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Abstract: We study numerical algorithms for reflected anticipated backward stochastic differential
equations (RABSDEs) driven by a Brownian motion and a mutually independent martingale in
a defaultable setting. The generator of a RABSDE includes the present and future values of the
solution. We introduce two main algorithms, a discrete penalization scheme and a discrete reflected
scheme basing on a random walk approximation of the Brownian motion as well as a discrete
approximation of the default martingale, and we study these two methods in both the implicit and
explicit versions respectively. We give the convergence results of the algorithms, provide a numerical
example and an application in American game options in order to illustrate the performance of
the algorithms.

Keywords: numerical algorithm; reflected anticipated backward stochastic differential equations;
discrete penalization scheme; discrete reflected scheme

1. Introduction

The backward stochastic differential equation (BSDE) theory plays a significant role in financial
modeling. Given a probability space (Ω,F ,P), where B := (Bt)t≥0 is a d-dimensional standard
Brownian motion, F := (Ft)t≥0 is the associated natural filtration of B, Ft = σ(Bs; 0 ≤ s ≤ t), and F0

contains all P-null sets of F . We first consider the following form of BSDE with the generator f and
the terminal value ξ:

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T]. (1)

The setting of this problem is to find a pair of Ft-adapted processes (Y, Z) ∈ S2
F (0, T;R) ×

L2
F (0, T;Rd) satisfying BSDE (1).

Linear BSDE was first introduced by Bismut (1973), when he studied maximum principle in
stochastic optimal control. Pardoux and Peng (1990) studied the general nonlinear BSDEs under
a smooth square integrability assumptions on the coefficient and the terminal value, and a Lipschitz
condition for the generator f . Duffie and Epstein (1992) independently used a class of BSDEs
to describe the stochastic differential utility function theory in uncertain economic environments.
Tang and Li (1994) considered the BSDEs driven by a Brownian motion and an independent Poisson
jump. Barles et al. (1997) completed the theoretical proofs of BSDE with Poisson jump. Cordoni and Di
Persio (2014) studied the hedging, option pricing and insurance problems in a BSDE approach.
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Cvitanic and Karatzas (1996) first studied reflected BSDEs with continuous lower obstacle and
continuous upper obstacle under the smooth square integrability assumption and Lipschitz condition.
A quadruple (Y, Z, K+, K−) := (Yt, Zt, K+

t , K−t )0≤t≤T is a solution RBSDE with the generator f ,
the terminal value ξ and the obstacles L and V:

Yt = ξ +
∫ T

t f (s, Ys, Zs)ds + (K+
T − K+

t )− (K−T − K−t )−
∫ T

t ZsdBs, t ∈ [0, T];

Vt ≥ Yt ≥ Lt, t ∈ [0, T];∫ T
0 (Yt − Lt)dK+

t =
∫ T

0 (Vt −Yt)dK−t = 0.

(2)

where K+ and K− are continuous increasing processes, K+ is to keep Y above L, while K− is to keep Y
under V in a minimal way. When V ≡ ∞ and K− ≡ 0 (resp. L ≡ ∞ and K+ ≡ 0), we obtain a reflected
anticipated backward stochastic differential equation (RABSDE) with one lower (resp. upper) obstacle.
The existence of the solution of RBSDE with two obstacles can be obtained under one of the following
assumptions: (1) one of the obstacles L and V are regular (see e.g., Cvitanic and Karatzas 1996;
Hamadène et al. 1997); (2) Mokobodski’s condition (see e.g., Hamadène and Lepeltier 2000; Lepeltier
and Xu 2007), which means the existence of a difference of non-negative super-martingales between
obstacles L and V. However, both of them have disadvantages, assumption (1) is somewhat restrictive,
(2) is difficult to verify in practice. In this paper, we use the Assumption 5 for the obstacles.

Peng and Yang (2009) studied a new type of BSDE, anticipated BSDE (ABSDE) whose generator
includes the values of both the present and the future,

Yt = ξT +
∫ T

t f
(
s, Ys,EGs [Ys+δ], Zs,EGs [Zs+δ]

)
ds−

∫ T
t ZsdBs, t ∈ [0, T];

Yt = ξt, t ∈ (T, T + Tδ];

Zt = αt, t ∈ (T, T + Tδ].

(3)

under the smooth square integrability assumption of the anticipated processes ξ and α, and Lipschitz
condition of the generator f . Peng and Yang (2009) gave the existence and uniqueness theorem and
the comparison theorem of anticipated BSDE (3). Øksendal et al. (2011) extended this topic to ABSDEs
driven by a Brownian motion and an independent Poisson random measure. Jeanblanc et al. (2017)
studied ABSDEs driven by a Brownian motion and a single jump process.

Default risk is the risk that an investor suffers a loss due to the inability of getting back the initial
investment, it arises from a borrower failing to make required payments. This loss may be complete or
partial (more see Kusuoka 1999). Peng and Xu (2009) introduced BSDE with default risk and gave the
relative existence and uniqueness theorem and comparison theorem. Jiao and Pham (2011) studied the
optimal investment with counterparty risk. Jiao et al. (2013) continued the research on the optimal
investment under multiple default risk through a BSDE approach. Cordoni and Di Persio (2016)
studied the BSDE with delayed generator in a defaultable setting. In this paper, we focus on the study
of reflected anticipated BSDE with two obstacles and default risk.

For the numerical methods of BSDEs, Peng and Xu (2011) studied numerical algorithms for
BSDEs driven by Brownian motion. Xu (2011) introduced a discrete penalization scheme and a discrete
reflected scheme for RBSDE with two obstacles. Later Dumitrescu and Labart (2016) extended to
RBSDE with two obstacles driven by Brownian motion and an independent compensated Poisson
process. Lin and Yang (2014) studied the discrete BSDE with random terminal horizon.

The paper is organized as follows, we first introduce the basics of the defaultable model in
Section 1.1 and the reflected anticipated BSDE (4) with two obstacles and default risk in Section 1.3.
Section 2 illustrates the discrete time framework. We study the implicit and the explicit methods of
two discrete schemes, i.e., the discrete penalization scheme in Section 3 and the discrete reflected
scheme in Section 4. Section 5 completes the convergence results of the numerical algorithms which
were provided in the previous sections. In Section 6, we illustrate the performance of the algorithms
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by a simulation example and an application in American game options in the defaultable setting.
The proofs of the convergence results in Section 5 can be found in the Appendix A.

1.1. Basics of the Defaultable Model

Let τ = {τi; i = 1, ...k} be k non-negative random variables on a probability
space (Ω,G,P) satisfying

P(τi > 0) = 1; P(τi > t) > 0, ∀t > 0; P(τi = τj) = 0, i 6= j.

For each i = 1..., k, we define a right-continuous default process Hi := (Hi
t)t≥0, where Hi

t :=
1{τi≤t}, denote byHi := (Hi

t)t≥0 the associated filtrationHi
t := σ(Hi

s; 0 ≤ s ≤ t). We assume that F0

is trivial (it follows that G0 is trivial as well). For a fixed terminal time T ≥ 0, there are two kinds of
information: one is from the asset prices, denoted by F := (Ft)0≤t≤T ; the other is from the default
times {τi; i = 1, ..., k}, denoted by {Hi; i = 1, ..., k}.

The enlarged filtration considered is denoted by G := (Gt)0≤t≤T , where Gt = Ft ∨H1
t ∨ ...∨Hk

t .
Generally, a G-stopping time is not necessarily a F -stopping time. Let G := Gt, where Gt = P(τ >

t|Ft), i.e., Gi
t = P(τi > t|Ft), for each i = 1, ..., k. In the following, Gi is assumed to be continuous,

then the random default time τi is totally inaccessible G-stopping time. The processes Hi (i = 1, ..., k)
are obviously G-adapted, but they are not necessarily F -adapted. We need the following assumptions
(see Kusuoka 1999; Bielecki et al. 2007):

Assumption 1. There exist F -adapted processes γi ≥ 0 (i = 1, ..., k) such that

Mi
t = Hi

t −
∫ t

0
1{τi>s}γ

i
sds

are G-martingales under P. γi is the G-intensity of the default time τi:

γi
t = lim

∆→0

P(t < τi ≤ t + ∆|Ft)

∆ P(τi > t|Ft)
, t ∈ [0, T];

Assumption 2. Every F -local martingale is a G-local martingale.

1.2. Basic Notions

L2(GT ;R) := {ϕ ∈ R| ϕ is a GT-measurable random variable and E|ϕ|2 < ∞};
L2
G(0, t;Rd) := {ϕ : Ω× [0, t]→ Rd| ϕt is Gt-progressively measurable and E

∫ t
0 |ϕs|

2
ds < ∞};

S2
G(0, t;R) := {ϕ : Ω × [0, t] → R| ϕt is Gt-progressively measurable rcll process and

E
[
sup0≤s≤t |ϕs|2

]
< ∞};

L2,τ
G (0, t;Rk) := {ϕ : Ω × [0, t] → Rk| ϕt is Gt-progressively measurable and satisfies

E
[∫ t

0 | ϕs|
p
1{τ>s}γsds

]
= E

[∫ t
0 ∑k

i=1 |ϕi,s|
2
1{τi>s}γ

i
sds
]
< ∞};

A2
G(0, T;R) := {K : Ω × [0, T] → R| Kt is a Gt-adapted rcll increasing process and K0 = 0,

KT ∈ Lp(GT ;R)};

1.3. Reflected Anticipated BSDEs with Two Obstacles and Default Risk

Consider the RABSDE below with two obstacles and default risk with coefficient ( f , ξ, δ, L, V).
(Y, Z, U, K+, K−) := (Yt, Zt, Ut, K+

t , K−t )0≤t≤T+δ is a solution for RABSDE with the generator f ,
the terminal value ξT , the anticipated processes ξ, the anticipated time δ (δ > 0 is a constant), and the
obstacles L and V, such that
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

Yt = ξT +
∫ T

t f
(
s, Ys,EGs [Ys+δ], Zs, Us

)
ds + (K+

T − K+
t )− (K−T − K−t )

−
∫ T

t ZsdBs −
∫ T

t UsdMs, t ∈ [0, T];

Vt ≥ Yt ≥ Lt, t ∈ [0, T];

Yt = ξt, t ∈ (T, T + δ];∫ T
0 (Yt − Lt)dK+

t =
∫ T

0 (Vt −Yt)dK−t = 0,

(4)

where Y ∈ S2
G(0, T + δ;R), Z ∈ L2

G(0, T;Rd), U ∈ L2,τ
G (0, T;Rk), K± ∈ A2

G(0, T;R). We further state
the following assumptions for RABSDE (4):

Assumption 3. The anticipated process ξ ∈ L2
G(T, T + δ;Rd), α ∈ L2

G(T, T + Tδ;Rd), here ξ is a given
process, and ξT is the terminal value;

Assumption 4. The generator f (w, t, y, ȳr, z, z̄r, u, ūr) : Ω× [0, T + Tδ]×R× S2
G(t, T + Tδ;R)×Rd ×

L2
G(t, T + Tδ;Rd)×Rk → L2,τ

G (t, T + Tδ;Rk) satisfies:

(a) f (·, 0, 0, 0, 0) ∈ L2
G(0, T + δ;R);

(b) Lipschitz condition: for any t ∈ [0, T], r ∈ [t, T + δ], y, y′ ∈ R, z, z′ ∈ Rd, u, u′ ∈ Rk, ȳ,
ȳ′ ∈ L2

G(t, T + δ;R), there exists a constant L ≥ 0 such that

| f (t, y, ȳr, z, u)− f (t, y′, ȳ′r, z′, u′)| ≤ L
(
|y− y′|+EGt |ȳr − ȳ′r|+ |z− z′|+ |u− u′|1{τ>t}

√
γt

)
;

(c) for any t ∈ [0, T], r ∈ [t, T + δ], y, y′ ∈ R, z, z′ ∈ Rd, u, u′ ∈ Rk, ȳ, ȳ′ ∈ L2
G(t, T + Tδ;R), the

following holds:
f (t, y, ȳr, z, ũi−1)− f (t, y, ȳr, z, ũi)

(ui − ũi)1{τi>t}γ
i
t

> −1,

where ũi = (ũ1, ũ2, ..., ũi, ui+1, ..., uk), ui is the i-th element of u.

Assumption 5. The obstacle processes satisfy L, V ∈ S2
G(0, T + δ;R):

(a) for any t ∈ [0, T], VT ≥ ξ ≥ LT , L and V are separated, i.e., Vt > Lt, P− a.s.;
(b) L and V are rcll and their jumping times are totally inaccessible and satisfy

E
[

sup
0≤t≤T

(L+
t )

2

]
< ∞, E

[
sup

0≤t≤T
(V−t )2

]
< ∞;

(c) there exists a process of the following form:

Xt = X0 −
∫ t

0
σ
(1)
s dBs −

∫ t

0
σ
(2)
s dMs + A+

t − A−t ,

where XT = ξT , σ(1) ∈ L2
G(0, T;Rd), σ(2) ∈ L2,τ

G (0, T;Rk), A+ and A− are G-adapted increasing
processes, E[|A+

T |2 + |A
−
T |2] < ∞, such that

Vt ≥ Xt ≥ Lt, t ∈ [0, T], P− a.s.

2. Discrete Time Framework

In order to discretize [0, T], for n ∈ N, we introduce ∆n := T
n and an equidistant time grid

(ti)i=0,1,...n,...nδ with step size ∆n, where ti := i∆n, nδ = n +
[

δ
∆n

]
.
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2.1. Random Walk Approximation of the Brownian Motion

We use a random walk to approximate the 1-dimensional standard Brownian motion:

Bn
0 = 0; Bn

t :=
√

∆n
[t/∆n ]

∑
j=1

εn
j , t ∈ (0, T];

∆Bn
i := Bn

i − Bn
i−1 =

√
∆nεn

i , i ∈ [1, nδ],

where (εn
i )i=1,...n is a {−1, 1}-value i.i.d. Bernoulli sequence with P(εn

i = 1) = P(εn
i = −1) = 1

2 .
Denote Fn

i = σ{εn
1 , ...εn

i }, for any i ∈ [1, nδ]. By Donsker’s invariance principle and the Skorokhod
representation theorem, there exists a probability space, such that sup0≤t≤T+δ |Bn

t − Bt| → 0,
in L2(GT+δ), as n→ ∞.

2.2. Approximation of the Defaultable Model

We consider a defaultable model of a single uniformly distributed random default time τ ∈ (0, T].
We define the discrete default process hn

i = hn
ti
= 1{τ≤ti} (i ∈ [1, n]). Particularly, when i ∈ [n + 1, nδ],

hn
i = 1 (since default case already happened). We have the conditional expectations of hn

i in Gn
i−1:

E
[
hn

i = 1|hn
i−1 = 1

]
=P(τ ≤ ti|τ ≤ ti−1) = 1,

E
[
hn

i = 1|hn
i−1 = 0

]
=P(τ ≤ ti|τ > ti−1) =

∆n

T − ti−1
,

E
[
hn

i = 0|hn
i−1 = 0

]
=P(τ > ti|τ > ti−1) =

T − ti
T − ti−1

, i ∈ [1, n].

We have the following approximation for the discrete martingale Mn
t directly based on the

definition of the martingale M (Assumption 1):

Mn
0 = 0; Mn

t := hn
[t/∆n ] − ∆n

[t/∆n ]

∑
j=1

(1− hn
j )γ

n
j , t ∈ (0, T];

∆Mn
i := hn

i − hn
i−1 − ∆n(1− hn

i )γ
n
i , i ∈ [1, n],

(5)

where the discrete intensity process γn
i = γn

ti
≥ 0 is an Fn

i -adapted process. Denote G := {Gn
i ; i ∈

[0, nδ]}, Gn
0 = {Ω, ∅}, for i ∈ [1, n], Gn

i = σ{εn
1 , ...εn

i , hn
i }; for i ∈ [n + 1, nδ], Gn

i = σ{εn
1 , ...εn

i , hn
n},

where hi is independent from εn
1 ,...εn

i . From the martingale property of Mi, we can get

EG
n
i−1 [∆Mn

i ] = EG
n
i−1
[
hn

i − hn
i−1 − ∆n(1− hn

i )γ
n
i
]
= 0, i ∈ [1, n],

therefore, the discrete intensity process has the following form (by the projection on Fn
i−1):

γn
i =

P(ti−1 < τ ≤ ti|Fn
i−1)

∆n P(τ > ti|Fn
i−1)

=
1

T − ti
, i ∈ [1,

[ τ

∆n

]
].

Note that γn
i = 0, when i = 0 and i ∈ [

[
τ

∆n

]
+ 1, n]. If we set γ̂n

t = γn
[t/∆n ]

(t ∈ [0, T]), then as
n→ ∞, it follows that γ̂n

t converges to γt.

2.3. Computing the Conditional Expectations

When i ∈ [1, n− 1], we use the following formula to compute the conditional expectation for the
function f : Ri+2 → R:
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EGn
i
[

f
(
εn

1 , ..., εn
i+1, hn

i+1
)]

=
1
2

(
f (εn

1 , ..., εn
i , 1, 1)

∣∣
εn

i+1=1,hn
i =1 + f (εn

1 , ..., εn
i ,−1, 1)

∣∣
εn

i+1=−1,hn
i =1

)
+

∆n

2(T − ti)

(
f (εn

1 , ..., εn
i , 1, 1)

∣∣
εn

i+1=1,hn
i =0,hn

i+1=1 + f (εn
1 , ..., εn

i ,−1, 1)
∣∣
εn

i+1=−1,hn
i =0,hn

i+1=1

)
+

T − ti+1

2(T − ti)

(
f (εn

1 , ..., εn
i , 1, 0)

∣∣
εn

i+1=1,hn
i =0,hn

i+1=0 + f (εn
1 , ..., εn

i ,−1, 0)
∣∣
εn

i+1=−1,hn
i =0,hn

i+1=0

)
.

When i ∈ [n, nδ], we have the following conditional expectation for the function f : Ri+2 → R:

EGn
i
[

f
(
εn

1 , ..., εn
i+1, hn

n
)]

=
1
2

f (εn
1 , ...εn

i , 1, 1)
∣∣
εn

i+1=1 +
1
2

f (εn
1 , ...εn

i ,−1, 1)
∣∣
εn

i+1=−1.

2.4. Approximations of the Anticipated Processes and the Generator

Consider the approximation ξn
n of the terminal value ξ, we have the following assumption:

Assumption 6. (ξn
i )i∈[n,nδ ] is Gn

i -measurable, Ψ : {1,−1}n → R is a real analytic function, such that

ξn
i = Ψ (εn

1 , ...εn
i , hn

i ) , i ∈ [n, nδ],

particularly, the terminal value ξn
n = Ψ

(
εn

1 , ...εn
n, hn

i
)

is Gn
n -measurable.

For the approximation ( f n(ti, y, ȳ, z, u))i∈[0,n] of the generator f :

Assumption 7. for any i ∈ [0, n], f n(ti, y, ȳ, z, u) is Gn
i -adapted, and satisfies:

(a) there exists a constant C > 0, such that for all n > 1 + 2L + 4L2,

E
[

∆n
n−1

∑
i=0
| f n(·, 0, 0, 0, 0)|2

]
< C.

(b) for any i ∈ [0, n− 1], y, y′ ∈ R, z, z′ ∈ R, u, u′ ∈ R, ȳ, ȳ′ ∈ S2
G(t, T + δ;R), there exists a constant

L ≥ 0, such that

| f n(ti, y, ȳi, z, u)− f n(ti, y′, ȳ′i, z′, u′)| ≤ L
(
|y− y′|+EGt |ȳi − ȳ′i|+ |z− z′|+ |u− u′|1{τ>ti}

√
γi

)
,

where ȳi = EGn
i [yī], ī = i +

[
δ

∆n

]
.

As n→ ∞, f n(
[ t

∆n

]
, y, ȳ, z, u) converges to f (t, y, ȳ, z, u) in S2

G(0, T + δ;R).

2.5. Approximation of the Obstacles

(Ln
i )i∈[0,n] and (Vn

i )i∈[0,n] are the discrete versions of L and V, by Assumption 5, we can have the
following approximations:

Ln
i = L0 + ∆n

i−1

∑
j=0

l(1)j +
i−1

∑
j=0

l(2)j ∆Bn
j+1 +

i−1

∑
j=0

l(3)j ∆Mn
j+1;

Vn
i = V0 + ∆n

i−1

∑
j=0

v(1)j +
i−1

∑
j=0

v(2)j ∆Bn
j+1 +

i−1

∑
j=0

v(3)j ∆Mn
j+1,
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where l(k)j = l(k)tj
, v(k)j = v(k)tj

(k = 1, 2, 3). By the Burkholder–Davis–Gundy inequality, it follows

Vn
i ≥ Ln

i , sup
n

E
[

sup
i
(Ln

i )
+2 + sup

i
(Vn

i )
−2

]
< ∞.

We introduce the discrete version of Assumption 5 (c):

Assumption 8. There exists a process Xn
i with the following form:

Xn
i = Xn

0 −
i−1

∑
j=0

σ
(1)
j ∆Bn

i+1 −
i−1

∑
j=0

σ
(2)
j ∆Mn

i+1 + A+n
i − A−n

i ,

where A+n
i and A−n

i are Gn
i -adapted increasing processes, E

[
|A+n

n |2 + |A−n
n |2

]
< ∞, such that

Ln
i ≤ Xn

i ≤ Vn
i , i ∈ [0, n].

We introduce two numerical algorithms below, discrete penalization scheme in Section 3 and
discrete reflected scheme in Section 4. For each scheme, we study the implicit and explicit versions.

3. Discrete Penalization Scheme

We first use the methodology of penalization for the discrete scheme below. El Karoui et al. (1997a)
proved the existence of RBSDE with one obstacle under a smooth square integrability assumption
and Lipschitz condition through penalization method. Lepeltier and Martín (2004) used the similar
penalization method to prove the existence theorem of RBSDE with two obstacles and Poisson jump.
Similarly to Lemma 4.3.1 in Wang (2020), we consider the following special case of the penalized
ABSDE for RABSDE (2):

−dYp
t = f n(t, Yp

t ,EGt [Yp
t+δ], Zp

t , Up
t
)
dt + dK+p

t − dK−p
t − Zp

t dBt −Up
t dMt, t ∈ [0, T],

Yp
t =ξt, t ∈ [T, T + δ],

(6)

where

K+p
t = p

∫ T

t
(Yp

s − Ls)
−ds, K−p

t = p
∫ T

t
(Yp

s −Vs)
+ds.

By the existence and uniqueness theorem for ABSDEs with default risk (Theorem 4.3.3 in
Wang 2020), there exists the unique solution for this penalized ABSDE (6). We will give the convergence
of penalized ABSDE (6) to RABSDE (2) in Theorem 1 below.

3.1. Implicit Discrete Penalization Scheme

We first introduce the implicit discrete penalization scheme. In this scheme, p represents the
penalization parameter. In practice, we can choose p which is independent of n and much larger than
n, this will be illustrated in the simulation Section 6.

yp,n
i = yp,n

i+1 + f n(ti, yp,n
i , ȳp,n

i , zp,n
i , up,n

i )∆n + k+p,n
i − k−p,n

i

− zp,n
i ∆Bn

i+1 − up,n
i ∆Mn

i+1, i ∈ [0, n− 1];
k+p,n

i = p∆n(yp,n
i − Ln

i )
−, i ∈ [0, n− 1];

k−p,n
i = p∆n(yp,n

i −Vn
i )

+, i ∈ [0, n− 1];

yp,n
i = ξn

i , i ∈ [n, nδ],

(7)

where ȳp,n
i = EGn

i [yp,n
ī ], ī = i +

[
δ

∆n

]
.
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For the theoretical convergence results in Section 5, we first prove the convergence (Theorem 2) of
implicit discrete penalization scheme (7) to the penalized ABSDE (6), then combining with Theorem A2,
we can get the convergence of the explicit discrete penalization scheme. By Theorem A3 and Theorem 1,
we can prove the convergence of the implicit discrete reflected scheme (13).

From Section 2.3, taking conditional expectation in Gn
i , we can calculate ȳp,n

i as follows:

EGn
i [yp,n

ī ] =



1
2

(
yp,n

ī

∣∣∣
εn

ī =1,hn
i =1

+ yp,n
ī

∣∣∣
εn

ī =−1,hn
i =1

)
+

δ

2(T − ti)

(
yp,n

ī

∣∣∣
εn

ī =1,hn
i =0,hn

ī =1
+ yp,n

ī

∣∣∣
εn

ī =−1,hn
i =0,hn

ī =1

)
+

T − ti − δ

2(T − ti)

(
yp,n

ī

∣∣∣
εn

ī =1,hn
i =0,hn

ī =0
+ yp,n

ī

∣∣∣
εn

ī =−1,hn
i =0,hn

ī =0

)
, ī ∈ [i, n− 1];

1
2

(
ξn

ī

∣∣∣
εn

ī =1
+ ξn

ī

∣∣∣
εn

ī =−1

)
, ī ∈ [n, nδ].

(8)

Similarly, zp,n
i and up,n

i (i ∈ [0, n− 1]) are given by

zp,n
i =

EGn
i

[
yp,n

i+1∆Bn
i+1

]
EGn

i [(∆Bn
i+1)

2]
=

EGn
i

[
yp,n

i+1

√
∆nεn

i+1

]
EGn

i [(
√

∆nεn
i+1)

2]

=
1√
∆n

EGn
i

[
yp,n

i+1εn
i+1

]
=

yp,n
i+1

∣∣∣
εi+1=1

− yp,n
i+1

∣∣∣
εi+1=−1

2
√

∆n
;

up,n
i =

EGn
i

[
yp,n

i+1∆Mn
i+1

]
EGn

i [(∆Mn
i+1)

2]
=

EGn
i

[
yp,n

i+1

(
hn

i+1 − hn
i − ∆n(1− hn

i+1)γi+1
)]

EGn
i [(hn

i+1 − hn
i − ∆n(1− hn

i+1)γi+1)2]

=

yp,n
i+1∆n

∣∣∣
hi=0,hi+1=1

− yp,n
i+1(T − ti+1)∆nγi+1

∣∣∣
hi=0,hi+1=0

∆n + (T − ti+1)(∆nγi+1)2 .

(9)

Note that up,n
i only exists on [0,

[
τ

∆n

]
− 1] (i.e., before the default event happens). By taking the

conditional expectation of (7) in Gn
i , it follows:

yp,n
i = (Φp,n)−1

(
EGn

i [yn
i+1]

)
, i ∈ [0, n− 1];

k+p,n
i = p∆n(yp,n

i − Ln
i )
−, i ∈ [0, n− 1];

k−p,n
i = p∆n(yp,n

i −Vn
i )

+, i ∈ [0, n− 1];
yp,n

i = ξn
i , i ∈ [n, nδ];

zp,n
i = 1√

∆n E
Gn

i

[
yp,n

i+1εn
i+1

]
, i ∈ [0, n− 1];

up,n
i =

EG
n
i [yp,n

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(10)

where Φp,n(y) = y− f n(ti, y, ȳp,n
i , zp,n

i , up,n
i )∆n − p∆n(y− Ln

i )
− + p∆n(y−Vn

i )
+. For the continuous

time version (Yp,n
t , Zp,n

t , Up,n
t , K+p,n

t , K−p,n
t )0≤t≤T :

Yp,n
t := yp,n

[t/∆n ]
, Zp,n

t := zp,n
[t/∆n ]

, Up,n
t := up,n

[t/∆n ]
,

K+p,n
t :=

[t/∆n ]

∑
i=0

k+p,n
i , K−p,n

t :=
[t/∆n ]

∑
i=0

k−p,n
i .
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3.2. Explicit Discrete Penalization Scheme

In many cases, the inverse of mapping Φ is not easy to get directly, for example, if f is not a linear
function on y. We replace yp,n

i in f n by EGn
i [yp,n

i+1] in (7), it follows

ỹp,n
i = ỹp,n

i+1 + f n(ti,EG
n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n + k̃+p,n

i − k̃−p,n
i

− z̃p,n
i ∆Bn

i+1 − ũp,n
i ∆Mn

i+1, i ∈ [0, n− 1];
k̃+p,n

i = p∆n(ỹp,n
i − Ln

i )
−, i ∈ [0, n− 1];

k̃−p,n
i = p∆n(ỹp,n

i −Vn
i )

+, i ∈ [0, n− 1];
ỹp,n

i = ξn
i , i ∈ [n, nδ],

(11)

where ¯̃yp,n
i , z̃p,n

i and ũp,n
i can be calculated as (8) and (9). By Section 2.3, we computer EGn

i [yp,n
i+1]

as follows:

EGn
i [ỹp,n

i+1] =
1
2

(
ỹp,n

i+1

∣∣
εn

i+1=1,hn
i =1 + ỹp,n

i+1

∣∣
εn

i+1=−1,hn
i =1

)
+

∆n

2(T − ti)

(
ỹp,n

i+1

∣∣
εn

i+1=1,hn
i =0,hn

i+1=1 + ỹp,n
i+1

∣∣
εn

i+1=−1,hn
i =0,hn

i+1=1

)
+

T − ti+1

2(T − ti)

(
ỹp,n

i+1

∣∣
εn

i+1=1,hn
i =0,hn

i+1=0 + ỹp,n
i+1

∣∣
εn

i+1=−1,hn
i =0,hn

i+1=0

)
.

By taking the conditional expectation of (11) in Gn
i , we have the following explicit

penalization scheme:

ỹp,n
i = EGn

i

[
ỹp,n

i+1

]
+ f n(ti,EG

n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n + k̃+p,n

i − k̃−p,n
i , i ∈ [0, n− 1];

k̃+p,n
i = p∆n

1+p∆n

(
EGn

i

[
ỹp,n

i+1

]
+ f n(ti,EG

n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n − Ln

i

)−
, i ∈ [0, n− 1];

k̃−p,n
i = p∆n

1+p∆n

(
EGn

i

[
ỹp,n

i+1

]
+ f n(ti,EG

n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n −Vn

i

)+
, i ∈ [0, n− 1];

ỹp,n
i = ξn

i , i ∈ [n, nδ];

z̃p,n
i = 1√

∆n E
Gn

i

[
ỹp,n

i+1εn
i+1

]
, i ∈ [0, n− 1];

ũp,n
i =

EG
n
i [ỹp,n

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(12)

For the continuous time version (Ỹp,n
t , Z̃p,n

t , Ũp,n
t , K̃+p,n

t , K̃−p,n
t )0≤t≤T :

Ỹp,n
t := ỹp,n

[t/∆n ]
, Z̃p,n

t := z̃p,n
[t/∆n ]

, Ũp,n
t := ũp,n

[t/∆n ]
,

K̃+p,n
t :=

[t/∆n ]

∑
i=0

k̃+p,n
i , K̃−p,n

t :=
[t/∆n ]

∑
i=0

k̃−p,n
i .

Remark 1. We give the following explanations of the derivation of k̃+p,n
i and k̃−p,n

i :

• If Vn
i > ỹp,n

i > Ln
i , we can get k̃+p,n

i = k̃−p,n
i = 0;

• If ỹp,n
i ≤ Ln

i , we can get k̃+p,n
i = p∆n

1+p∆n

(
EGn

i

[
ỹp,n

i+1

]
+ f n(ti,EG

n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n − Ln

i

)−
,

k̃−p,n
i = 0. From (12), we know that p should be much larger than n to keep ỹp,n

i above the lower obstacle Ln
i ;

• If ỹp,n
i ≥ Vn

i , we can get k̃−p,n
i = p∆n

1+p∆n

(
EGn

i

[
ỹp,n

i+1

]
+ f n(ti,EG

n
i [ỹp,n

i+1], ¯̃yp,n
i , z̃p,n

i , ũp,n
i )∆n − Vn

i

)+
,

k̃+p,n
i = 0. From (12), we know that p should be much larger than n to keep ỹp,n

i under the upper
obstacle Vn

i .
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4. Discrete Reflected Scheme

We can obtain the solution Y by reflecting between the two obstacles and get the increasing
processes K+ and K− directly.

4.1. Implicit Discrete Reflected Scheme

We have the following implicit discrete reflected scheme,

yn
i = yn

i+1 + f n(ti, yn
i , ȳn

i , zn
i , un

i )∆
n + k+n

i − k−n
i − zn

i ∆Bn
i+1 − un

i ∆Mn
i+1, i ∈ [0, n− 1];

Vn
i ≥ yn

i ≥ Ln
i , i ∈ [0, n− 1];

k+n
i ≥ 0, k−n

i ≥ 0, k+n
i k−n

i = 0, i ∈ [0, n− 1];
(yn

i − Ln
i )k

+n
i = (yn

i −Vn
i )k
−n
i = 0, i ∈ [0, n− 1];

yn
i = ξn

i , i ∈ [n, nδ].

(13)

where ȳn
i , zn

i and un
i can be calculated as (8) and (9). By taking conditional expectation of (13) in Gn

i ,
it follows 

yn
i = EGn

i [yn
i+1] + f n(ti, yn

i , ȳn
i , zn

i , un
i )∆

n + k+n
i − k−n

i , i ∈ [0, n− 1];
Vn

i ≥ yn
i ≥ Ln

i , i ∈ [0, n− 1];
k+n

i ≥ 0, k−n
i ≥ 0, k+n

i k−n
i = 0, i ∈ [0, n− 1];

(yn
i − Ln

i )k
+n
i = (yn

i −Vn
i )k
−n
i = 0, i ∈ [0, n− 1];

yn
i = ξn

i , i ∈ [n, nδ];
zn

i = 1√
∆n E

Gn
i
[
yn

i+1εn
i+1
]

, i ∈ [0, n− 1];

un
i =

EG
n
i [yn

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(14)

If ∆n is small enough, similarly to Section 4.1 in Xu (2011), (14) is equivalent to

yn
i = Φ−1

(
EGn

i [yn
i+1] + k+n

i − k−n
i

)
, i ∈ [0, n− 1];

k+n
i =

(
EGn

i [yn
i+1] + f n(ti, Ln

i , L̄n
i , zn

i , un
i )∆

n − Ln
i

)−
, i ∈ [0, n− 1];

k−n
i =

(
EGn

i [yn
i+1] + f n(ti, Vn

i , V̄n
i , zn

i , un
i )∆

n −Vn
i

)+
, i ∈ [0, n− 1];

yn
i = ξn

i , i ∈ [n, nδ];
zn

i = 1√
∆n E

Gn
i
[
yn

i+1εn
i+1
]

, i ∈ [0, n− 1];

un
i =

EG
n
i [yn

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(15)

here Φ(y) = y− f n(ti, y, ȳn
i , zn

i , un
i )∆

n. For the continuous time version (Yn
t , Zn

t , Un
t , K+n

t , K−n
t )0≤t≤T :

Yn
t := yn

[t/∆n ], Zn
t := zn

[t/∆n ], Un
t := un

[t/∆n ],

K+n
t :=

[t/∆n ]

∑
i=0

k+n
i , K−n

t :=
[t/∆n ]

∑
i=0

k−n
i .

4.2. Explicit Discrete Reflected Scheme

We introduce the following explicit discrete reflected scheme by replacing yn
i in the generator f n

by E[yn
i+1|Gn

i ] in (13).
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

ỹn
i = ỹn

i+1 + f n(ti,EG
n
i [ỹn

i+1], ¯̃yn
i , z̃n

i , ũn
i )∆

n + k̃+n
i − k̃−n

i − z̃n
i ∆Bn

i+1
− ũn

i ∆Mn
i+1, i ∈ [0, n− 1];

Vn
i ≥ ỹn

i ≥ Ln
i , i ∈ [0, n− 1];

k̃+n
i ≥ 0, k̃−n

i ≥ 0, k̃+n
i k̃−n

i = 0, i ∈ [0, n− 1];
(ỹn

i − Ln
i )k̃

+n
i = (ỹn

i −Vn
i )k̃
−n
i = 0, i ∈ [0, n− 1];

ỹn
i = ξn

i , i ∈ [n, nδ].

(16)

where ¯̃yn
i , z̃n

i and ũn
i can be calculated as (8) and (9). By taking conditional expectation of (16) in Gn

i :

ỹn
i = EGn

i [ỹn
i+1] + f n(ti,EG

n
i [ỹn

i+1], ¯̃yn
i , z̃n

i , ũn
i )∆

n + k̃+n
i − k̃−n

i , i ∈ [0, n− 1];
Vn

i ≥ ỹn
i ≥ Ln

i , i ∈ [0, n− 1];
k̃+n

i ≥ 0, k̃−n
i ≥ 0, k̃+n

i k−n
i = 0, i ∈ [0, n− 1];

(ỹn
i − Ln

i )k̃
+n
i = (ỹn

i −Vn
i )k̃
−n
i = 0, i ∈ [0, n− 1];

ỹn
i = ξn

i , i ∈ [n, nδ];

z̃n
i = 1√

∆n E
Gn

i
[
ỹn

i+1εn
i+1
]

, i ∈ [0, n− 1];

ũp,n
i =

EG
n
i [ỹn

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(17)

Similarly to the implicit reflected case, we can obtain

ỹn
i = EGn

i [ỹn
i+1] + f n(ti,EG

n
i [ỹn

i+1], ¯̃yn
i , z̃n

i , ũn
i )∆

n + k̃+n
i − k̃−n

i , i ∈ [0, n− 1];

k̃+n
i =

(
EGn

i [ỹn
i+1] + f n(ti,EG

n
i [ỹn

i+1], ¯̃yn
i , z̃n

i , ũn
i )∆

n − Ln
i

)−
, i ∈ [0, n− 1];

k̃−n
i =

(
EGn

i [ỹn
i+1] + f n(ti,EG

n
i [ỹn

i+1], ¯̃yn
i , z̃n

i , ũn
i )∆

n −Vn
i

)+
, i ∈ [0, n− 1];

ỹn
i = ξn

i , i ∈ [n, nδ];
z̃n

i = 1√
∆n E

Gn
i
[
ỹn

i+1εn
i+1
]

, i ∈ [0, n− 1];

ũp,n
i =

EG
n
i [ỹn

i+1(hn
i+1−hn

i −∆n(1−hn
i+1)γi+1)]

EG
n
i [(hn

i+1−hn
i −∆n(1−hn

i+1)γi+1)2]
, i ∈ [0,

[
τ

∆n

]
− 1].

(18)

For the continuous time version (Ỹn
t , Z̃n

t , Ũn
t , K̃+n

t , K̃−n
t )0≤t≤T :

Ỹn
t := ỹn

[t/∆n ], Z̃n
t := z̃n

[t/∆n ], Ũn
t := ũn

[t/∆n ],

K̃+n
t :=

[t/∆n ]

∑
i=0

k̃+n
i , K̃−n

t :=
[t/∆n ]

∑
i=0

k̃−n
i .

5. Convergence Results

We first state the convergence result from the Penalized ABSDE (19) to RABSDE (2) in Theorem 1,
which is the basis of the following convergence results of the discrete schemes we have studied
above. We prove the convergence (Theorem 2) from the implicit discrete penalization scheme (7) to
the penalized ABSDE (6) with the help of Lemma 1. Combining with Theorem A2, we can get the
convergence (Theorem 3) of the explicit discrete penalization scheme (11). By Theorem A3, Lemma 1 and
Theorem 1, we can prove the convergence of the implicit discrete reflected scheme (13). By Theorem A3,
Theorem A4 and Lemma A4, the convergence (Theorem 5) of the explicit penalization discrete
scheme (16) then follows. The proofs of Theorem 1, Lemma 1, Theorem 2 and Theorem 4 can be
seen in Appendix A.
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5.1. Convergence of the Penalized ABSDE to RABSDE (2)

Theorem 1. Suppose that the anticipated process ξ, the generator f satisfy Assumption 3 and Assumption 4,
f (t, y, ȳr, z, u) is increasing in ȳ, the obstacles L and V satisfy Assumption 5. We can consider the following
special case of the penalized ABSDE for RABSDE (2):

−dYp
t = f n(t, Yp

t ,EGt [Yp
t+δ], Zp

t , Up
t
)
dt + dK+p

t − dK−p
t − Zp

t dBt −Up
t dMt, t ∈ [0, T];

K+p
t =

∫ t
0 p(Yp

s − Ls)−ds, t ∈ [0, T];

K−p
t =

∫ t
0 p(Yp

s −Vs)+ds, t ∈ [0, T];

Yp
t = ξt, t ∈ [T, T + δ].

(19)

Then we have the limiting process (Y, Z, U, K+, K−) of (Yp, Zp, Up, K+p, K−p), i.e., as p→ ∞, Yp
t → Yt

in S2
G(0, T + δ;R), Zp

t → Zt weakly in L2
G(0, T;R), Up

t → Ut weakly in L2,τ
G (0, T;R), K+p

t (K−p
t ) →

K+
t (K−t ) weakly in A2

G(0, T;R). Moreover, there exists a constant Cξ, f ,L,V depending on ξ, f (t, 0, 0, 0, 0),
L and V, such that

E
[

sup
0≤t≤T

|Yp
t −Yt|2 +

∫ T

0
|Zp

t − Zt|2dt +
∫ T

0
|Up

t −Ut|21{τ>t}γtdt

+ sup
0≤t≤T

|(K+p
t − K+

t )− (K−p
t − K−t )|2

]
≤ 1
√

p
Cξ, f ,L,V .

5.2. Convergence of the Implicit Discrete Penalization Scheme

We first introduce the following lemma to prove the convergence result of the penalized
ABSDE (19) to the implicit penalization scheme.

Lemma 1. Under Assumption 6 and Assumption 7, (Yp,n
t , Zp,n

t , Up,n
t ) converges to (Yp

t , Zp
t , Up

t ) in the
following sense:

lim
n→∞

E
[

sup
0≤t≤T

|Yp,n
t −Yp

t |
2 +

∫ T

0
|Zp,n

t − Zp
t |

2dt +
∫ T

0
|Up,n

t −Up
t |

21{τ>t}γtdt
]
= 0, (20)

for any t ∈ [0, T], as n→ ∞, K+p,n
t − K−p,n

t → K+p
t − K−p

t in L2
G(0, T;R).

Theorem 2. (Convergence of the implicit discrete penalization scheme) Under Assumption 3 and
Assumption 7, (Yp,n

t , Zp,n
t , Up,n

t ) converges to (Yt, Zt, Ut) in the following sense:

lim
p→∞

lim
n→∞

E
[

sup
0≤t≤T

|Yp,n
t −Yt|2 +

∫ T

0
|Zp,n

t − Zt|2dt +
∫ T

0
|Up,n

t −Ut|21{τ>t}γtdt

]
= 0, (21)

for any t ∈ [0, T], as p→ ∞, n→ ∞, K+p,n
t − K−p,n

t → K+
t − K−t in L2

G(0, T;R).

5.3. Convergence of the Explicit Discrete Penalization Scheme

By Theorem 2 and Theorem A2, we can obtain the following convergence result of the explicit
penalization discrete scheme.

Theorem 3. (Convergence of the explicit discrete penalization scheme) Under Assumption 3 and
Assumption 7, (Ỹp,n

t , Z̃p,n
t , Ũp,n

t ) converges to (Yt, Zt, Ut) in the following sense:

lim
n→∞

E
[

sup
0≤t≤T

|Ỹp,n
t −Yt|2 +

∫ T

0
|Z̃p,n

t − Zt|2dt +
∫ T

0
|Ũp,n

t −Ut|21{τ>t}γtdt

]
= 0, (22)
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for any t ∈ [0, T], as n→ ∞, K̃+p,n
t − K̃−p,n

t → K+
t − K−t in L2

G(0, T;R).

5.4. Convergence of the Implicit Discrete Reflected Scheme

Theorem 4. (Convergence of the implicit discrete reflected scheme) Under Assumption 7 and Assumption
3, (Yn

t , Zn
t , Un

t ) converges to (Yt, Zt, Ut) in the following sense:

lim
n→∞

E
[

sup
0≤t≤T

|Yn
t −Yt|2 +

∫ T

0
|Zn

t − Zt|2dt +
∫ T

0
|Un

t −Ut|21{τ>t}γtdt

]
= 0, (23)

and for any t ∈ [0, T], as n→ ∞, K+n
t − K−n

t → K+
t − K−t in L2

G(0, T;R).

5.5. Convergence of the Explicit Discrete Reflected Scheme

By Theorem A3, Theorem A4 and Lemma A4, we can get the convergence result of the explicit
penalization discrete scheme.

Theorem 5. (Convergence of the explicit discrete reflected scheme) Under Assumption 3 and Assumption
7, (Ỹn

t , Z̃n
t , Ũn

t ) converges to (Yt, Zt, Ut) in the following sense:

lim
n→∞

E
[

sup
0≤t≤T

|Ỹn
t −Yt|2 +

∫ T

0
|Z̃n

t − Zt|2dt +
∫ T

0
|Ũn

t −Ut|21{τ>t}γtdt

]
= 0, (24)

for any t ∈ [0, T], as n→ ∞, K̃+n
t − K̃−n

t → K+
t − K−t in L2

G(0, T;R).

6. Numerical Calculations and Simulations

6.1. One Example of RABSDE with Two Obstacles and Default Risk

For the convenience of computation, we consider the case when the terminal time T = 1, the
calculation begins from yn

n = ξn, and proceeds backward to solve (yn
i , zn

i , un
i , k+n

i , k−n
i ) for i = n−

1, n− 2, ..., 1, 0. We use Matlab for the simulation. We consider a simple situation: the terminal value
ξT = Φ(BT , MT) and anticipated process ξt = Φ(Bt) (t ∈ (T, T + δ]); the obstacles Lt = Ψ1(t, Bt, Mt)

and Vt = Ψ2(t, Bt, Mt), where Φ, Ψ2 and Ψ3 are real analytic functions defined on R, [0, T]×R and
[0, T]×R respectively. We take the following example (n = 200, anticipated time δ = 0.3):

f (t, y, ȳ, z, u) =
∣∣∣∣y2 +

ȳ
2

∣∣∣∣+ z + u, t ∈ [0, T];

Φ(Bt) = |Bt|+ MT , t ∈ [T, T + δ];

Ψ1(t, Bt, Mt) = |Bt|+ Mt + T − t, t ∈ [0, T];

Ψ2(t, Bt, Mt) = |Bt|+ Mt + 2 (T − t) , t ∈ [0, T];

This example satisfies the Assumption 3, Assumption 4 and Assumption 5 in the theoretical Section
1.3. We choose the default time τ as a uniformly distributed random variable.

As the inverse for both implicit schemes in (10) and (15) is not easy to get directly, we only use
explicit schemes below. We are going to illustrate the behaviors of the explicit reflected scheme by
looking at the pathwise behavior for n = 400. Further, we will compare the explicit reflected scheme
with the explicit penalization scheme for different values of the penalization parameter.

Figure 1 represents one path of the Brownian motion, Figures 2 and 3 represent one path of
the Brownian motion and one path of the default martingale when the default time τ = 0.7 and 0.2
respectively.
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Figure 1. One path of the Brownian motion.

Figure 2. One path of the default martingale (τ = 0.7).

Figure 3. One path of the default martingale (τ = 0.2).

Figures 4 and 5 represent the paths of the solution ỹn, increasing processes K̃+n and K̃−n in the
explicit reflected scheme where the random default time τ = 0.7. We can see that for all i, ỹn

i stays
between the lower obstacle Ln

i and the upper obstacle Vn
i , the increasing process K̃+n

i (resp. K̃−n
i )

pushes ỹn
i upward (resp. downward), and they can not increase at the same time. In this example

for n = 400, default time τ = 0.7, we can get the reflected solution ỹn
0 = 1.2563 from the explicit

reflected scheme.
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Figure 4. One path of ỹn in the explicit reflected scheme (τ = 0.7).

Figure 5. The paths of the increasing processes in the explicit reflected scheme (τ = 0.7).

Figures 4 and 6 illustrate the influence of the jump on the solution ỹn at the different random
default times, the reflected solution ỹn moves downwards after the default time (which can not be
shown in Figure 7). From the approximation of the default martingale (5), Mn is larger with a larger
default time.

Figure 6. One path of ỹn in the explicit reflected scheme (τ = 0.2).
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Figure 7. One path of ỹn in the explicit reflected scheme without default risk.

Table 1 and contains the comparison between the explicit reflected scheme and the explicit
penalization scheme by the values of ỹn

0 and ỹp,n
0 with respect to the parameters n and p. As n

increases, the reflected solution ỹn
0 increases because of the choice of the coefficient. For fixed n, as

the penalization parameter p increases, the penalization solution ỹp,n
0 converges increasingly to the

reflected solution ỹn
0 , which is obvious from the comparison theorem of BSDE with default risk. If p

and n have a smaller difference (when n = 103, p = 103), the penalization solution ỹp,n
0 is far from

the reflected solution ỹn
0 . Hence,the penalization parameter p should be chosen as large as possible.

Table 2 illustrates the comparison between the reflected solution ỹn
0 and ỹn∗

0 . Figure 7 represents the
situation without the default risk, the reflected solution ỹn∗

0 has a larger value than in the situation
when the default case happens (Figure 4).

Table 1. The values of the penalization solution ỹp,n
0 (τ = 0.7).

ỹp,n
0 p = 103 p = 104 p = 105 p = 106

n = 200 1.2369 1.2394 1.2428 1.2452
n = 400 1.2458 1.2482 1.2496 1.2511
n = 1000 1.2343 1.2497 1.2527 1.2630

Table 2. The values of the reflected solution ỹn
0 (τ = 0.7) and ỹn∗

0 .

ỹn
0 ỹn∗

0

n = 200 1.2469 1.5451
n = 400 1.2563 1.5507
n = 1000 1.2644 1.5614

6.2. Application in American Game Options in a Defaultable Setting

6.2.1. Model Description

Hamadène (2006) studied the relation between American game options and RBSDE with two
obstacles driven by Brownian motion. In our paper, we consider the case with default risk. An
American game option contract with maturity T involves a broker c1 and a trader c2:

• The broker c1 has the right to cancel the contract at any time before the maturity T, while the
trader c2 has the right to early exercise the option;

• the trader c2 pays an initial amount (the price of this option) which ensures an income Lτ1 from
the broker c1, where τ1 ∈ [0, T] is an G-stopping time;

• the broker has the right to cancel the contract before T and needs to pay Vτ2 to c2. Here, the
payment amount of the broker c1 should be greater than his payment to the trader c2 (if trader
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decides for early exercise), i.e. Vτ2 ≥ Lτ2 , Vτ2 − Lτ2 is the premium that the broker c1 pays for his
decision of early cancellation. τ2 ∈ [0, T] is an G-stopping time;

• if c1 and c2 both decide to stop the contract at the same time τ, then the trader c2 gets an income
equal to Qτ1{τ<T} + ξ1{τ=T}.

6.2.2. The Hedge for the Broker

Consider a financial marketM, we have a riskless asset Ct ∈ R with risk-free rate r:{
dCt = rCtdt, t ∈ (0, T],
C0 = c0, t = 0;

(25)

one risky asset St ∈ R:{
dSt = St (µdt + σdBt + χdMt) , t ∈ (0, T],
S0 = s0, t = 0,

(26)

where Bt is a 1-dimensional Brownian Motion, µ is the expected return, σ is the volatility, χ is the
parameter related to the default risk.

Consider a self-financing portfolio π ∈ Rd with strategy π =
(

β
(1)
s , β

(2)
s
)

s∈[t,T] trading on C and S

respectively on the time interval [t, T]. Aπ,α is the wealth process with the value αA at time t, here is a
non-negative Ft-measurable random variable.

Aπ,α
s = β

(1)
s Cs + β

(2)
s Ss, s ∈ [t, T];

Aπ,α
s = αA +

∫ s

t
β
(1)
u dCu +

∫ s

t
β
(2)
u dSu, s ∈ [t, T];∫ T

t

[
|β(1)

u |+ (β
(2)
u Su)

2
]

du < ∞;

(27)

Let Lπ,α be a positive local martingale with the following form:{
dLπ,α

t = −Lπ,α
t− σ−1(µ− r)dBt, t ∈ (0, T],

Lπ,α
0 = 1, t = 0,

By Girsanov’s theorem, let Pπ,α be the equivalent measure of P:

Pπ,α

P

∣∣∣GT = Lπ,α
T = exp

{
−σ−1(µ− r)BT −

1
2

(
−σ−1(µ− r)

)2
T
}

,

here let Eπ,α be the expectation, Bπ,α and Mπ,α be the Brownian motion and the default martingale
under the measure Pπ,α:

Bπ,α
t :=Bt + σ−1(µ− r)t;

Mπ,α
t :=Mt.

Hence, the risky asset St defined in (26) can be converted into the following form under measure Pπ,α:{
dSt = St

(
rdt + σdBπ,α

t + χdMπ,α
t
)

, t ∈ (0, T],
S0 = s0, t = 0.

(28)

Denote by (π, θ) a hedge for the broker against the American game option after t, where π is defined
in (27), θ ∈ [t, T] is a stopping time, satisfying

Aπ,α
s ≥ R(s, θ) := Vθ1{θ<s} + Ls1{s<θ} + Qs1{θ=s<T} + ξ1{θ=s=T}, s ∈ [t, T], P− a.s. (29)
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here R(s, θ) is the amount that the broker c1 has to pay if the option is exercised by c2 at s or canceled
at time θ. Similarly to El Karoui et al. (1997b) and Karatzas and Shreve (1998), we define the value of
the option at time t by Jt, where (Jt)0≤t≤T is an rcll (right continuous with left limits) process, for any
t ∈ [0, T],

Jt := ess inf
{

αA ≥ 0; Gt-measurable such that there exists a hedge (π, θ) after t,
where π is a self-financing portfolio after t whose value at t is αA.

} (30)

Consider the following RBSDE with two obstacles and default risk, for any t ∈ [0, T], there exist
a stopping time θt, a process

(
Zπ,α

s
)

t≤s≤T and increasing processes
(
Kπ,α+

s
)

t≤s≤T and
(
Kπ,α−

s
)

t≤s≤T ,
such that 

Yπ,α
t = Yπ,α

θt
+
(

Kπ,α,+
θt

− Kπ,α,+
s

)
−
(

Kπ,α−
θt
− Kπ,α−

s

)
−
∫ θt

s Zπ,α
u dBπ,α

u

−
∫ θt

s Uπ,α
u dMπ,α

u , s ∈ [t, θt];

Yπ,α
T = e−rTξ;

e−rsLs ≤ Yπ,α
s ≤ e−rsVs, s ∈ [t, T];∫ θt

t (Yπ,α
u − e−ruLu)dKπ,α+

u =
∫ θt

t (e−ruVu −Yπ,α
u )dKπ,α−

u = 0;

(31)

For any s ∈ [t, T], ertYπ,α
t is a hedge for the broker c1 against the game option, i.e. Jt = ertYπ,α

t (see
Theorem A5 in the Appendix). Similarly to Proposition 4.3 in Hamadène (2006), we set

θ∗t := inf
{

s ≥ t; Yπ,α
t = e−rsVs

}
∧ T = inf

{
s ≥ t; Kπ,α−

s > 0
}

;

v∗t := inf
{

s ≥ t; Yπ,α
t = e−rsLs

}
∧ T = inf

{
s ≥ t; Kπ,α+

s > 0
}

,
(32)

therefore, we can get
R̂t(v, θ∗t ) ≤ Yπ,α

t = R̂t(v∗t , θ∗t ) ≤ R̂t(v∗t , θ),

where

R̂t(v, θ) := Eπ,α
[
e−rθVθ1{θ<v} + e−rvLv1{v<θ} + e−rθQθ1{θ=v<T} + e−rTξ1{θ=v=T}

∣∣Gt

]
, P− a.s.

6.2.3. Numerical Simulation

We use the same calculation method as in Section 6.1, starting from Yπ,α
n = ξ, and proceeding

backward to solve (Yπ,α
i , Zπ,α

i , Uπ,α
i , Kπ,α+

i , Kπ,α−
i ) for i = n− 1, ..., 1, 0 with step size ∆n. The forward

SDEs (25) and (26) can be numerically approximated by the Euler scheme on the time grid (ti)i=0,1,...n:

Ci+1 =Ci + rCi∆n;

Si+1 =Si + Si (µ∆n + σ∆Bn
i + χ∆Mn

i ) .

In this case, we consider parameters as below:

s0 =1.5, T = 1, r = 1.1, µ = 1.5, σ = 0.5, χ = 0.2,

Lt = (St − 1)+ , Vt = 2 (St − 1)+ , ξ = 1.2 (ST − 1)+ ,

In the case n = 400, Figure 8 represents one path of the Brownian motion, Figures 9 and 10
represent the paths of the solution Yπ,α, increasing processes Kπ,α− and Kπ,α− in the explicit reflected
scheme where the random default time τ = 0.2. We can see that Yπ,α

t stays between the lower obstacle
e−rtLt and the upper obstacle e−rtVt. In this example for n = 400, default time τ = 0.2, we can get
the solution Yπ,α

0 = 0.6857 from the explicit reflected scheme, i.e. the hedge for the broker c1 against
the game option at t = 0 in the defaultable model. In the case without the default risk, Yπ,α

0 = 0.7704,
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which means the occurrence of the default event could reduce the value of Yπ,α. Figure 11 represents
the situation without the default risk, the solution Yπ,α has a larger value than in the situation when
the default case happens (Figure 9).

Figure 8. One path of the Brownian motion.

Figure 9. One path of Yπ,α in the explicit reflected scheme (τ = 0.2).

Figure 10. One path of the increasing processes in the explicit reflected scheme (τ = 0.2).
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Figure 11. The paths of Yπ,α in the explicit reflected scheme without default risk.
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Appendix A

Lemma A1. (Discrete Gronwall’s Inequality) (Lemma 2.2 in Mémin et al. 2008)
Suppose that a, b and c are positive constants, b∆ < 1, (βi)i∈N is a sequence with positive values, such that

βi + c ≤ a + b∆
i

∑
j=1

β j, i ∈ N,

then it follows
sup
i≤n

βi + c ≤ aF∆(b),

where F∆(b) is a convergent series with the following form:

F∆(b) = 1 +
∞

∑
n=1

bn

n
(1 + ∆)... (1 + (n− 1)∆) .

Theorem A1. (Itô’s formula for rcll semi-martingale) (Protter 2005)
Let X := (Xt)0≤t≤T be a rcll semi-martingale, g is a real value function in C2, therefore, g(X) is also
a semi-martingale, such that

g(Xt) =g(X0) +
∫ t

0
g′(Xs−)dXs +

1
2

∫ t

0
g′′(Xs)d[X]cs + ∑

0<s≤t

[
g(Xs)− g(Xs−)− g′(Xs−)∆Xs

]
.

where [X] is the second variation of X, [X]c is the continuous part of [X], ∆Xs = ∆Xs − ∆Xs−.

We give the proofs of Theorem 1, Lemma 1, Theorem 2 and Theorem 4 can be seen in Section 5.
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Proof of Theorem 1. Firstly, we introduce the following ABSDE:

−dYp,q
t = f

(
t, Yp,q

t ,EGt [Yp,q
t+δ], Zp,q

t , Up,q
t
)
dt + q(Yp,q

t − Lt)
−dt

− p(Yp,q
t −Vt)

+dt− Zp,q
t dBt −Up,q

t dMt, t ∈ [0, T].
(A1)

By the existence and uniqueness theorem for ABSDEs with default risk (Theorem 4.3.3 in
Wang 2020), there exists the unique solution for ABSDE (A1). It follows that as q → ∞, Yp,q

t ↑ Yp
t

in S2
G(0, T + δ;R), Zp,q

t → Zp
t in L2

G(0, T;R), Up,q
t → Up

t in L2,τ
G (0, T;R),

∫ t
0 q(Yp,q

s − Ls)−ds → Kp
t in

A2
G(0, T;R). (Yp, Zp, Up, Kp) is a solution of the following RABSDE with one obstacle L:

−dYp
t = f

(
t, Yp

t ,EGt [Yp
t+δ], Zp

t , Up
t
)
dt + dKp

t

− p(Yp
t −Vt)

+dt− Zp
t dBt −Up

t dMt, t ∈ [0, T].
(A2)

Let p → ∞, it follows that Yp
t ↓ Yt in S2

G(0, T + δ;R), Zp
t → Zt in L2

G(0, T;R), Up
t → Ut in

L2,τ
G (0, T;R). By the comparison theorem for ABSDEs with default risk (Theorem 2.3.1 in Wang 2020),

we know that Kp
t is increasing, then Kp

T ↑ K+p
T and Kp+1

T − Kp
T ≥ sup0≤t≤T [K

p+1
t − Kp

t ] ≥ 0, therefore,

Kp
t → K+p

t in A2
G(0, T;R). Hence, there exists a constant C1 depending on ξ, f (t, 0, 0, 0, 0), δ, L and V,

such that

E
[

sup
0≤t≤T

∣∣∣Yp
t −Yt

∣∣∣2 + ∫ T

0

∣∣∣Zp
t − Zt

∣∣∣2 dt +
∫ T

0

∣∣∣Up
t −Ut

∣∣∣2 1{τ>t}γtdt

]
≤ C1√

p
.

Similarly, let p→ ∞ in (A1), it follows that Yp,q
t ↓ Yq

t in S2
G(0, T + δ;R), Zp,q

t → Zp
t in L2

G(0, T;R),
Up,q

t → Up
t in L2,τ

G (0, T;R),
∫ t

0 p(Yp
s −Vs)+ds→ Kq

t in A2
G(0, T;R). (Yq, Zq, Uq, Kq

) is a solution of the
following RABSDE with one obstacle V:

−dYq
t = f

(
t, Yq

t ,EGt [Yq
t+δ], Zq

t , Uq
t
)
dt + q(Yq

t − Lt)
−dt− dKq

t − Zq
t dBt −Uq

t dMt, t ∈ [0, T]. (A3)

Letting q → ∞, it follows that Yq
t ↓ Yt in S2

G(0, T + δ;R), Zq
t → Zt in L2

G(0, T;R), Uq
t → Ut

in L2,τ
G (0, T;R), Kp

t → K−p
t in A2

G(0, T;R). Moreover, there exists a constant C2 depending on ξ,
f (t, 0, 0, 0, 0), δ, L and V, such that

E
[

sup
0≤t≤T

∣∣∣Yq
t −Yt

∣∣∣2 + ∫ T

0

∣∣∣Zq
t − Zt

∣∣∣2 dt +
∫ T

0

∣∣∣Uq
t −Ut

∣∣∣2 1{τ>t}γtdt

]
≤ C2√

q
.

By the comparison theorem for ABSDEs with default risk, it follows that Yp
t ≤ Yp

t ≤ Yp
t , for any

t ∈ [0, T]. Therefore,

E
[

sup
0≤t≤T

∣∣∣Yp
t −Yt

∣∣∣2] ≤ C3√
p

,

where C3 ≥ 0 is a constant. Applying Itô formula for rcll semi-martingale (Theorem A1), we can obtain

E
[∫ T

0
|Zp

t − Zt|2dt +
∫ T

0
|Up

t −Ut|21{τ>t}γtdt
]
≤ C4√

p
,

where C4 ≥ 0 is a constant. Since

K+p
t − K−p

t =Yp
0 −Yp

t −
∫ t

0
f
(
s, Yp

s ,EGs [Yp
s+δ], Zp

s , Up
s
)
ds−

∫ t

0
Zp

s dBs −
∫ t

0
Up

s dMs;

K+
t − K−t =Y0 −Yt −

∫ t

0
f
(
s, Ys,EGs [Ys+δ], Zs, Us

)
ds−

∫ t

0
ZsdBs −

∫ t

0
UsdMs.
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By the convergence of Yp, Zp, Up and the Lipschitz condition of f , it follows

E
[

sup
0≤t≤T

|(K+p
t − K+

t )− (K−p
t − K−t )|2

]

≤λE
[

sup
0≤t≤T

∣∣∣Yp
t −Yt

∣∣∣2 + ∫ T

0
|Zp

t − Zt|2dt +
∫ T

0
|Up

t −Ut|21{τ>t}γtdt

]
≤ C5√

p
,

where λ, C5 ≥ 0 are constants. Since E[|K+p
T |2 + |K

−p
T |2] < ∞, there exist processes K̂+ and K̂− in

A2
G(0, T;R) are the weak limits of K+p and K−p respectively. Since for any t ∈ [0, T], Yp

t ≤ Yp
t ≤ Yp

t ,
we can get

dK+p
t =p(Yp

t − Lt)
−dt ≤ p(Yp

t − Lt)
−dt = dK+p

t ;

dK−p
t =p(Yp

t −Vt)
+dt ≥ p(Yp

t −Vt)
+dt = dK−p

t .

Therefore, dK̂+
t ≤ dK+

t , dK̂−t ≥ dK−t , it follows that dK̂+
t − dK̂−t ≤ dK+

t − dK−t . On the other
hand, the limit of Yp is Y, so dK̂+

t − dK̂−t = dK+
t − dK−t , it follows that dK̂+

t = dK+
t , dK̂−t = dK−t , then

K̂+
t = K+

t , K̂−t = K−t .

Proof of Lemma 1. Step 1. Firstly, we consider the continuous and discrete time equations by
Picard’s method.
In the continuous case, we set Yp,∞,0 = Zp,∞,0 = Up,∞,0 = 0, (Yp,∞,m+1

t , Zp,∞,m+1
t , Up,∞,m+1

t ) is the
solution of the following BSDE:

Yp,∞,m+1
t = ξT +

∫ T
t f n(s, Yp,∞,m

s ,EGs [Yp,∞,m
s+δ ], Zp,∞,m

s , Up,∞,m
s

)
ds

+
∫ T

t q(Yp,∞,m
s − Ls)−ds−

∫ T
t p(Yp,∞,m

s −Vs)+ds

−
∫ T

t Zp,∞,m+1
s dBs −

∫ T
t Up,∞,m+1

s dMs, t ∈ [0, T];

Yp,∞,m+1
t = ξt, t ∈ (T, T + δ],

(A4)

where (Yp,∞,m
t , Zp,∞,m

t , Up,∞,m
t ) is the Picard approximation of (Yp

t , Zp
t , Up

t ).
In the discrete case, we set yp,n,0

i = zp,n,0
i = up,n,0

i = 0 (for any i = 0, 2, ...n), (yp,n,m+1
i , zp,n,m+1

i , up,n,m+1
i )

is the solution of the following BSDE:
yp,n,m+1

i = yp,n,m+1
i+1 + f n(ti, yp,n,m

i , ȳp,n,m
i , zp,n,m

i , up,n,m
i )∆n

− zp,n,m+1
i ∆Bn

i+1 − up,n,m+1
i ∆Mn

i+1 + p∆n(yp,n
i − Ln

i )
−

− p∆n(yp,n
i −Vn

i )
+, i ∈ [0, n− 1];

yp,n,m+1
i = ξn

i , i ∈ [n, nδ].

(A5)

here (Yp,n,m
t , Zp,n,m

t , Up,n,m
t ) is the continuous time version of the discrete Picard approximation of

(yp,n,m
i , zp,n,m

i , up,n,m
i ).

Step 2. Then, we consider the following decomposition:

Yp,n −Yp = (Yp,n −Yp,n,m) + (Yp,n,m −Yp,∞,m) + (Yp,∞,m −Yp) .

From Proposition 1 and Proposition 3 in Lejay et al. (2014) and the definition of Ln
i and Vn

i , it
follows (20).
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Proof of Theorem 2. By Lemma 1 and Theorem 1, as p→ ∞, n→ ∞, it follows

E
[

sup
0≤t≤T

|Yp,n
t −Yt|2 +

∫ T

0
|Zp,n

t − Zt|2dt +
∫ T

0
|Up,n

t −Ut|21{τ>t}γtdt

]

≤2E
[

sup
0≤t≤T

|Yp,n
t −Yp

t |
2 +

∫ T

0
|Zp,n

t − Zp
t |

2dt +
∫ T

0
|Up,n

t −Up
t |

21{τ>t}γtdt

]

+ 2E
[

sup
0≤t≤T

|Yp
t −Yt|2 +

∫ T

0
|Zp

t − Zt|2dt +
∫ T

0
|Up

t −Ut|21{τ>t}γtdt

]
→ 0.

For the increasing processes K+p,n and K−p,n, by Theorem 1, we can obtain

E
[(

K+p,n
t − K−p,n

t

)
−
(
K+

t − K−t
)]2

≤2E
[(

K+p,n
t − K−p,n

t

)
−
(

K+p
t − K−p

t

)]2
+

C
√

p
,

where C ≥ 0 is a constant depending on ξ, f (t, 0, 0, 0, 0), δ, L and V. For each fixed p,

K+p,n
t − K−p,n

t =Yp,n
0 −Yp,n

t −
∫ t

0
f n(s, Yp,n

s ,EGs [Yp,n
s+δ], Zp,n

s , Up,n
s
)
ds−

∫ t

0
Zp,n

s dBn
s −

∫ t

0
Up,n

s dMn
s ;

K+p
t − K−p

t =Yp
0 −Yp

t −
∫ t

0
f
(
s, Yp

s ,EGs [Yp
s+δ], Zp

s , Up
s
)
ds−

∫ t

0
Zp

s dBs −
∫ t

0
Up

s dMs.

From Corollary 14 in Briand et al. (2002), we know that as n → ∞,
∫ ·

0 Zp,n
s dBn

s →
∫ ·

0 Zp
s dBs

in S2
G(0, T;R),

∫ ·
0 Up,n

s dMn
s →

∫ ·
0 Up

s dMs in S2
G(0, T;R). By the Lipschitz condition of f and the

convergence of Yp,n, it follows that K+p,n
t − K−p,n

t → K+
t − K−t in L2

G(0, T;R).

Proof of Theorem 4. Firstly, we prove (23).

From Theorem A3, Lemma 1 and Theorem 1. For fixed p ∈ N, as n→ ∞, it follows

E
[

sup
0≤t≤T

|Yn
t −Yt|2 +

∫ T

0
|Zn

t − Zt|2dt +
∫ T

0
|Un

t −Ut|21{τ>t}γtdt

]

≤3E
[

sup
0≤t≤T

|Yn
t −Yp,n

t |
2 +

∫ T

0
|Zn

t − Zp,n
t |

2dt +
∫ T

0
|Un

t −Up,n
t |

21{τ>t}γtdt

]

+ 3E
[

sup
0≤t≤T

|Yp,n
t −Yp

t |
2 +

∫ T

0
|Zp,n

t − Zp
t |

2dt +
∫ T

0
|Up,n

t −Up
t |

21{τ>t}γtdt

]

+ 3E
[

sup
0≤t≤T

|Yp
t −Yt|2 +

∫ T

0
|Zp

t − Zt|2dt +
∫ T

0
|Up

t −Ut|21{τ>t}γtdt

]

≤3E
[

sup
0≤t≤T

|Yp,n
t −Yp

t |
2 +

∫ T

0
|Zp,n

t − Zp
t |

2dt +
∫ T

0
|Up,n

t −Up
t |

21{τ>t}γtdt

]

+
3
√

p
Cξ, f ,L,V +

3
√

p
λL,T,δC f n ,ξn ,Ln ,Vn → 0.
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For increasing processes, for fixed p ∈ N, as n→ ∞,

E
[∣∣(K+n

t − K−n
t
)
−
(
K+

t − K−t
)∣∣2]

≤3E
[∣∣∣(K+n

t − K−n
t
)
−
(

K+p,n
t − K−p,n

t

)∣∣∣2]+ 3E
[∣∣∣(K+p,n

t − K−p,n
t

)
−
(

K+p
t − K−p

t

)∣∣∣2]
+ 3E

[∣∣∣(K+p
t − K−p

t

)
−
(
K+

t − K−t
)∣∣∣2]

≤3E
[∣∣∣(K+p,n

t − K−p,n
t

)
−
(

K+p
t − K−p

t

)∣∣∣2]+ 3
√

p
Cξ, f ,L,V +

3
√

p
λL,T,δC f n ,ξn ,Ln ,Vn → 0.

We give the proof of the following Lemma A2. Lemma A3 and Lemma A4 below have the similar
proof method.

Lemma A2. (Estimation result of implicit discrete penalization scheme) Under Assumption 6 and
Assumption 7, for each p ∈ N and ∆n, when

(
∆n + 3∆nL + 4∆nL2 + (∆nL)2) < 1, there exists a constant

λL,T,δ depending on the Lipschitz coefficient L, T and δ, such that

E
[

sup
i
|yp,n

i |
2 + ∆n

n−1

∑
j=0
|zp,n

j |
2 + ∆n

n−1

∑
j=0
|up,n

j |
2(1− hn

j+1)γj+1

+
1

p∆n

n−1

∑
j=0

(
|k+p,n

j |2 + |k−p,n
j |2

) ]
≤ λL,T,δCξn , f n ,Ln ,Vn ,

(A6)

where Cξn , f n ,Ln ,Vn ≥ 0 is a constant depending on ξn, f n(tj, 0, 0, 0, 0), (Ln)+ and (Vn)−.

Proof of Lemma A2. By the definition of implicit penalization discrete scheme (7), applying Itô
formula for rcll semi-martingale (Theorem A1) to |yp,n

j |
2 on j ∈ [i, n− 1], it follows

E
[
|yp,n

i |
2 + ∆n

n−1

∑
j=i
|zp,n

j |
2 + ∆n

n−1

∑
j=i
|up,n

j |
2(1− hn

j+1)γj+1

]

= E |ξn
n |

2 + 2∆nE
n−1

∑
j=i

[
yp,n

j

∣∣∣ f n(tj, yp,n
j , ȳp,n

j , zp,n
j , up,n

j )
∣∣∣ ]+ 2E

n−1

∑
j=i

[
yp,n

j k+p,n
j − yp,n

j k−p,n
j

]
, (A7)

since
yp,n

j k+p,n
j =− 1

p∆n

(
k+p,n

j

)2
+ Ln

j k+p,n
j ;

yp,n
j k−p,n

j =
1

p∆n

(
k−p,n

j

)2
+ Vn

j k−p,n
j .
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Moreover, by the Lipschitz condition of f n, we can obtain

E
[
|yp,n

i |
2 +

∆n

2

n−1

∑
j=i
|zp,n

j |
2 +

∆n

2

n−1

∑
j=i
|up,n

j |
2(1− hn

j+1)γj+1 +
2

p∆n

n−1

∑
j=i

(
|k+p,n

j |2 + |k−p,n
j |2

) ]

≤E
[
|ξn

n |
2 + ∆nL

nδ−1

∑
j=n+1

∣∣∣ξn
j

∣∣∣2 ]+ ∆nE
[ n−1

∑
j=i
| f n(tj, 0, 0, 0, 0)|2

]

+
(

∆n + 3∆nL + 4∆nL2 + (∆nL)2
)
E
[ n−1

∑
j=i
|yn

j |2
]
+

1
λ1

E
(

n−1

∑
j=i

k+p,n
j

)2

+ λ1E sup
i≤j≤n−1

((Ln
j )

+)2 +
1

λ1
E
(

n−1

∑
j=i

k−p,n
j

)2

+ λ1E sup
i≤j≤n−1

((Vn
j )
−)2.

By Assumption 8, applying techniques of stopping times for the discrete case, it follows

E
(

n−1

∑
j=i

k+p,n
j

)2

+E
(

n−1

∑
j=i

k−p,n
j

)2

≤ Cξn , f n ,Xn

[
1 + ∆nE

n−1

∑
j=i

(
|zp,n

j |
2 + |up,n

j |
2(1− hn

j+1)γj+1

)]
.

where Cξn , f n ,Xn ≥ 0 is a constant depending on ξn, f n(tj, 0, 0, 0, 0), Xn. Since Xn can be dominated by
Ln and Vn, we can replace it by Ln and Vn. By the discrete Gronwall’s inequality (Lemma A1), when(
∆n + 3∆nL + 4∆nL2 + (∆nL)2) < 1, we can obtain

sup
i

E
[
|yp,n

i |
2
]
+E

[
∆n

n

∑
j=0
|zp,n

j |
2 + ∆n

n

∑
j=0
|up,n

j |
2(1− hn

j+1)γj+1

+
1

p∆n

n

∑
j=0

(
|k+p,n

j |2 + |k−p,n
j |2

) ]
≤ λL,T,δCξn , f n ,Ln ,Vn ,

where Cξn , f n ,Ln ,Vn ≥ 0 is a constant depending on ξn, f n(tj, 0, 0, 0, 0), (Ln)+ and (Vn)−.
Reconsidering (A7), we take square, sup and sum over j, then take expectation,
by Burkholder-Davis-Gundy inequality for the martingale parts, it follows

E
[

sup
i

∣∣∣yp,n
i

∣∣∣2] ≤ Cξn , f n ,Ln ,Vn + C∆n

[
n−1

∑
i=0

E
∣∣∣yp,n

i

∣∣∣2 ] ≤ Cξn , f n ,Ln ,Vn + CT sup
i

E
∣∣∣yp,n

i

∣∣∣2 .

It follows (A6).

We present the proof of the following Theorem A2. Theorem A3 and Theorem A4 below have the
similar proof method.

Theorem A2. (Distance between implicit discrete penalization and explicit discrete penalization
schemes) Under Assumption 6 and Assumption 7, for any p ∈ N:

E
[

sup
0≤t≤T

|Ỹp,n
t −Yp,n

t |
2 +

∫ T

0
|Z̃p,n

t − Zp,n
t |

2dt +
∫ T

0
|Ũp,n

t −Up,n
t |

21{τ>t}γtdt

+
∣∣∣(K̃+p,n

t − K̃−p,n
t

)
−
(

K+p,n
t − K−p,n

t

)∣∣∣2 ] ≤ λL,T,δC f n ,ξn ,Ln ,Vn ,p(∆
n)2.

(A8)

where λL,T,δ ≥ 0 is a constant depending on the Lipschitz coefficient L, the terminal T and δ, C f n ,ξn ,∆n ,Ln ,Vn ,p ≥
0 is a constant depending on f n(tj, 0, 0, 0, 0), ξn, (Ln)+, (Vn)− and p.
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Proof of Theorem A2. From the definitions of implicit discrete penalization scheme (7) and explicit
discrete penalization scheme (11), and the Lipschitz condition of f n, it follows

E
[∣∣∣ỹp,n

j − yp,n
j

∣∣∣2 + ∆n
∣∣∣z̃p,n

j − zp,n
j

∣∣∣2 + ∆n
∣∣∣ũp,n

j − up,n
j

∣∣∣2 (1− hn
j+1)γj+1

]
≤2∆nLE

[(
|EG

n
j [ỹp,n

j+1]− yp,n
j |+ | ¯̃y

p,n
j − ȳp,n

j |+ |z̃
p,n
j − zp,n

j |

+ |ũp,n
j − up,n

j |(1− hn
j+1)

√
γj+1

) (
ỹp,n

j − yp,n
j

) ]
,

(A9)

Summing from j = i, ..., n− 1, it follows

E
[ ∣∣∣ỹp,n

i − yp,n
i

∣∣∣2 + ∆n

2

n−1

∑
j=i

∣∣∣z̃p,n
j − zp,n

j

∣∣∣2 + ∆n

2

n−1

∑
j=i

∣∣∣ũp,n
j − up,n

j

∣∣∣2 (1− hn
j+1)γj+1

]

≤2∆nLE
n−1

∑
j=i

[ ∣∣∣EGn
j [ỹp,n

j+1]− yp,n
j

∣∣∣ |ỹp,n
j − yp,n

j |
]
+ ∆n(2L + 4L2)E

[
n−1

∑
j=i

∣∣∣ỹp,n
j − yp,n

j

∣∣∣2] .

By (17), (11) and the Lipschitz condition of f n, we can obtain

2∆nLE
n−1

∑
j=i

[ ∣∣∣EGn
j [ỹp,n

j+1]− yp,n
j

∣∣∣ |ỹp,n
j − yp,n

j |
]

≤(∆nL)2E
n−1

∑
j=i

[
2|ỹp,n

j |
2 + |z̃p,n

j |
2 + |ũp,n

i |
2(1− hn

i+1)γi+1

]
+ (∆n)2E

n−1

∑
j=i

[ ∣∣ f n(tj, 0, 0, 0, 0)
∣∣2 ]

+ (p∆n)2E
n−1

∑
j=i

[(
(ỹp,n

i − Ln
i )
−
)2

+
(
(ỹp,n

i −Vn
i )

+
)2
]

+
(

8(∆nL)2 + 2∆nL
)
E
[

n−1

∑
i=j

∣∣∣ỹp,n
j − yp,n

j

∣∣∣2]+ (∆nL)2E
[

nδ−1

∑
i=n
|ξn

j |2
]

,

hence, there exists a constant C f n ,ξn ,Ln ,Vn ≥ 0 depending on f n(tj, 0, 0, 0, 0), ξn, (Ln)+ and (Vn)−,
such that

E
[ ∣∣∣ỹp,n

i − yp,n
i

∣∣∣2 + ∆n

2

n−1

∑
j=i

∣∣∣z̃p,n
j − zp,n

j

∣∣∣2 + ∆n

2

n−1

∑
j=i

∣∣∣ũp,n
j − up,n

j

∣∣∣2 (1− hn
j+1)γj+1

]

≤C f n ,ξn ,Ln ,Vn(∆n)2 +
(

8(∆nL)2 + 4∆nL + 4∆nL2
)
E
[

n−1

∑
j=i

∣∣∣ỹp,n
j − yp,n

j

∣∣∣2] .

By the discrete Gronwall’s inequality (Lemma A1), when
(
8(∆nL)2 + 4∆nL + 4∆nL2) < 1, we can

get

sup
i

E
∣∣∣ỹp,n

i − yp,n
i

∣∣∣2 ≤ C f n ,ξn ,Ln ,Vn(∆n)2e(8∆n L2+4L+4L2)T ,

therefore, it follows

E
[

n−1

∑
j=i

∣∣∣z̃p,n
j − zp,n

j

∣∣∣2 + n−1

∑
j=i

∣∣∣ũp,n
j − up,n

j

∣∣∣2 (1− hn
j+1)γj+1

]
≤ C f n ,ξn ,Ln ,Vn(∆n)2.
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Reconsidering (A9), we take square, sup and sum over j, then take expectation,
by Burkholder-Davis-Gundy inequality for the martingale parts, we can get

E
[

sup
i

∣∣∣ỹp,n
i − yp,n

i

∣∣∣2] ≤ C∆n

[
n−1

∑
i=0

E
∣∣∣ỹp,n

i − yp,n
i

∣∣∣2 ] ≤ CT sup
i

E
∣∣∣ỹp,n

i − yp,n
i

∣∣∣2 ,

hence,

E
[

sup
i

∣∣∣ỹp,n
i − yp,n

i

∣∣∣2 + ∆n
n−1

∑
j=0

∣∣∣z̃p,n
j − zp,n

j

∣∣∣2 + ∆n
n−1

∑
j=0

∣∣∣ũp,n
j − up,n

j

∣∣∣2 (1− hn
j+1)γj+1

]
≤λL,T,δC f n ,ξn ,Ln ,Vn ,p(∆

n)2.

(A10)

For the increasing processes, by the Lipschitz condition of f n and (A10), it follows, for each fixed p,

E
[∣∣∣(K̃+p,n

t − K̃−p,n
t

)
−
(

K+p,n
t − K−p,n

t

)∣∣∣2] ≤ λL,T,δC f n ,ξn ,Ln ,Vn ,p(∆
n)2.

It follows (A8).

Similarly to the proof method of Lemma A2, we can get the following Lemma A3.

Lemma A3. (Estimation result of implicit discrete reflected scheme) Under Assumption 6 and
Assumption 7, for each p ∈ N and ∆n, when ∆n + 3∆nL + 4∆nL2 + (∆n)2L2 < 1, there exists a constant
λL,T,δ depending on the Lipschitz coefficient L and the terminal time T, such that

E
[

sup
i
|yn

i |2 + ∆n
n−1

∑
j=0
|zn

j |2 + ∆n
n−1

∑
j=0
|un

j |2(1− hn
j+1)γj+1 +

∣∣∣∣∣n−1

∑
j=0

k+n
j

∣∣∣∣∣
2

+

∣∣∣∣∣n−1

∑
j=0

k−n
j

∣∣∣∣∣
2 ]
≤ λL,T,δCξn , f n ,Ln ,Vn , (A11)

where Cξn , f n ,Ln ,Vn ≥ 0 is a constant depending on ξn, f n(tj, 0, 0, 0, 0), (Ln)+ and (Vn)−.

Similarly to the proof method of Theorem A2, we can obtain the Theorem A3 below.

Theorem A3. (Distance between implicit discrete penalization and implicit discrete reflected
schemes) Under Assumption 6 and Assumption 7, for any p ∈ N:

E
[

sup
0≤t≤T

|Yn
t −Yp,n

t |
2 +

∫ T

0
|Zn

t − Zp,n
t |

2dt +
∫ T

0
|Un

t −Up,n
t |

21{τ>t}γtdt

+
∣∣∣(K+n

t − K−n
t
)
−
(

K+p,n
t − K−p,n

t

)∣∣∣2 ] ≤ λL,T,δC f n ,ξn ,Ln ,Vn
1
√

p
,

(A12)

where λL,T,δ ≥ 0 is a constant depending on the Lipschitz coefficient L, the terminal time T and δ, C f n ,ξn ,Ln ,Vn ≥
0 is a constant depending on f n(tj, 0, 0, 0, 0), ξn, Ln and Vn.

Similarly to the proof of Lemma A2, we can get the following Lemma A4.

Lemma A4. (Estimation result of explicit discrete reflected scheme) Under Assumption 6 and
Assumption 7, for each p ∈ N and ∆n, when 7∆n

4 + 2∆nL + 12∆nL2 + 10(∆nL)2 < 1, there exists a constant
λL,T,δ depending on the Lipschitz coefficient L, T and δ, such that

E
[

sup
i
|ỹn

i |2 + ∆n
n−1

∑
j=0
|z̃n

j |2 + ∆n
n−1

∑
j=0
|ũn

j |2(1− hn
j+1)γj+1 +

∣∣∣∣∣n−1

∑
j=0

k̃+n
j

∣∣∣∣∣
2

+

∣∣∣∣∣n−1

∑
j=0

k̃−n
j

∣∣∣∣∣
2 ]
≤ λL,T,δCξn , f n ,Ln ,Vn , (A13)
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where Cξn , f n ,Ln ,Vn ≥ 0 is a constant depending on ξn, f n(tj, 0, 0, 0, 0), (Ln)+ and (Vn)−.

Similarly to the proof method of Theorem A2, we can obtain the Theorem A4 below.

Theorem A4. (Distance between implicit discrete reflected and explicit discrete reflected schemes)
Under Assumption 3 and Assumption 7, for any p ∈ N:

E
[

sup
0≤t≤T

∣∣Ỹn
t −Yn

t
∣∣2 + ∫ T

0

∣∣Z̃n
t − Zn

t
∣∣2 dt +

∫ T

0

∣∣Ũn
t −Un

t
∣∣2 1{τ>t}γtdt

+
∣∣(K̃+n

t − K̃−n
t
)
−
(
K+n

t − K−n
t
)∣∣2 ] ≤ λL,T,δC f n ,ξn ,Ln ,Vn ,p(∆

n)2.
(A14)

where λL,T,δ ≥ 0 is a constant depending on Lipschitz coefficient L, T and δ, C f n ,ξn ,∆n ,Ln ,Vn ,p ≥ 0 is a constant
depending on f n(tj, 0, 0, 0, 0), ξn, Ln, Vn and p.

Theorem A5. For any s ∈ [t, T], ertYπ,α
t is a hedge for the broker c1 against the game option, i.e., Jt = ertYπ,α

t .

Proof of Theorem A5. Step 1. We first prove Jt ≥ ertYπ,α
t .

Similarly to the proof method of Theorem 5.1 in Hamadène (2006), for any fixed time t ∈ [0, T],
(π, θ) is a hedge after t for the broker against the American game option. By (29) and (30), it follows
that θ ≥ t, π =

(
β
(1)
s , β

(2)
s
)

s∈[t,T] is a self-financing portfolio whose value at time t is A, satisfying

Aπ,α
s ≥ R(s, θ), here s ∈ [t, T]. By (27) and Itô formula for rcll semi-martingale (Theorem A1), we can

obtain

e−r(s∧θ)Aπ,α
s∧θ = e−rtαA +

∫ s∧θ

t
β
(2)
u e−ruSσudBπ,α

u +
∫ s∧θ

t
β
(2)
u e−ruχSudMπ,α

u ≥ e−r(s∧θ)R(s, θ) (A15)

Let v ∈ [t, T] be a G-stopping time, setting s = v and taking the conditional expectation in (A15),
it follows

e−rtαA ≥ Eπ,α
[
e−r(v∧θ)R(v, θ)

∣∣∣Gt

]
.

Hence, similarly to the result of Proposition 4.3 in Hamadène (2006),

e−rtαA ≥ess sup
v≥t

Eπ,α
[
e−r(v∧θ)R(v, θ)

∣∣∣Gt

]
≥ess inf

θ≥t
ess sup

v≥t
Eπ,α

[
e−r(v∧θ)R(v, θ)

∣∣∣Gt

]
= Yπ,α

t .

It follows Jt ≥ ertYπ,α
t .

Step 2. Then prove Jt ≤ ertYπ,α
t .

By the definition of θ∗t in (32), it follows

Yπ,α
s∧θ∗t

= Yπ,α
t − Kπ,α,+

s∧θ∗t
+
∫ s∧θ∗t

t
Zπ,α

u dBπ,α
u +

∫ s∧θ∗t

t
Uπ,α

u dMπ,α
u . (A16)

Since
Yπ,α

θ∗t
1{θ∗t <T} = e−rθ∗t Uθ∗t

1{θ∗t <T} ≥ e−rθ∗t Qθ∗t
1{θ∗t <T},

therefore, by (A16), we can obtain

Yπ,α
s∧θ∗t

=Yπ,α
s 1{s<θ∗t } + Yπ,α

θ∗t
1{θ∗t <s} + Yπ,α

θ∗t
1{s=θ∗t <T} + ξ1{s=θ∗t <T}

≥e−rsLs1{s<θ∗t } + e−rθ∗t Uθ∗t
1{θ∗t <T} + e−rθ∗t Qθ∗t

1{s=θ∗t <T} + ξ1{s=θ∗t <T}

=e−r(s∧θ∗t )R(s, θ∗t ).
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It follows

Yπ,α
t +

∫ s∧θ∗t

t
Zπ,α

u dBπ,α
u +

∫ s∧θ∗t

t
Uπ,α

u dMπ,α
u ≥ e−r(s∧θ∗t )R(s, θ∗t ), s ∈ [t, T].

Set

Ās =ers
(

Yπ,α
t +

∫ s∧θ∗t

t
Zπ,α

u dBπ,α
u +

∫ s∧θ∗t

t
Uπ,α

u dMπ,α
u

)
;

β2
s =ers

(
Zπ,α

s (σSs)
−1 + Uπ,α

s (χSs)
−1
)

1{s≤θ∗t };

β1
s =

(
Ās − β(2)Ss

)
C−1

s .

Obviously, Ās = β
(1)
s Cs + β

(2)
s Ss. Applying Itô formula for rcll semi-martingale (Theorem A1),

we can obtain

Ās =ertYπ,α
t +

∫ s

t
rĀudu +

∫ s

t
eruZπ,α

u 1{s≤θ∗t }dBπ,α
u +

∫ s

t
eruUπ,α

u 1{s≤θ∗t }dMπ,α
u

=ersYπ,α
t +

∫ s

t
eruβ

(1)
u dCu +

∫ s

t
eruβ

(2)
u dSu.

So π =
(

β
(1)
s , β

(2)
s
)

s∈[t,T] is a self-financing portfolio with value ertYπ,α
t at time t. Since for any

s ∈ [t, T], Ās∧θ∗t
≥ R(s, θ∗t ), then (π, θ∗t ) is a hedge strategy against this American game option,

it follows that Jt ≤ ertYπ,α
t .
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