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Abstract: This article presents the Exponential–Generalized Inverse Gaussian regression model with
varying dispersion and shape. The EGIG is a general distribution family which, under the adopted
modelling framework, can provide the appropriate level of flexibility to fit moderate costs with high
frequencies and heavy-tailed claim sizes, as they both represent significant proportions of the total
loss in non-life insurance. The model’s implementation is illustrated by a real data application which
involves fitting claim size data from a European motor insurer. The maximum likelihood estimation
of the model parameters is achieved through a novel Expectation Maximization (EM)-type algorithm
that is computationally tractable and is demonstrated to perform satisfactorily.

Keywords: Exponential–Generalized Inverse Gaussian Distribution; EM Algorithm; regression
models for the mean, dispersion and shape parameters; non-life insurance; heavy-tailed losses

1. Introduction

In the recent literature, in various fields of research such as seismology, biology,
genetics, econometrics and insurance, an interest has been developed in modelling right-
skewed data which are dominated by large values. Similarly, from the literature in non-life
insurance, such as Beirlant et al. (1992), Kleiber and Kotz (2003) and Rosenberg et al. (2007),
it is well known that claim size distributions are right-skewed and heavy-tailed, meaning
that it is of interest for insurance companies to quantify the risk from extreme amounts of
losses. In order to keep the variation of the aggregate claim amount reasonable, an insurer
usually takes out reinsurance cover for their insurance portfolio; in other words, they
protect themselves against losses arising from large, excessively numerous or catastrophic
claims by reinsuring large claim amounts with one or more other insurance or reinsurance
companies. In other cases, unless larger claim size amounts are eliminated by reinsurance,
the tail of the distribution function is of critical importance, and alternative approaches
are required whenever extreme losses are under consideration. In this regard, it has
become a standard practice in non-life insurance to employ heavy-tailed distributions to
accommodate these extreme claim sizes.

The most well-known families of heavy-tailed distributions that have been utilized
in actuarial practice for this purpose are the Generalized Inverse Gaussian (GIG) and
Generalized Beta of the second kind (GB2) families. The GIG distribution, which was
comprehensively explored in Jorgensen (1982) and Johnson et al. (1994), includes the
Inverse Gaussian as a special case and the Gamma and Inverse Gamma distributions as
limiting cases. Note that the Inverse Gamma distribution also includes some well-known
distributions such as the Inverse Exponential, Inverse Chi Squared and Scaled Inverse Chi
Squared distributions. The GB2 distribution includes the Burr, generalized Pareto and
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Pareto distributions as special cases and the Generalized Gamma (GG) distribution as a
limiting case. The distributions which belong to the GB2 family have been widely used
in the actuarial literature to model heavy-tailed insurance loss data for cases with and
without covariate information; see, for instance, Frees et al. (2014, 2016); Frees and Valdez
(2008); Hürlimann (2014); Jeong (2020); Jeong and Valdez (2020); Laudagé et al. (2019);
Ramirez-Cobo et al. (2010); Shi et al. (2015); Wang et al. (2020); Yang et al. (2011), among
many others.

Furthermore, it should be noted that alternative approaches have been considered in
the actuarial literature to model heavy-tailed losses. Log phase-type distributions were
considered in (Ahn et al. 2012; Bladt and Rojas-Nandayapa 2018; Hassan Zadeh and Stan-
ford 2016) in the context of regression analysis. The Double-Pareto-Lognormal (DPLN)
distribution was proposed in Calderín-Ojeda et al. (2017) to efficiently model large claim
amounts with heavy-tail behaviors. Additionally, the use of continuous mixture distri-
butions has been proposed as a way to capture the heavy-tailed behavior of insurance
losses. In Li et al. (2020), the authors considered a new parametric family of loss distribu-
tions, termed the Generalized Log-Moyal Gamma distribution (GLMGA), which can be
derived as a Gamma mixture of the Generalized Log-Moyal distribution; see Bhati and
Ravi (2018). While the GLMGA distribution that they presented is a special case of the GB2
distribution, they demonstrated that it is effective in the regression modelling of large and
modal loss data. In Tzougas and Karlis (2020), the authors calibrated heavy-tailed insurance
losses using a class of mixed Exponential Regression models with varying dispersion. Their
proposed class of models extends the setup of many well-known two parameter mixed Ex-
ponential distributions, such as the classic Exponential–Inverse Gamma—namely Pareto—,
the Exponential–Inverse Gaussian (EIG) distributions and the Exponential–Lognormal
(ELN) distribution, which was recently considered in Tzougas et al. (2020).

In this study, we introduce the Exponential–Generalized Inverse Gaussian (EGIG)
regression model with varying dispersion and shape to approximate heavy-tailed claim
sizes in non-life insurance. The probability density function (pdf) of the model is param-
eterized in terms of its mean, dispersion and shape parameters. This results in a more
orthogonal parameterization which facilitates maximum likelihood (ML) estimation when
regression specifications are allowed for the mean, dispersion and shape parameters of
the EIG distribution. Furthermore, the EGIG is a very wide family which includes many
well-known mixed Exponential distributions as special and limiting cases, such as the
EIG, Pareto (which can be derived either as an Exponential-Gamma or as an Exponential–
Inverse Gamma), Exponential–Inverse Exponential, Exponential–Inverse Chi Squared and
Exponential–Scaled Inverse Chi Squared distributions, depending on the estimated values
of the dispersion and shape parameters which are modelled as functions of risk factors.
This can be regarded as a very useful property since, as is well known, real non-life insur-
ance datasets are a mix of moderate and large claim amounts. In particular, the EGIG family
combined with the proposed modelling framework can provide insurance companies with
a useful—from a practical business point of view—tool both to model moderate losses,
which correspond to the body area of the distribution, and match the varying tail behav-
iors of insurance losses from different risk profiles, thus leading to a better risk-adjusted
classification of policyholders with similar risk characteristics. For example, suppose that
an actuary empirically knows that loss amounts from the moderate-risk profile tend to
follow the EIG distribution whereas loss amounts from the high-risk profile tend to follow
Pareto distribution; in such cases, the use of either the EIG or the Pareto model might not
be able to efficiently approximate the claim severity for the entire dataset. However, a
potential distribution misspecification can affect the degree of reliability of predictions
and subsequently lead to inaccurate pricing and ratemaking. The EGIG family has the
substantial flexibility to overcome these deficiencies. Additionally, unlike the majority of
models for insurance losses, our general approach can allow an insurer to determine the
distribution of each risk class based not only on the mean parameter, which is traditionally
modelled in terms of covariates, but also by using regressors on the dispersion and shaper
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parameters which describe the shape of the EGIG distribution. Moreover, an insurance
company might not only be interested in the predictive mean of each individual claim, but
also in the predictive distributions of the individual claims for more effective enterprise
risk management. Finally, it is worth noting that our main contribution is to develop an
Expectation-Maximization (EM)-type algorithm which exploits the stochastic mixture rep-
resentation of the EGIG model to maximize its cumbersome likelihood function expressed
in terms of the modified Bessel function of the third kind. Our proposed method can
also remedy the computational issues which may occur by traditional direct maximization
procedures since it may not be possible to obtain numerically reliable direct first and second
derivatives of the Bessel function when regression structures are incorporated in its order.

The remainder of this article is organized as follows. In Section 2, we present the
construction of EGIG distributions with varying dispersion and shape. Section 3 deals
with the maximum likelihood (ML) estimation procedure for our proposed model via the
EM algorithm. In Section 4, we describe the Motor Third Party Liability (MTPL) dataset
that we use for our empirical analysis, and we provide estimation and model comparison
results for the proposed model and various benchmark models. Section 5 discusses the
computational issues for the implementation of the EM algorithm wich is used to fit the
EGIG regression model with varying dispersion and shape. Finally, concluding remarks
are given in Section 6.

2. The Exponential–Generalized Inverse Gaussian Regression Model with Varying
Dispersion and Shape

Consider a non-life insurance portfolio which consists of i = 1, . . . , n policyholders.
We describe the average severity as Yi of policyholder i, which is well-defined when there
is at least one claim. In practice, there is often no access to the individual claim severities
but only to the aggregate claim amounts. Therefore, it is customary to decompose the
aggregate claim amounts into two parts: frequency and severity, where the heavy-tail
behavior arises from the severity part.

Suppose that, given a continuous random variable Zi > 0, Yi|Zi follows an Exponential
distribution with the probability density function (pdf) given by

f (yi|Zi = zi) =
e−

yi
µi zi

µizi
, (1)

where yi, µi, zi > 0 with E(Yi|Zi) = µiZi and Var(Yi|Zi) = (µiZi)
2. Note that Yi|Zi denotes

the conditional distribution of claim amounts given the latent variable Zi, which accounts
for the unobserved heterogeneity in risks.

Let us now assume that Zi are random variables from a Generalized–Inverse Gaussian
with a pdf of

g(zi; φi; νi) = cνi
i

 zνi−1
i

2Kνi

(
1
φi

)
 exp

[
− 1

2φi

(
cizi +

1
cizi

)]
(2)

for φi > 0 and −∞ < νi < ∞, where ci =
[
Kνi+1(1/φi)

]
[Kνi (1/φi)]

−1 and

Kνi (ω) =

∞∫
0

χνi−1 exp
[
−1

2
ω

(
χ +

1
χ

)]
dχ, (3)

is the modified Bessel function of the third kind of order νi with argument ω.
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Note that Equation (2) is obtained from a reparameterization of the GIG distribution
which was considered by Jorgensen (1982) and Johnson et al. (1994). This parameterization
ensures that the model is identifiable since E(Zi) = 1. Note also that

Var(Zi) =
Kνi+2(

1
φi
)Kνi (

1
φi
)

Kνi+1(
1
φi
)2

− 1.

When considering the assumptions in Equations (1) and (2), it is easy to see that the
unconditional distribution of Yi will be an Exponential–Generalized Inverse Gaussian
(EGIG) distribution with a pdf given by

f (yi) =
ci
µi

(
1 +

2yiciφi
µi

) νi−1
2

Kνi−1

(√
1

φ2
i
+ 2yici

µiφi

)
Kνi

(
1
φi

) . (4)

Note that if we let ν = −0.5 in Equation (4), the EGIG distribution reduces to an
Exponential–Inverse Gaussian (EIG) distribution. Further, the Pareto distribution can
be derived as an Exponential–Gamma or as an Exponential–Inverse Gamma since both
distributions are limiting cases of Equation (4), obtained by allowing φi → ∞ for νi > 0
and νi < −1, respectively.

To allow for the mean, dispersion and shape parameters to be modelled as functions
of explanatory variables with parametric linear functional forms, we assume that

µi = exp
(

xT
1,iβ1

)
, (5)

φi = exp
(

xT
2,iβ2

)
and (6)

νi = xT
3,iβ3 (7)

where x1,i, x2,i and x3,i are covariate vectors with dimensions p1 × 1, p2 × 1 and p3 × 1 re-
spectively, with β1 =

(
β1,1, . . . , β1,p1

)T , β2 =
(

β2,1, . . . , β2,p2

)T and β3 =
(

β3,1, . . . , β3,p3

)T

the corresponding parameter vectors, and where it is considered that the matrices X1, X2
and X3 with rows given by x1,i, x2,i and x3,i respectively, are of full rank, for i = 1, . . . , n.

Finally, using the moments of the Exponential and GIG distributions, one can easily
find that the mean, variance, skewness and kurtosis of Yi are as follows:

E(Yi) = E[E(Yi|Zi)] = µiE[Zi] = µi, (8)

Var(Yi) = E[Var(Yi|Zi)] + VarZi [E(Yi|Zi)]

= µ2
i

[
E
(

Z2
i

)
+ Var(Zi)

]
= µ2

i

[
2Kνi+2(

1
φi
)Kνi (

1
φi
)

Kνi+1(
1
φi
)2

− 1

]
, (9)

Skewness(Yi) =
(Yi − µi)

3

Var(Yi)
3/2 =

6E
(
Z3

i
)
− 6E

(
Z2

i
)
+ 2[

2E
(
Z2

i
)
− 1
]3/2 , (10)

Kurtosis(Yi) =
(Yi − µi)

4

Var(Yi)
2 =

24E
(
Z4

i
)
− 24E

(
Z3

i
)
+ 12E

(
Z2

i
)
− 3[

2E
(
Z2

i
)
− 1
]2 , (11)

where E
(

Zk
i

)
=

Kνi+k(
1
φi
) · Kνi (

1
φi
)k

Kνi (
1
φi
) · Kνi+1(

1
φi
)k

for k ∈ N.

One can see that the proposed regression model satisfies Var(Yi) = µ2
i · g(φi, νi),

similar to other models such as Reparametrized Birnbaum–Saunders (Santos-Neto et al.
2016), Reparametrized Slash-Half-Normal (Gómez et al. 2019), Reparametrized Extended–



Risks 2021, 9, 19 5 of 17

Exponential (Gómez et al. 2020) and Reparametrized Slash-Rayleigh (Gallardo et al. 2020)
models.

3. The EM Algorithm

In this section, an Expectation-Maximization (EM) algorithm (Dempster et al. 1977;
McLachlan and Krishnan 2007) is used to facilitate the maximum likelihood (ML) estimation
of the EGIG regression model with a varying dispersion and shape, which was described in
Section 2. Due to the inherent heavy-tail behaviors of non-life insurance claims, continuous
mixture models have been widely used in the modelling of general insurance claims.
However, such models tend to have complicated and highly non-convex forms of likelihood,
meaning that the naïve maximization of likelihood with well-known optimization routines
often suffers from computational instability. In this regard, the use of EM algorithm can
be beneficial to analyze non-life data. Let (yi, x1,i, x2,i, x3,i), i = 1, . . . , n, be a sample of
independent observations, where yi is the response variable and x1,i, x2,i and x3,i are the
vectors of covariate information with dimensions p1 × 1, p2 × 1 and p3 × 1 respectively.
Additionally, consider that the data are produced according to the EGIG model. Then, the
log-likelihood of the model can be written as

l(θ) =
n

∑
i=1

[
log(ci)− log(µi) +

(
νi − 1

2

)
log
(

1 +
2yiciφi

µi

)

+ log

(
Kνi−1

(√
1

φ2
i
+

2yici
µiφi

))
− log

(
Kνi

(
1
φi

))]
, (12)

where θ =
(

βT
1 , βT

2 , βT
3

)T
is the vector of the parameters.

The direct maximization of the above function with respect to the vector of param-
eters θ is complicated to calculate when regression structures are allowed for the mean,
dispersion and shape parameters since it would be necessary to differentiate the last two
terms in Equation (12) with respect to β1, β2 and β3, respectively.

On the other hand, the ML estimation of the model can be achieved via an EM-type
algorithm which, as demonstrated in Frangos and Karlis (2004), Tzougas et al. (2020) and
Tzougas and Karlis (2020), is specifically tailored to ML estimation for mixed Exponential
models since their stochastic mixture representation involving a non-observable random
variable, denoted by zi herein, can be regarded to produce missing data. In the case of the
EGIG model, if one augments the unobserved data zi to the observed data (yi, x1,i, x2,i, x3,i),
for i = 1, . . . , n, then the complete data log-likelihood factorizes into two parts as follows:

lc(θ) ∝ lc(β1) + lc(β2, β3),

lc(β1) =
n

∑
i=1

[
− yit

µizi
− log(µi)

]
,

lc(β2, β3) =
n

∑
i=1

[
νi log(ci) + (νi − 1) log(zi)− log

(
Kνi

(
1
φi

))
− 1

2φi

(
cizi +

1
cizi

)]
. (13)

In what follows, at the E-Step of the algorithm, it is necessary to compute the Q-
function, which is the conditional expectation of the complete log-likelihood data, while
the M-Step consists of maximizing the Q-function with respect to θ. The Q-function is
proportional to the sum of the terms which involve the regression coefficients β

(r)
1 , β

(r)
2 and

β
(r)
3 :
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Q
(

θ; θ(r)
)
≡ E

(
lc(θ)|ki; θ(r)

)
∝

∝
n

∑
i=1

−yiE
[

1
zi
|yi; θ(r)

]
µ
(r)
i

− log
(

µ
(r)
i

)+
n

∑
i=1

[
ν
(r)
i log

(
c(r)i

)

+
(

ν
(r)
i − 1

)
E
[
log(zi)|yi; θ(r)

]
− log

(
K

ν
(r)
i

(
1

φ
(r)
i

))

− 1

2φ
(r)
i

c(r)i E
[
zi|yi; θ(r)

]
+

E
[

1
zi
|yi; θ(r)

]
c(r)i

, (14)

where θ(r) is the estimate of θ at the rth iteration in the E-step of our EM type algorithm,
where µ

(r)
i = exp

(
xT

1,iβ
(r)
1

)
, φ

(r)
i = exp

(
xT

2,iβ
(r)
2

)
and ν

(r)
i = xT

3,iβ
(r)
3 and

c(r)i =

[
K

ν
(r)
i +1

(1/φ
(r)
i )

][
K

ν
(r)
i
(1/φ

(r)
i )

]−1
. At this point, we would like to call attention

to the fact that if yi ∼ Exponential(µizi) distribution and zi ∼ GIG
(

ci
φi

, 1
ciφi

, νi

)
distribution,

then, applying Bayes theorem, one can find that the posterior distribution of zi|yi; θ is a
GIG distribution with a pdf

f (zi|yi; θ) =

(
ai
bi

) pi
2

2Kpi

(√
aibi
) zpi−1

i exp
[
−1

2

(
aizi +

bi
zi

)]
, (15)

where ai =
ci
φi

> 0, bi =
1

ciφi
+ 2yi

µi
> 0 and pi = νi − 1 ∈ R and where µi, φi and νi are

given by Equations (5)–(7), respectively. The above result will enable us to calculate the con-
ditional expectations E

[
zi|yi; θ(r)

]
, E
[

1
zi
|yi; θ(r)

]
and E

[
log(zi)|yi; θ(r)

]
which are involved

in Equation (14) and hence are required at the E-Step of the EM algorithm. Furthermore,
the following well-known relationships between the modified Bessel functions of the third
kind of different orders—see, for example, Abramowitz and Stegun (1965)—will be useful
for implementing the M-step of the EM algorithm.

Kν(ω) = Kν−2(ω) +
2(ν− 1)

ω
Kν−1(ω) (16)

∂Kν(z)
∂ω

=
ν

ω
Kν(ω)− Kν+1(ω) (17)

The EM-type algorithm for the EGIG regression model with a varying dispersion and
shape can be formally described as follows.

• E-Step: Given the current estimates θ(r) taken from the rth iteration, calculate for all
i = 1, . . . , n the pseudo-values

w1,i = E
[
zi|yi; θ(r)

]
=

√
b(r)

a(r)

K
p(r)i +1

(√
a(r)b(r)

)
K

p(r)i

(√
a(r)b(r)

) , (18)

w2,i = E
[

1
zi
|yi; θ(r)

]
=

√
a(r)

b(r)

K
p(r)i −1

(√
a(r)b(r)

)
K

p(r)i

(√
a(r)b(r)

) (19)
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and

w3,i = E
[
log(zi)|yi; θ(r)

]
= log

√ b(r)

a(r)

+
∂K

p(r)i

(√
a(r)b(r)

)
/∂p(r)i

K
p(r)i

(√
a(r)b(r)

) , (20)

where a(r)i =
c(r)i

φ
(r)
i

> 0, b(r)i = 1
c(r)i φ

(r)
i

+ 2yi

µ
(r)
i

> 0 and p(r)i = ν
(r)
i − 1.

In this study, Equations (18)–(20) are evaluated based on the function Egig 1 within
the R package ghyp, which was recently created by Breymann et al. (2020).

• M-Step: Using the pseudo-values w1,i, w2,i and w3,i from the E-Step and the Newton–
Raphson algorithm three times find the maximum global point θ(r+1) of the Q−function;
i.e., obtain the updated estimates β

(r+1)
1 , β

(r+1)
2 and β

(r+1)
3 .

Firstly, differentiate the Q−function with respect to β1:

h1(β1) =
∂Q
(

θ; θ(r)
)

∂β1,j
, (21)

and

H1(β1) =
∂2Q

(
θ; θ(r)

)
∂β1,j∂βT

1,j
, (22)

for i = 1, . . . , n and j = 1, . . . , p1.
Then, the iterative procedure for the Newton–Raphson algorithm for β1 is as follows:

β
(r+1)
1 ≡ β

(r)
1 −

[
H1

(
β
(r)
1

)]−1
h1

(
β
(r)
1

)
. (23)

Secondly, differentiate the Q−function with respect to β2:

h2(β2) =
∂Q
(

θ; θ(r)
)

∂β2,j
, (24)

H2(β2) =
∂2Q

(
θ; θ(r)

)
∂β2,j∂βT

2,j
, (25)

for i = 1, . . . , n and j = 1, . . . , p2 Then, the Newton–Raphson iterative algorithm for
β2 is as follows:

β
(r+1)
2 ≡ β

(r)
2 −

[
H2

(
β
(r)
2

)]−1
h2

(
β
(r)
2

)
, (26)

for i = 1, . . . , n and j = 1, . . . , p2.
Finally, differentiate the Q−function with respect to β3:

h3(β3) =
∂Q
(

θ; θ(r)
)

∂β3,j
, (27)

1 Note that the Egig function works well in practice as it can also provide an accurate numerical approximation of the first derivative of the modified
Bessel function with respect to its order which, in the case of the EGIG model, is involved in the second term of Equation (20) by using the function
grade from the R package numDeriv which was contributed by Gilbert and Varadhan (2016). For this reason, the Egig function was recently used
by Tzougas (2020) to compute the posterior expectations at the E-Step of the EM algorithm, which was developed to estimate the parameters of the
Poisson–Inverse Gamma regression model with varying dispersion.
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and

H3(β3) =
∂2Q

(
θ; θ(r)

)
∂β3,j∂βT

3,j
, (28)

for i = 1, . . . , n and j = 1, . . . , p3.
Then, the iterative procedure for the Newton–Raphson algorithm for β3 is as follows:

β
(r+1)
3 ≡ β

(r)
3 −

[
H3

(
β
(r)
3

)]−1
h3

(
β
(r)
3

)
. (29)

Note that the expressions for h1(β1) and H1(β1), h2(β2) and H2(β2), and h3(β3) and
H3(β3) which are involved in the M-step of the algorithm are given in Appendix A.

4. Empirical Analysis

We conducted an empirical analysis using a sample of claim severity data, which was
randomly selected from a pool of 4,381,022 motor third-party liability (MTPL) insurance
policies observed during the year 2017 from a major European insurance company. The
sample comprised insured parties with complete records; i.e., with the availability of all a
priori rating variables under consideration, and with at least one reported accident. There
were 9525 observations that met our criteria. The response variable was the cost of claims
at fault registered for each insured vehicle in the dataset, and the a priori rating variables
we employed were the years that the policyholder had been with the company (YC), the
age of their car (AC) and the horsepower (HP) of their car. Furthermore, an exploratory
analysis was carried out in order to accurately select the subset of explanatory variables
with the highest predictive power for the costs of claims. Additionally, in light of the
heterogeneity that existed within the portfolio, we grouped the levels of each a priori
rating variable with respect to risk profiles with a similar claim severity. This enabled us to
achieve ratemaking accuracy and balance the homogeneity and sufficiency of the volume
of data in each cell in order to provide credible patterns. This was necessary, since, under
the proposed modelling framework, the mean, dispersion and shape parameters of the
Exponential–Generalized Inverse Gaussian (EGIG) distribution were modelled in terms of
covariates.

• The variable YC consisted of three categories of policyholders: those who had been
with the company for “less than 4 years” (C1), “between 4 to 8 years” (C2) and “more
than 8 years” (C3).

• The variable AC consisted of three categories of cars: those with an age “between 0 to
7 years” (C1), “between 7 to 14 years” (C2) and “greater than 14 years” (C3).

• The variable HP consisted of three categories of cars: those with a HP of “0-1400 cc”
(C1), “1400–1800 cc” (C2) and “greater than 1800 cc” (C3).

Table 1 shows brief descriptive statistics for claim severities along with the number of
observations in each category of the three explanatory variables.

Table 1. Descriptive statistics of claim severities—size of the different categories of the explana-
tory variables.

Statistic
Claim

Severities
Years with the
Company (YC)

Age of the
Car (AC)

Horsepower of
the Car (HP)

Minimum 75 C1: 2381 C1: 2737 C1: 3510
Median 3211 C2: 2432 C2: 1242 C2: 4064
Mean 8638 C3: 4712 C3: 5546 C3: 1951

Maximum 183, 721 − − −
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To assess the novelty of the proposed method, the following models were considered
as benchmarks besides the proposed model. Note that for all models below µi, φi and νi
are defined by Equations (5)–(7).

• Gamma (GA):

f (yi) =
1

Γ(φ−2
i )(µiφ

2
i )

φ−2
i

y
φ−2

i −1
i e

− yi
µiφ2

i , (30)

where E(Yi) = µi and Var[Yi] = µ2
i φ2

i .
• Inverse Gaussian (IG):

f (yi) =

√
1

2πφ2
i y3

i
exp

[
− (yi − µi)

2

2µ2
i φ2

i yi

]
, (31)

where E(Yi) = µi and Var[Yi] = µ3
i φ2

i .
• Pareto:

f (yi) =
φi[(φi − 1)µi]

φi

[yi + (φi − 1)µi]φi+1 , (32)

where E(Yi) = µi, and Var[Yi] = µ2
i

(
φi

φi − 2

)
exists only if φi > 2.

• Exponential–Inverse Gaussian (EIG):

f (yi) =
φi exp

[
−φi

(√
φ2

i +
2yi
µi
− φi

)](
φi

√
φ2

i +
2yi
µi

+ 1
)

µi

(
φ2

i +
2yi
µi

)3/2 , (33)

where E(Yi) = µi and Var[Yi] = µ2
i

(
2

φ2
i
+ 1

)
.

• GIG:

f (yi) =

(
ci
µi

)νi

 yνi−1
i

2Kνi

(
1
φi

)
 exp

[
− 1

2φi

(
ciyi
µi

+
µi

ciyi

)]
(34)

where E(Yi) = µi, Var[Yi] = µ2
i

[
Kνi+2(

1
φi
)Kνi (

1
φi
)

Kνi+1(
1
φi
)2 − 1

]
and ci =

[
Kνi+1(1/φi)

]
[Kνi (1/φi)]

−1.
• EGIG: Defined by Equation (4).

Table 2 presents the estimated regression coefficients and the corresponding standard
errors in parentheses for the GA, IG, EIG, Pareto, GIG and EGIG models, which are given by
Equations (4) and (30)–(34), respectively. Furthermore, with respect to the model selection,
Table 2 depicts the deviance (DEV), Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) values for all of the fitted models. At this point, it should
be mentioned that we used a model selection technique similar to the one considered
in Tzougas and Karlis (2020). In particular, we started by selecting the best predictor
for the parameter µi of each claim severity model. This was done by adding all three
explanatory variables—YC, AC and HP—and testing whether the exclusion of each one
would result in lower DEV, AIC and BIC values. Subsequently, we continued by testing
which explanatory variable between those used in parameter µi would lead to a further
decrease of the DEV, AIC and BIC values when inserted into parameters φi and νi for each
claim severity model. Additionally, if different parameter specifications for the same claim
severity model resulted in small discrepancies in the DEV, AIC and BIC values, we opted
for the simpler models with fewer predictors for φi and νi in order to avoid overfitting.
In the above respect, as we can observe from Table 2, the variables YC, AC and HP were
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in the model equation for µi, the variables AC and HP were in the model equation for φi
in the case of all claim severity models, and the variable HP was in the model equation
for νi in the case of the GIG and EGIG models. Furthermore, we see that the magnitudes
and signs of the estimated regression coefficients of the variables YC, AC and HP for µi
were almost identical across all claim severity models, whereas the values and the effects
(positive and/or negative) of the estimated regression coefficients of the variables AC
and HP for φi and the variable HP for νi varied among the claim severity models. In
the following, we see that, due to this discrepancy, the claim severity models were better
to compare in terms of their standard deviation values rather than their mean values,
which are usually considered in risk classification literature. Additionally, regarding the
comparison of the alternative claim severity models based on the model selection criteria,
as is well known, a model noticeably outperforms its competitor if the difference in their
log-likelihoods exceeds five, corresponding to a difference in their respective AIC values
of more than 10 and to a difference in their BIC values of more than five; see Burnham
and Anderson (2002) and Raftery (1995) respectively. Thus, as we can see from Table 2, the
EGIG model gives the best fit. Finally, the normalized randomized quantile residuals—see
Dunn and Smyth (1996)—were used as a graphical tool to help us assess the adequacy
of the fit of the competing models. The normalized randomized quantile residuals for
these claim severity regression models are defined as r̂i = Φ−1(ui), where Φ−1 is the
inverse cumulative distribution function of a standard normal distribution and where
ui = Fi(yi|θ(r+1)) where Fi is the cumulative distribution function estimated for the ith
insured and where θ(r+1) is the vector of the estimated model parameters after the EM
algorithm has reached the global maximum and yi is the corresponding observation. The
claim severity model fit could be investigated via the usual quantile–quantile plots. In
particular, if the data indeed followed the assumed claim severity distribution, then the
residual on the quantile–quantile plot would fall approximately on a straight line. From
Figure 1, we observe that the mixed Exponential models provided better assumptions than
the GA, IG and GIG models since their residuals were close to the diagonal line and also
yielded a better performance than that close to the right tail of the claim size distribution.
Therefore, as an overall conclusion, it is reasonable to suggest the use of the EGIG model
for modelling claim severity in our data set.

Table 3 provides the summary of the calculated premiums (Panel A) and standard
deviations (Panel B) under each model. From Table 3, we observe that, as previously
mentioned, the premiums are almost identical under different distributional assumptions,
whereas noticeable discrepancies can be found in the standard deviation values of the claim
severity models. Furthermore, we see that the GA model, a usual choice for claim severity,
results in the smallest values of the estimated standard deviation, which can be partially
explained by the failure of the model to capture the heavy-tail behavior of observed data,
as shown in Figure 1. We also notice that the standard deviation cannot be computed for
the Pareto model because the maximum value of φi under the Pareto model is at most 1.765.
Therefore, the heavy-tail behavior of the data can be captured by the Pareto model at the
expense of losing the feasibility of computing variance. On the other hand, the use of the
EGIG model allows us to not only capture the heavy-tail behavior but also to quantify the
dispersion at an individual level. Thus, the simultaneous modelling of µi, φi and νi of the
EGIG model in terms of the a priori rating of variables is justified because it enables us
to use all the available information in the estimation of the variance of the claim severity,
which is an important risk measure as it can provide a measure of the uncertainty regarding
different risk classes of policyholders, leading to a better risk classification.
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Table 2. Estimation of regression coefficients. GA: Gamma; IG: Inverse Gaussian; EIG: Exponential–Inverse Gaussian; GIG: Generalized Inverse Gaussian; EGIG: Exponential–Generalized
Inverse Gaussian; AIC: Akaike information criterion: BIC: Bayesian information criterion.

GA IG Pareto EIG GIG EGIG

β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β3 β1 β2 β3

(Intercept) 9.124 0.2796 9.123 −3.573 9.3372 0.3649 9.1016 −0.2908 9.1295 0.8555 −0.0889 9.1357 1.1978 −1.2825
(0.0367) (0.0137) (0.0732) (0.0163) (0.1057) (0.0585) (0.0531) (0.0484) (0.047) (0.0221) (0.0265) (0.062) (0.1059) (0.1266)

YCC2 −0.0047 −0.0009 0.0284 0.0204 0.0083 0.0262
(0.0396) (0.0783) (0.0457) (0.0461) (0.0416) (0.0409)

YCC3 −0.0018 0.0003 0.0098 0.0068 −0.0146 0.0085
(0.0327) (0.0645) (0.0379) (0.0382) (0.0344) (0.036)

ACC2 −0.0304 −0.0249 −0.0307 −0.0574 −0.1395 0.1115 −0.0475 0.0942 −0.032 −0.0604 −0.0461 −0.2767
(0.0441) (0.0204) (0.0861) (0.0243) (0.1183) (0.083) (0.0662) (0.0712) (0.0594) (0.0321) (0.0813) (0.322)

ACC3 −0.0625 −0.0149 −0.0626 −0.0057 −0.1316 0.0673 −0.0736 0.061 −0.0624 −0.0289 −0.0621 −0.1342
(0.0305) (0.0139) (0.061) (0.0165) (0.0957) (0.0596) (0.0468) (0.0488) (0.0415) (0.0221) (0.0673) (0.289)

HPC2 −0.0253 −0.0241 −0.0264 −0.0207 −0.0891 0.0918 −0.0251 0.081 −0.0272 −0.0316 0.0697 −0.0317 −0.1126 −0.1434
(0.0302) (0.0137) (0.06) (0.0163) (0.0848) (0.0566) (0.0454) (0.048) (0.0407) (0.0218) (0.0368) (0.0573) (0.3683) (0.1807)

HPC3 −0.0359 −0.011 −0.0374 −0.019 −0.0835 0.0409 −0.04 0.024 −0.0436 −0.0298 −0.0202 −0.0456 −0.1193 0.0167
(0.0393) (0.0168) (0.0776) (0.02) (0.1103) (0.0693) (0.0585) (0.0585) (0.0528) (0.0272) (0.0454) (0.0738) (0.4718) (0.2644)

Deviance 189,663 188,082 187,316 187,375 187,345 187,300
AIC 189,687 188,106 187,340 187,399 187,375 187,330
BIC 189,773 188,192 187,426 187,485 187,483 187,438
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Figure 1. Quantile–quantile (QQ) plots of fitted models.
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Table 3. Summary of calculated premium and standard deviation.

GA IG Pareto EIG GIG EGIG

Min. 8275.03 8283.31 9032.57 8006.52 8175.75 8333.18
1st Quartile 8387.38 8385.47 9194.33 8182.25 8364.69 8521.95

Premium Median 8602.25 8609.89 9953.20 8389.93 8566.93 8721.97
Mean 8638.44 8638.59 9918.75 8458.18 8637.75 8796.48
3rd Quartile 8882.80 8886.44 10,487.38 8748.00 8845.74 8991.19
Max. 9173.15 9166.15 11,679.61 9154.69 9299.66 9527.14

Min. 10,638.09 20,568.32 NA 15,619.10 10,786.21 20,367.60
1st Quartile 10,669.09 20,954.85 NA 15,940.62 10,990.80 21,494.80

Standard Median 11,209.61 22,214.70 NA 17,011.01 11,481.16 22,747.08
Deviation Mean 11,153.58 22,033.36 NA 16,963.28 11,450.85 23,202.42

3rd Quartile 11,522.13 22,841.89 NA 17,709.45 11,772.04 24,269.96
Max. 12,132.53 24,635.57 NA 19,587.28 12,641.57 27,655.98

5. Computational Aspects

This subsection discusses the computational issues related to the ML estimation of
the EGIG regression model with varying dispersion and shape via the EM algorithm
which was presented in Section 3. A rather strict stopping criterion was used, and the
EGIG model required quite a large number of EM iterations to converge. In particular,
the algorithm iterated between the E and the M-steps until the relative change in the
log-likelihood between two successive iterations was smaller than 10−12. Also, it should
be noted that the choice of sensible initial values for the vectors of regression coefficients
β1, β2 and β3 can influence the speed of convergence of the EM and its ability to locate
the global maximum. We obtained good starting values for β1 by fitting the Exponential
regression. Alternatively, the initial values could be obtained based on the data as follows:
(i) calculating E(Yi) = µi, with i = 1, . . . , n—see Equation (8)—for the different risk
classes, which could be formed by dividing the portfolio into clusters defined by the
combinations of the available explanatorily variables and (ii) assuming a log-link function
for µi—see Equation (5)—and solving Equation (5) with respect to β1, since, under the
parameterization method we adopted, the mean is an explicit parameter of the EGIG
model.

Furthermore, meaningful initial values for the regression parameters β2 and β3
were obtained by (i) calculating Var(Yi), skewness(Yi) and kurtosis(Yi)—see Equations
(9)–(11)—for the different risk classes based on all observations i = 1, . . . , n, (ii) by
calculating E(Yi) = µi with i = 1, . . . , n for the different risk classes (or alternatively
computing µi, based on the initial values for β1 and on the log-link function given by
Equation (5)) and using the log-link function for φi—see Equation (6)—and the identity func-
tion for νi—see Equation (7)—and so we found the values which satisfied Equations (9)–(11).
Additionally, the standard errors of the regression coefficients were obtained using the
standard method in Louis (1982). All computing was performed using the programming
language R. Finally, the EIG and Pareto regression models with varying dispersion were
fitted using the EM algorithm, which was considered in Tzougas and Karlis (2020), while
the GA and IG regression models with varying dispersion and the GIG regression model
with varying dispersion and shape were estimated using the generalized additive models
for the location, scale and shape (GAMLSS) package in R; see Stasinopoulos et al. (2008)

6. Concluding Remarks

In this paper, we proposed an EM-type algorithm to estimate the parameters of the
EGIG regression model with varying dispersion and shape. The Exponential–Generalized
Inverse Gaussian is a wide and flexible model class which may fit both moderate and
large claims very well based on the simultaneous modelling of its mean, dispersion and
shape parameters in terms of risk factors. In this respect, the model can enable an actuary
to accurately determine the distribution of each risk class and thus efficiently carry out
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different tasks such as computing premiums and reserves and measuring tail risk. Thus,
our general approach can provide an insurance company with an advantage relative
to previous approaches that have been considered in the literature concerning heavy-
tailed losses. Furthermore, it is worth mentioning that the novel EM-type algorithm we
developed can reduce the computational burden for the ML estimation of the model,
which has a cumbersome density; meanwhile, it is not chronologically demanding and can
avoid overflow problems which may occur via other numerical maximization schemes.
Additionally, it is worth noting that Gómez-Déniz et al. (2013) introduced the Gamma–
Generalized Inverse Gaussian (GAGIG) family of models, gave an excellent account of
its statistical properties and considered estimation methods for cases without covariates
and the case in which a regression component was introduced in the model. Therefore,
since the GAGIG can be regarded as a natural extension of the proposed EGIG model, an
interesting line of further research would be to extend the setup of the GAGIG model to
allow for regression specifications on every parameter. Finally, it is worth mentioning that
a potential future research direction would be to model different types of claims jointly,
using a multivariate extension of the EGIG regression model with varying dispersion and
shape through copula constructions.

Author Contributions: Both authors worked on the development of the methodology and proof-
reading. Data preparation and empirical analysis with the benchmark models were performed by
Himchan Jeong. Development and the implementation of the new EM algorithm with the EGIG
model were performed by George Tzougas. Both authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the anonymous referees and editors for their helpful com-
ments that improved this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EM Expectation-Maximization
EGIG Exponential–Generalized Inverse Gaussian
GIG Generalized Inverse Gaussian
GB2 Generalized Beta second kind
GG Generalized Gamma
DPLN Double-Pareto-Lognormal
ELN Exponential-Lognormal
EIG Exponential-Inverse Gaussian
GLMGA Generalized Log-Moyal Gamma distribution
MTPL Motor third party liability

Appendix A

Below, we provide expressions for h1(β1) and H1(β1), h2(β2) and H2(β2), and h3(β3)
and H3(β3), which are involved in the M-step of the EM type algorithm which was
presented in Section 3.

h1(β1) =
n

∑
i=1

(
yi

µ
(r)
i

w2,i − 1

)
x1,ij, (A1)
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and

H1(β1) =
n

∑
i=1

(
− yi

µ
(r)
i

w2,i

)
x1,ijxT

1,ij, (A2)

for i = 1, . . . , n and j = 1, . . . , p1.
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for i = 1, . . . , n and j = 1, . . . , p2, where
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h3(β3) =
∂
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for i = 1, . . . , n and j = 1, . . . , p3.
The first and second derivatives of the Q−function with respect to β3 in Equations (A7)

and (A8), respectively, are computed using numerical differentiation since β3 is involved
in the calculation of the order νi = xT

3,iβ3 of the Bessel function and thus, as was previously
mentioned, explicit first and second derivatives with respect to β3 may not be numerically
valid. Note that, in Rigby et al. (2008), the authors also resorted to numerical first and
second derivatives when differentiating the Sichel distribution with respect to the order of
the Bessel function.
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