1 year. It can be due to clients’ actions (e.g., mid-term
changes of policy or mid-term cancellation), regulatory changes (making the data before and after the changes
exhibit different behaviors), business actions changing the composition of clients or even simply artificial data
processing (e.g., calendar year cut-off for statutory reserving valuation and accounting purposes). Table 2 is an
illustration of a policy recorded in the actuarial database.

A single policy is kept in nine entries for exposure in the year 2015 whereas the 10th entry shown in the table
is for another policy term. The length of the period is captured as the exposure in each entry but it is sometimes
possible to aggregate the entries having the same rating information. For example, the 2nd to 4th entries capture
the same rating information and can be combined into one entry with the exposure of 0.189. However, the fifth
entry indicates a change of vehicle and induces a change in the underlying risk of the insured. There is a significant
amount of effective changes similar to the example and hence requiring a serious investigation of the topic on
partial exposures. To the extent of authors’ knowledge, there is no research and publication about studying the
optimal handling of partial exposures in machine learning.
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Table 2. A simple illustration of the bookeeping in actuarial databases.

Record yyyymm Exposure Policy ID Age Conviction Vehicle Code Claim Claim $

1 201501 0.0849 1 123456 35 1 CamrySE2013 0 -
2 201502 0.0767 2 123456 35 1 CamrySE2013 0 -
3 201503 0.0849 1 123456 35 1 CamrySE2013 0 -
4 201504 0.0274 1 123456 35 1 CamrySE2013 0 -
5 201504 0.0548 3 123456 35 1 LexusRX2015 0 -
6 201505 0.0411 1 123456 35 1 LexusRX2015 0 -
7 201506 0.0438 4 123456 35 2 LexusRX2015 1 50,000.0
8 201507 0.0849 1 123456 35 2 LexusRX2015 0 -
9 201508 0.0082 5 123456 35 2 LexusRX2015 0 -
10 201508 0.0767 6 123456 36 2 LexusRX2015 0 -

1: Normal prorated accounting for the month. For example, the exposure for record 1 can be calculated
as 0.849 = 31/365. 2: Regulation change with a new benefit schedule for minor accidents implemented. 3:
Change of vehicle. 4: A claim is recorded. 5: Policy ends on August 3rd. 6: New term starts on August 4th.

By assumption of insurance pricing, the propensity on the incurring claims should be proportional to the
length of the exposure. On the contrary, as long as the underlying risk factors do not change, the overall price in
the same period should be identical regardless of whether the price is calculated annually or monthly or even
artificial split. In Poisson regression, actuaries can take this assumption into account by simply considering the
exposure as an offset due to the unique time homogeneity property of the Poisson process. However, the proper
handling of exposure for other distributions may not be trivial.

We explore the outcome of applying the offset handling of incomplete exposure in negative binomial
regression. As a simple illustration, we have one policy that is split artificially into i observations with wi
(∑i=1 wi = 1) as the length of exposure. We have Yi ∼ Poisson(λi) where λi ∼ Gamma(Aiα, Biβ) and the effect
of {Ai = 1, Bi = wi} and {Ai = wi, Bi = 1} are studied. The resulting loss function is:

Φ = −∑
i=1

log

(∫ ∞

0

λyi e−λ

yi!
λAiα−1e−λ/(Bi β)

(Biβ)AiαΓ(Aiα)
dλ

)
= ∑

i=1
log(yi!Γ(Aiα))− log(Γ(Aiα + yi)) + ∑

i=1
(Aiα + yi) log(Biβ + 1)− yi log(Biβ)

= ∑
i=1

log(yi!Γ(AieG))− log(Γ(AieG + yi)) + ∑
i=1

(AieG + yi) log(BieF + 1)− yi(F + log(Bi)). (3)

In the case where α is a constant, then the first summation is also a constant in the regression.

∂Φ
∂F

= ∑
i=1

(AieG + yi)
BieF

BieF + 1
− yi

=

(eG + y) eF

eF+1 − y, if {Ai = wi, Bi = 1}
∑i=1(eG + yi)

wieF

wieF+1 − yi, if {Ai = 1, Bi = wi}.
(4)

In the case where {Ai = wi, Bi = 1}, the inference is invariant to partitions, a desirable feature in this setting.
On the contrary, the inference in {Ai = 1, Bi = wi} is not preserved. In such a setting, the expectation of

the loss function, E(Φ
′
) = ∑i=1 wiαβ̂

wi β+1
wi β̂+1

− wiαβ. If β, β̂ or β− β̂ are far from zero, there will be a significant

divergence between the expectation of loss function between the full exposure and its split aggregate. In particular,
β− β̂ is generally significant at the beginning of iterations as β̂ is still a coarse estimate. This imposes a risk that
the early, and important, search of predictive estimate can be ineffective.

Accordingly, we assign the offset factor to α in a single parameter regression. It is, in fact, against the
mainstream assumption by popular R or Python libraries. GLM or GAM implementations of negative binomials
do not assume the inclusion of offset in α and therefore for comparison, we will apply the offset on β for the GLM
and GAM implementations.
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4.2. Derivation of the Algorithm

We first derive the F̂0(xi) by maximum likelihood estimation. With w and wi defined as the exposure vector
and exposure for observation i respectively,

F̂0(xi) = argmin
s

Φ(y, wα, s)

M

∑
i=1

yi − (yi + wiα)
eF̂0(xi)

eF̂0(xi) + 1
= 0

F̂0(xi) = log

(
∑M

i=1 yi

∑M
i=1 wiα

)
.

The running prediction after iteration t− 1 is F̂t−1(x). At iteration t, we first derive the individual delta

δ∗i =
yi − (yi + wiα)

eF̂t−1(xi )

eF̂t−1(xi )+1

(yi + wiα)
eF̂t−1(xi )

(eF̂t−1(xi )+1)2

.

Without any loss of generality, we assume the base learner to be a two-node stunt, the simplest classification
and regression tree with only left node and right node. For the left node, define the prediction as ∆∗L, we have

∆∗L =
∑i∈NL

yi − (yi + wiα)
eF̂t−1(xi )

eF̂t−1(xi )+1

∑i∈NL
(yi + wiα)

eF̂t−1(xi )

(eF̂t−1(xi )+1)2

.

The partition is derived by searching the split point that maximizes the loss reduction. For the negative
binomial regression, a loss is defined to be the negative log-likelihood. The loss reduction at iteration t is

Φ(y, wα, F̂t−1(x))−Φ(y, wα, F̂t(x)) =
M

∑
i=1

Φ(yi, wiα, F̂t−1(xi))−Φ(yi, wiα, F̂t(xi))

≈ ∑
i∈NL

Φ
′′
(yi, α, F̂t−1(xi))∆

2
L

+ ∑
i∈NR

Φ
′′
(yi, α, F̂t−1(xi))∆

2
R

= ∑
i∈NL

(yi + α)
eF̂t−1(xi)

(eF̂t−1(xi) + 1)2
∆2

L

+ ∑
i∈NR

(yi + α)
eF̂t−1(xi)

(eF̂t−1(xi) + 1)2
∆2

R,

where ≈ denotes “asymptotically equal”. Algorithm 2 summarizes the above logistics.
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Algorithm 2 Delta boosting for one-parameter negative binomial regression.

1. Initialize F̂0(x) to be a constant, F̂0(x) = log
(

∑N
i=1 yi

∑M
i=1 wiα

)
2. For t = 1 to T Do

(a) Basis: Compute the individual loss minimizer as the working response

δ∗i =
yi − (yi + wiα)

eF̂t−1(xi)

eF̂t−1(xi)+1

(yi + wiα)
eF̂t−1(xi)

(eF̂t−1(xi)+1)2

, i = {1, . . . , M}

(b) Regression: Obtain at = argmin
a

∑i∈Nj
Φ(yi, F̂t−1(xi) + ∆∗j h(xi; a)) with

∆∗j =
∑i∈Nj

yi − (yi + wiα)
eF̂t−1(xi)

eF̂t−1(xi)+1

∑i∈Nj
(yi + wiα)

eF̂t−1(xi)

(eF̂t−1(xi)+1)2

(c) Adjust: It is integrated with Regression step with adjustment equal to ∆∗.

(d) Update F̂t(xi) = F̂t−1(xi) + ∆∗j h(xi; at) for i ∈ Nj.

3. End For
4. Output F̂(xi) = F̂T(xi)

5. Delta Boosting Implementation of Two-Parameter Negative Binomial Regression

Except for the multinomial regression (Darroch and Ratcliff 1972), almost all research mentioned in Section 2
focused on the one-parameter estimation. In this section, we propose an extension to the moderated delta boosting
algorithm earlier in Section 4 that allows simultaneous estimations of the shape and scale parameters in the
negative binomial distribution. We will also walkthrough, in the rest of this section, the proposed adaptation we
applied to address some key issues due to the relaxation of parameter assumption and the incomplete exposure
phenomenon in insurance data.

5.1. Adaptation to Incomplete Exposure

Thanks to the forward stage-wise property in DB, the simultaneous regression of α and β is achievable. We
define the estimate of α and β as α̂ and β̂ respectively.

Since α is no longer assumed to be constant, in addition to the consideration we made for β in Equation (3),
we also studied the impact of incomplete exposure on the inference of α.

Differentiating the loss function by G,

∂Φ(y, F, G)

∂G
= ∑

i=1
AieG(ψ(AieG)− ψ(AieG + yi) + log(BieF + 1))

=

{
∑i=1(wieG(ψ(wieG)− ψ(wieG + yi) + log(eF + 1))) if {Ai = wi, Bi = 1}
∑i=1 eG(ψ(eG)− ψ(eG + yi) + log(wieF + 1)) if {Ai = 1, Bi = wi}

=

{
∑i=1(wieG(ψ(wieG)− ψ(wieG + yi))) + eG log(eF + 1)) if {Ai = wi, Bi = 1}
KeGψ(eG)−∑i=1 eG(ψ(eG + yi)− log(wieF + 1)) if {Ai = 1, Bi = wi}

, (5)

where ψ(x) represents the digamma(x). As stated in Section 4.1, ∂Φ
∂F is invariant under the partition. For ∂Φ

∂G ,
the inference is also invariant if y < 2, representing over 97% of the observation in the empirical data we deployed
in Section 6 as most often an insured does not incur more than one accident in any exposure periods. In the
case where y ≥ 2, the inference will still stay the same if all incidence happened in the same exposure window.
Otherwise, the aggregated loss gradient in Equation (5) is always larger than the full exposure equivalence.
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In the case where {Ai = 1, Bi = wi}, we concluded in Section 4.1 that the inference of ∂Φ
∂F is impacted by

the way an observation is split to exposure. From Equation (5), the first term of ∂Φ
∂G grows by the number of

splits and the second term also almost grows at the same rate as most of the responses are zero. On the contrary,
the magnitude of the third term is

∑
i=1

eG log(wieF + 1) ≈ ∑
i=1

eGwieF

= eGeF.

The asymmetric change of the three items imposes an adverse impact on the inference of α as the estimation
varies materially by the choice of splitting observations although the splits are merely artificial for accounting
purposes most of the time.

This analysis is propelling for us to apply the exposure as an offset to α in throughout this paper.

5.2. Derivation of the Algorithm

We first derive the F̂0(xi) and Ĝ0(xi) that minimize the loss function.

{F̂0(x), Ĝ0(xi)} = argmin
{s,v}

Φ(y, wv, s).

The joint estimation can be done through standard numerical approaches.
The running estimation of parameters F(x) and G(x) after iteration t− 1 are F̂t−1(x) and Ĝt−1(x) respectively.

At iteration t, the group loss minimizer ∆∗L,F, ∆∗R,F, ∆∗L,G, ∆∗R,G for any given two-node stunt are derived by setting
the derivatives of loss with respect to each of the above quantities zero. Without any loss of generality, we derive
the mathematics for the left node of split NL:

{∆∗L,F, ∆∗R,F} = argmin
{s,v}

∑
i∈L

Φ(yi, F̂t−1(x), Ĝt−1(x)).

Following the principle from Lee and Lin (2018), it is intuitive to derive the ∆∗L,F and ∆∗R,F by
simultaneously solving

∂

∂∆∗L,F
∑
i∈L

Φ(yi , F̂t−1(xi ) + ∆∗L,F, Ĝt−1(xi ) + ∆∗L,G) = 0 (6)

∂

∂∆∗L,G
∑
i∈L

Φ(yi , F̂t−1(xi ) + ∆∗L,F, Ĝt−1(xi ) + ∆∗L,G) = 0. (7)

Correspondingly, δ∗i,F and δ∗i,F satisfies both equations below:

∂

∂δ∗i,F
Φ(yi , F̂t−1(xi ) + δ∗L,F, Ĝt−1(xi ) + δ∗i,G) = 0 (8)

∂

∂δ∗i,G
Φ(yi , F̂t−1(xi ) + δ∗i,F, Ĝt−1(xi ) + δ∗L,G) = 0. (9)

In the coming subsection, we will walk through a naive implementation of Equation (6) to 9 could result in
wrong induction.

5.3. Negative Binomial Does Not Belong to the Two-Parameter Exponential Family

The negative binomial distribution belongs to the one-parameter exponential family when the shape
parameter is fixed. Thus, all the properties that enable simple and effective regression, including separable
sufficient statistics from the parameter set and positive definite Hessian, are inherited. However, when we
relax the assumption of the fixed shape parameter, the distribution does not belong to the (two-parameter)
exponential family.
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In mathematics representation, fY(y | θ), with θ = {θ1, θ2, . . . , θs}, is a member of s-parameter exponential
family if fY(y | θ) can be written in the form of

h(y) exp

(
s

∑
i=1

ηi(θ)Ti(y)− A(θ)

)
.

For negative binomial, the probability mass function is

Γ(y + α)

Γ(y + α)y!
βy

(1 + β)y+α =

(
Γ(y + α)

Γ(y + α)y!

)
exp

{
y log

(
β

1 + β

)
+ α log(β)

}
. (10)

It is trivial that we cannot separate y and α in the form suggested in Equation (10) and leads to a significantly
more complicated estimation effort for α

5.4. No Local Minima

The most important property lost is Hessian positiveness. We will prove, if fact, all critical points that fulfill
Equations (6) and (7) are saddle points but not minima.

Lemma 1. 0 < Φ
′′

GG,i,t−1(δ
∗
i,F, δ∗i,G) = Φ

′′

FG,i,t−1(δ
∗
i,F, δ∗i,G) for δ∗i,F and δ∗i,F satisfying Equations (8) and (9)

Proof.

Φ
′

F,i,t−1(δ
∗
i,F, δ∗i,G) = (αi,t−1 + yi)

βi,t−1

1 + βi,t−1
− yi = 0

αi,t−1βi,t−1 = yi

Φ
′′

FF,i,t−1(δ
∗
i,F, δ∗i,G) = (αi,t−1 + yi)

βi,t−1

(1 + βi,t−1)2

=
αi,t−1βi,t−1

1 + βi,t−1
= Φ

′′

FG,i,t−1(δ
∗
i,F, δ∗i,G)

Lemma 2. 0 ≤ Φ
′′

GG,i,t−1(δ
∗
i,F, δ∗i,G) < Φ

′′

FG,i,t−1(δ
∗
i,F, δ∗i,G)

Proof. Recall the ψ(·) is the digamma function, the derivative of a log-gamma function. Φ
′′

GG,i,t−1(δ
∗
i,F, δ∗i,G) = 0

for yi ≤ 1 and hence the Lemma holds. Since yi is a non-negative integer, for yi > 1, we have

Φ
′′

GG,i,t−1(δ
∗
i,F, δ∗i,G) = α2

i,t−1(ψ
′
(αi,t−1 + yi)− ψ

′
(αi,t−1)) + Φ

′

G,i,t−1(δ
∗
i,F, δ∗i,G)

= α2
i,t−1

yi

∑
l=2

1
(αi,t−1 + l − 1)2

< α2
i,t−1

∫ αi,t−1+yi−1

αi,t−1

1
x2 dx

= αi,t−1
yi − 1

(αi,t−1 + yi − 1)

≤ αi,t−1
yi

(αi,t−1 + yi)

=
αi,t−1βi,t−1

1 + βi,t−1
= Φ

′′

FG,i,t−1(δ
∗
i,F, δ∗i,G)

where ∑
yi
l=a f (l) is nationally defined to be = 0 if yi < a.

Theorem 1. All the critical points for Φ(yi, F̄t(xi)) are saddle points. i.e., Φ
′′

FF,i,tΦ
′′

GG,i,t − (Φ
′′

FG,i,t)
2 < 0

Proof. This theorem is a natural consequence of Lemmas 1 and 2.

Accordingly the Theorem 1, the solutions from Equations (6) and (7) will not lead to optimal solution, even
locally. Some common consequences of saddle points, negative convexity and co-linearity, are explained in the
following modules.
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5.4.1. Negative Convexity

In some extreme scenarios for negative binomial, negative convexity exists.

H(yi , F(xi ), G(xi )) =
∂2

∂G2(xi )
Φ(yi , F(xi ), G(xi ))

= [ψ(αi + yi )− ψ(αi )− log(βi + 1)] αi −
[
ψ
′
(αi + yi )− ψ

′
(αi )

]
α2

i

H(2,−1,−2.2) = −0.157 (11)

H(0,−1,−2.2) = 0.038, (12)

where α and β are chosen such the E(Yi) is roughly the same as the sample mean in the empirical data in
Section 6.1. For some partitions where α and β, the difference between Equations (11) and (12) can be significantly
larger. Negative convexity means that the solution from Equation (6) indeed leads to local maxima of loss instead,
going completely opposite to our intention.

In the empirical study, α and β are chosen such the E(Yi) is roughly the same as the sample mean in the
empirical data in Section 6.1. For some partitions where α and β, the difference between Equations (11) and (12)
can be significantly larger. Negative convexity means that the solution from Equation (6) indeed leads to local
maxima of loss instead, going completely opposite to our intention.

In the empirical study conducted in this paper, there were around 400 instances with partitions in 3000
iteration-training having small or negative denominators.

5.4.2. Co-Linearity

In Section 5.4.1, we identify the potential of negative convexity when y ≥ 2. On the contrary, The co-linearity
problem exists as the ΦFF ∼ ΦFG ∼ ΦGG when y ≤ 1.

The parameter β is generally small with average magnitude smaller the 0.01,

∂2

∂G2(xi )
Φ(0, F(xi ), G(xi )) = α log(β + 1) ≈ αβ

∂2

∂F(xi )∂G(xi )
Φ(0, F(xi ), G(xi )) =

αβ

β + 1
≈ αβ

∂2

∂F2(xi )
Φ(0, F(xi ), G(xi )) =

αβ

(β + 1)2 ≈ αβ.

If the underlying α and β are known,

EYi

(
∂2

∂F2(xi )
Φ(Yi, F(xi ), G(xi ))

)
=

αβ

β + 1
≈ αβ.

As over 95% of the observations are claim-free in most retail insurance portfolios, it is probable that some
partitions contain a very small amount of non-zero claims and lead to the co-linearity problem, causing large
offsetting solutions of ∆F and ∆G in Section 5.2 and failing the assumption of the Taylors’ theorem. Hashem (1996)
confirmed the negative effects of co-linearity on parameter estimation in the neural networks.

5.4.3. Our Proposal to Saddle Points

Dauphin et al. (2014) and references therein suggested that saddle points are prevalent in machine learning
and particularly in high dimensional modeling in which interactions among a large number of parameters exist.
To address the problem, a common and effective approach is to dampen the Hessian through appending a
constant to its diagonal and thus removing the negative curvature. Kingma and Ba (2014) for the neural network
and Tihonov (1963) for linear regression adopt a similar principle and find effective improvements. We further
fine-tune the correction constant to be proportional to the length of the exposure period to reflect the nature of
insurance data. Since Φ

′′

FF,i,t performs regularly as shown in Section 4, this arrangement is only applied on Φ
′′

GG,i,t.
With an artificially small appending constant introduced, there were three occurrences down from around

400 in the empirical study conducted in this paper. To further limit the impact, we impose a cap of the ∆s in
each iteration.
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5.4.4. The Modified Deltas

Continuing Equations (6) and 7, we derive the approximated solution through utilization of the
Taylor’s expansion

∆∗L,F =
∑i∈L Φ

′

G,i,t ∑i∈L Φ
′′

FG,i,t −∑i∈L Φ
′

F,i,t ∑i∈L Φ
′′

GG,i,t

∑i∈L Φ′′
FG,i,t ∑i∈L Φ′′

FG,i,t −∑i∈L Φ′′
GG,i,t ∑i∈L Φ′′

FF,i,t
(13)

∆∗L,G =
∑i∈L Φ

′

F,i,t ∑i∈L Φ
′′

FG,i,t −∑i∈L Φ
′

G,i,t ∑i∈L Φ
′′

FF,i,t

∑i∈L Φ′′
FG,i,t ∑i∈L Φ′′

FG,i,t −∑i∈L Φ′′
GG,i,t ∑i∈L Φ′′

FF,i,t
, (14)

with

Φ
′

F,i,t = −yi + (α̂i,t−1 + yi) p̂i,t−1 , Φ
′

G,i,t = (ψ(α̂i,t−1 )− ψ(α̂i,t−1 + yi) + log(eF̂i,t−1 (xi) + 1))α̂i,t−1

Φ
′′

FF,i,t = (α̂i,t−1 + yi) p̂i,t−1 (1− p̂i,t−1 ) , Φ
′′

GG,i,t =
(

ψ
′
(α̂i,t−1 )− ψ

′
(α̂i,t−1 + yi)

)
α̂2

i,t−1
+ Φ

′

G,i,t + wiε

Φ
′′

FG,i,t = α̂i,t−1 p̂i,t−1 ,

where p̂i,t =
eF̂t (xi )

1+eF̂t (xi )
and ε > 0 is the correction positive constant to dampen the negative determinant of Hessian.

5.4.5. Partition Selection

The implementation of the delta boosting meta-algorithm brings a marked improvement in the predictive
accuracy of the model, due to its ability to identify the optimal partition, which results in the maximum reduction of
loss. Although this phenomenon works very well in the case of the one-parameter estimation of negative binomial
regression, the complexity of the model increases dramatically in the case of the two-parameter estimation.

While it is still feasible to acquire the optimal partitions by constructing intermediate calculations,
the sizable number of calculations render this brute-force approach inefficient. To simplify the calculation,
we choose partitions that maximize (ZL,F)

2 ∑i∈L Φ
′′

FF,i,t−1 + (ZL,G)
2 ∑i∈L Φ

′′

GG,i,t−1 + (ZR,F)
2 ∑i∈R Φ

′′

FF,i,t−1 +

(ZR,G)
2 ∑i∈R Φ

′′

GG,i,t−1. This is equivalent in assuming the optimal partitions are derived by separately optimizing
the adjustments for F̂ and Ĝ.

5.5. The Selected Algorithm

Combining the considerations in this section, we put together the final algorithm in Algorithm 3.
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Algorithm 3 Delta boosting for two-parameter negative binomial regression.

1. Initialize F̂0(x) ,Ĝ0(x) to be constants that satisfy {F̂0(x), Ĝ0(xi)} = argmin
s,v

Φ(y, wv, s)

2. For t = 1 to T Do

(a) Basis: Compute the components Φ
′
F,i,t, Φ

′
G,i,t,Φ

′′
FG,i,t,Φ

′′
FF,i,t,Φ

′′
GG,i,t with a correction constant

wiε appended to Φ
′′
GG,i,t for Regression as the working response in Adjust step.

(b) Regression: Derive

ZL,F = −
∑i∈L Φ

′
F,i,t

∑i∈L Φ′′FF,i,t
, ZR,F = −

∑i∈RΦ′F,i,t

∑i∈R Φ′′FF,i,t

ZL,G = −
∑i∈L Φ

′
G,i,t

∑i∈L Φ′′GG,i,t
, ZR,G = −

∑i∈R Φ
′
G,i,t

∑i∈R Φ′′GG,i,t

for each partition candidates and select the one that maximizes (ZL,F)
2 ∑i∈L Φ

′′
FF,i,t−1 +

(ZL,G)
2 ∑i∈L Φ

′′
GG,i,t−1 + (ZR,F)

2 ∑i∈R Φ
′′
FF,i,t−1 + (ZR,G)

2 ∑i∈R Φ
′′
GG,i,t−1.

(c) Adjust: Derive adjustment for each partition with

∆∗L,F =
∑i∈L Φ

′
G,i,t ∑i∈L Φ

′′
FG,i,t −∑i∈L Φ

′
F,i,t ∑i∈L Φ

′′
GG,i,t

∑i∈L Φ′′FG,i,t ∑i∈L Φ′′FG,i,t −∑i∈L Φ′′GG,i,t ∑i∈L Φ′′FF,i,t

∆∗L,G =
∑i∈L Φ

′
F,i,t ∑i∈L Φ

′′
FG,i,t −∑i∈L Φ

′
G,i,t ∑i∈L Φ

′′
FF,i,t

∑i∈L Φ′′FG,i,t ∑i∈L Φ′′FG,i,t −∑i∈L Φ′′GG,i,t ∑i∈L Φ′′FF,i,t

∆∗R,F =
∑i∈R Φ

′
G,i,t ∑i∈R Φ

′′
FG,i,t −∑i∈R Φ

′
F,i,t ∑i∈R Φ

′′
GG,i,t

∑i∈R Φ′′FG,i,t ∑i∈R Φ′′FG,i,t −∑i∈R Φ′′GG,i,t ∑i∈R Φ′′FF,i,t

∆∗R,G =
∑i∈R Φ

′
F,i,t ∑i∈R Φ

′′
FG,i,t −∑i∈R Φ

′
G,i,t ∑i∈R Φ

′′
FF,i,t

∑i∈R Φ′′FG,i,t ∑i∈R Φ′′FG,i,t −∑i∈R Φ′′GG,i,t ∑i∈R Φ′′FF,i,t

(d) Update F̂t(xi) = F̂t−1(xi) + ∆∗j,Fh(xi; at), Ĝt(xi) = Ĝt−1(xi) + ∆∗j,Gh(xi; at) for i ∈ Nj.

3. End For
4. Output F̂(xi) = F̂T(xi), Ĝ(xi) = ĜT(xi)

6. Empirical Studies

6.1. Data

The data for this study consists of the motor insurance collision coverage data from a Canadian insurer in
2001–2005. The collision coverage is an important module as it protects the insured from financial losses in the
form of repair cost or replacing their vehicles in case the covered vehicle collides with other vehicles or any object
in or on the ground.

There are more than 1000 variables available including policyholders, drivers, and vehicle characteristics.
The data includes 290,147 vehicle years. The response to be predicted is the claim frequency i.e., the number of
claims per vehicle year. Although the claim frequency of 4.414% falls into the industry-standard range of 4% to
8%, this represents a distribution with imbalanced responses, which commonly hinders the detection of claim
predictors and eventually decreases the predictive accuracy of the model (Sun et al. 2007). Thus, a proper selection
of the modeling technique and loss function is required to guarantee a meticulous estimation.

Except for the deletion of an insignificant proportion of observations with the missing values, all the data are
retained. We selected 80% of the data randomly for training, whereas 20% of the data was selected for the testing
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purpose. Interested readers may find an overview of this dataset from Lee and Antonio (2015) and Lee and Lin
(2018) as they offered a comprehensive study of data processing, exploratory data analysis and model diagnoses.

6.2. Candidate Algorithms for Benchmarking Studies

Comparative studies on various candidate algorithms including GLM, GAM, and DB implementation of
Poisson regression and GLM, GAM and DB implementation of the negative binomial regression were done to
analogize the performance.

Common diagnostics: Some popular diagnostics are examined in the study to assess the quality of model
predictions. The metrics are derived for both the training and holdout samples and the best performer in each
diagnostic is marked in the bold (Table 3).

Table 3. Models’ comparisons based on common diagnostic metrics.

Model
Metrics on Train Dataset Metrics on Test Dataset

Loss(P) Loss(NB) Lift Gini Loss(P) Loss(NB) Lift Gini

GLM 0.00 - 5.807 0.269 0.00 - 5.575 0.245
GAM −277.36 - 6.739 0.286 −39.79 - 6.009 0.312
GBM −764.80 - 8.987 0.314 −56.45 - 7.022 0.292
Poissondbm −790.97 10.520 0.317 −63.88 6.945 0.329
NBGLM −5.72 −33.96 5.826 0.267 6.16 −9.26 5.527 0.256
NBGAM −264.75 −288.39 6.780 0.295 −39.12 −53.25 6.087 0.259
NBdelta_single −782.02 −528.80 10.285 0.322 −61.45 −68.60 6.582 0.306
NBdelta_double −901.22 −599.81 10.311 0.327 −62.77 −75.55 6.694 0.332

Many machine learning algorithms are capable of effectively exploiting patterns within the training dataset
and going too deep can cause over-fitting. This tendency generates highly satisfactory results on the training
data but consequentially weaker performance in the holdout sample. The key goal of predictive modeling is to
extract a generic pattern and apply it to future data for quality forecasting. In this paper, we focus our discussion
on the diagnoses applied on the holdout sample which expeditiously gauges the comprehensive power of the
predictive model.

Loss: Loss(P) and Loss(NB) indicate the losses based on the sum of negative log-likelihood of the Poisson
and negative binomial distributions respectively. Loss(P) for negative binomial regression can be derived by
setting λ = αβ. We should compare the loss of the model’s corresponding distribution as it represents the ex-ante
belief of the underlying distribution of the data. This metric should carry the most weight as it dictates the search
of parameters during the training due to loss minimization is equivalent to maximizing the log-likelihood in this
experiment. Both metrics are captured as a difference between their losses with the corresponding loss from GLM
Poisson for simpler comparison.

We discovered that the holdout loss for the two-parameter negative binomial is the smallest, indicating
this regression performs best in this test. The distribution also performs best in the Poisson loss during training.
As the distribution does not purposely aim at improving the loss in Poisson, it is interesting to observe its superior
performance over the Poisson counterpart.

In general, a more complex algorithm outperforms the simpler candidates. It suggests the assumption of
linearity and independence among explanatory variables may be too restrictive.

Lift: the Lift and Gini index are auxiliary metrics that evaluate the model without an assumption on the
underlying distribution. Lift is the ratio between the average actual response of the top decile, based on the
prediction, and the average actual response of the bottom decile. The lift measure, in simpler terms, can be defined
as a measure of the ability of a model to differentiate observations. A higher lift illustrates that the model is
more capable to separate the extreme values from the average. In particular, once actuaries identify the tail risks,
insurers can effectively devise risk mitigation plans from a variety of tools beyond pricing, including but not
limited to underwriting, reinsurance, mandating implementation of safety measures.

We observe a significant fluctuation of results between the training and holdout samples, suggesting the
measure can be sensitive. From Figure 1, all the boosting implementations exhibit good lifts and alignment with
the y = x straight line, which benchmarks the perfect predictions.
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Figure 1. Lift plot for regression models.

Gini coefficient and Lorenz curve: the Gini coefficient is a measure of statistical dispersion intended to
represent the wealth distribution of the nation’s residents Gini (1936). A model having a larger coefficient indicates
a higher disparity and is preferred for predictive modeling. When compared with the lift measure, the Gini
coefficient evaluates the discriminatory power of machine learning models using the full data rather than only the
extreme points, and thus more robust against the fluctuation of predictive performance in both tails. Figure 2
depicts the Lorenz curve, the graphical representation of the index. The y = x line represents a model that has no
predictive power and a curve that is further away from the line suggests strong discriminatory power and higher
Gini index. The delta boosting deployment of negative binomial performs best in this test.

Figure 2. Lorenz curve for candidate models.

Partial dependence plot: actuaries can then dive further to understand the nuances about how individual
variables predict differently through partial dependence plots. Defined in Friedman (2001), a partial dependence
plot is a visualization that exhibits the marginal influence of F(x) on selected subsets of the input features. Similar
to differential plots in actuarial practice, the plots can help actuaries to investigate the models in lower dimensions.
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For the case in negative binomial two-parameter regression, we are interested in the predicted response αβ and
thus we will study the partial dependence plot accordingly. As an illustration, the plots for driving class, driver’s
age, years licensed, and the number of years with the insurers are depicted in Figure 3.

(a) driving class (b) Driver’s age

(c) vehicle rate group (d) Length of car ownership

Figure 3. Normalized marginal plots for modeling candidates.

Double lift plot: the double lift plot provides a direct predictive performance comparison between the
two-parameter negative binomial model over the Poisson model, both implemented through the DB. Observations
are sorted in the ratios of the negative binomial prediction over the Poisson prediction and are grouped by the
intervals that they belong (ratio of 0.99 ∈ (0.95, 1]). For each bucket, we calculate the ratio of actual claim counts
over total Poisson prediction and ratio of total negative binomial prediction over total Poisson prediction. The red
and blue lines describe the trend for the ratios respectively. Positively correlated lines indicate the negative
binomial distribution explains a high portion of residuals that the Poisson model fails to capture. If no trend is
observed, it indicates the ratio distributes randomly and thus the performance of both models is similar. On the
contrary, a double lift plot with a negative trend would indicate the negative binomial is inferior to Poisson.

From actuarial perspectives, we can consider the negative binomial regression as a new costing algorithm,
whereas the Poisson model as the current one. The ratio of the predictions by the new algorithm over the current
prediction, called dislocation, is the rate change received by the insured. Correspondingly, the ratio of the total
over the second is the loss ratio.

We explain the concept further through Figure 4. For insureds falling into the bucket with a low loss ratio,
they should deserve a lower rate change. If the loss ratio is constant (no trend) or even negatively correlated with
the dislocation, it indicates the new algorithm is not better. The dislocation exercise is an essential exercise for
pricing actuaries as a rate increase will likely drive a high lapse rate whereas rate decrease may conceive profits.
Thus, the rate change of both sides must be heavily studied and normally a rate capping is applied to temper
extreme rate changes. With the double lift plot, actuaries have a viable tool to assess the accuracy of the new
algorithm. Using the bucket of (0, 0.9] as the example, the average dislocation (rate change) for this bucket is 0.85
(from the blue line) and the average loss ratio is 0.83 (red line), indicating that the proposed decrease reflects the
risks inherited from the policyholders. Whereas, capping the rate increase for the bucket [1.1, ∞) seems necessary
as the rate increase is considerably higher than the indicated loss ratio.
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Figure 4. Double lift plot for delta boosting (DB) implementation of negative binomial over Poisson.

From Figure 4, we witness a significantly positive relationship between the blue line (indicated rate change)
and the red line (loss ratio), with a correlation of 0.82, indicating the negative binomial distribution is able to pick
up the residuals from the Poisson’s.

7. Concluding Remarks and Directions of Future Research

This research aims to find an actuarial modeling approach to handle adeptly the over-dispersed insurance
frequency data, price rigorously insurance products, and cut any untoward underwriting risks while following the
principles of transparent systems for regulatory purposes, ease of the business interpretation. Retail insurance is a
highly competitive domain and customers have a plethora of choices for comparing and picking among the most
enthralling and economically viable insurances in the market. It implies that for insurers to compete healthily in
the market, not only the pricing model has to be accurate in any coarse segments, but it also ought to be precise
at the finer or individual levels. Otherwise, there will be an under-pricing risk, resulting in an operating loss
whereas the loss incurred cannot be made up merely by over-pricing as some customers being over-priced will be
driven away. In the study, a two-parameter estimation of negative binomial regression with specific consideration
on the incomplete exposure, negative convexity and co-linearity has been able to handle the excessive zero data
effectively and has presented a boosted predictive quality. Accurate forecasts can undoubtedly assist insurers to
derive strategies that improve their overall competitiveness of the insurers along with hampering the exposure to
the anti-selection problem, as compared with other competing candidates.

A few commonly used diagnostics are applied to evaluate the candidates. Efficacious use of the diagnostics
can help the actuaries to thoroughly assess the applicability of predictive modeling techniques. We conclude this
paper with a summary of insights observed in the empirical study:

Negative binomial regression performs better than the Poisson counterparts A meaningful improvement of
metrics is observed with GLM, GAM, and DB, implementation of negative binomial as compared to
the GLM, GAM and DB implementation of Poisson which clearly indicates that the negative binomial
based models show a better fit for the insurance data, potentially due to the excessive zeros phenomenon
described Section 1.

Existence of non-linearity and interaction In either Poisson or negative binomial based models, GAM
outperforms GLM and DB outperforms GAM. The former suggests non-linearity between explanatory
variables and the response where the later suggests that the existence of interaction within the data.

Two-parameter regression offers an additional boost of performance In this paper, we introduce a novel
two-parameter regression approach through a simultaneous regression of both α and β. From the empirical
study, assuming a fixed shape parameter may restrict the ability for a machine learning model to search for
the best parameter set.
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Incomplete exposure together with frequency estimation also impacts claim reserving. Claim reserves
represent the insurer’s estimate of its current liabilities for unpaid claims that occurred on or prior to the financial
statement reporting date (Friedland 2010). Hence, traditional statistics approach like expected claims, chain–ladder
(CL), Bornhutter–Ferguson (CF), Cape Cod, Berquist–Sherman method are predominant. With the availability
of modern machine learning techniques, actuaries are capable to estimate the liability at individual claim levels
[Baudry and Robert (2019); Kuo (2019); Taylor (2019); Wüthrich (2018) and reference therein]. One significant
contributing module of the early development of reserving is incurred but not yet reported, which can be
effectively estimated by introducing a more realistic distribution assumption similar to the frequency modeling in
our paper. In addition, the insights on incomplete exposure can possibly offer a meaningful actuarial research
direction on proper handling in even more artificially split observation due to financial reporting purposes and
thus leading to more robust estimates.
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