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Abstract: The purpose of this paper is to conduct a market-consistent valuation of life insurance
participating liabilities sold to a population of partially heterogeneous customers under the joint im-
pact of biometric and financial risk. In particular, the heterogeneity between groups of policyholders
stems from their offered minimum interest rate guarantees and contract maturities. We analyse the
effects of these features on the company’s insolvency while embracing the insurer’s goal to achieve
the same expected return for different cohorts of policyholders. Within our extensive numerical
analyses, we determine the fair participation rates and other key figures, and discuss the implications
for the stakeholders, taking account of various degrees of conservativeness of the insurer when
pricing the contracts.

Keywords: participating life insurance; heterogeneous policyholders; market-consistent valuation;
longevity risk; fair contract analysis
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1. Introduction

This paper focuses on the market-consistent valuation of life insurance liabilities, a
topic which has recently again attracted much attention both from academics and practition-
ers, see, for example, Sheldon and Smith (2004), Bauer et al. (2010), Broeders et al. (2013),
Gambaro et al. (2019), Dorobantu et al. (2020) and Ghalehjooghi and Pelsser (2020). This
growing interest mostly stems from the long-sought adoption of fair value based account-
ing standards in many countries, culminating with the full implementation of Solvency
II in the European Union in 2016, see European Parliament and Council of the European
Union (2009). According to these principles, assets and liabilities should be evaluated at
the price, actual or hypothetical, they could be exchanged for in a liquid market. As in
the last few decades financial markets have experienced a high volatility and permanently
low (or even negative) interest rates, coupled with a steady increase in life expectancy, the
introduction of these accounting standards has forced life insurers to deal with risks more
carefully in valuation.

We propose a contingent claim model, along the lines of Briys and de Varenne (1994,
1997), for the valuation of the equity and the liabilities of a participating life insurance
company. The pioneering model by Briys and de Varenne (1994, 1997) has been extended
in several directions, e.g., by Grosen and Jørgensen (2002), Bernard et al. (2005), Chen
and Suchanecki (2007), Cheng and Li (2018), Bacinello et al. (2018), Hieber et al. (2019)
or Orozco-Garcia and Schmeiser (2019), just to quote a few. In most of these papers,
fair valuation is carried out for individual life insurance contracts with the exception of
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Hieber et al. (2019), Orozco-Garcia and Schmeiser (2019) and Bacinello et al. (2018). Hieber
et al. (2019) show that individual insurance contracts with an annual guaranteed return
can be incorporated into an existing portfolio, resulting in no wealth transfer between two
groups. Orozco-Garcia and Schmeiser (2019) examine whether contracts can be priced
such that all the generations pay fair premiums and face the same level of default risk.
Our paper extends Bacinello et al. (2018) who introduce biometric risk for a population of
completely homogeneous policyholders, and analyze how this risk can be split into two
components, namely diversifiable and systematic parts. We consider the valuation of life
insurance participating contracts sold to a population of partially heterogeneous customers
under the joint impact of biometric and financial risk. Here, the heterogeneity between
groups of policyholders stems from their offered minimum interest rate guarantees and
contract maturities. In this respect, this paper is related to Hansen and Miltersen (2002)
and Burkhart (2018). Hansen and Miltersen (2002) deal with the case of participating
life insurance contracts sold to heterogeneous customers, but do not take into account
biometric and default risk.1 Burkhart (2018) particularly addresses surrender risk in the
assessment of a heterogeneous insurance portfolio under Solvency II, and considers the
interaction between minimum interest rate guarantee, surplus participation and reserving
requirement.

Analyzing customers with different minimum interest rate guarantees has some
interesting practical implications. As a reaction to new market conditions, in particular low
interest rates, one measure insurance companies have taken was to reduce the level of the
minimum interest rate guarantee drastically. For example, the German Federal Ministry
of Finance has gradually decreased the maximum technical interest rate for life insurance
products over the past 26 years from 4% to 2.25%, then to 1.75% and currently to 0.9%,
see Eling and Holder (2013). However, these adjustments are applied exclusively to new
contracts, while older customers keep enjoying higher minimum interest rate guarantees.
A natural question that arises is whether new customers will then be penalized and what
measures could be taken to protect the policyholders. This problem has been widely
discussed in public, see, for instance, Seibel (2016).

Despite its stylized nature, this paper provides some useful insights into such and
similar topics by developing a rather comprehensive contingent claim model that explicitly
considers financial, default and longevity risk. We incorporate the heterogeneity of cus-
tomers by dividing them into two groups. We model the liabilities for these two groups
by addressing the insurer’s goal to protect both old and new customers, usually endowed
with different minimum interest rate guarantees, and provide them with the same expected
return. Alternatively, when the two groups have different contract maturities, the payoff of
the group with the earlier maturity is structured in such a way that the other group is also
adequately protected. We evaluate the outstanding liabilities in a market-consistent way
and conduct an analysis of fair contracts for both specifications of the heterogeneous groups.
The subject of actuarial fairness has been examined by several authors, see, for example,
Meyers and Hoyweghen (2017) for a very general discussion or Knispel et al. (2011). Based
on the fair combinations of parameters, we compute then the certainty equivalent returns,
under the physical probability measure, for the heterogeneous policyholders. This helps
answering two questions: what are the factors determining the relative magnitudes of the
fair participation rates? How will the benefits of the two groups, as measured by their
certainty equivalent returns, be impacted by considering both groups as a whole?

The main findings of the paper resulting from our numerical analysis can be summa-
rized as follows: (i) The levels of the risk premium (or the degrees of prudence) arising from
various longevity pricing assumptions play a substantial role in the magnitudes of the fair
participation rates and of the certainty equivalent returns. (ii) Maintaining participation
rates in the range 80–100% (often prescribed by law and used in practice) can severely
affect the insurer’s balance sheet as some portfolio and parameter combinations actually

1 Actually, Hansen and Miltersen (2002) introduce the diversifiable component of mortality.



Risks 2020, 9, 20 3 of 18

require smaller participation rates to ensure the fairness of the contracts. Remarks (i) and
(ii) are consistent with the findings in Bacinello et al. (2018). (iii) When the two groups
differ in their minimum interest rate guarantees, the group with the lower rate receives a
higher fair participation rate. This compensation is bound to rise if the insurance company
does not explicitly aim at providing similar returns to all policyholders, as we propose
to do instead by modifying the payoff structure of the group with the lower minimum
interest rate guarantee. Consequently, the difference between the certainty equivalent
returns would increase as well. Further, when there are few policyholders holding a
lower individual guarantee, their participation in the surplus sharing must be very high
to ensure fair contracts. (iv) If the two groups differ exclusively in the contract maturity,
the fair participation rate for the group with the longer contract duration is much lower.
As a consequence, the certainty equivalent return behaves similarly, although to a lesser
extent. Further, the group with the longer contract duration receives a remarkably low fair
participation rate if its size is much lower than the other group.

The remainder of this paper is structured as follows: Section 2 sets up the contract
structure and describes the payoffs to the different customer groups and the modelling
of the insurance and the financial risk. Section 3 focuses on the market valuation of the
outstanding liabilities and explains how a fair contract analysis can be conducted in our
framework. Section 4 is devoted to the numerical analysis and addresses the issue of fair
pricing. Further, we find out which group benefits from specific portfolio compositions by
comparing the certainty equivalent returns. Section 5 provides some concluding remarks
and a short outlook on possible extensions.

2. Model Setup

We consider a life insurance company which consists of equity holders and two
heterogeneous groups of policyholders. All policyholders take out their contracts at time 0.
The policyholders’ heterogeneity stems from either the offered minimum interest rate
guarantees or the contract maturities. In group i, i = 1, 2, there are Ni(0) homogeneous
policyholders, meaning that they have the same age, make the same initial contribution l(0)
and the contracts they hold are identical. At time 0, the insurer’s stylized balance sheet is:

Assets Liabilities
W(0) E(0) = (1− α1 − α2)W(0)

L1(0) = α1W(0)
L2(0) = α2W(0)

W(0) W(0)

The initial assets of the insurance company can be split up into three components:
W(0) = E(0) + L1(0) + L2(0), where thepremiums L1(0) = l(0)N1(0) and L2(0) = l(0)N2(0)
are contributed by the first and the second group of policyholders, respectively, and the
remainder E(0) by the equity holders. We denote the fraction of initial assets contributed
by group i, i = 1, 2, by αi = Ni(0)l(0)/W(0) = Li(0)/W(0) ∈ (0, 1), and the share of ini-
tial assets contributed by the equity holders by e(0) := 1− α1 − α2 ∈ (0, 1).2 Note that,
as we focus on the impact of different minimum interest rate guarantees and contract
maturities, the individual contribution l(0) is assumed to be the same for all policyholders.
The benefits for each group will be determined according to the initial contribution and
contract provisions.

2.1. Contract Structure

We assume that every policyholder buys from the life insurer a participating pure
endowment contract whose payoff is contingent on the event that the policyholder survives

2 We assume that the insurance company issues no further debt, raises no capital and pays no dividends to the equity holders within the time frame
of interest.
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the contract maturity. We discuss two different ways the heterogeneity of groups 1 and 2
could be specified. The two groups differ exclusively by

Case 1: the minimum interest rate gi ≥ 0, i = 1, 2, promised by the insurer;

Case 2: the contract maturity date Ti, i = 1, 2.

In both cases, the insurer provides the policyholders with some guaranteed payoff.
The aggregated guaranteed payment to group i becomes due at the contract maturity Ti
and is defined by

Gi(Ti) := Ni(Ti)l(0)egiTi , i = 1, 2, (1)

where Ni(t) is the (random) number of surviving policyholders at time t ≥ 0 in group i.
In the subsequent paragraphs, we specify the outstanding liabilities Li(Tj), i = 1, 2,

j = 1, 2, for Cases 1 and 2. We note that, if there are no surviving policyholders in a
group, then the insurer is free from any duty of payments with respect to that group.
Therefore, we will set in Case 1, involving a common maturity T := T1 = T2 for the
two groups,

Li(T) =

{
Ψi if Ni(T) > 0
0 if Ni(T) = 0

= Ψi1{Ni(T)>0}, i = 1, 2, (2)

where 1{·} is the indicator function. Here, Ψi represents the global payment made at
maturity to surviving policyholders in group i, i = 1, 2. Case 2 involves two contract
maturities and will be treated separately. The amounts Ψi, i = 1, 2, depend on the guar-
anteed payments Gi(Ti), the value of the assets of the life insurance company, which is
denoted by W(t) at time t ≥ 0, and on the participation rates δi ∈ [0, 1], according to which
a share of the assets exceeding the guaranteed payoff is paid to surviving policyholders as
a bonus.3

Case 1. We assess the impact of different minimum interest rate guarantees. To set up
this case recall that T1 = T2 = T and, without loss of generality, assume that g1 > g2.
As a result, the payoff promised to the policyholders of group i, i = 1, 2, at maturity T
is Gi(T) = Ni(T)l(0)egiT . Such instance is common to many life insurers since older prod-
ucts still in force often have significantly higher guaranteed rates than those sold more
recently which were penalized by the ongoing low interest environment. Although in
this stylized model all contracts are issued at the same date, our findings provide some
guidance on establishing some contractual parameters, in particular the participation
coefficients for which there is usually some discretion on the insurer’s side.

Since several large insurance companies issuing participating contracts aim to provide
the same (expected) rate of return to customers endowed with different minimum interest
rate guarantees, we adjust the definition of the outstanding liabilities in order to achieve
this desirable goal. Inspired by the model in Briys and de Varenne (1994, 1997), the global
payment Ψ1 in (2), relative to policyholders of the group with the higher guarantee rate g1,
is defined by

Ψ1 =


G1(T)
G(T) W(T) if W(T) < G(T)

G1(T) if G(T) ≤W(T) ≤ G(T)
α1+α2

ζ1 if G(T)
α1+α2

< W(T)

, (3)

where G(T) = G1(T) + G2(T) is the total guaranteed payment. The rationale behind (3)
is as follows: if the insurance company becomes insolvent, i.e., the value of the assets
at maturity W(T) is insufficient to cover the total guaranteed payoff G(T), the available

3 Note that we allow for different participation rates for the two groups as the insurance company’s goal is to set these rates so as to achieve fairness
for both groups, see Section 3.
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assets are shared among the surviving policyholders according to a proportional split-
ting rule.4 This implies that the company has limited liability towards its customers
and, in case of insolvency, nothing is left to the equity holders. If the assets perform
moderately, i.e., G(T) ≤W(T) ≤ G(T)/(α1 + α2), the surviving policyholders of group 1
receive their guaranteed payoff G1(T), but no bonus. If the assets perform well, i.e., ,
G(T)/(α1 + α2) < W(T), then policyholders of group 1 are entitled to a share of the as-
sets W(T) on top of their guaranteed payments. The corresponding payoff ζ1 is specified
further below.

The global payment Ψ2 in (2) made to surviving policyholders of the group with the
lower guarantee rate g2 is defined by

Ψ2 =


G2(T)
G(T) W(T) if W(T) < G(T)

G2(T)e
min

{
(g1−g2)T, ln

(
W(T)−G1(T)

G2(T)

)}
if G(T) ≤W(T) ≤ G(T)

α1+α2

ζ2 if G(T)
α1+α2

< W(T)

. (4)

The rationale behind the expression in the middle row in (4) is as follows: after
serving the minimum interest rate of the first group, the insurance company aims at
endowing the second group with an identical minimum interest rate g1 provided there
is enough capital left for this. When this is not the case, the second group obtains the
remainder W(T)− G1(T) (≥ G2(T)). On the other hand, as long as the company’s assets
are sufficient to distribute some bonus (third row), group 2 will likely be compensated for
its lower guaranteed payoff by receiving a higher participation coefficient.5

In order to specify the payoffs ζi, i = 1, 2, we first define the quantity

D(T) := W(T)−
2

∑
i=1

ζ+i , (5)

where

ζ+i = Gi(T) + δi max{αiW(T)− Gi(T), 0} (6)

is the guaranteed payment plus the regular bonus the insurance company aims at delivering to
the group of policyholders i. The amount D(T) represents then the excess (deficit) of the assets
above (below) the target payments to both groups. If W(T) ≥ max{G1(T)/α1, G2(T)/α2},
then D(T) ≥ 0. If min{G1(T)/α1, G2(T)/α2} < W(T) < max{G1(T)/α1, G2(T)/α2}, the
sign of D(T) is indeterminate. Moreover, we define

ζ−i :=

{
Gi(T) if Gi(T)

αi
= max

{
G1(T)

α1
, G2(T)

α2

}
W(T)− Gj(T) otherwise

, i = 1, 2, j ∈ {1, 2} − {i}, (7)

and let

ζi = ζ+i 1{D(T)≥0} + ζ−i 1{D(T)<0}. (8)

As long as D(T) ≥ 0, the firm can serve both groups with their regular bonuses. If,
however, D(T) < 0, the assets of the insurer are insufficient to generate such payments. We
assume then that the group with the higher value of Gi(T)/αi obtains only the guaranteed

4 An alternative rule uses the weights αi/(α1 + α2), i = 1, 2, so that the splitting rule is decided by the groups’ initial contributions. Choosing this
alternative could, if only one group survives until time T, result in the equity holders receiving the remaining assets after the insurer has served the
group still existent.

5 It may happen in (4) that the payoff in the third row is smaller than that in the middle one, corresponding to a lower assets’ value. However, this
fairly rare event does not result in a contradiction since it is down to the insurer to decide to what extent the goal of achieving equal rates of return
shall be pursued.
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payment, while the other group seizes the remaining assets’ value which is larger than the
guaranteed payment, but smaller than the payoff including the regular bonus.6

Case 2. We assume that the policies from the first and second group expire at time T1, respec-
tively time T2, and, without loss of generality, let T2 > T1. The minimum guaranteed rates
are set to be equal, i.e., g1 = g2 =: g. The guaranteed payoffs are now Gi(Ti) = Ni(Ti)l(0)egTi ,
i = 1, 2.

In order to define the outstanding liabilities Li(Tj), i = 1, 2, j = 1, 2, we need the
market value V2(T1) at the earliest maturity T1 of the guaranteed payoff paid at T2 to
the second group. The exact specification of V2(T1) will be given in Section 4. Define
then V(T1) := G1(T1) + V2(T1) the market value at T1 of the insurer’s liabilities, includ-
ing the immediate guaranteed payment to the first group and the market value of fu-
ture liabilities for the second group. A premature default event may occur at time T1
when W(T1) < V(T1) and N1(T1) > 0. In this case, we assume that group 1 will accept less
than G1(T1) as insurance benefit, so that an equal treatment of both groups can be achieved.
In other words, the two groups of policyholders have the same claiming priority in the
case of bankruptcy. More specifically, the global payment made to surviving policyholders
of the first group at T1 is defined by

Ψ1 =


G1(T1)
V(T1)

W(T1) if W(T1) < V(T1)

G1(T1) if V(T1) ≤W(T1) ≤ V(T1)
α1+α2

min
{

ζ+1 , W(T1)−V2(T1)
}

if V(T1)
α1+α2

< W(T1)

. (9)

Here, the target regular payment to the first group ζ+1 , defined as in (6) with T
replaced by T1, may be so high that the second group could not be served with the notional
guaranteed amount V2(T1). In this case, only the amount W(T1)−V2(T1) (> G1(T1)) is
available to the policyholders in group 1, so that the remaining assets match the market
value of the guaranteed payoff to the second group.

To define the outstanding liability for group 2, we need to distinguish whether there
is default at time T1 or not. If default occurs, the second group obtains a rebate payment
at T1 amounting to

L2(T1) =
V2(T1)

V(T1)
W(T1)1{N1(T1)>0,N2(T1)>0}1{W(T1)<V(T1)}. (10)

If there is no default at T1, i.e., when W(T1) ≥ V(T1) or when N1(T1) = 0, the contract
payoff for the second group becomes due at time T2 and is given by

L2(T2) = Ψ21{N2(T2)>0}1{N1(T1)=0}∪{W(T1)≥V(T1)}, (11)

with

Ψ2 =


W ′(T2) if W ′(T2) < G2(T2)

G2(T2) if G2(T2) ≤W ′(T2) ≤ G2(T2)
α′2

G2(T2) + δ2(α
′
2W ′(T2)− G2(T2)) if G2(T2)

α′2
< W ′(T2)

, (12)

where α′2 = α2/(1− α1) and W ′(T2) is the assets’ value at T2 taking into account the
previous outflows to the policyholders of the first group. The exact specification of W ′(T2)

6 Through this way of modelling of the outstanding liabilities, it could happen that the payments to the equity holders decrease or even vanish,
although the assets’ value increases at the same time. The rationale behind this circumstance is that when the assets pertaining to the policyholders
as a whole create some surplus over the minimum guarantees, the insurer’s primary goal is to provide them with their regular bonuses, if possible.
Some alternative modelling methods apply if the insurance company wants to calculate the possible bonus payments to the different stakeholders
based on their initial contributions. In this case, the definition of ζi(T), i = 1, 2, needs to take into account that only (α1 + α2)W(0) is provided by
the policyholders of the two groups at time 0 leading to a modification of (5) and (7). However, for the sake of brevity, we examine only the case
described before.
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will be given in Section 4. Note also that the events in the indicators in (10) and (11) are
disjoint, so only one benefit will be paid to the second group either at T1 or T2.

2.2. Modelling Insurance and Financial Risk

In this section, we follow and adapt Bacinello et al. (2018) to our situation.
The insurance risk is made up of the hedgeable (also called diversifiable or unsystem-

atic) part, which is likely to tail off once the portfolio of all policyholders of the heteroge-
neous groups is sufficiently large, and the systematic (or unhedgeable) part. The latter,
called longevity risk, cannot be diversified away through pooling and affects all contracts
equally by entailing the misestimation of the decline in mortality rates. An introduction to
longevity risk is given in e.g., Barrieu et al. (2012); Biffis (2005) and Biffis et al. (2010) cover
the stochastic modelling of longevity risk.

We select a risk neutral probability measure Q for pricing purposes.7 Furthermore, we
let τ

j
i be the residual lifetime of the j-th policyholder, j = 1, . . . , Ni(0), of group i, i = 1, 2.

The following assumptions will remain valid throughout the paper.

Assumption 1. There exists a positive random variable ∆, measurable with respect to the σ-algebra
containing the information available to market participants at time T in Case 1, and T1 in Case 2,
such that

Q
(

τ1
1 > t1

1, . . . , τ
N1(0)
1 > tN1(0)

1 , τ1
2 > t1

2, . . . , τ
N2(0)
2 > tN2(0)

2 |∆
)
=

2

∏
i=1

Ni(0)

∏
j=1

Q
(

τ
j
i > tj

i |∆
)

=
2

∏
i=1

Ni(0)

∏
j=1

e−∆
∫ tj

i
0 mi(v)dv,

(13)

for any tj
i ≥ 0, i = 1, 2, j = 1, . . . , Ni(0), where mi is a deterministic force of mortality depending

on the initial age xi of group i, non-negative, continuous, and satisfying
∫ +∞

0 mi(v)dv = +∞.

Then, conditionally on ∆, the residual lifetimes τ
j
i , i = 1, 2, j = 1, . . . , Ni(0), are inde-

pendent. The random variable ∆ can be thought of as a systematic risk factor whose effect
is to rescale the deterministic forces of mortality mi, i = 1, 2, by a random percentage. It is
assumed to be the same for both groups of policyholders, so that all biometric differences
between them stem from the deterministic forces of mortality, that are already equipped
with safety margins, as will be specified in Section 4. Moreover, the fact that ∆ is assumed
to be part of the information available at the earliest maturity date means that its true value
is unveiled within the (first) contract maturity, whereas today the market participants can
merely anticipate the impact of the systematic risk since the rescaling amount is unknown
at the valuation date 0. This greatly simplified circumstance is in some way acceptable by
the fact that the insurer collects a vast quantity of demographic information from the exam-
ined and similar portfolios over the years, whose analysis can reveal the actual character
of ∆. As we see in Section 4, we actually exploit this property only in Case 2.

The t-years survival probability for an individual belonging to group i, i = 1, 2, can be
derived from Assumption 1 through

t pxi := Q
(

τ
j
i > t

)
= EQ

[
e−∆

∫ t
0 mi(v)dv

]
, (14)

for t ≥ 0 and j = 1, . . . , Ni(0). In the following, we also set

u p∗yi
:= e−

∫ u+yi−xi
yi−xi

mi(v)dv, (15)

7 By assuming that the markets are arbitrage-free, such a probability measure Q exists. As insurance markets are incomplete, the measure Q is chosen
among infinitely many equivalent martingale measures.
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for yi ≥ xi, i = 1, 2, and u ≥ 0, so that in particular, for 0 ≤ t ≤ s, we obtain a ‘deter-
ministic’ survival probability s−t p∗xi+t = e−

∫ s
t mi(v)dv. Further, conditional on ∆, we have

Ni(t) ∼ Binomial
(

Ni(0),
(

t p∗xi

)∆
)

for i = 1, 2 and t ≥ 0.

Concerning the modelling of the financial risk, we presume that it is entirely driven
by the randomness of the assets which is captured by the next important assumption.

Assumption 2. At time t ≥ 0, the assets’ value W(t) is defined by W(t) = W(0)eR(0,t), where R(0, t)
is the random assets’ log-return over [0, t]. This return is independent of ∆ and the residual life-
times τ

j
i , i = 1, 2, j = 1, . . . , Ni(0).

The possibility of having an interest risk component, that can be implemented by
introducing stochastic interest rates, is ignored in this paper whereby the market short rate,
denoted by r, is supposed to be constant.

3. Valuation

We denote by Vi the initial market value of the outstanding liabilities for group i, i = 1, 2.
The contracts issued by the insurer are fair if the following conditions hold:

V1 = L1(0), V2 = L2(0). (16)

In other words, the initial market value of the claim of group i, i = 1, 2, coincides with
its initial investment Li(0) = αiW(0). Note that, if the Equations in (16) hold, then fairness
is guaranteed for equity holders as well. Economically, we can interpret these conditions
as constraints on the participation coefficients δi, i = 1, 2. Nevertheless, it may happen
that (16) implies participation coefficients that exceed 100% because there is a chance
that the benefits of the customers are excessively low. Moreover, negative coefficients
are also possible to compensate for too high benefits. We only consider fair contracts for
which δi ∈ [0, 1], i = 1, 2.

Armed with the pricing measure Q, we can calculate Vi, i = 1, 2. For Case 1, entailing T
as the maturity date, these quantities are specified by

Vi = EQ
[
e−rT Li(T)

]
, i = 1, 2. (17)

For Case 2 we have, for one thing,

V1 = EQ
[
e−rT1 L1(T1)

]
. (18)

Due to the possible premature deficit of the insurer at the earlier maturity T1, the
outstanding payoff to group 2 is paid out either at T1 or at the regular maturity T2. Then

V2 = EQ
[
e−rT1 L2(T1) + e−rT2 L2(T2)

]
. (19)

4. Numerical Analysis

We conduct some numerical analyses to understand the relative size of participation
rates for the heterogeneous customers and which group of policyholders is better or worse
off when pooling them together. To serve this purpose, we compute for Cases 1 and 2

• firstly, the fair participation rates δ∗i , i = 1, 2, under the pricing measure Q;
• secondly, the annual certainty equivalent log-returns of the life insurance contracts

under the real world measure P, henceforth just certainty equivalent returns, denoted
by Ci, i = 1, 2, based on the fair participation rates δ∗i .8

8 To calculate δ∗i , i = 1, 2, we solve numerically the equations in (16) with Vi , i = 1, 2, given by (17) for Case 1, and (18) and (19) for Case 2.
Due to the complicated structure of the outstanding liabilities, the computation of Vi , i = 1, 2, is based on a standard Monte Carlo simulation
encompassing 100, 000 draws. The calculation of Ci , i = 1, 2, is again based on the Monte Carlo method.
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In Case 1, the certainty equivalent returns for group i, i = 1, 2, are given by

EP
[

Li(T)
Li(0)

]
= eCiT ⇔ Ci =

1
T

ln
(

EP
[

Li(T)
Li(0)

])
. (20)

Depending on different pooling schemes, we can figure out, based on Ci, i = 1, 2,
how attractive our life insurance policies are against alternative investments. Through
comparing C1 and C2, we can also identify which group benefits more from a certain
pooling scheme.

Concerning the modelling of the insurance risk under the pricing measure Q, we
assume Gompertz’s law, i.e., , mi(t) = λic

xi+t
i for i = 1, 2 and t ≥ 0, yielding s−t p∗xi+t =

e−λic
xi
i (cs

i−ct
i)/ ln(ci) for 0 ≤ t ≤ s. Furthermore, we suppose that ∆ follows a Gamma distri-

bution Γ(β, θ) with VarQ(∆) = 0.1 and EQ[∆] ∈ {0.4, 0.8, 1}. The latter stipulation provides
the possibility to integrate various degrees of the insurer’s conservativeness into the pricing
of the contracts. Specifically, lower values of EQ[∆] are associated with higher risk premi-
ums or, put it another way, with increasing conservativeness of the company concerning
longevity risk.

The financial risk merely depends on the stochastic log-return of the assets R(0, t),
that is assumed to be normally distributed under Q with mean (r− σ2/2)t and standard
deviation σ

√
t, where σ is the assets’ volatility.

Assumption 1 shall hold under P as well, with the same rescaling random variable ∆
and with deterministic forces of mortality m̃i, i = 1, 2. However, as the considered contracts
are pure endowments, we have, for all t ≥ 0,

t pxi = EQ
[
e−∆

∫ t
0 mi(v)dv

]
> EP

[
e−∆

∫ t
0 m̃i(v)dv

]
=: t p̃xi , i = 1, 2. (21)

In other words, the risk neutral survival probability contains a safety loading. To achieve (21),
we set m̃i = mi/γ, i = 1, 2, where γ < 1, and assume that the distribution of ∆ under P is
Gamma with the same variance as under Q, i.e., VarP(∆) = VarQ(∆) = 0.1, but with expecta-
tion EP[∆] = 1. Under P, the distribution of the number of surviving policyholders at time t ≥ 0

is Ni(t)|∆ ∼ Binomial
(

Ni(0),
(

t p̃∗xi

)∆
)

with u p̃∗yi
= e−

∫ u+yi−xi
yi−xi

m̃i(v)dv for yi ≥ xi, i = 1, 2,

and u ≥ 0, and that of the assets’ log-return is R(0, t) ∼ N
((

µ− σ2/2
)
t, σ2t

)
, where µ is

the expected instantaneous rate of return of the assets. Then, Assumption 2 shall hold under P
as well.

Subsequently, Table 1 summarizes the assumed values for the parameters that are not
case-specific and valid in all of the following numerical analyses.

Table 1. Non case-specific parameters for numerical analyses.

Symbol Description Value

l(0) Initial contribution of a single policyholder 35
e(0) Equity holders’ share of initial assets 0.3
x1(= x2) Initial age of policyholders 40
λ1(= λ2) Age independent Gompertz parameter 2.6743 · 10−5

c1(= c2) Age dependent Gompertz parameter 1.098
β Shape parameter of ∆ under Q {1.6, 6.4, 10}
θ Scale parameter of ∆ under Q {0.25, 0.125, 0.1}
r Risk free short rate 3%
σ Assets’ volatility 15%
µ Assets’ expected instantaneous rate of return 5%
γ Adjustment factor to force of mortality 0.9

The two values for the Gompertz parameters given in Table 1 were obtained by fitting
the survival probabilities t p∗40 to the corresponding probabilities implied by the projected
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life table IPS55 in use in the Italian annuity market, see Bacinello et al. (2018). Further,
combining pairwise the parameters of the Gamma distribution given in Table 1 will result
in the values of EQ[∆] and VarQ(∆) considered.9

Results for Case 1. We set T ∈ {12, 25} and consider reasonable choices for the minimum
interest rate guarantees, g1 = 1.75% and g2 = 1.25%. As previously outlined, a potentially
desirable goal of an insurer is to provide all policyholders with the same (expected) rate of
return regardless of the individual minimum interest rate guarantee. Hence, comparing
the certainty equivalent returns C1 and C2 for the two groups in the present case seems
particularly interesting. Tables 2–4 contain our findings for the fair participation rates and
the annual certainty equivalent returns.

Table 2. Fair participation rates and certainty equivalent returns for Case 1 with T = 12, different
portfolio sizes with N1(0) = N2(0) and different values of EQ[∆]. All results are in percentage.

T = 12 EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

1 1
72.42 78.01 76.38 81.60 78.37 83.41

4.22 4.32 4.35 4.44 4.42 4.51

10 10
70.03 75.65 71.32 76.66 71.94 77.14

4.30 4.41 4.35 4.44 4.37 4.46

100 100
70.05 75.68 71.34 76.69 71.96 77.17

4.30 4.41 4.35 4.44 4.37 4.46

1000 1000
70.06 75.68 71.35 76.70 71.97 77.19

4.30 4.41 4.35 4.45 4.37 4.46

100,000 100,000
70.06 75.68 71.35 76.70 71.97 77.18

4.30 4.41 4.35 4.45 4.37 4.46

From Table 2, we observe the following:

(2.1) Group 2, endowed with a lower interest rate guarantee, is naturally provided with a
higher fair participation rate δ∗2 and a perceptibly larger implied certainty equivalent
return C2. In order to examine the goodness of the contract design in (4), middle
row, to achieve similar rates of return for different groups of customers, we further
carry out the analysis under the assumption that the same payout structure of group 1
is applied to group 2 (but still with different guarantees g1 > g2) and find that δ∗2
and C2 are even higher. Therefore, if the insurance company aimed at treating both
groups fairly when the payoff structures are identical, it should assign a much larger
fair participation rate to the second group than to the first one, resulting in a greater
difference between C1 and C2. That is why our attempt at designing contracts that
potentially provide the same rate of return to customers endowed with different
minimum interest rate guarantees leads to more desirable results.

(2.2) For any portfolio size, an increase in the longevity risk premium, i.e., lower values
for EQ[∆], leads to smaller fair participation rates. This is because longevity improve-
ments anticipated by the insurer increase the expected number of survivors, and
consequently the value of the outstanding liabilities. To offset this effect and simulta-
neously ensure fairness, lower participation rates are offered. The same observation
holds true for the certainty equivalent returns of the policyholders under the physical

9 The parameters of ∆ ∼ Γ(β, θ) are calculated via EQ[∆] = βθ and VarQ(∆) = βθ2.
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measure P. The reason for this is due to the smaller participation rates δ∗i , i = 1, 2,
since a greater degree of conservativeness harms the customers’ benefits.

(2.3) For the exceptional case where N1(0) = N2(0) = 1, the fair participation rates are
considerably higher than those obtained with larger portfolio sizes due to the sizeable
extinction probability of the groups and the fact that the equity holders seize all the
assets pertaining to the extinct group(s). As a compensation, the policyholders need
to be served with substantially larger participation rates.

(2.4) It seems that, with a very small portfolio size, e.g. Ni(0) = 10, i = 1, 2, the portfolio
is already well-diversified, i.e., the expected impact of the systematic part of the
biometric risk is the only component still playing a role, since similar results are
achieved as, e.g., when Ni(0) = 100000.

(2.5) It is notable that all certainty equivalent returns lie between the risk free rate of return
and the expected rate of return of the assets under P, i.e., Ci ∈ (r, µ) = (0.03, 0.05),
i = 1, 2. It is true that our life insurance policies cannot beat the pure investment
into the assets due to the guaranteed interest rate, although the values obtained are
much closer to µ than to r. Nevertheless, the included guarantees of the insurance
products make them much less risky and are crucial for many potential customers
when comparing different investment opportunities.

Table 3. Fair participation rates and certainty equivalent returns for Case 1 with T = 12, different
portfolio sizes with N1(0) 6= N2(0) and different values of EQ[∆]. All results are in percentage.

T = 12 EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

10 1000
68.51 74.59 69.80 75.66 70.44 76.18

4.26 4.38 4.31 4.42 4.33 4.44

100 100,000
68.55 74.57 69.91 75.64 70.56 76.15

4.26 4.37 4.31 4.41 4.33 4.43

1000 100
71.34 76.75 72.57 77.71 73.16 78.18

4.33 4.44 4.38 4.47 4.40 4.49

100,000 10
71.63 77.01 72.84 77.96 73.43 78.43

4.34 4.44 4.38 4.48 4.40 4.50

Table 3 displays the effect of assuming different group sizes. Our findings are
listed below:

(3.1) We observe that policyholders in the larger group obtain relatively higher fair par-
ticipation rates δ∗i , i = 1, 2, and consequently mostly also relatively higher certainty
equivalent returns Ci on their investments when comparing them with the corre-
sponding numbers from Table 2.

(3.2) For the first group, an increase in N1(0) leads to an increase in δ∗1 and C1 in general,
independently of the size of the other group, while, for the second group, the opposite
relations apply. We can conclude that, if there are only a few policyholders holding a
lower individual guarantee than the rest, their participation in the surplus distribution
must be very high to ensure fair contracts, especially if they represent a clear minority.
Another related interesting fact is that a sudden spread within the values for δ∗i
and Ci, i = 1, 2, occurs as soon as the size ratio between the two groups shifts.

Figure 1 clearly illustrates the fact described in Remark (3.2) using the example where
EQ[∆] = 0.8. In the two plots, we can further detect that the corresponding numbers from
Table 2 lie in-between the ones from Table 3.
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(a) Group 1. (b) Group 2.

Figure 1. Case 1: fair participation rates in percentage when EQ[∆] = 0.8. Triangles show rates from Table 3
for given combinations of group sizes. Circles additionally show rates from Table 2 when group sizes ful-
fil N2(0) = N1(0) = 10, 100, 1000, 100, 000 (a) and N1(0) = N2(0) = 1000, 100, 000, 100, 10 (b).

Table 4. Fair participation rates and certainty equivalent returns for Case 1 with T = 25, different
portfolio sizes with N1(0) 6= N2(0) and different values of EQ[∆]. All results are in percentage.

T = 25 EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

10 1000
82.45 88.11 84.59 89.59 85.56 90.24

4.61 4.72 4.67 4.77 4.69 4.79

100 100,000
82.56 88.09 84.80 89.57 85.81 90.22

4.61 4.72 4.67 4.77 4.70 4.79

1000 100
85.80 90.45 87.58 91.58 88.39 92.09

4.69 4.78 4.74 4.82 4.76 4.83

100,000 10
86.13 90.73 87.87 91.84 88.66 92.33

4.69 4.79 4.74 4.82 4.76 4.84

Table 4 completes Case 1 by addressing the influence of the maturity date. We observe
that a longer contract duration increases both the fair participation rates δ∗i , i = 1, 2, and
the certainty equivalent returns Ci compared to Table 3. Moving T from 12 to 25 years
implies that less policyholders are expected to survive the maturity date, consequently a
lower aggregated guaranteed payment needs to be provided by the insurer. Due to the fair
contract principles, the insurer is then able to provide larger participation rates for a longer
contract maturity. Again, a high participation in the surplus results in a high certainty
equivalent return.

Results for Case 2. In this case, the maturity dates of the groups’ policies differ. The
quantity V2(T1) in the definitions of the payoff functions (see Equations (9)–(12)) is given by

V2(T1) = EQ
T1

[
G2(T2)e−r(T2−T1)

]
, (22)
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where EQ
T1
[·] denotes the expectation under Q conditional on information available at

time T1. Since G2(T2) = N2(T2)l(0)egT2 is proportional to N2(T2), and by exploiting
Assumptions 1 and 2 of Section 2.2, we can write (22) as

V2(T1) = e−r(T2−T1)l(0)egT2 N2(T1)
(

T2−T1 p∗x2+T1

)∆
. (23)

Furthermore, the remaining assets’ value W ′(T2) is defined as

W ′(T2) = (W(T1)− L1(T1))eR(T1,T2), (24)

where R(T1, T2) is the assets’ log-return for the period from T1 to T2, which is normally
distributed with mean

(
r− σ2/2

)
(T2 − T1) and variance σ2(T2 − T1) under Q.10

As the first group is entirely dealt with at the earlier maturity T1, its certainty equiv-
alent return is defined as in (20). On the contrary, the second group receives a payout
either at the regular maturity T2, or at T1 if the insurance company is then insolvent. To
be able to incorporate this contingency into the computation of C2, we assume that the
possible payment L2(T1) is invested into the riskless asset from T1 to T2 yielding an annual
log-return of r, so that

C2 =
1
T2

ln

(
EP

[
L2(T1)er(T2−T1) + L2(T2)

L2(0)

])
. (25)

The number of surviving policyholders of the second group is now needed at both
times T1 and T2. Consequently, under Q and conditional on ∆ and N2(T1), we ob-

tain N2(T2) ∼ Binomial
(

N2(T1),
(

T2−T1 p∗x2+T1

)∆
)

.11

Concerning the case-specific parameters, we stipulate that (T1, T2) ∈ {(10, 12), (12, 25)}
and g = 1.25%. Tables 5–7 show our values for δ∗i and Ci, i = 1, 2, for this second case.

Table 5. Fair participation rates and certainty equivalent returns for Case 2 with (T1, T2) = (10, 12),
different portfolio sizes with N1(0) = N2(0) and different values of EQ[∆]. All results are
in percentage.

(T1, T2) = (10, 12) EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

1 1
75.52 49.27 78.36 52.07 79.90 53.47

4.26 4.04 4.36 4.16 4.42 4.22

10 10
73.62 47.73 74.51 48.80 74.92 49.32

4.34 4.13 4.37 4.18 4.39 4.20

100 100
73.63 47.74 74.53 48.82 74.95 49.34

4.34 4.13 4.37 4.18 4.39 4.20

1000 1000
73.64 47.74 74.53 48.82 74.96 49.34

4.34 4.13 4.37 4.18 4.39 4.20

100,000 100,000
73.63 47.74 74.53 48.82 74.96 49.35

4.34 4.13 4.37 4.18 4.39 4.20

10 Under the physical measure P, R(T1, T2) ∼ N
((

µ− σ2/2
)
(T2 − T1), σ2(T2 − T1)

)
.

11 Under the physical measure P, N2(T2)|(∆, N2(T1)) ∼ Binomial
(

N2(T1),
(

T2−T1 p̃∗x2+T1

)∆
)

.
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Table 5 delivers the fair participation rates and certainty equivalent returns for the
two heterogeneous and equal-sized groups of policyholders with T1 = 10 and T2 = 12. We
can establish the following:

(5.1) One of the main questions is: why are fair participation coefficients for the second
group so much smaller compared to group 1, even though in Case 1 it was seen that
a longer duration leads to higher fair participation rates? A possible explanation
is the fact that only a portion of the assets α1W(T1), pertaining to the first group
at T1, is paid out to its policyholders if the insurer is able to achieve a surplus. As
a consequence, group 2 profits from the residual amount staying in the company
which boosts the probability of gaining relatively high assets’ values in the future. To
maintain fairness, a lower δ∗2 is required.

(5.2) The spread between C1 and C2 is always significantly positive, although it decreases
as EQ[∆] increases. Clearly, the substantially higher fair participation rates for group 1
play a major role here. Nevertheless, these differences are much less relevant than
those between δ∗1 and δ∗2 .

Figure 2 illustrates the situation described in (5.1) and shows that obtaining fairness is
associated with providing the second group with a much smaller participation coefficient.

(a) Group 1. (b) Group 2.

Figure 2. Case 2: 100 scenarios of the outstanding liability in terms of the participation rate when EQ[∆] = 0.8 (grey dotted
if no default at maturity T1, grey otherwise). Additionally, the mean (black dashed) and discounted mean (black) of the
outstanding liability, and the premium (black dotted) are shown.

As before, the case when N1(0) 6= N2(0) holds is evaluated for Case 2 and the cor-
responding results are presented in Tables 6 and 7. As far as Table 6 is concerned, two
striking features are:

(6.1) The fair participation rates δ∗i , i = 1, 2, grow with Ni(0). Therefore, it is surprising
that, unlike the certainty equivalent return C1 of the first group, C2 declines as the
second group size N2(0) increases (as in Table 3 where this also holds for δ∗2 ). Yet, this
finding reinforces the fact that low values of δ∗2 , when N2(0) is small, are necessary.

(6.2) The most remarkable feature is given by the variation in the values of δ∗2 for a given
mortality pricing assumption when changing the composition of the portfolio (in
particular, when comparing cases with N1(0) < N2(0) to cases with N1(0) > N2(0)).

To get a better understanding of Remark (6.2), a key example is shown in Figure 3
where, on the left-hand side, δ∗2 is plotted against numbers of policyholders in group 1. An
increase in N1(0) results in a remarkable decrease of the participation coefficient δ∗2 . The
adjoining graph in Figure 3 displays, inter alia, the development of the assets’ value W ′(T2)
at time T2, which is relevant for the contract payoff of the second group if the insurer
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is solvent at T1. The rise of W ′(T2) stems from the fact that the two quantities W(T1)
and L1(T1) occurring in (24) evolve differently, i.e., W(T1) grows faster than L1(T1). Thus,
the second group would benefit from a bigger size of group 1 and consequently δ∗2 needs
to be lowered.

Table 6. Fair participation rates and certainty equivalent returns for Case 2 with (T1, T2) = (10, 12),
different portfolio sizes with N1(0) 6= N2(0) and different values of EQ[∆]. All results are in percentage.

(T1, T2) = (10, 12) EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

10 1000
72.82 53.45 73.65 54.45 74.04 54.94

4.32 4.11 4.35 4.16 4.37 4.19

100 100,000
72.84 53.52 73.71 54.53 74.14 55.02

4.32 4.11 4.35 4.16 4.37 4.19

1000 100
74.30 38.77 75.21 39.88 75.65 40.43

4.36 4.15 4.39 4.20 4.41 4.22

100,000 10
74.45 35.60 75.36 36.68 75.80 37.21

4.36 4.16 4.40 4.20 4.41 4.23

Figure 3. Case 2: fair participation rate δ∗2 in percentage (left), assets’ and liability’s values (right) in terms of the size of
the first group when N2(0) = 3000 and EQ[∆] = 0.8. In the right-hand plot, total assets’ value W(T1) at T1 (dark grey),
outstanding liability for the first group L1(T1) at T1 (light grey) and assets’ value W ′(T2) at T2 (black) are shown.

As far as Table 7 is concerned, we further observe the following:

(7.1) Compared to Remark (6.2), the fair participation rate of the second group seems
to smooth out over time within one longevity pricing assumption since the fluctu-
ations between the varying pooling schemes subside. Specifically, δ∗2 goes down
if N2(0)/N1(0) is large (unlike Table 4 when compared to Table 3) and it goes up
if N2(0)/N1(0) is small (as in Table 4 when compared to Table 3). Looking at the
values of δ∗1 , the same pattern is observed, i.e., a high N2(0)/N1(0) results in lower
fair participation coefficients and a low N2(0)/N1(0) leads to (much) higher ones.

(7.2) Concerning the certainty equivalent returns, those of group 1 behave quite as expected,
i.e., for the first two pooling schemes (low δ∗1 ), smaller figures of C1 are obtained
and for the last two combinations (high δ∗1 ), larger values occur, compared to Table 6.
By contrast, the relevant values of C2 are always significantly higher than their
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counterparts in the previous table. A possible reason for that is our assumption made
in the specific definition of this quantity given in (25), namely that the premature
payoff to the second group conditioned by a default event at time T1 is invested into
the riskless asset until T2.

Table 7. Fair participation rates and certainty equivalent returns for Case 2 with (T1, T2) = (12, 25),
different portfolio sizes with N1(0) 6= N2(0) and different values of EQ[∆]. All results are in percentage.

(T1, T2) = (12, 25) EQ[∆] = 0.4 EQ[∆] = 0.8 EQ[∆] = 1

N1(0) N2(0)
δ∗1 δ∗2 δ∗1 δ∗2 δ∗1 δ∗2

C1 C2 C1 C2 C1 C2

10 1000
70.61 51.90 71.29 53.75 71.66 54.62

4.25 4.39 4.27 4.48 4.29 4.52

100 100,000
70.62 51.99 71.35 53.83 71.75 54.71

4.25 4.39 4.28 4.48 4.29 4.52

1000 100
77.35 39.07 78.24 41.06 78.67 42.01

4.44 4.33 4.47 4.43 4.48 4.48

100,000 10
78.19 36.59 79.13 38.59 79.58 39.52

4.46 4.33 4.49 4.43 4.51 4.47

5. Concluding Remarks

Participating life insurance products with minimum guarantees still represent a large
portion of the contract portfolios of many life insurers. Due to the challenges these products
have had to face in the recent past, such as the ongoing low interest rate environment, it is of
special importance to adequately assess the financial standing of the firms. For this purpose,
we seek to establish a model which strives to include several possible influencing factors.
In addition to the introduction of a financial risk component, i.e., the uncertainty about
future developments of the assets, and of the default risk, i.e., the chance of a distress of
the company, we also integrate the longevity risk that is specifically crucial for life insurers.
Especially in the light of the fact that people steadily get older on average and because of
our focus on products cashing out only the claims of surviving policyholders, like pure
endowments, it is reasonable to enhance our exploration by taking this risk into account.
In this way, we can also study the effects of different longevity pricing assumptions made
by the insurance company that reflect its degree of conservativeness. Furthermore, we
aim to incorporate an often unconsidered circumstance, namely that customers and their
contracts are (partially) heterogeneous. Therefore, we simplistically divide them into two
homogeneous groups. As a consequence, crucial issues, such as the impact of the usually
high guarantees of old policyholders on the payout structures of new customers who are
endowed with much lower guaranteed interest rates, can be surveyed.

After modelling the liabilities, we value them on a market-consistent basis leading to
the feasibility of a fair contract analysis. With the aid of such an analysis, it is possible to
determine appropriate policy parameters and in particular the participation rates. Building
on the outcomes, we are also able to compute other interesting key figures, like the physical
returns for the diverse insured persons. Eventually, we detect the effects of the different
elements included in the model on the life insurer’s and the policyholders’ positions. Our
main findings are listed in the following overview:

• If the insurer decides to heavily load risk premiums for the systematic part of the
insurance risk, lower fair participation rates result. This in turn also hits the customers’
returns, particularly if the presumptions on the longevity risk are very prudent.

• Maintaining usual practised participation rates of ∼ 80–100% (often prescribed by
law) can give rise to severe financial problems for the insurer, as certain portfolio and
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parameter combinations actually imply smaller participation coefficients ensuring the
fairness of the contracts.

• If the two groups differ exclusively in the promised minimum interest rate guarantee
provided by the insurer (Case 1), the group endowed with the lower minimum interest
rate guarantee receives a larger fair participation rate. This increase is intensified
if the insurance company does not explicitly aim to provide similar returns to all
policyholders. Consequently, the difference between the actual returns widens as
well. Thus, the proposed definition of the payoff structure for this case turns out to be
an option the insurer can exploit in order to protect the customers and advance the
desirable goal of achieving similar returns for everyone.

• In Case 1, another observation leads to the insight that, if there are only a few poli-
cyholders holding a lower individual guarantee than the rest, their participation in
the surplus sharing must be really high to ensure fair contracts, especially if they
represent a clear minority.

• If the two groups differ exclusively in the contract maturity date (Case 2), the fair
participation rate for the group with the longer contract duration is much lower, and
so is the resulting actual return, although on a considerably smaller scale.

• In Case 2, the group with the longer contract duration receives a remarkably low fair
participation rate if it outnumbers the members of the other group.

While the paper at hand is not able to capture every facet, in the given context, of a modern
insurance company acting in an open market economy, we think that our setup, paired
with the wide numerical analyses and related findings, helps to get a better understanding
of the interaction between the several influencing variables and to assess more thoroughly
possibly occurring situations with their inherent chances.

Potential aspects of future research can include, for instance, the study of alternative
splitting rules in the event of bankruptcy, the allowance for a stochastic short rate model, the
combination of different elements of heterogeneity, or the adoption of more sophisticated
assumptions concerning the systematic biometric risk.

Author Contributions: All the authors have contributed equally to this paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are very grateful to three anonymous referees for providing suggestions that
led to an improved version of the paper. Earlier versions have been presented in the 8th International
Conference on ‘Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF)’ in
Madrid, Spain, in the IVW-ifa Research Workshop at the University of Ulm, Germany, in the Workshop
‘Fair Valuation in Insurance’ at the Université Libre de Bruxelles in Brussels, Belgium, in the Center
for Financial Risk Analysis at the EM LYON Business School, Lyon, France, and in the 5th Workshop
of the Freiburg-Strasbourg Research Group on ‘Financial and Actuarial Mathematics’, Freiburg,
Germany. We thank the participants in those conferences and seminars for helpful comments and
suggestions. We are solely responsible for all remaining errors.

Conflicts of Interest: The authors declare no conflict of interest.

References
Bacinello, Anna Rita, Pietro Millossovich, and An Chen. 2018. The Impact of Longevity and Investment Risk on a Portfolio of Life

Insurance Liabilities. European Actuarial Journal 8: 257–90. [CrossRef]
Barrieu, Pauline, Harry Bensusan, Nicole El Karoui, Caroline Hillairet, Stéphane Loisel, Claudia Ravanelli, and Yahia Salhi. 2012.

Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges. Scandinavian Actuarial Journal 2012:
203–31. [CrossRef]

Bauer, Daniel, Daniela Bergmann, and Rüdiger Kiesel. 2010. On the Risk-neutral Valuation of Life Insurance Contracts with Numerical
Methods in View. ASTIN Bulletin 40: 65–95. [CrossRef]

Bernard, Carole, Olivier Le Courtois, and Francois Quittard-Pinon. 2005. Market Value of Life Insurance Contracts under Stochastic
Interest Rates and Default Risk. Insurance: Mathematics and Economics 36: 499–516. [CrossRef]

Biffis, Enrico. 2005. Affine Processes for Dynamic Mortality and Actuarial Valuations. Insurance: Mathematics and Economics 37: 443–68.
[CrossRef]

http://doi.org/10.1007/s13385-018-0175-5
http://dx.doi.org/10.1080/03461238.2010.511034
http://dx.doi.org/10.2143/AST.40.1.2049219
http://dx.doi.org/10.1016/j.insmatheco.2005.01.002
http://dx.doi.org/10.1016/j.insmatheco.2005.05.003


Risks 2020, 9, 20 18 of 18

Biffis, Enrico, Michel Denuit, and Pierre Devolder. 2010. Stochastic Mortality under Measure Changes. Scandinavian Actuarial
Journal 2010: 284–311. [CrossRef]

Briys, Eric, and François de Varenne. 1994. Life Insurance in a Contingent Claim Framework: Pricing and Regulatory Implications.
The Geneva Papers on Risk and Insurance Theory 19: 53–72. [CrossRef]

Briys, Eric and François de Varenne. 1997. On the Risk of Life Insurance Liabilities: Debunking some Common Pitfalls. Journal of Risk
and Insurance 64: 673–94. [CrossRef]

Broeders, Dirk, An Chen, and David Rijsbergen. 2013. Valuation of Liabilities in Hybrid Pension Plans. Applied Financial Economics 23:
1215–29. [CrossRef]

Burkhart, Tobias. 2018. Surrender Risk in the Context of the Quantitative Assessment of Participating Life Insurance Contracts under
Solvency II. Risks 6: 66. [CrossRef]

Chen, An, and Michael Suchanecki. 2007. Default Risk, Bankruptcy Procedures and the Market Value of Life Insurance Liabilities.
Insurance: Mathematics and Economics 40: 231–55. [CrossRef]

Cheng, Chunli, and Jing Li. 2018. Early Default Risk and Surrender Risk: Impacts on Participating Life Insurance Policies. Insurance:
Mathematics and Economics 78: 30–43. [CrossRef]

Dorobantu, Diana, Yahia Salhi, and Pierre-Emmanuel Thérond. 2020. Modelling Net Carrying Amount of Shares for Market Consistent
Valuation of Life Insurance Liabilities. Methodology and Computing in Applied Probability 22: 711–45. [CrossRef]

Eling, Martin and Stefan Holder. 2013. Maximum Technical Interest Rates in Life Insurance in Europe and the United States:
An Overview and Comparison. The Geneva Papers on Risk and Insurance—Issues and Practice 38: 354–75. [CrossRef]

European Parliament; Council of the European Union. 2009. Directive 2009/138/EC of the European Parliament and of the Council
of 25 November 2009 on the Taking-Up and Pursuit of the Business of Insurance and Reinsurance (Solvency II). EUR-Lex.
Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0138&from=EN. (accessed on
23 November 2020).

Gambaro, Anna Maria, Riccardo Casalini, Gianluca Fusai, and Alessandro Ghilarducci. 2019. A Market-consistent Framework for the
Fair Evaluation of Insurance Contracts under Solvency II. Decisions in Economics and Finance 42: 157–87. [CrossRef]

Ghalehjooghi, Ahmad Salahnejhad, and Antoon Pelsser. 2020. Time-consistent and Market-consistent Actuarial Valuation of the
Participating Pension Contract. Scandinavian Actuarial Journal 14: 1–29. [CrossRef]

Grosen, Anders, and Peter L. Jørgensen. 2002. Life Insurance Liabilities at Market Value: An Analysis of Insolvency Risk, Bonus Policy,
and Regulatory Intervention Rules in a Barrier Option Framework. Journal of Risk and Insurance 69: 63–91. [CrossRef]

Hansen, Mette, and Kristian R. Miltersen. 2002. Minimum Rate of Return Guarantees: The Danish Case. Scandinavian Actuarial
Journal 2002: 280–318. [CrossRef]

Hieber, Peter, Jan Natolski, and Ralf Werner. 2019. Fair Valuation of Cliquet-style Return Guarantees in (Homogeneous and)
Heterogeneous Life Insurance Portfolios. Scandinavian Actuarial Journal 2019: 478–507. [CrossRef]

Knispel, Thomas, Gerhard Stahl, and Stefan Weber. 2011. From the Equivalence Principle to Market Consistent Valuation. Jahresbericht
der Deutschen Mathematiker-Vereinigung 113: 139–72. [CrossRef]

Meyers, Gert, and Ine Van Hoyweghen. 2017. Enacting Actuarial Fairness in Insurance: From Fair Discrimination to Behaviour-based
Fairness. Science as Culture 2017: 1–27. [CrossRef]

Orozco-Garcia, Carolina, and Hato Schmeiser. 2019. Is Fair Pricing Possible? An Analysis of Participating Life Insurance Portfolios.
Journal of Risk and Insurance 86: 521–60. [CrossRef]

Seibel, Karsten. 2016. Die Lebensversicherung ist so ungerecht wie nie. Die Welt. Available online: https://www.welt.de/finanzen/
verbraucher/article160030359/Die-Lebensversicherung-ist-so-ungerecht-wie-nie.html (accessed on 23 November 2020).

Sheldon, Timothy J., and Andrew D. Smith. 2004. Market Consistent Valuation of Life Assurance Business. British Actuarial Journal 10:
543–605. [CrossRef]

http://dx.doi.org/10.1080/03461230903331634
http://dx.doi.org/10.1007/BF01112014
http://dx.doi.org/10.2307/253891
http://dx.doi.org/10.1080/09603107.2013.788778
http://dx.doi.org/10.3390/risks6030066
http://dx.doi.org/10.1016/j.insmatheco.2006.04.005
http://dx.doi.org/10.1016/j.insmatheco.2017.11.001
http://dx.doi.org/10.1007/s11009-019-09729-1
http://dx.doi.org/10.1057/gpp.2012.41
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0138&from=EN
http://dx.doi.org/10.1007/s10203-019-00242-1
http://dx.doi.org/10.1080/03461238.2020.1832911
http://dx.doi.org/10.1111/1539-6975.00005
http://dx.doi.org/10.1080/03461230110106282
http://dx.doi.org/10.1080/03461238.2019.1574889
http://dx.doi.org/10.1365/s13291-011-0022-y
http://dx.doi.org/10.1080/09505431.2017.1398223
http://dx.doi.org/10.1111/jori.12223
https://www.welt.de/finanzen/verbraucher/article160030359/Die-Lebensversicherung-ist-so-ungerecht-wie-nie.html
https://www.welt.de/finanzen/verbraucher/article160030359/Die-Lebensversicherung-ist-so-ungerecht-wie-nie.html
http://dx.doi.org/10.1017/S1357321700002695

	Introduction
	Model Setup
	Contract Structure
	Modelling Insurance and Financial Risk

	Valuation
	Numerical Analysis
	Concluding Remarks
	References

