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Abstract: We introduce four variants of the common age effect model proposed by Kleinow, which
describes the mortality rates of multiple populations. Our model extensions are based on the assump-
tion of multiple common age effects, each of which is shared only by a subgroup of all considered
populations. This makes the models more realistic while still keeping them as parsimonious as
possible, improving the goodness of fit. We apply different clustering methods to identify suitable
subgroups. Some of the algorithms are borrowed from the unsupervised learning literature, while
others are more domain-specific. In particular, we propose and investigate a new model with fuzzy
clustering, in which each population’s individual age effect is a linear combination of a small number
of age effects. Due to their good interpretability, our clustering-based models also allow some insights
in the historical mortality dynamics of the populations. Numerical results and graphical illustrations
of the considered models and their performance in-sample as well as out-of-sample are provided.

Keywords: mortality modeling and forecasting; stochastic mortality model; mortality of multiple
populations; common age effect model; cluster analysis; maximum likelihood estimation

1. Introduction

All over the world, progress in medical research, technological developments and a
general improvement of living conditions have lead to a steady decrease of mortality during
the past century. While this development has several obvious benefits for society and indi-
viduals, it also poses a serious financial risk for many stakeholders (see Oppers et al. 2012).
This so-called longevity risk consists of an underestimation of future longevity and a
resulting lack of assets to meet the liabilities that come with aging populations. In fact,
in recent decades, longevity forecasts have been consistently too low, and the potential
total size of the global market for longevity risk has been estimated to be trillions of dollars
(see Zugic et al. 2010).

One way of addressing longevity risk is to model future mortality stochastically,
which is conceptually motivated by empirical observations (see Cairns et al. 2006). Stochas-
tic mortality models have the advantage that they not only provide point forecasts but
also allow an estimation of forecast uncertainty and tail risk, and they offer the possi-
bility to easily simulate mortality scenarios. While, initially, such models were used to
describe only one population, there are various situations in which it is useful or even
necessary to model the mortality of multiple populations simultaneously, see for example
Kleinow and Cairns (2013), Cairns (2014) and Chen et al. (2015).

In this paper, we consider an established multi-population mortality model, the com-
mon age effect (CAE) model of Kleinow (2015). Its eponymous assumption is that the
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age effect, the influence of general mortality improvements over time on different ages,
is identical or at least similar for all considered populations. This is justified if all these
populations exhibit similar age structure, socio-economic characteristics, geographical
location and life style factors. However, for arbitrary sets of populations, the assumption
is too strong and might only hold on multiple smaller groups or clusters of populations.
The benefits of applying clustering methods to heterogeneous mortality data have al-
ready been recognized by Hatzopoulos and Haberman (2013), Debón et al. (2017) and
Guibert et al. (2020), whose approaches we describe below. Further applications of cluster
analysis in mortality modeling are presented by Danesi et al. (2015), who cluster period
effects which describe the general mortality development over time instead of age effects,
by Léger and Mazzuco (2020), who apply functional cluster analysis to identify groups of
populations with similar age distributions of death, and by Wen et al. (2020), who consider
groups of Canadian pensioners by pension level and find that clustering can reduce noise
in small population data.

In contrast to most of these papers, we focus on age effects instead of period effects or
death rates. Additionally, we employ cluster analysis not only as a tool for analyzing the
data but also as an essential ingredient for modeling, which takes the possible heterogeneity
of populations into account. For this purpose, we present several clustering algorithms,
embed them into the CAE model and check their performance in an empirical study.
Some of the clustering techniques we use are well-known from the general unsupervised
learning literature. In particular, we employ k-means clustering and hierarchical clustering
(see Hastie et al. 2017, chapter 14). The latter is at the core of a likelihood-ratio based
clustering algorithm we propose, which additionally includes a simple statistical test for
checking whether any two populations have the same age effect.

Another clustering algorithm we investigate is more domain-specific: We review the
fitting method of the augmented common factor model by Li and Lee (2005) and demon-
strate that it yields a grouping of the populations as a by-product in our formulation.
Guibert et al. (2020) propose a different clustering-based variant of the Li and Lee (2005)
model. They mention two simple clustering methods—expert judgment and hierarchical
clustering of period effects—but their focus is not on the investigation of clustering meth-
ods but rather on the implications of using such a clustering-based mortality model for
risk management.

Finally, we propose a new model related to the CAE model, which to the best of
our knowledge has not been investigated before. For the calibration of this model, we
combine ideas from fuzzy clustering with maximum likelihood estimation and refer to
this method as fuzzy maximum likelihood clustering. While in the CAE model a number
of populations share a common age effect, this is in general not the case with the fuzzy
clustering approach. Instead, our fuzzy maximum likelihood clustering model suggests
that each population’s individual age effect is a linear combination of a small number of
age effects. In particular, this implies that, in general, a population does not entirely belong
to a unique cluster but rather is assigned a membership weight for each cluster, which
describes how much the population-specific age effect is influenced by the age effect of
the cluster. This allows for a more adequate description of the heterogeneity within the
clusters. As we will demonstrate, it can be especially useful when considering a population
which is hard to classify as similar to any of the other populations.

A more general fuzzy clustering technique called fuzzy c-means clustering (Bezdek 1981)
has been applied by Hatzopoulos and Haberman (2013) to analyze similarities in the period
effects of 35 countries. They observe a clear separation between former communist and
other populations like France, England and Wales, Canada or the USA, an effect which
has already been discovered and extensively described by Meslé and Vallin (2002) using
hierarchical clustering methods. In a second step, they use their results to choose 19 of these
countries and construct a common age-period model for their mortality. Debón et al. (2017)
also apply the fuzzy c-means algorithm as a tool for discovering patterns in mortality data.
They start by performing a principal component analysis of the logit death probability
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surfaces of the male and female populations of 24 EU countries in order to reduce the
data to the 5 most relevant dimensions before clustering the populations. In their analysis,
they find significant differences between Western and Eastern European countries as well,
and less pronounced differences between Southern and Northern populations in Western
Europe. Our fuzzy clustering approach is different from these applications of the fuzzy
c-means technique because it fully integrates the clusters into the model equation, allowing
each population to have a unique age effect with only a modest increase in the number
of parameters compared to an ordinary CAE model. This is achieved by calibrating all
the model parameters including the cluster membership weights in the same step of the
maximum likelihood estimation.

In our empirical findings, we confirm some of the observations in the literature. For
instance, our algorithms detect the distinct pattern Danish mortality has followed until
around 1990, which has also been found by Hatzopoulos and Haberman (2013), whose
algorithm puts Denmark in the same cluster as other Western European countries but with
a relatively low degree of cluster membership, which accounts for the differences to the
general trend of this cluster. We also provide a detailed comparison of our clusters and the
ones obtained by Guibert et al. (2020) based on their hierarchical clustering in Section 4.2,
where we find some similarities—for example, Germany, France, Portugal and Spain are
assigned to the same cluster by both methods—but also some differences, for example
regarding the number of clusters. However, when comparing our results to those of other
papers, one has to keep in mind that we are focusing on age effects here while the literature
so far has mostly clustered by period effects or death rates. It is not surprising that the
clusters obtained from these different target features do not always coincide.

In total, our main contribution consists of enhancing the CAE model using clus-
ter analysis methods and, additionally, proposing a new related model inspired by the
concept of fuzzy clustering. As a consequence, we are able to address the following
research questions:

• How can one handle differences in the mortality of multiple populations which make
the assumption of a single common age effect implausible?

• How can one identify clusters of populations with similar age effects?
• What information can be obtained on similarities and dissimilarities between the age

effects of the considered populations by applying different clustering algorithms?
• How do CAE-type models based on a cluster analysis of populations perform on

different data sets compared to several benchmark models from the literature?

Clustering age effects allows for more realistic, better fitting models which are still as
parsimonious as possible. Furthermore, due to their good interpretability, our clustering-
based common age effect models also yield some insights in the historical mortality dy-
namics of the populations under consideration. Finally, we demonstrate that, depending
on the data, some of our model extensions achieve a superior out-of-sample performance
compared to the original common age effect model by providing a detailed forecasting
performance evaluation for our proposed and several benchmark models.

We proceed as follows: In Section 2, we introduce some notations, give a brief overview
of existing mortality models and compile some methodological prerequisites. Based on that,
in Section 3, we present four clustering-based extensions of the CAE model. In Section 4,
we describe the obtained clusters and the results of an empirical comparison of the models.
In Section 5, we conclude and list possible directions for future research.

For computing the numerical results and for creating all the figures in this paper, we
have used the statistical software environment R by R Core Team (2019) as well as the data
visualization package ggplot2 by Wickham (2016).
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2. Methodological Preliminaries
2.1. Notation

Let n, m ∈ N, where N := {1, 2, 3, . . . } is the set of natural numbers. We denote a
matrix A ∈ Rn×m in terms of its elements by

(
aij
)

ij. For matrices A, B ∈ Rn×m, A < B
means aij ≥ bij for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. By 0n×m, we denote an n×m-matrix
containing only zeros, and by 1n×m an n×m-matrix containing only ones. The group of
invertible matrices of dimension n× n is denoted by GL(n). By In, we denote the n× n
identity matrix. For vectors, where applicable, we use analogous notation.

We are going to investigate models for human mortality data, which depend on the
age x, whose possible values we denote by x1, . . . , xA ∈ N∪ {0}, where xj − xj−1 = 1 for
all j ∈ {2, . . . , A}. Similarly, the data also depend on the calendar year, which we denote
by t = t1, . . . , tY ∈ N, and for which we also assume tl − tl−1 = 1 for all l ∈ {2, . . . , Y}.
Moreover, when considering the mortality experience of multiple populations, we denote
them by i = 1, . . . , P. We mainly focus on the (central) death rate mi

x,t. It is defined as
the ratio

mi
x,t :=

Di
x,t

Ei
x,t

(1)

of the number Di
x,t of lives belonging to population i who die in year t at age x to the

corresponding total number of person-years lived during that year, the so-called exposure
Ei

x,t. More details on the mathematical description of mortality data can be found in
Pitacco et al. (2008, chapters 2 and 3.3).

2.2. Overview of Existing Models

Lee and Carter (1992) propose a very influential mortality model called the Lee–Carter
(LC) model. They additively decompose logarithmic death rates into an age-specific base
level αx, a time-varying component (period effect) κt—which is multiplicatively affected
by the age-modulating parameter (age effect) βx—and random error terms εx,t, which they
assume to be zero in expectation and homoskedastic:

log mx,t = αx + βxκt + εx,t. (2)

Here, some identifiability constraints have to be imposed so that the parameters are
uniquely determinable. Lee and Carter (1992) propose

xA

∑
x=x1

βx = 1 and
tY

∑
t=t1

κt = 0, (3)

but other constraints like κt1 = 0 have been used as well. Nielsen and Nielsen (2010)
provide a more general consideration of identifiability constraints in the Lee–Carter model
and also prove that condition (3) indeed makes the model identifiable. To calibrate the
model, Lee and Carter (1992) set

α̂x :=
1
Y

tY

∑
t=t1

log mx,t (4)

and determine estimates for the remaining parameters βx and κt using singular value
decomposition (SVD). After the model has been fit, mortality forecasts are obtained by
modeling κt as an ARIMA process—often simply a random walk with drift—and extrapo-
lating this process. In retrospective, Lee (2000) notes that this basic approach works quite
well for US mortality data between 1989 and 1997, especially in comparison to official
forecasts by the government based on expert opinions.
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A simple mortality modeling approach for multiple populations, which is quite natural
on first glance, consists in separately describing each population with its own LC model,

log mi
x,t = αi

x + βi
xκi

t + εi
x,t, (5)

and assuming independence of the (κi
t)t time series for i = 1, . . . , P. However, this does not

account for dependence between the populations because there are no shared parameters
and each population’s mortality is driven by a different stochastic factor. Zhou et al. (2013)
demonstrate that using such an approach may lead to erroneous conclusions, for ex-
ample when analyzing mortality bonds. Nonetheless, this individual Lee–Carter (ILC)
model can serve as a basis and as a benchmark for more sophisticated multi-population
mortality models.

An influential model which imposes coherence of mortality between populations is
proposed by Li and Lee (2005):

log mi
x,t = αi

x + βxκt + βi
xκi

t + εi
x,t, (6)

see Section 3.2 for details on how to fit this model. Coherence means that long-term
mortality developments of different populations are constrained to maintain a constant
ratio to one another, i.e.,

lim
t→∞

mi
x,t

mj
x,t

∈ R (7)

in expectation for each age x and populations i 6= j (see Cairns et al. 2011; Hyndman et al.
2013). This concept is motivated by the fact that the mortality of populations which are to a
certain degree similar to each other cannot reasonably be expected to diverge in the long
term. Li and Lee (2005) find their model, which they call augmented common factor (ACF)
model, to fit well to the mortality data of a group of 15 low-mortality countries.

Kleinow (2015) considers a special case of the ILC model where all populations share
the same age-modulating parameters, i.e.,

log mi
x,t = αi

x + βxκi
t + εi

x,t, (8)

which he calls the common age effect (CAE) model. He finds it to achieve better in-sample
fit than the ACF model on a selection of 10 countries. Additionally, it allows for an
easier comparison of the period effects because they are scaled with the same factors (age
effects) for every population. Even though Kleinow (2015) finds a sum of two age-period
interaction terms β1

xκi,1
t + β2

xκi,2
t to fit well for his data, in this paper we only consider one

such interaction term to keep our proposed model extensions simpler. Kleinow (2015) uses
a generalization of SVD, so-called common principal components analysis (cPCA), to fit the
model and imposes slightly different identifiability constraints than Lee and Carter (1992).
However, in this paper, we will use analogous identifiability constraints as for the ILC
model, i.e.,

xA

∑
x=x1

βx = 1 and
tY

∑
t=t1

κi
t = 0 for all i ∈ {1, . . . , P}. (9)

Enchev et al. (2017) further investigate the CAE model and reach the conclusion that
it performs in a more satisfactory way than the ACF model with respect to several criteria
for the mortality data of a group of six countries. A broader survey of multi-population
stochastic mortality models is provided by Villegas et al. (2017), who evaluate and compare
these models with respect to a variety of qualitative and quantitative criteria. They reach the
conclusion that among the considered models, a combination of the M7 and the M5 model
(Cairns et al. 2009) or, alternatively, a variant of the CAE model provide the most suitable
balance between flexibility, goodness of fit and forecasting performance. In a further
study on English mortality data divided into 10 socio-economic groups, Wen et al. (2020)
find the CAE model to fit quite well with respect to the Bayesian Information Criterion
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(see Section 2.4). More precisely, they obtain superior goodness of fit compared to around
10 other models for an extension of the CAE model with two age-period interaction terms
which additionally assumes common additive age effects αx. It has to be noted that the
CAE model generally does not ensure coherence (see (7)). Of course, this depends on the
technique which is used for projecting the κi

t time series.

2.3. Poisson Maximum Likelihood Estimation

Instead of normally distributed error terms εi
x,t as in the original LC model, a broad

stream of literature assumes Poisson distributed death counts for several reasons
(see Booth et al. 2002; Brouhns et al. 2002; Delwarde et al. 2006). Other distributional
assumptions for the death counts would be possible but we would not expect a different
underlying distribution assumption (for example, negative binomial) to cause any signifi-
cant changes of our results. As the optimal choice of death count distribution is not the
main focus of this work, we will rely on the Poisson assumption, whose applicability for
mortality modeling has been thoroughly investigated both theoretically and empirically by
Brillinger (1986). In this case, the ILC model for multiple populations reads

Di
x,t | θ ∼ Poisson

(
Ei

x,t · exp
(

αi
x + βi

xκi
t

))
, (10)

and the parameters θ :=
((

αi
x
)i

x,
(

βi
x
)i

x,
(
κi

t
)i

t

)
are calibrated such that they maximize the

log-likelihood function

L(θ) =
P

∑
i=1

xA

∑
x=x1

tY

∑
t=t1

(
Di

x,t ·
(

αi
x + βi

xκi
t

)
− Ei

x,t · exp
(

αi
x + βi

xκi
t

))
+ K, (11)

where K ∈ R is some constant which only depends on the data. Maximization is carried
out numerically, usually by applying gradient-based algorithms like the Newton–Raphson
method. Here, we use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-
B) algorithm, a Quasi-Newton optimization method, as implemented in R Core Team (2019)
with the parameters obtained by SVD or cPCA as starting points for the optimization.
As Equation (11) immediately carries over to the CAE model and its clustering-based exten-
sions (see Section 3), we can fit these models by Poisson maximum likelihood estimation
as well. Moreover, we will specifically make use of maximum likelihood methods for
likelihood-ratio-based clustering (Section 3.3) and fuzzy maximum likelihood clustering
(Section 3.4).

2.4. The Bayesian Information Criterion

For optimizing hyperparameters in several variants of the clustering-based CAE model
in Section 3, we employ the Bayesian Information Criterion (BIC), which is commonly used
as a measure for model selection in the actuarial literature on mortality modeling (see for
example Kleinow 2015; Li et al. 2015). It is defined as

BIC := −2 Lmax + log(nobs) · npar (12)

for models estimated by maximum likelihood (see Section 2.3), where Lmax is the maximal
value of the log-likelihood function,

nobs := Y · A · P (13)

is the number of observations and npar is the number of free parameters. Note that this is
usually not the same as the total number of model parameters because the identifiability
constraints applied when fitting the model already determine some of its parameters (see
Appendix A for details).



Risks 2021, 9, 45 7 of 32

For models which are not (directly) fit by maximum likehood, we define

BIC := nobs · log(MSE) + log(nobs) · npar (14)

with the mean squared error

MSE :=
1

nobs

P

∑
i=1

xA

∑
x=x1

tY

∑
t=t1

(
log mi

x,t − log m̂i
x,t

)2
. (15)

For example, we have log m̂i
x,t = α̂i

x + β̂xκ̂i
t in the CAE model. If we assume that the

error terms εi
x,t (see for example (8)) follow a normal distribution with mean 0 and variance

σ2
ε , it is easily seen that definition (12) and definition (14) coincide up to an additive constant

which only depends on the data (see Hastie et al. 2017, p. 233). If we compare two models
fit on the same data in terms of their BIC, the definitions are therefore interchangeable.
Even if the normality assumption is violated, definition (14) is still plausible because it
aims to achieve a balance between goodness of fit (small MSE) and parsimony (small npar),
both of which are desirable qualities of any statistical model.

3. Clustering-Based Common Age Effect Models

In the following, we describe four extensions of the common age effect model based on
different clustering algorithms. The first three model extensions are two-step procedures,
whose first goal is to find a number k ∈ {1, . . . , P} and a surjective function

C : {1, . . . , P} → {1, . . . , k}

which assigns to every population i ∈ {1, . . . , P} a cluster number C(i) ∈ {1, . . . , k}.
From this, the clusters are obtained via C l := C−1({l}), l = 1, . . . , k. In the following,
we will sometimes simply refer to a cluster C l by its number l. In a second step, we
formulate the resulting clustering-based CAE model, or—to emphasize the dependence on
the clustering—the CAE(k, C) model

log mi
x,t = αi

x + β
C(i)
x κi

t. (16)

We will introduce three different methods to identify a suitable clustering function
C in Sections 3.1–3.3. Obviously, (16) interpolates between the two extreme cases of the
ordinary CAE model—alias the CAE(1, C) model with C ≡ 1—and the ILC model—alias
the CAE(P, C) model with C = id. Given the clustering information k and C, the CAE(k, C)
model is calibrated by fitting a CAE model on each cluster. In Section 3.4, we introduce a
fourth, one-step model based on the fuzzy clustering paradigm.

3.1. k-Means Clustering

The first step of this approach is to fit an ILC model to the populations, yielding one
age effect vector

(
βi

x
)

x ∈ RA per population i. These vectors can then be clustered by a
standard cluster analysis method. Here, we choose the well-known k-means algorithm (see
Hastie et al. 2017, chapter 13). For a given k ∈ {1, . . . , P}, this technique aims at minimizing
the squared Euclidean distances between the vectors and the cluster centroids µl ∈ RA, i.e.,

min
C

k

∑
l=1

∑
i: C(i)=l

‖
(

βi
x

)
x
− µl‖2, (17)

where minimization takes place over all surjective functions C : {1, . . . , P} → {1, . . . , k}.
Given such a clustering function, the centroids are calculated as

µl :=
1∣∣C l
∣∣ ∑

i∈C l

(
βi

x

)
x
. (18)
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As the minimization problem (17) generally is not solvable exactly, the Hartigan–
Wong algorithm as implemented in R Core Team (2019) is used to find an approximate
solution. Note that for this approach to be applicable, the number of clusters k has to be
specified. We do this by initially running the k-means algorithm for all k ∈ {1, . . . , P} and
choosing that value of k for which the BIC of the resulting CAE(k, C) model is minimized
(see Section 2.4).

3.2. Augmented Common Factor Clustering

The ACF model has been introduced by Li and Lee (2005) with the goal to obtain
coherent mortality forecasts (see Section 2.2). In the following, we slightly adapt their
methodology and terminology so that it encompasses both the ACF-based clustering
algorithm and the algorithm we use for fitting the ACF model. The goal is to find a
cluster number k, a clustering function C and model parameters αi

x, βi
x, κi

t, β̃
C(i)
x and κ̃

C(i)
t ,

where the latter two only depend on the cluster C(i) to which a population i ∈ {1, . . . , P}
is assigned. These parameters should be calibrated in such a way that death rates are
explained well by the following variation of (6) from Section 2.2:

log mi
x,t = αi

x + β̃
C(i)
x κ̃

C(i)
t + βi

xκi
t + εi

x,t. (19)

The model parameters and the clusters are determined by a divisive algorithm, of
which we give a summary here and further details in Appendix B.

As a numerical measure for quantifying the goodness of fit, Li and Lee (2005) propose
the explanation ratio

Ri,l
C := 1−

xA
∑

x=x1

tY
∑

t=t1

(
log mi

x,t − αi
x − β̃l

xκ̃l
t

)2

xA
∑

x=x1

tY
∑

t=t1

(
log mi

x,t − αi
x

)2
, (20)

which describes how well the death rates of a population i belonging to cluster l ∈ {1, . . . , k}
are described by the common factor β̃l

xκ̃l
t of this cluster. The model fit can optionally be

enhanced by including a population-specific factor βi
xκi

t. The benefit of including such a
factor is measured by the population-specific explanation ratio

Ri,l
AC := 1−

xA
∑

x=x1

tY
∑

t=t1

(
log mi

x,t − αi
x − β̃l

xκ̃l
t − βi

xκi
t

)2

xA
∑

x=x1

tY
∑

t=t1

(
log mi

x,t − αi
x − β̃l

xκ̃l
t

)2
. (21)

As our aim is to make forecasts with the model, we also have to specify how the
period effects are projected into the future. For the estimated cluster-specific period effects
ˆ̃κl

t, we fit a random walk with drift analogously as in the LC model. For the estimated
population-specific period effects κ̂i

t, we fit either a random walk without drift

κ̂i
t+1 = κ̂i

t + ei
t+1 with ei

t+1 ∼ N
(

0,
(

σRW
i

)2
)

i.i.d., (22)

or an AR(1) process

κ̂i
t+1 = ci + ϕiκ̂i

t + ei
t+1 with ei

t+1 ∼ N
(

0,
(

σAR
i

)2
)

i.i.d. (23)
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Both of these processes ensure coherence of the populations within a cluster. To decide
between the two, we again consider explanation ratios, which are defined as

Ri
RW := 1−

(
σ̂RW

i
)2

σ̂2
i

and Ri
AR := 1−

(
σ̂AR

i
)2

σ̂2
i

, (24)

where σ̂2
i denotes the sample variance of

(
κ̂i

t
)

t.
The clustering algorithm is a divisive procedure. This means that it starts with one

cluster consisting of all available populations and iteratively partitions this set into smaller
clusters. Subdivision is performed until it holds for all clusters l ∈ {1, . . . , k} and all
populations i ∈ C l that

• Ri,l
AC ≥ η (the ACF model fits well to the data), and

• (i) Ri
RW ≥ η (the random walk fits well to the estimated population-specific period

effect), or
(ii) Ri

AR ≥ η and
∣∣ϕi
∣∣ < 1 (the AR(1) process fits well to the estimated population-

specific period effect and is mean-reverting).

Here, η ∈ [0, 1] is a hyperparameter, which we refer to as the explanation ratio
threshold.

There is one additional step in the algorithm, which is motivated by the fact that model
formulation (19) involves quite a high number of parameters. If a cluster C l is trivial, i.e.,
has only one element, the population-specific factor of the population i ∈ C l is considered
unnecessary as the common factor really is population-specific in this case. Therefore, we
set
(

βi
x
)

x = 0,
(
κi

t
)

t = 0 if population i is the only element in a cluster.
To further increase the parsimony of the model, we also check for the elements of each

non-trivial cluster C l whether their population-specific factors are considered necessary.
For this, we use a second hyperparameter ρ ∈ [1, ∞), which we call the improvement ratio
threshold. We only fit a population-specific factor for population i ∈ P l if

• Ri,j
AC ≥ ρRi,j

C (the population-specific factor significantly enhances the fit), or

• Ri,j
C < η (the common factor model does not fit well enough on its own).

Otherwise, we set
(

βi
x
)

x = 0,
(
κi

t
)

t = 0.
To find a suitable value for the explanation ratio threshold η and the improvement ratio

threshold ρ, we run the algorithm for all combinations (η, ρ) in some predefined grid, η ∈
{η1, . . . , ηnη} and ρ ∈ {ρ1, . . . , ρnρ}. Then, we choose the combination of hyperparameter
values minimizing the BIC of the resulting ACF model. For our numerical studies in
Section 4, we try

η ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and ρ ∈ {1.0, 1.1, 1.2, 1.3, 1.4},

giving a total of 25 combinations which are tested during the validation procedure.
Different choices of this grid would be possible, so we provide some reasoning for

the value ranges we are considering here. The choice of the range for the explanation ratio
threshold η is motivated by the fact that η < 0.5 might result in an insufficient model fit
with almost all populations grouped into the same cluster, while choosing η > 0.9 would
be quite restrictive and would probably lead to a very high number of clusters. Therefore,
we consider the discretized interval 0.5 ≤ η ≤ 0.9.

The improvement ratio threshold ρ corresponds to the relative improvement in model
fit which we expect to be achieved by including a population-specific factor. From this,
it is clear that ρ ≥ 1 by definition, where ρ = 1 corresponds to always including a
population-specific factor by not requiring any improvement at all. On the other hand,
a value of ρ > 1.4 would be very restrictive and prevent population-specific terms from
being included in the model in most cases because this would require an improvement in
model fit of well over 40%. Therefore, we consider the discretized interval 1 ≤ ρ ≤ 1.4.
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3.3. Likelihood-Ratio-Based Clustering

We propose a clustering algorithm which is based on likelihood ratios between CAE
and ILC models. The basic idea lies in investigating the hypotheses

H(i, j) :
(

βi
x

)
x
=
(

β
j
x

)
x
, (25)

where
(

βi
x
)

x,
(

β
j
x

)
x

denote the age effects of ILC models for two populations i, j ∈ {1, . . . , P}.
In other words, we check for these populations whether their LC age effect vectors are

significantly different. Writing θ
ij
β :=

((
βi

x
)

x,
(

β
j
x

)
x

)>
, we can reformulate (25) to

H(i, j) : θ
ij
β ∈ Θ0 (26)

with
Θ0 := {v ∈ Θ : (v1, . . . , vA) = (vA+1, . . . , v2A)} (27)

and

Θ :=

{
v ∈ R2A :

A

∑
s=1

vs =
2A

∑
s=A+1

vs = 1

}
, (28)

which reflects the usual identifiability constraints ∑xA
x=x1 βi

x = ∑xA
x=x1 β

j
x = 1. From this,

it becomes clear that we can apply the likelihood ratio test. We consider the test statistic

T(i, j) := −2 log
sup

θij : θ
ij
β∈Θ0

L
(
θij)

sup
θij : θ

ij
β∈Θ
L
(
θij
) , (29)

where L is the likelihood function (cf. (11)), θij contains all the LC parameters and θ
ij
β the

corresponding age effects for populations i and j. The random variable T(i, j) asymp-
totically follows a χ2-distribution with A − 1 degrees of freedom. Therefore, given an
observation T̊(i, j) of the test statistic, we can calculate the approximate p-value

p(i, j) := P
(
X ≥ T̊(i, j) | H(i, j)

)
, (30)

where X ∼ χ2
A−1. Now, we reject the hypothesis H(i, j) at significance level σ ∈ (0, 1) if

p(i, j) < σ, in which case we conclude that populations i and j exhibit significantly different
age effects.

To derive a clustering of all available populations we go on to calculate the test
statistic T(i, j) and its corresponding approximate p-value p(i, j) for all binary subsets
{i, j} ⊂ {1, . . . , P}. This is a multiple testing problem, which means the significance level
has to be adjusted accordingly. The simplest way to do this is via the well-known Bonferroni
correction, which consists in using σ/(P

2) as the new significance level where (P
2) is the

number of tests expressed as a binomial coefficient. This is equivalent to considering the
adjusted p-values padj(i, j) := min

{
(P

2) · p(i, j), 1
}

under the original significance level σ.
Of course, there are more sophisticated multiple testing adjustment algorithms, which we
choose not to make use of for a reason explained below.

In order to apply clustering methods, we need some notion of distance between the
populations. To obtain this, we transform back to the test statistics Tadj(i, j) corresponding
to the adjusted p-values via

Tadj(i, j) :=
(

χ2
A−1

)−1(
1− padj(i, j)

)
, (31)

where
(
χ2

A−1
)−1 denotes the quantile function of the χ2

A−1-distribution. Note that Tadj(·, ·)
is a pseudosemimetric, i.e., we have Tadj(i, j) ≥ 0, with equality if i = j, and Tadj(i, j) =
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Tadj(j, i). Based on this distance measure, we use hierarchical agglomerative clustering
to obtain a clustering function C, see Hastie et al. (2017, section 14.3.12) for a general
explanation and Giordano et al. (2019) for an existing application of this technique in the
context of mortality modeling. For the convenience of the reader, we also give a short
description on how to apply the algorithm in Appendix C.

The distances between clusters can be illustrated in a so-called dendrogram, in which
clusters are arranged from bottom to top by increasing distance, see Figure 1. Graphi-
cally, the clustering is obtained by horizontally cutting the dendrogram at a prespecified
threshold ζ > 0.

Figure 1. Dendrograms for between-cluster distances (left: single linkage, mid: complete linkage, right: average linkage)
based on mortality data for males aged 53 to 87 in 10 countries between 1948 and 1987 (note the differing scales).

Before the algorithm is implemented, three choices have to be made: (i) the value of
the significance level σ; (ii) whether distances between clusters should be measured by
single linkage (A1), complete linkage (A2) or average linkage (A3); and (iii) the value of the
threshold ζ above which clusters are not merged anymore by the hierarchical clustering
algorithm (see Appendix C).

These choices can be meaningfully linked in the following way: If we set ζ :=(
χ2

A−1
)−1

(1− σ), the two closest clusters at each iteration step are merged under complete
linkage if and only if all populations in these clusters do not have significantly different
age effects at level σ. Under single linkage, the two clusters are merged if there are two
populations whose age effects are not significantly different, one of which belongs to the
first and the other to the second cluster. From this description, complete linkage seems to
be preferable from a statistical point of view. However, it might cause a relatively high
number of clusters if σ is large. This is the reason why we chose to employ the Bonferroni
multiple testing correction instead of other correction algorithms with higher testing power
which would yield a higher number of rejections and, thus, an even higher number of
clusters. Finally, average linkage could achieve a compromise between being a statistically
meaningful distance measure and resulting in a moderate number of clusters.

Another possibility to decide on whether to use single, complete or average linkage is
to compare the three approaches with respect to fit measures like the BIC (as in Section 3.2).
This is also what we do to find a suitable value of σ because standard choices like σ = 0.05
or even σ = 0.01 might lead to many hypotheses being rejected and, thus, rather high
numbers of clusters. For our numerical studies in Section 4, we try the values

σ ∈ {5 · 10−2, 10−2, 10−4, 10−6, 10−8, 10−10, 10−12}.

Finally, we point out that instead of the above agglomerative method one could also
use divisive hierarchical clustering, i.e., start from one cluster containing all populations
and perform repeated splits until the resulting clusters are sufficiently homogeneous.
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3.4. Fuzzy Maximum Likelihood Clustering

The main idea of the following model is to replace the individual age effects in the
ILC model with a linear combination of a small number of age effects. In this way we can
reduce the number of parameters while still allowing each population to have a unique
age effect.

To achieve this, we pick up the idea of applying fuzzy clustering to mortality modeling,
which has already been investigated by Hatzopoulos and Haberman (2013) (see Section 1).
However, there are two fundamental aspects where our work substantially differs from
theirs: First, they cluster the populations by the period effects in order to assess similarities
and dissimilarities in the development of their mortality rates over time. As before, we
focus on the age effects instead. Second, the clusters and the obtained fuzzy clustering
weights do not directly enter the model of Hatzopoulos and Haberman (2013). They use
the fuzzy c-means algorithm (Bezdek 1981) for identifying clusters of countries that share a
common mortality trend and for quantifying coherence within such clusters. In a second
step, mortality in the individual clusters is modeled using sparse PCA in a generalized
linear model framework. In this sense, the method of Hatzopoulos and Haberman (2013)
is more similar to the two-step approach we introduced in Section 3.1. In contrast to this,
we propose a one-step procedure, which directly integrates the clustering results within
the model equation and calibrates all model parameters including the cluster weights
by Poisson maximum likelihood estimation. Therefore, we call our new approach fuzzy
maximum likelihood clustering.

We denote the number of fuzzy clusters by k. This is a hyperparameter and we choose
its value based on the BIC similarly as in Section 3.1. More precisely, we calculate the
BIC for all values k ∈ {1, . . . , min{P, A, kLC}}, where kLC is the highest cluster number for
which the following model has fewer free parameters than an ILC model:

log mi
x,t = αi

x +

(
k

∑
l=1

ωi,l βl
x

)
κi

t. (32)

Here, each cluster l ∈ {1, . . . , k} has a distinct age effect βl
x, and the weight parameter

ωi,l indicates for every population i how similar its age effect is to that of cluster l. This can
be seen as a special case of a k-factor CAE model

log mi
x,t = αi

x +
k

∑
l=1

βl
xκi,l

t (33)

with κi,l
t = ωi,lκi

t. For the model to be easily interpretable, it is desirable that ωi,l ∈ [0, 1]
and ∑k

l=1 ωi,l = 1 for all i ∈ {1, . . . , P}. In this case, the age effect of each population is a
convex combination of the age effects of the clusters. This means that the weight parameter
ωi,l can be interpreted as the degree of membership of population i in cluster l, or in other
words the degree of similarity of the age effect of population i to the age effect of cluster l.

Let Θ be the parameter space and θ :=
((

αi
x
)i

x,
(

βl
x

)l

x
,
(
κi

t
)i

t,
(

ωi,l
)i,l
)
∈ Θ the vector

of model parameters. We also use the notations α :=
(
αi

x
)i

x ∈ RA×P, β :=
(

βl
x

)l

x
∈ RA×k,

κ :=
(
κi

t
)i

t ∈ RY×P and ω :=
(

ωi,l
)i,l
∈ RP×k. Similarly as in Section 2.3, the log-likelihood

function is given by

L(θ) =
P

∑
i=1

xA

∑
x=x1

tY

∑
t=t1

(
Di

x,t · log
(

mi
x,t

)
− Ei

x,t ·mi
x,t

)
+ K, (34)

with some constant K ∈ R which only depends on the data.
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It is in principle possible to numerically maximize L using a gradient-based optimiza-
tion algorithm such as L-BFGS-B and thereby obtain a maximum likelihood estimate for
θ. However, if we do not impose any constraints on the optimization, θ is obviously not
unique. Thus, the model is not identifiable, which is problematic both from a statistical
and a practical point of view.

We will consider two sets of constraints, which differ in the requirements on the weight
matrix ω. With the first set of constraints we demand that the first k rows of ω, which
we denote by ω1:k,1:k, equal the identity matrix Ik. This means that the first k populations
each get their own cluster, i.e., ωi,j = 1 if i = j and 0 otherwise for i, j ∈ {1, . . . , k}, and
the remaining populations are subsequently assigned cluster weights "relative" to this
initialization when the model is fit. Of course, via a renumbering of the populations, any
k populations can be the ones which initially get their own cluster, which means that the
choice is up to the modeler. This choice should ensure that the chosen populations have
sufficiently different age effects. Therefore, it could be based on some a priori knowledge
or analysis on which populations might exhibit distinct, prototypic age effects. We call our
first set of constraints the identity matrix initialization (IMI) constraints. Note that we do
not demand ωi,l ≥ 0 for i > k in this case.

With the second, alternative set of constraints, we require that all entries of ω are non-
negative—which, by the additional constraint ∑k

l=1 ωi,l = 1, implies that they are at most
1—and that among all matrices fulfilling the remaining constraints ω maximizes the sum of
within-cluster variances. Therefore, we call these the non-negativity variance-maximizing
(NNVM) constraints.

Expressed in formulas, to fit the model, we solve

sup
θ∈Θ

L(θ) (35)

subject to

xA

∑
x=x1

βl
x = 1 for all l ∈ {1, . . . , k},

tY

∑
t=t1

κi
t = 0 for all i ∈ {1, . . . , P},

(36)

and, furthermore, either to IMI constraints

k

∑
l=1

ωi,l = 1 for all i ∈ {k + 1, . . . , P},

ω1:k,1:k = Ik,

(37)

or, alternatively, to NNVM constraints

k

∑
l=1

ωi,l = 1 for all i ∈ {1, . . . , P},

ωi,l ≥ 0 for all i ∈ {1, . . . , P}, l ∈ {1, . . . , k},
fω(R) ≤ fω(Ik) for all R ∈ Dω,

(38)

where
Dω := {R ∈ GL(k) : ωR < 0P×k and R1k = 1k} (39)

and fω : Dω → R is the sum of within-cluster variances,

fω(R) :=
k

∑
l=1

1
P− 1

P

∑
i=1

(
(ωR)i,l −

(
ωR
)•,l)2

. (40)
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Here, we have used the notation

(
ωR
)•,l :=

1
P

P

∑
j=1

(ωR)j,l (41)

for the column means.
More details on model identifiability are provided in the Supplementary Materials

to this paper, where it is shown that the constraints (36) together with either (37) or,
additionally assuming k = 2, (38) are indeed identifiability constraints for the model (32)
when k is chosen according to the principle of parsimony.

4. Empirical Model Comparison

In this section, we provide some tables and figures in order to compare the mortality
models described in Sections 2.2 and 3. More precisely, we consider as benchmarks the
ILC and CAE models fitted both by SVD/cPCA and Poisson MLE as well as the ACF
model fitted by SVD and compare them to our four clustering-based extensions of the CAE
model (all fitted by Poisson MLE). Regarding the likelihood ratio clustering, we only show
results for the average linkage distance measure as we aim to achieve a balance between
parsimony of parameters and higher within-cluster homogeneity (see Section 3.3). For the
number of clusters k in the fuzzy clustering model from Section 3.4, we consider the values
k = 2 and the optimal k according to the BIC separately. In other words, the results for
k = 2 are shown even if they are not optimal according to the BIC because—as noted in
Section 3.4—under NNVM constraints we have only rigorously proven that the model is
identifiable for this important special case. Moreover, this will allow us to check whether
the BIC is a viable model selection criterion for achieving good out-of-sample forecasts
because we would expect the model with the optimal k according to the BIC to outperform
the model with k = 2 in the out-of-sample forecasts if this is the case.

4.1. Data

All mortality data used in the numerical study were obtained from Human Mortality
Database (2019). Along with the data, the Human Mortality Database also provides a
methods protocol to which we refer for a detailed description of the data preprocessing. To
facilitate comparability we give detailed results for the same data Kleinow (2015) used in
his study: Observed death rates of males aged between 18 and 52 and between 53 and 87 in
Austria, Australia, Canada, Switzerland, Denmark, France, the UK, New Zealand, Sweden
and the USA between 1948 and 2007. Like Kleinow (2015), we consider the age groups 18 to
52 and 53 to 87 separately because the period effects κi

t might be quite different as the main
causes of death differ substantially for these age groups (see Bergeron-Boucher et al. 2018).
In addition, it is recommendable not to use too many ages at once because clustering
typically gets harder when the dimension of the objects which are clustered increases (curse
of dimensionality). For better readability of the main text, we defer the figures and tables
for age group 18 to 52 into the Supplementary Materials of this paper.

The data for the male populations of Denmark, France and the USA are shown in
Figure 2. We display only three populations for better readability of the plot; data for the
remaining populations are qualitatively similar. Generally, the data exhibit the typical
characteristics we would expect of death rates; for example, they are increasing in age and
mostly decreasing in time. Remarkably, Danish mortality has stagnated and in some years
even increased up to around 1990, allowing the previously higher rates of French and US
males to catch up.
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Figure 2. Death rates for males aged 53, 60, 67, 74, 81 and 87 in Denmark, France and the USA between 1948 and 2007 (note
the differing scales).

We split the considered data set into training and test sets so that we can analyze
both the goodness of fit (Section 4.3) and the forecasting performance (Section 4.4). More
precisely, the data set comprising the years 1948 to 2007 is split into training data from 1948
to 1987, on which the models are fit and goodness of fit is evaluated, and test data from
1988 to 2007, on which forecasting performance is evaluated.

4.2. Clustering Results

Figure 3 displays the population-specific age effects obtained by the ILC model (col-
ored lines) and the cluster-specific age effects obtained by the k-means, ACF-based and
likelihood-ratio-based clustering CAE models in comparison to the ordinary CAE model
(black lines). Note that for the k-means and likelihood-ratio-based clustering algorithms the
ILC age effects are, in fact, inputs. The ACF does not make direct use of the ILC age effects
but these are displayed nonetheless for illustration purposes and for an easier graphical
overview of the clustering results.

The results of the fuzzy maximum likelihood clustering algorithm are displayed in
Figure 4, which shows the cluster membership weights ωi,l in the top row. In the bottom
row, we plot the cluster-specific age effects

(
βl

x

)
x

as well as the fitted population-specific

age effects
(

∑k
l=1 ωi,l βl

x

)
x
, where we assign each population i ∈ {1, . . . , 10} to the cluster

l ∈ {1, . . . , k} for which the corresponding weight ωi,l is largest. This clearly illustrates
that the fitted age effects are different for all the populations, although for most of them it
is also visible that they are a convex combination of a few basic shapes

(
βl

x

)
x
, l = 1, . . . , k.

For k = 2, we observe that
(

β1
x
)

x looks similar to the age effect vector in the ordinary CAE
model for both age groups, while

(
β2

x
)

x allows the model to express deviations from the
general pattern for some populations.
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(a) CAE (MLE), y axis restricted (0 to 0.05) (b) k-means

(c) ACF-based (d) Likelihood-ratio-based (average linkage)

Figure 3. Age effects by cluster for males aged 53 to 87 in 10 countries between 1948 and 1987 obtained by the common age
effect (CAE) model and three of its clustering-based extensions. The age effects of the clusters are displayed in black and the
individual Lee–Carter (ILC) age effects of the populations are in different colors.

We provide an overview of the clustering results in Table 1. Most of the clustering
algorithms detect that the Danish age effects follow a very distinct pattern, which is due to
the stagnation of Danish death rates in the considered time period, and put Denmark into
its own cluster. This is in line with the results of Hatzopoulos and Haberman (2013) even
though they consider a different data set (ages 0–90, years 1960–2006 and 35 countries).
With fuzzy c-means clustering they obtain one West cluster and two East clusters, where
all of the populations considered here are in the West cluster but the fuzzy membership
weight of Denmark in this cluster is by far the lowest. Two other groups which could be
inferred from our clustering results consist of (i) the English-speaking countries Australia,
Canada, the UK, the USA and New Zealand and (ii) the remaining European countries
France, Sweden, Switzerland and Austria.

In fact, k-means identifies these three groups (Denmark, anglophone countries, remain-
ing European countries) but it assigns Austria to its own cluster. The reason for this gets
clearer when we look at the fuzzy maximum likelihood clustering with k = 2 in Figure 4,
where we have imposed NNVM constraints to make the following interpretations sensible
(see Section 3.4). Here, the Austrian age effects turn out to be almost a 50:50-mixture of the
two fuzzy cluster centers, which can be interpreted as a demonstration of the higher degree
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of flexibility of the fuzzy maximum likelihood clustering when dealing with observations
which are harder to classify. In general, the results are similar to k-means but there are
some additional nuances we can recognize, for example, France and Sweden exhibit more
similar age effects than France and Switzerland under this model. It is remarkable that
Denmark does not get a separate cluster despite its quite special behavior, which might be
due to the fact that maximum likelihood estimates are driven by high exposures and the
Danish population is rather small. The number of fuzzy clusters which minimizes the BIC
is k = 4, which is the same as for the k-means algorithm. The clustering results are similar
as well: Denmark drives its own cluster with only very small shares of other populations
(cluster 4), another cluster is driven by Canada with high shares of Australia, New Zealand
and the UK (cluster 1). The USA, however, have a higher degree of membership in cluster
3, along with Switzerland, which is separated from France and Sweden, for which the
weights are highest in cluster 2 (as well as for Austria).

(a) Weights for k = 2 (b) Weights for k = 4 (chosen by BIC)

(c) Age effects for k = 2 (d) Age effects for k = 4 (chosen by BIC)

Figure 4. Weights ωi,l (top) and cluster-specific age effects
(

βl
x

)
x

as well as fitted population-specific age effects(
∑k

l=1 ωi,l βl
x

)
x

(bottom) of the fuzzy maximum likelihood clustering for males aged 53 to 87 in 10 countries between
1948 and 1987.
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Table 1. Comparison of clustering results obtained by different algorithms for males aged 53 to 87 in
10 countries between 1948 and 1987.

Cluster k-Means ACF-Based
Likelihood-
Ratio-Based
(AL)

Fuzzy ML
Clustering
(k = 2)

Fuzzy ML
Clustering
(k = 4)

1 AUT

AUS, AUT,
CAN, CHE,
FRA, SWE,
UK, USA

AUS
AUS, CAN,
DNK, NZL,
UK, USA

AUS, CAN,
NZL, UK

2 CHE, FRA,
SWE DNK AUT, DNK AUT, CHE,

FRA, SWE
AUT, FRA,
SWE

3
AUS, CAN,
NZL, UK,
USA

NZL CAN - CHE, USA

4 DNK - FRA, UK - DNK

5 - - NZL - -

6 - - SWE, USA - -

7 - - CHE - -

Before moving on to the results of the ACF and the likelihood ratio clustering, we
discuss some observations in the results of k-means and fuzzy clustering which might be
counterintuitive at first glance. Looking at Figure 3b, we find that the cluster-specific age
effect

(
β2

x
)

x of the second cluster is very similar to the LC age effect of France. Sweden and
Switzerland also belong to this second cluster but their age effects seem to behave quite
differently. However, one has to mind the scale of the plots: In fact, the variability of the
age effects in cluster 2 is rather small compared to the other clusters. Therefore, while the
Swedish and Swiss age effects seem to be very different to the French one on a relative
scale, they are nevertheless most similar to it in terms of Euclidean distance compared
to the other populations. The observation that the cluster-specific age effect is driven
by France results from this age effect being estimated by Poisson maximum likelihood,
which is heavily influenced by exposure sizes, and exposures in the French population are
substantially larger than in the Swedish and Swiss populations.

Furthermore, in Figure 4 we make the striking observation that the cluster-specific age
effect

(
β2

x
)

x of the second cluster is increasing over ages, whereas the population-specific
age effects of all the cluster members (France, Sweden and Austria) are almost constant or
even decreasing over ages. To understand this, one has to recall that cluster membership
is fuzzy in this case and that all three population-specific age effects are to a significant
part influenced by the other cluster-specific age effects as well. Note that

(
β1

x
)

x and
(

β3
x
)

x
are mostly decreasing with age. Combining these with

(
β2

x
)

x therefore offsets its increase
and yields the almost constant population-specific age effects for France and Sweden.
The population-specific age effect of Austria also contains a non-negligible share of

(
β4

x
)

x,
the age effect with by far the highest amplitude, which is sufficient to visibly influence
the shape of the Austrian age effect in the direction of the age effect of the fourth cluster.
In summary, these observations show that population-specific age effects in the fuzzy
clustering model are not necessarily similar to any of the cluster-specific age effects. This
illustrates the high flexibility of this approach, which allows for individual age effects
obtained as linear combinations of a few basic shapes.

The ACF clustering algorithm (with explanation ratio threshold η = 0.5 and im-
provement threshold ρ = 1 as chosen by the validation described in Section 3.2) assigns
Denmark and New Zealand to separate clusters. All other populations are put into one
group together. Likelihood-ratio-based clustering (with average linkage distances and
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significance level σ = 10−6) yields the highest number of groups with separate clusters for
Australia, New Zealand, Canada and Switzerland, respectively, and three clusters with
two populations each (Austria and Denmark, France and the UK, Sweden and the USA).

We have also performed some experiments on the robustness of the clustering to
small changes in the training data. Switching the considered ages from 53–87 to 55–85,
we find that the groupings obtained via k-means, ACF clustering and fuzzy clustering
for k = 2 do not change at all while the likelihood-ratio-based clustering and fuzzy
maximum likelihood clustering with k = 4 exhibit slight changes. Adding one more year
to the training data (so that the clustering is calibrated on the years 1948 to 1988), we
observe that the groupings obtained via k-means and fuzzy clustering do not change at all
and ACF clustering merges the cluster consisting of New Zealand into the larger cluster
consisting of all other populations except Denmark but remains unchanged apart from
that. However, there are again some changes in the results of the likelihood-ratio-based
clustering. In conclusion, all of the algorithms with the exception of likelihood-ratio-based
clustering exhibit some robustness to small variations of the training data.

We have also run our algorithms for the 16 male populations of the European countries
considered by Guibert et al. (2020) (ages 45–90, years 1960–2014). Their hierarchical
clustering method, which they apply simultaneously to male and female populations,
assigns the male populations to five different clusters. This is exactly the number which
is identified as optimal for our fuzzy clustering algorithm albeit with some differences
in the composition of the obtained clusters. Populations which are clustered together by
both their and our method are (i) West Germany, France, Portugal and Spain, (ii) Finland
and Switzerland, (iii) Italy and Luxembourg and (iv) Norway and the Netherlands. If
we consider fuzzy clustering with k = 2, we obtain a cluster consisting of West Germany,
Belgium, France, Portugal and Spain—which are the male populations in the first cluster
reported by Guibert et al. (2020)—and, additionally, Austria and Switzerland. There are
also some similarities between the results of Guibert et al. (2020) and the k-means or
likelihood-ratio-based clustering, for example mortality of Danish males being identified
as an outlier and assigned its own cluster. However, we also observe several differences in
the clustering results. First, this might be due to the fact that our methodology for choosing
the number of clusters differs from theirs so that we obtain different cluster sizes at least
for the non-fuzzy clustering algorithms (k-means: 8, ACF clustering: 1, likelihood ratio
clustering: 12). More importantly, one should recall that, apart from using a different
clustering method, Guibert et al. (2020) cluster period effects while we cluster age effects,
which may exhibit differing behaviors between populations and, thus, indicate different
optimal clustering results.

4.3. Goodness of Fit

For comparing the goodness of fit numerically, we consider the BIC as the main
criterion and display it in Table 2. For completeness, we also provide its components, i.e.,
the maximal value of the log-likelihood function Lmax and the free number of parameters
npar (see Section 2.4). Note that the BIC values for the models fitted by Poisson MLE are
not directly comparable to those for the models fitted by SVD/cPCA.

We observe that, using maximum likelihood estimation under the assumption of
Poisson distributed death counts, the ILC model fits better than the CAE model with
respect to the BIC. Interestingly, this is reversed if we calibrate the models via SVD/cPCA,
which can also be interpreted as maximum likelihood estimation but under the assumption
of a normal distribution of the residuals, see Section 2.4. Among the clustering-based
CAE models, k-means and fuzzy maximum likelihood clustering achieve the lowest BIC
values, which are in particular considerably lower than those for the ILC model or the
CAE model (fitted by Poisson MLE). The BIC penalizes the ILC model for its high number
of parameters, while the CAE model has fewer parameters but also a significantly lower
log-likelihood value. These findings suggest that the clustering-based CAE models strike a
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better balance between goodness of fit and parsimony compared to the two extreme cases
ILC and ordinary CAE.

Table 2. The BIC and its components (maximal log-likelihood Lmax and free number of parameters
npar) for males aged 53 to 87 in 10 countries between 1948 and 1987. The BIC values for the models
fitted by Poisson MLE are not directly comparable to those for the models fitted by singular value
decomposition (SVD)/common principal components analysis (cPCA).

Model Lmax npar BIC

ACF (SVD) — 1299 −75,684

CAE (cPCA) — 774 −78,483

ILC (SVD) — 1080 −77,550

ILC (MLE) −86,791 1080 183,893

CAE (MLE) −91,299 774 189,988

CAE(k, C),
k-means −87,584 876 183,532

CAE(k, C),
ACF-based −90,986 842 190,009

CAE(k, C),
LR (av. linkage) −88,233 978 185,803

CAE Fuzzy,
k = 2 −87,983 816 183,756

CAE Fuzzy,
k = 4 (chosen by BIC) −87,054 894 182,643

We illustrate the goodness of fit graphically by plotting for Denmark and France the
actual (red, dashed) and the fitted (black, solid) central death rates at age 67 in Figure 5 (the
models were calibrated on all 10 countries, but we depict only two of them for a clearer
illustration). We observe that all models show a reasonable fit on visual inspection.

4.4. Forecasting Performance

For evaluating the forecasting performance, we calculate several error measures
which are defined in the following and should be minimized in absolute value by the most
accurate forecasts:

• Bias = 1
N

N
∑

j=1

(
ŷj − yj

)
,

• mean absolute error, MAE = 1
N

N
∑

j=1

∣∣ŷj − yj
∣∣,

• mean absolute percentage error, MAPE = 1
N

N
∑

j=1

|ŷj−yj|
yj
· 100%,

• root-mean-square error, RMSE =

√
1
N

N
∑

j=1

(
ŷj − yj

)2,

where we denote the number of forecasts by N, the ground truth by yj and the forecast by
ŷj and write j = J(x, t, i) with age x, year t, population i and a bijective function J from the
set of all tuples (x, t, i) for which a forecast is made to {1, . . . , N}.



Risks 2021, 9, 45 21 of 32

(a) ACF (SVD) (b) ILC (MLE)

(c) CAE (MLE) (d) CAE (k, C), k-means

(e) CAE (k, C), ACF-based (f) CAE (k, C), Likelihood-ratio-based (average link-
age)

Figure 5. Cont.
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(g) CAE Fuzzy (k = 2) (h) CAE Fuzzy (k = 4, chosen by BIC)

Figure 5. Actual (red, dashed) and fitted (black, solid) central death rates for males aged 67 in Denmark and France (models
calibrated on 10 countries) between 1948 and 1987.

These out-of-sample error measures are displayed in Table 3. We generally observe
that all models are biased upwards, indicating that mortality has decreased more than they
predict based on the given training data. Generally, the ILC and ACF models perform
worse than the other models. The CAE fuzzy clustering model with k = 2 performs best
with regard to all error measures. This indicates that the decision to select the value for k
by minimizing the BIC, which is a standard approach in the literature, is questionable for
this application, as it results in k = 4 and a significantly worse out-of-sample performance
(for lower ages, the optimal number of clusters indicated by the BIC is k = 3, and this also
leads to inferior out-of-sample results compared to k = 2). Removing the population of
Denmark, which as mentioned exhibits a very different fitted age effect pattern compared
to the other populations, further enhances the performance of the CAE fuzzy clustering
model with k = 2 (see the corresponding table in the Supplementary Materials).

Table 3. Out-of-sample error measures for males aged 53 to 87 in 10 countries between 1988 and 2007
(trained on 1948 to 1987). Best values in each column are marked in bold.

Model Bias MAE MAPE RMSE

ACF (SVD) 5.92h 6.77h 20.91% 9.65h

CAE (cPCA) 5.97h 6.72h 19.95% 9.80h

ILC (SVD) 5.94h 6.76h 20.40% 9.99h

ILC (MLE) 6.01h 6.75h 20.38% 10.05h

CAE (MLE) 6.14h 6.75h 19.64% 9.82h

CAE(k, C),
k-means 6.04h 6.68h 20.29% 9.94h

CAE(k, C),
ACF-based 6.06h 6.68h 19.98% 9.65h

CAE(k, C),
LR (av. linkage) 6.37h 7.01h 20.04% 10.58h

CAE Fuzzy,
k = 2 5.90h 6.47h 19.63% 9.43h

CAE Fuzzy,
k = 4 (chosen by BIC) 6.03h 6.76h 20.27% 10.16h
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As a graphical illustration of the projection results, we plot the forecast (black, solid)
against the realized (red, dashed) central death rates for age 67 in Figure 6 (the models
were calibrated on all 10 countries, but we depict only Denmark and France for a clearer
illustration). Additionally, we include 95% prediction intervals (black, dotted). The figures
confirm that all models are biased upwards in their out-of-sample projections. Moreover,
we find that the uncertainty about these projections differs depending on the model and on
the population. The observed death rates for Canada, Denmark and New Zealand decline
faster than most models anticipate, even when taking into account forecast uncertainty.
In particular, we observe a change in the trend of Danish mortality starting around 1995
which, unsurprisingly, none of the models can foresee.

To check the robustness of our results, we have evaluated the algorithms on three
other data sets. Tables with the corresponding out-of-sample error measures can be found
in the Supplementary Materials. There, we first present the model-specific error measures
for the 21 countries which are considered by Li and Lee (2005) for their illustration of the
ACF model. Unsurprisingly, the ACF model shows the best out-of-sample performance for
these countries. Among the one-factor models, the fuzzy clustering model with k = 2 ranks
first, in particular clearly outperforming the ordinary CAE model. Moreover, we show a
further evaluation for the same 10 populations we have considered throughout this section
but for different years, training on 1960 to 1999 and testing on 2000 to 2013. Here, the fuzzy
clustering model works better with k = 3 than with k = 2 but it dominates the ordinary
CAE model with respect to every error measure for both values of k. In addition, it has
to be noted that the ILC model fitted via SVD performs surprisingly well for these data.
Finally, we have evaluated our clustering-based CAE models and the benchmarks on the
10 populations we have considered in this section with the exception of New Zealand (data
only available up to 2013) on even more recent data. We trained the models on the years
1958 to 1997 and evaluated them on the years 1998 to 2017. The results are qualitatively
similar to the previous study. Bias and MAPE are minimized by the ILC model fitted via
SVD. The fuzzy clustering model with k = 3 works slightly better than with k = 2 and
clearly better than the ordinary CAE model. The CAE model based on k-means clustering
also performs very well, yielding the lowest MAE and RMSE. In summary, we can conclude
that no single model stands out as best for all data sets or all error measures. Depending
on the data, the clustering-based extensions of the CAE model, in particular the fuzzy
clustering model, can be a better alternative than the ordinary CAE model.

As an additional robustness test, a comparison to the out-of-sample performance re-
sults of other papers employing clustering methods for mortality forecasting would be inter-
esting. Unfortunately, neither Hatzopoulos and Haberman (2013) nor Guibert et al. (2020)
provide such forecasting performance measures, and the results presented by Danesi et al.
(2015) refer to a different data set containing mortality data for Italian regions only.

Note that all the results on forecasting performance presented in this section come
with the caveat that we have almost exclusively used multivariate, uncorrelated random
walks with drift for projection. More sophisticated time series modeling techniques are
possible and could greatly enhance forecasting performance. However, our focus lies on an
improved modeling of the age effects. The forecasts and performance measures provided
serve the purpose of indicating the potential of our proposed model extensions compared
to the benchmark models.
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(a) ACF (SVD) (b) ILC (MLE)

(c) CAE (MLE) (d) CAE (k, C), k-means

(e) CAE (k, C), ACF-based (f) CAE (k, C), Likelihood-ratio-based (average link-
age)

Figure 6. Cont.
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(g) CAE Fuzzy (k = 2) (h) CAE Fuzzy (k = 4, chosen by BIC)

Figure 6. Actual (red, dashed) and forecast (black, solid) central death rates and 95% prediction intervals (black, dotted) for
males aged 67 in Denmark and France (models calibrated on 10 countries) between 1988 and 2007.

5. Conclusions

We have proposed four clustering-based extensions of the common age effect model,
which yield age effects specific to groups of populations. In particular, we have investigated
a new model inspired by the concept of fuzzy clustering. It has the advantages of giving
us an indication which populations are more difficult to cluster and allowing for more
modeling flexibility than standard cluster analysis methods like k-means. Comparing our
algorithms on the data of 10 populations for ages 53–87, we have found that the majority
of algorithms identifies the very distinct pattern of Danish mortality in the considered time
period and detects two other groups consisting of the anglophone countries, Australia,
Canada, the UK, the USA and New Zealand, on the one hand and the remaining European
countries, France, Sweden, Switzerland and Austria, on the other hand.

Our clustering algorithms facilitate a more detailed analysis of historical mortality
data of multiple populations and the resulting clustering-based extensions of the CAE
model show a better in-sample fit and potentially allow more accurate mortality projections.
However, this depends on the data under consideration. The clustering-based models
we propose seem to be more recommendable for higher ages for which it might be easier
to meaningfully cluster the age effects. Generally, we have found that there is no single
model which performs best in every situation, indicating the need to carefully select the
model with respect to the specific application and the data under consideration. Finally,
we note that, although the absolute differences between the out-of-sample performances of
all considered models are mostly rather small, they can nevertheless have a non-negligible
financial impact, for example due to the large amounts of money which are typically related
to a portfolio of annuities.

There are several ways to extend our model approach, which mostly draw on the
existing literature on multi-population mortality modeling.

• Given the availability of data containing features other than age, country and sex such
as socioeconomic or health-related characteristics, our clustering-based models could
be extended to include such features as well.

• A change point test or similar methods could be applied in order to find the optimal
training period instead of selecting it arbitrarily (see Sweeting 2011).

• To make the clustering-based models more parsimonious, populations could not only
share the age effect parameters βx but also the average mortality level parameters
αx, which Wen et al. (2020) have found to work well for the standard CAE model.
Alternatively, using more parameters to improve the fit, we could also include cohort
effects (see Renshaw and Haberman 2006) or more than one age-period interaction
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term (see Kleinow 2015). For the latter extension, one would need to decide on how
exactly the clustering of the age effects is determined.

• We have not devoted much attention to the projection of the κt time series and mostly
just used the standard approach, i.e., the random walk with drift. Of course, there
are more sophisticated ways to project these time series, for example using general
ARIMA models or imposing a non-trivial correlation structure, and thereby ensure
coherence or semicoherence (Li et al. 2017) of the projections within the clusters or
explicitly model dependencies between the clusters.

• In this regard, it would also be interesting to introduce our clustering algorithms to
the locally coherent modeling framework of Guibert et al. (2020). More precisely, all of
the clustering algorithms in this paper can potentially be extended to cluster period
effects instead of age effects as well. Two aspects which should be addressed in this
context are the increased importance of choosing a suitable projection method for
the obtained cluster-specific period effects and the necessity of a new identifiability
analysis for a fuzzy clustering model on the period effects.

• Our figures clearly show that the estimated age effects lack smoothness, which affects
the resulting fitted and projected death rates and, even before that, also might have an
undesirable influence on the obtained clustering. It could be beneficial to smooth the
βx parameters, for example via a penalized log-likelihood approach (see Delwarde
et al. 2007). In particular, it would be interesting how this influences the clustering
results and how it changes the remaining parameters of the fuzzy maximum likelihood
clustering model. Moreover, for the k-means method, other dimension reduction
techniques such as PCA (see Debón et al. 2017) could be applied to the age effect
vectors as well before performing the clustering.

• With regard to our clustering algorithms, we have found that the BIC as a model
selection criterion may lead to suboptimal out-of-sample performance. Other methods
for selecting the number of clusters or other hyperparameters of the clustering-based
models such as cross validation or the criteria used in Debón et al. (2017) should be
investigated, which might lead to a further improvement in the out-of-sample perfor-
mance of these models as exemplified by the fuzzy maximum likelihood clustering
model in Table 3.

• We emphasize once more that the k-means algorithm is only one of many possible
clustering methods that can be applied to the framework of Section 3.1. It would
be interesting to compare it to other techniques like DBSCAN, spectral clustering
or—using a different distance measure—k-medians clustering. In particular, instead of
k-means one could also apply the fuzzy c-means algorithm and compare the obtained
results to the fuzzy maximum likelihood clustering approach we have proposed
(see Hatzopoulos and Haberman 2013).

Supplementary Materials: Additional details and results on the identifiability of the fuzzy maximum
likelihood clustering model introduced in Section 3.4 are available online at https://www.mdpi.
com/2227-9091/9/3/45/s1. Figures and tables presenting the results of evaluations of the proposed
algorithms similar to the ones in Section 4 for different data sets are available online at https:
//www.mdpi.com/2227-9091/9/3/45/s2.
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Appendix A. Calculating the Number of Free Parameters

As described in Section 2.4, we need the number of free parameters of a model to
calculate its BIC. Generally, the number of free parameters is the number of all parameters
reduced by those which are determined (or determinable) by the imposed identifiability
constraints.

For the CAE(k, C) model (16) with identifiability constraints

xA

∑
x=x1

β
C(i)
x = 1 and

tY

∑
t=t1

κi
t = 0 for all i = 1, . . . , P, (A1)

which includes the ILC and the standard CAE model, the number of free parameters is

npar = (A + Y− 1) · P + (A− 1) · k, (A2)

where A is the number of ages, k is the number of clusters, Y is the number of years and P
is the number of populations.

For the ACF model in formulation (19) with identifiability constraints

xA

∑
x=x1

β̃
C(i)
x = 1 and

tY

∑
t=t1

κ̃
C(i)
t = 0, (A3)

xA

∑
x=x1

βi
x = 1 and

tY

∑
t=t1

κi
t = 0 (A4)

for all i = 1, . . . , P, the number of free parameters is

npar = (2A + Y− 2) · P + (A + Y− 2) · k. (A5)

For the fuzzy maximum likelihood clustering CAE model (32) with identifiability
constraints (36) and (37), the number of free parameters is

npar = (A + k + Y− 2) · P + (A− k) · k. (A6)

If we impose (38) instead of (37), calculating the number of parameters which are
determinable by the NNVM constraints is less straightforward. For k = 2, we have shown
that both sets of constraints are identifiability constraints, and so they should lead to the
same number of free parameters. Therefore, we use the same number of free parameters
for the NNVM-constrained fuzzy CAE model as for the IMI-constrained fuzzy CAE model
for any number of clusters k.

Appendix B. Details on the ACF Clustering Algorithm

Algorithm A1 describes a way to implement the ACF fitting and clustering procedure
from Section 3.2. With regard to line 26, we remark that if P l = ∅, the population to which
the common factor fits the least should get its own cluster, i.e., an LC model. This is ensured
by setting P l = {argmini Ri,l

C }. If there is more than one minimizing population, one of
them is chosen at random to make sure P l contains exactly one population in this case.
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Algorithm A1 The ACF fitting and clustering algorithm, see Section 3.2.

Input: Death rates mi
x,t, explanation ratio threshold η ∈ [0, 1], improvement ratio threshold ρ ∈ [1, ∞).

Output: Number of clusters k, clustering function C, calibrated ACF model parameters αi
x, βi

x, κi
t, β̃

C(i)
x and κ̃

C(i)
t , time

series processes for projecting
(
κi

t
)

t and
(

κ̃
C(i)
t

)
t
.

. initialization

C(i) = 0 for all i ∈ {1, . . . , P}

PNC = {1, . . . , P} . currently unclustered populations

P1 = {1, . . . , P} . populations eligible for cluster l = 1

αi
x = Y−1 ∑tY

t=t1
log mi

x,t

. divisive clustering

while PNC 6= ∅ do

l = maxi 6∈PNC C(i) + 1 . max over empty set is 0

Pold = P l

Fit common factor
(

β̃l
x

)
x
,
(

κ̃l
t

)
t

via SVD of the matrix of pooled centralized log death rates(∣∣∣P l
∣∣∣−1

∑i∈P l
(
log mi

x,t − αi
x
))

x,t
.

Fit an RW with drift to
(

ˆ̃κl
t

)
t

if
∣∣∣P l
∣∣∣ = 1 then(

βi
x
)

x = 0,
(
κi

t
)

t = 0 for i ∈ P l

else

for i ∈ P l do

Fit population-specific factor
(

βi
x
)

x,
(
κi

t
)

t via SVD of the matrix
(

log mi
x,t − αi

x − β̃l
xκ̃l

t

)
x,t

.

Fit an RW without drift to
(
κ̂i

t
)

t, see (22).

Fit an AR(1) process with AR parameter ϕi to
(
κ̂i

t
)

t, see (23).

Calculate Ri,l
C , Ri,l

AC, Ri
RW, Ri

AR, see (20), (21), (24).

if Ri,l
AC < η or (Ri

RW < η and (Ri
AR < η or

∣∣ϕi
∣∣ ≥ 1)) then

P l ← P l \ {i}

end if

end for
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Algorithm A1 Cont.

if P l = ∅ then

P l = {argmini Ri,l
C } . see remark in the text

else

for i ∈ P l do

if Ri,l
C ≥ η and Ri,l

AC < ρRi,l
C then(

βi
x
)

x = 0,
(
κi

t
)

t = 0

end if

end for

end if

end if

if P l = Pold then

. current cluster will not be partitioned further

C(i) = l for all i ∈ P l

PNC ← PNC \ P l

P l+1 = P l

end if

. else, go back to the start of the while loop and try to fit an ACF model to the remaining populations in the reduced

set P l .

end while

k = maxi∈{1,...,P} C(i)

The algorithm terminates after at most P(P+1)
2 iterations because at every iteration

|P l | or |PNC| is reduced by at least 1, and every time |P l | equals 1, at the latest, |PNC| is
reduced by at least 1. Its output consists of both the clustering function C and the ACF
model parameters, including time series models for the cluster-specific and population-
specific period effects. More precisely, the output contains a random walk without drift and
an AR(1) model for each non-zero population-specific period effect. If the AR(1) parameter
ϕi is smaller than one in absolute value, we use the time series model with the larger
explanation ratio for projection of the period effect of population i. Otherwise, we use the
random walk model.

Appendix C. Hierarchical Clustering in the Likelihood-Ratio-Based Clustering Algorithm

The hierarchical agglomerative clustering algorithm begins by assigning each pop-
ulation to a separate cluster, i.e., C1(i) = i for i ∈ {1, . . . , P}. At iteration step s ≥ 1, the
distances d(l, m) between all pairs of clusters Cl = (Cs)−1({l}), Cm = (Cs)−1({m}) for
l, m ∈ Cs({1, . . . , P}), l < m, are calculated. For this, a distance measure d(l, m) between
clusters is derived from the distance measure Tadj(i, j) between populations defined in (31).
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There are different approaches on how exactly to do this, of which we consider single
linkage (SL), where we set

d(l, m) := dSL(l, m) := min
i∈Cl ,j∈Cm

Tadj(i, j), (A1)

complete linkage (CL), where we set

d(l, m) := dCL(l, m) := max
i∈Cl ,j∈Cm

Tadj(i, j), (A2)

and average linkage (AL), where we set

d(l, m) := dAL(l, m) :=
1

|Cl ||Cm| ∑
i∈Cl ,j∈Cm

Tadj(i, j). (A3)

Consider the clusters lmin, mmin with minimal distance,

(lmin, mmin) := argminl<m d(l, m). (A4)

If d(lmin, mmin) is larger than some prespecified threshold ζ > 0, the algorithm termi-
nates with C := Cs. Otherwise, if d(lmin, mmin) ≤ ζ, these two clusters are merged via

C̃s+1(i) :=

{
lmin, if Cs(i) = mmin

Cs(i), otherwise.
(A5)

Then, Cs+1 := φmmin ◦ C̃s+1 with the renumbering mapping

φmmin(r) :=

{
r, if r < mmin

r− 1, otherwise.
(A6)

If Cs+1 is constant, the algorithm terminates with C := Cs+1. Otherwise, s is increased
by 1 and the next iteration begins. Obviously, the procedure terminates after at most
P− 1 steps.
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