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Abstract: Choosing solutions under risk and uncertainty requires the consideration of several
factors. One of the main factors in choosing a solution is modeling the decision maker’s attitude
to risk. The expected utility theory was the first approach that allowed to correctly model various
nuances of the attitude to risk. Further research in this area has led to the emergence of even more
effective approaches to solving this problem. Currently, the most developed theory of choice with
respect to decisions under risk conditions is the cumulative prospect theory. This paper presents the
development history of various extensions of the original expected utility theory, and the analysis
of the main properties of the cumulative prospect theory. The main result of this work is a fuzzy
version of the prospect theory, which allows handling fuzzy values of the decisions (prospects). The
paper presents the theoretical foundations of the proposed version, an illustrative practical example,
and conclusions based on the results obtained.

Keywords: decision making with risk; expected utility theory; probability weighting; rank dependent
utility; value function; prospect theory

1. Introduction

The decision making theory is currently a powerful tool for the formal selection of
optimal decisions under various initial conditions. Decision-making tasks can be divided
into three large classes:

1. Decision-making problems under certainty. The outcomes of alternative decisions
coincide with the decisions themselves.

2. Decision-making problems under risk conditions. The outcomes of alternative deci-
sions depend on the decisions themselves and uncertain factors (random events). The
probabilities of occurrence of relevant random events are given.

3. Decision-making problems under conditions of uncertainty. The outcomes of alter-
native decisions depend on the decisions themselves and uncertain factors (random
events). The probabilities of random events occurrence are not specified.

In decision-making problems under certainty, the Pareto concept of optimal solutions
(Pareto set) is the main concept. In this set, decisions are not comparable in terms of the
criteria values, and the choice of optimal decision is made based on the decision maker’s
subjective preferences.

Many approaches to modeling decision maker (DM) preference systems have been
proposed: additive and multiplicative weighted aggregation of criteria assessments, com-
promise programming, the TOPSIS method, and the analytical hierarchy process (AHP)
(Uzhga-Rebrov 2016; Triantaphullou 2020; Kumar et al. 2017).

In decision-making problems under risk, the criterion for maximizing the expected
value, the Hermejier criterion, the expected value maximization criterion, and the Hodja-
Leman criterion are used (Uzhga-Rebrov 2016; Szpiro 2020).

In decision-making problems under uncertainty, the maximin (minimax) criterion and
the Hurvitz criterion are used (Uzhga-Rebrov 2016).
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The choice of decisions under risk assumes a linear dependence of the outcome’s
utility on its criterion assessment. However, it has long been known that the utility of
money, for example, increases nonlinearly with an increase in its amount. For the first
time, D. Bernoulli tried to formalize this dependence. In 1738, he suggested that money’s
importance (utility) does not increase strictly in proportion to its amount. Currently,
effective methods have been developed for assessing the subjective DM utility on a set of
criteria estimates with respect to the decisions.

The foundations of the expected utility theory (EUT) were laid by von Neumann
and Morgenstern in 1947. Von Neumann and Morgenstern’s expected utility theory to
be an axiomatic prescriptive theory. It is based on the assertion that all DMs are rational,
risk-averse individuals. The utility function’s construction for the DM is based on its
estimates of the deterministic equivalents. The EUT is very widespread. However, practice
has shown that the DM does not always behave in accordance with the requirements of
this theory. The accumulation of data about theory violations led to a revision of some of
its assertions. The main of which is taking into account their DM probability of outcomes,
which was excluded in the EUT.

Another impulse for the development of an alternative theory was the empirical,
where the utility of outcomes depends on the ranks of the outcomes.

The accumulated experiences found its expression in the prospect theory. An initial
version of this theory was presented by Kahneman and Tversky in 1979, and an in-depth
version was presented in (Tversky and Kahneman 1992).

For almost all criteria in choosing decisions under the conditions of certainty and risk,
their fuzzy versions have been proposed (Kaya et al. 2019; Chen et al. 2016; Aggarwal et al.
2019; Radionovs and Uzhga-Rebrovs 2016).

This work aims to present the evolution of the EUT to a cumulative prospect theory
and to present and substantiate a version of this theory with fuzzy estimates of the outcomes
of alternative decisions (prospects). Why is one of the goals the development of the
prospects theory version to handle fuzzy outcome estimates? The reason is that, in practical
decision-making tasks, there are often situations when, for various reasons, it is impossible
to set unambiguous outcome estimates. It becomes necessary to correctly model the existing
uncertainties. The application of fuzzy outcome estimates appears to be an appropriate
approach to model these uncertainties. The paper by Uzhga-Rebrov and Kuleshova (2016)
proposes a version of the prospect theory using fuzzy decision weights.

The present paper is a further step in the fuzzification of a prospect theory. In the
proposed fuzzy version of the prospect theory, the uncertainty of the initial estimates
is translated into uncertain estimates of the value function. The aggregation of fuzzy
estimates is carried out according to the rules of the original prospect theory, taking into
account the fuzzy nature of these estimates. The choice of the optimal perspective is made
by comparing the resulting fuzzy estimates of the expected values.

This article is structured as follows. Section 2 presents the conceptual foundations of
the probability weighting principle; Section 3 presents the basics of rank-dependent utility;
Section 4 presents in detail the basics of the cumulative prospect theory; Section 5 presents
a proposed version of this theory with fuzzy estimates of the prospects outcomes; Section 6
presents an illustrative example of the proposed fuzzy version; Section 7 is devoted to
conclusions from the obtained results.

2. Probability Weighting

Following world practice, starting from this section, we will use different terminol-
ogy. Instead of the concept of an alternative decision, we will use the wider concept of
prospect. In the general case, a prospect can be understood as a set of outcomes of an
alternative decision together with their estimates and probabilities of occurrence. In this
sense, any alternative decision can be considered a prospect since every decision under
risk is associated with many outcomes that depend on random events (states of nature).
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From a decision-making perspective, the EUT is seen as a normative theory that
indicates how individuals should act in risky choice situations. In Schoemaker’s paper
(1982), it is stated that the EUT can be considered as a predictive or positivist theory. This
is due to the fact that the theory exhibits high predictive accuracy compared to other
competing approaches. However, the descriptive properties of this theory raise many
questions. So, in theory, it is postulated that DM’s preferences and their attitude to risk
do not depend on the probabilities of outcomes of alternative decisions. However, in
works (Edwards 1954, 1962), using appropriate examples, it is shown that this is not
true. Individuals under conditions of risky choices implicitly consider the probabilities
of outcomes. Other convincing examples can be found in (Wakker 2010; Fehr-Duda and
Epper 2012).

The main purpose of probability weighting is to replace the actual values of the
outcome probabilities with values that reflect the subjective perception of these values
when choosing alternatives under risk conditions.

Based on the processing of numerous empirical studies’ results, the following para-
metric forms of the probability weighting functions have been proposed.

1. Weighting function Karmakar (Karmakar 1979):

w(p) =
pγ

pγ + (1 + p)γ , 0 < γ < 1. (1)

2. Probability weighting function Prelec-I (Prelec 1998):

w(p) =
1

e(−lnp)α , 0 < α < 1. (2)

3. Probability weighting function Prelec-II (Prelec 1998):

w(p) =
1

eβ(−lnp)α , 0 < α < 1, β > 0. (3)

The values of the function parameters reflect the degree with which DM subjectively
percept the probabilities and should be determined individually for each DM.

For the purposes of graphical representation, one can set different values of proba-
bilities and parameters and receive displays of each option’s family of probability weight-
ing functions.

Immediately after the concept of weighting probabilities emerged, attempts were
made to use this concept to select optimal prospects. Historically, the first step was to
use outcome estimates and weighted values of probabilities. Let there be a prospect
A = (k1, p1, . . . , kn, pn). Then, the weighted expected value associated with this prospect is
calculated as

K(A) =
n

∑
i=1

kiw(pi), (4)

where ki is a quantitative estimate of i-th outcome; w(pi) is the subjective weight given to
the probability pi of occurrence of i-th outcome.

If, instead of quantitative estimates of the prospect A outcomes, their transformations
into utility estimates are used, then expression (4) takes the form

U(A) =
n

∑
i=1

u(ki)w(pi), (5)

where u(ki) is the utility assessment of the i-th outcome; w(pi) is the subjective weight
given to the probability of the i-th outcome being realized.
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3. Rank Dependent Utility

The foundations of the rank-dependent utility theory were established in (Quiggin
1982). Let us sequentially consider the main theses of this theory.

In the approach of subjectively weighted probabilities (expression (5)), the generalized
utility of a prospect depends both on the estimates of the utility of its outcomes and on
the weighted values of the outcomes’ probabilities. As noted earlier, probability weights
reflect the individual’s subjective perception of the corresponding values of outcome
probabilities. Obviously, the same values of probabilities will give the same weighted
values of these probabilities for different prospects in the real prospect choosing problem.
These weighted values are completely independent from the estimates of the outcomes
or the estimates of the utility of the outcomes and are determined only by the values of
the corresponding probabilities and the shape of the probability weighting function. Such
explicit independence of the weighted values of probabilities from the prospect outcomes
estimates can lead to the following problem. Let’s assume that the following two prospects
are given (see Figure 1).
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Figure 1. Graphical representation of two prospects.

These prospects have the same estimates of the probabilities of all outcomes and the
same estimates of outcomes (1) and (2). Only the estimates for the outcome (3) differ.
Obviously, based on a simple comparison of prospects, prospect B should be preferred.
We get the same result if we calculate the expected values, expected utilities, or weighted
utilities for both prospects. In any case, in this example, individual outcome estimates and
individual values with respect to the probabilities of the outcomes of the prospects (or the
weights of these probabilities) are used to select the best prospect.

However, the following idea arises. Since the outcome (3) of prospect B is preferred
to the outcome (3) of prospect A, it may be necessary to somehow additionally evaluate
the greater attractiveness of this outcome in addition to its assessment and the value of the
probability of its occurrence. In other words, it seems attractive to assess the significance of
a prospect outcome not only on the basis of these outcome estimates but also depending
on the place that this outcome holds in the overall hierarchy of outcomes.

Before moving on to discussing the possibility of implementing this attractive idea,
we will introduce two important concepts.

Analyzing the prospect A outcome data presented in Figure 1, the following conclu-
sions can be drawn regarding prospect A:

• the probability of getting a win greater than 40 is equal 0, since prospect A has no gain
with such an estimate;

• the probability of getting a win greater than 30 is equal to p(1) = 0.40, since such a
gain is ensured by outcome (1);

• the probability of getting a win greater than 15 is equal to p(1) + p(2) = 0.40 + 0.40 =
0.80 since any of the outcomes, (1) or (2), provides such a gain;

• the probability of getting a win greater than 0 equals p(1) + p(2) = p(3) = 0.40 +
0.40 + 0.20 = 1.00, since the occurrence of any from prospect outcomes leads to a
positive gain.

Similar conclusions can be drawn with respect to prospect B.
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Considering the specifics of the above-defined probabilities, they are called good news
probabilities. Denoting these probabilities by p∗, we have

p∗(1) = 0;
p∗(2) = 0.40;
p∗(3) = 0.80.
By analogy, consider the probabilities of getting a win that is less than a win for

this outcome:

• the probability of getting a win less than 40 is p(2) + p(3) = 0.40 + 0.20 = 0.60;
• the probability of getting a win less than 30 is p(3) = 0.20.

Considering the specifics of the probabilities thus defined, they are called the bad
news probabilities.

To better understand the concept of good and bad news probabilities, consider a
generalized prospect A = (k1, p1, . . . , kn, pn). Let’s assume that the outcomes of this
prospect are ordered in a descending order of their estimates: k1 > k2 > . . . > kn. If in
the original presentation of a prospect, its outcomes are not ordered in the way presented
above, this can be done without influencing subsequent conclusions. If in the original
presentation of a prospect there are outcomes with the same estimates, they are combined
into one outcome with the same estimate and probability of occurrence p(i) + p(j). A
conditional prospect A = (k1, p1, . . . , kn, pn) with k1 > k2 > . . . > kn and the probabilities
of good and bad news for that perspective are graphically depicted in Figure 2.
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. . . > kn.

Note that the outcomes of the prospect are ordered by the values of their estimates but
not by the values of the probabilities. This fact is explicitly reflected in Figure 2, where the
columns representing the probabilities of the prospect’s outcomes have different heights.
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From Figure 2, it becomes clear that the good news probability for the i-th prospect
outcome can be calculated as

p∗i =
i−1

∑
j=1

pj, k j > ki. (6)

Similarly, the bad news probability for the i-th prospect outcome can be calculated as

p∗∗i =
n

∑
j=i+1

pj, k j < ki. (7)

Let’s call the rank of the i-th outcome its probability of good news for that outcome.
Denoting this rank through ri, we have

ri = p∗i , i = 1, . . . , n. (8)

Let us define the concept of the weight of a decision. Decision weight is the coefficient by
which the estimates of outcomes are multiplied when determining the aggregate estimate
for the prospect. If we are talking about the standard maximization of the expected value,
then the probabilities of realizing the outcomes of the alternative decision act as the decision
weights. The same applies to the definition of expected utility. In the theory of weighted
expected utility, the decision weights are the weighted values of the outcomes’ probabilities.

In the theory of rank-dependent utility, the relationship between the decision weights
and the probabilities of the corresponding outcomes is quite complex. To clarify this
relationship, let us turn to Figure 3 (the idea of the figure is borrowed from (Wakker 2010)).

Risks 2021, 9, x FOR PEER REVIEW 7 of 18 
 

 

iπ

 
Figure 3. Schematic representation of the concept of decision weight in rank-dependent utility 
theory. 

In this figure, the point ri  schematically represents the rank of the i - th  outcome 

on the probability scale. The point r + pi i  schematically represents the sum of the rank 

ri  and the probability of the realization of i - th  outcome pi . Using the graph of the 
probability weighting function w(p) , on the vertical scale of the weights, we determine the 

values ( )w ri , ( )w r + pi i , corresponding to the points ri  and r + pi i . 
The decision weight of the i - th  outcome is determined as 

( ) ( )π = π p = w r + pi i i i  (9)

Let’s assume, there is a prospect ( )A = x , p , ..., x , pn n1 1 , x > x > ... > xn1 2 . For each 

i - th  outcome, i = 1, ..., n , their estimates are known in the utility scale ( )u ki , and the de-

cision weightπi , as determined by expression (9). Then, the weighted value of the rank-
dependent utility for this prospect is calculated by the expression 

( ) ( ) ( ) ( ) ( )    
n n

U A = u k π = u k w p + ... + p - w p + ... + pnRD i i i i i-1 1i=1 i=1
 (10)

4. Cumulative Prospect Theory 
The prospect theory is currently the most advanced descriptive theory of prospect 

selection. The first version of the theory was presented in (Kahneman and Tversky 1979). 
This version in scientific literature is usually called the original prospect theory. The cumula-
tive prospect theory was presented in (Tversky and Kahneman 1992). It is a significant ex-
tension of the original prospect theory. This theory combines the principles of expected 
utility theory, probability weighting, and rank-dependent utility. 

The authors in their theory propose to use the following parameterized form of the 
value function: 

Figure 3. Schematic representation of the concept of decision weight in rank-dependent utility theory.

In this figure, the point ri schematically represents the rank of the i-th outcome on
the probability scale. The point ri + pi schematically represents the sum of the rank ri and
the probability of the realization of i-th outcome pi. Using the graph of the probability
weighting function w(p), on the vertical scale of the weights, we determine the values
w(ri), w(ri + pi), corresponding to the points ri and ri + pi.
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The decision weight of the i-th outcome is determined as

πi = π(pi) = w(ri + pi) (9)

Let’s assume, there is a prospect A = (x1, p1, . . . , xn, pn),x1 > x2 > . . . > xn. For
each i-th outcome, i = 1, . . . , n, their estimates are known in the utility scale u(ki), and
the decision weight πi, as determined by expression (9). Then, the weighted value of the
rank-dependent utility for this prospect is calculated by the expression

URD(A) =
n

∑
i=1

u(ki)πi =
n

∑
i=1

u(ki)[w(pi + . . . + pn)− w(pi−1 + . . . + p1)] (10)

4. Cumulative Prospect Theory

The prospect theory is currently the most advanced descriptive theory of prospect
selection. The first version of the theory was presented in (Kahneman and Tversky 1979).
This version in scientific literature is usually called the original prospect theory. The cumulative
prospect theory was presented in (Tversky and Kahneman 1992). It is a significant extension
of the original prospect theory. This theory combines the principles of expected utility
theory, probability weighting, and rank-dependent utility.

The authors in their theory propose to use the following parameterized form of the
value function:

f or k > 0 v(k) = kθ ; f or k = 0 v(k) = 0; f or k < 0 v(k) = −λ(k)θ′ , (11)

where k—the value of the evaluation criterion; θ, θ′—function parameters; λ—parameter
characterizing loss aversion. The authors suggest using the value λ = 2.25.

Note that the concept of a value function in this context is fully consistent with the
concept of a utility function in expected utility theory.

The authors propose to use the following probability weighting functions for outcomes’
probabilities with positive and negative estimates:

w+(p) =
pγ(

pγ + (1− p)γ) 1
γ

, γ = 0.61. (12)

w−(p) =
pσ(

pσ + (1− p)σ) 1
σ

, σ = 0.69. (13)

The graphs of these functions are shown in Figure 4.
How can the generalized value of the prospect be calculated within the framework

of the cumulative prospect theory? Let a prospect A = (k1, p1, . . . , kn, pn) be given, the
outcomes of which are regulated in a decreasing order of their estimates:

k1 ≥ k2 ≥ . . . ≥ kr ≥ 0 ≥ kr+1 ≥ kr+2 ≥ . . . ≥ kn (14)

Note that compared to the rank-dependent utility theory, this theory allows negative
outcome estimates.

Using the probabilities’ weighting functions w+(p), w−(p), and the values of the
outcomes’ probabilities, the decision weights’ values for the outcomes are calculated by
the expressions:

f or i ≤ r π+
i = w+(pi + . . . + p1)− w+(pi−1 + . . . + p1), π+

1 = w+(p1); (15)

f or j > r π−j = w−
(

pj + . . . + pn
)
− w−

(
pj+1 + . . . + pn

)
, π−n = w−(pn). (16)
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Then the generalized value of prospect A value is calculated by the expression

VPT(A) =
r

∑
i=1

v(ki)π
+
i +

n

∑
j=i+1

v
(
k j
)
π−j , (17)

where π+
i is the decision weight of the i-th outcome with a positive estimate, calculated by

expression (15);
π−j is the decision weight of the j-th outcome with a negative estimate, calculated by

expression (16);
v(ki), v

(
k j
)
—estimate of the i-th and j-th outcome values, respectively.
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5. Cumulative Prospect Theory’s Version with Fuzzy Outcome Estimates

The fuzzy sets theory’s basics were laid in the paper by Zadeh (1965). A fuzzy number
is a fuzzy set, which is defined on a real number set. At present, the theory of fuzzy sets
has a very widespread application in various fields of human activity (Klir and Yuan 1995;
Chen and Ku 2008; Dutta and Dash 2018; Zimmermann 2001; Gupta and Ragade 1977;
Singh et al. 2013).

In general, the membership function graph of a fuzzy number can form an arbitrary
shape, which satisfies the following restrictions: any fuzzy number is a convex fuzzy
set with a membership function, whose membership values are strictly monotonically
increasing than strictly monotonically decreasing with increasing values on the used
quantitative scale. Additionally, L-functions are possible, whose membership values are
strictly monotonically increasing or strictly monotonically decreasing with increasing
values on the used quantitative scale. The most common fuzzy numbers have membership
functions with graphs of triangular and trapezoidal shapes.

In the present paper, to model the uncertainties associated with the outcome estimates,
normal triangular fuzzy numbers are used (the maximum value of the membership function
equals 1); however, all subsequent interpretations and conclusions will also be valid for
normal trapezoidal fuzzy numbers. The use of generalized fuzzy numbers, as well as
intuitionistic fuzzy number and fuzzy number type 2 have been considered inappropriate
for the purposes of this paper.

The choice of the optimal perspective in the proposed version of the fuzzy prospect
theory is based on the comparison of the resulting fuzzy estimates. Numerous methods
have been proposed for comparing fuzzy numbers. These methods can be divided into the
following general groups:

1. A group of methods that use the distance values from the centroids of fuzzy numbers
to certain original points (Wang et al. 2006; Cheng 1998).

2. A group of methods that use the specific areas as an evaluation function (Rao and
Shankar 2012; Wang and Lee 2008).

3. A group of methods that use the concepts of maximum and minimum values (Chou
et al. 2011).

A specific method for comparing fuzzy numbers is presented in (Ganesh and Jayaku-
mar 2014).

Other methods for comparing fuzzy numbers are also offered. Using the appropriate
method allows estimating the distances between the fuzzy numbers at any of their relative
position on the measurement scale.

Theoretical basics for a simple comparison of fuzzy numbers can be found in (Buckley 2006).
In this paper, we use a simple method, the essence of which is as follows. Let’s turn to

Figure 5.
This figure graphically represents two fuzzy numbers Ã and B̃. It is necessary to

determine which of these fuzzy numbers is greater. For this, two estimated values are
calculated: eÃB̃, eB̃Ã. The value eB̃Ã is calculated by the expression

eB̃Ã = maxp>r
{

min
(
µÃ(p)

)
, µB̃(r)

}
, p, r ∈ R. (18)

Expression (18) sets the requirement of what core of fuzzy number B̃ should settle to
the right of fuzzy number Ã’s core.

Obviously, eB̃Ã = 1 for fuzzy numbers, Ã and B̃, in Figure 5. This value is reached at a
point r0 = 6.

The value eÃB̃ is defined as the value of the membership function for the point β, at

which the graphs of the membership functions µ
(

Ã
)

, µ
(

B̃
)

intersect. The number β is
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interpreted as the degree to which Ã is greater than B̃ (Buckley 2006, pp. 17–18). The fuzzy
number B̃ is greater than the fuzzy number Ã to the degree β if

B̃ > Ã→ eB̃Ã = 1, eÃB̃ ≤ β. (19)

Value of β is assessed subjectively. In this paper, β = 0.5 as a compromise.
Cumulative prospect theory is designed to select optimal prospects when the initial

data are presented in a clear deterministic form. However, in real circumstances, it is
not always possible to provide deterministic estimates of outcomes. Interval or fuzzy
estimates can be used to model the existing uncertainty. This paper presents a version of
the cumulative prospect theory with fuzzy outcome estimates.

Let the outcome estimates be given in the form of fuzzy numbers k̃ j =
(

k jl , k jc, k jw

)
,

j = 1, . . . , n, where k jl is the lower limit of the fuzzy number k̃ j support, k jc is the value

of the estimate corresponding to the membership function value µ
(

k̃ j

)
= 1, k jw is the

upper limit of the fuzzy number k̃ j support. A fuzzy outcomes’ estimates should satisfy
the following requirements: (a) minimal lower bound for any positive fuzzy number is
greater or equal to 0; (b) maximal right bound for any negative fuzzy number is smaller or
equal to 0. Fuzzy numbers (−a, 0, 0), (0, 0, b) are also possible, where a is the left support
boundary and b is the right support boundary for the corresponding fuzzy number.

As the cumulative prospect theory uses value estimates instead of outcome estimates,
we must transform fuzzy estimates k̃ j into fuzzy estimates ṽ

(
k̃ j

)
. The scheme of such a

transformation for a positive fuzzy value k̃ j is shown in Figure 6. This transformation is
based on the extension principle formulated in (Zadeh 1965) and developed in subsequent
works by the author. For negative values of outcome estimates, their transformation is
performed in exactly the same way.
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Using the given fuzzy number k̃ j and the graph of the function v(k), we define the

characteristic points v
(

k jl

)
, v
(
k jc
)
, v
(
k jw
)

and the corresponding fuzzy number ṽ
(

k̃ j

)
. In

exactly the same way, fuzzy value estimates for other prospect outcomes are determined.
Then the fuzzy value of the generalized value for prospect A can be calculated by

the expression

ṼPT(A) =
r

∑
i=1

ṽ
(

k̃i

)
π+

i +
n

∑
j=r+1

ṽ
(

k̃ j

)
π−j , (20)

Where π+
i —the decision weight of the i-th outcome with a positive estimate, calcu-

lated by expression (15);
π−j —the decision weight of the j-th outcome with a negative estimate, calculated by

expression (16);
ṽ
(

k̃i

)
, ṽ
(

k̃ j

)
—fuzzy estimates of the value of the i-th and j-th outcomes.

6. Illustrative Example

There are two prospects: A and B (see Figure 7).
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The value function is given in the form v(k) = k0.05, k > 0, v(k) = −2.25(v(k)). The
probability weighting functions are given by expressions (12), (13). It is necessary to choose
the optimal prospect based on the generalized fuzzy estimate (18).

Using the above expressions for the value function, we calculate fuzzy estimates of
the prospects’ outcome values:

Prospect A: Prospect B:
ṽ(1) = (1.232, 1.237, 1.241) ṽ(1) = (1.222, 1.227, 1.232)
ṽ(2) = (1.210, 1.216, 1.222) ṽ(2) = (1.195, 1.203, 1.210)
ṽ(3) = (1.194, 1.203, 1.210) ṽ(3) = (1.175, 1.185, 1.195)

v(4) = (−2.644,−2.614,−2.576) ṽ(4) = (−2.576,−2.524,−2.439)
ṽ(5) = (−2.689,−2.666,−2.644) ṽ(5) = (−2.643,−2.614,−2.576)
ṽ(6) = (−2.722,−2.704,−2.686) ṽ(6) = (−2.772,−2.706,−2.688)

Using expressions (15), (16), we calculate the values of the decision weights. When
calculating the decision weights, the weights of the relevant probabilities are calculated
using expressions (12), (13).

- prospect A:

π+
1 = w+(p1) = w+(0.10) = 0.185;

π+
2 = w+(p1 + p2)− w+(p1) = w+(0.10 + 0.20)− w−(0.10) =

= w+(0, 30)− w+(0, 10) = 0.318− 0.185 = 0.133;

π+
3 = w+(p1 + p2 + p3)− w+(p1 + p2) = w+(0.10 + 0.20 + 0.20)− w+(0.10 + 0.20) =

= w+(0.50)− w+(0.30) = 0.421− 0.318 = 0.103;

π−4 = w−(p4 + p5 + p6)− w−(p5 + p6) = w−(0.30 + 0.10 + 0.10)− w−(0.10 + 0.10) =
= w−(0.50)− w−(0.20) = 0.453− 0.257 = 0.196;

π−5 = w−(p5 + p6)− w−(p6) = w−(0.10 + 0.10)− w−(0.10) =
= w−(0.20)− w−(0.10) = 0.257− 0.170 = 0.087;

π−6 = w−(p6) = w−(0.10) = 0.170.

- prospect B:
π+

1 = w+(p1) = w+(0.20) = 0.261;

π+
2 = w+(p1 + p2)− w+(p1) = w+(0.20 + 0.20)− w−(0.20) =

= w+(0.40)− w+(0.20) = 0.370− 0.261 = 0.109;

π+
3 = w+(p1 + p2 + p3)− w+(p1 + p2) = w+(0.20 + 0.20 + 0.10)− w+(0.20 + 0.20) =

= w+(0.50)− w+(0.40) = 0.421− 0.370 = 0.051;
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π−4 = w−(p4 + p5 + p6)− w−(p5 + p6) = w−(0.20 + 0.20 + 0.10)− w−(0.20 + 0.10) =
= w−(0.50)− w−(0.30) = 0.453− 0.327 = 0.126;

π−5 = w−(p5 + p6)− w−(p6) = w−(0.20 + 0.10)− w−(0.10) =
= w−(0.30)− w−(0.10) = 0.327− 0.170 = 0.157;

π−6 = w−(p6) = w−(0.10) = 0.170.

Using expression (18) we calculate the generalized fuzzy value estimates for both prospects.

ṼPT(A) = (1.232, 1.237, 1.241) ∗ 0.185 + (1.210, 1.216, 1.222) ∗ 0.133+
+(1.194, 1.203, 1.210) ∗ 0.103−+(−2.644,−2.614,−2.576) ∗ 0.196−

+(−2.689,−2.666,−2.644) ∗ 0.087 + (−2.722,−2.704,−2.666) ∗ 0.17 =
= (0.548, 0.553, 0.556)− (1.215, 1.205, 1.192) = (−0.667,−0.652,−0.636).

ṼPT(B) = (1.222, 1.227, 1.232) ∗ 0.261 + (1.195, 1.203, 1.210) ∗ 0.109+
+(1.175, 1.185, 1.195) ∗ 0.051 + (−2.576,−2.524,−2.435) ∗ 0.126−

+(−2.643,−2.614,−2.576) ∗ 0.157 + (−2.722,−2.706,−2.686) ∗ 0.170 =
(0.509, 0.512, 0.516)− (1.203, 1.189, 1.168) = (−0.694,−0.577,−0.652).

To choose the optimal prospect, it is necessary to compare the fuzzy numbers ṼPT(A),
ṼPT(B).

In Figure 8, the graphs of the membership functions of the fuzzy numbers ṼPT(A),
ṼPT(B) are presented.
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Using the above approach to compare fuzzy numbers, it can be unambiguously
concluded that prospect A is optimal.

It should be noted that fuzzy value estimates are always asymmetrical; hence, the
resulting fuzzy estimates are also always asymmetrical. It allows a reliable comparison to
be implemented.
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7. Conclusions

The expected utility theory (von Neuman and Morgenstern 1947) has made a signifi-
cant contribution to the development of effective methods for choosing decisions under
risk and uncertainty. In subsequent years, this theory has evolved, with the end result of
a cumulative prospect theory. Why could the expected utility theory not satisfy decision-
makers? The fact is that the attitude of decision-makers (DM) towards risk is the most
important factor in choosing the best decisions in the face of risk and uncertainty. In the
expected utility theory, the risk attitude of DM is modeled only in the form of the utility
function. Practical research has shown that in addition to possible losses, many other
factors affect the attitude to risk. Taking these factors into account led to the development
of extensions of the expected utility theory. In the probability weighting approach, the
attitude to the risk of loss is modeled in the form of the utility function. Additionally, using
the probability weighting function, the attitude of DM to risk is modeled on the set of
outcome probabilities. In the theory of rank-dependent utility, using decision weights, the
attitude to risk of DM is modeled on a set of estimates of the prospect’s outcomes.

In this paper, we have devoted a significant amount to describing the predecessors of
the prospect theory. This is because without understanding the previous extensions, it is
impossible to understand and explain the prospect theory.

The prospect theory, in its most advanced form, includes everything accumulated by
previous versions regarding the modeling of DM risk attitudes. The modern form of the
cumulative prospect theory is based on numerous psychological studies by the authors
(Kahneman 2002), (Kahneman and Tversky 1984), (Kahneman et al. 1991), (Kahneman et al.
2008), (Tversky and Kahneman 1974, 1981, 1986, 1991). Therefore, the theory handles all
risk factors correctly. The authors proposed their own version of the probability weighting
function, which is widely used in by decision analysts. Their proposed parametric forms
of value functions for the estimates of prospect’s positive and negative outcomes have also
received overall recognition. The theory includes the concepts of decision weights, first
formulated in the theory of rank-dependent utility.

For many approaches to choosing a decision, their fuzzy versions are presented. This
is especially true for multi-criteria approaches to the decision choice. There is a version of
the fuzzy expected utility theory where the utility function is not formed, but the utility is
presented in the form of fuzzy categories, which are then used to calculate the expected
utility of the alternatives.

This approach is inapplicable to the prospect theory since its value functions have a
parametric form. Therefore, in this paper, a version of the prospect theory is proposed,
provided that the outcomes’ estimates are given in a fuzzy form. Such estimates can be
used in situations where it is impossible to set deterministic estimates for various reasons.

The transformation of fuzzy estimates into fuzzy estimates of values is carried out
based on the value functions. Figure 6 shows a graphical interpretation of this transfor-
mation. However, in practice, the definition of fuzzy values’ estimates is performed by
calculating the characteristic points of fuzzy numbers ṽ

(
k̃ j

)
, using the characteristic values

of fuzzy estimates k̃ j and analytical expressions of value functions (11). This transformation
is based on the extension principle of L.A. Zadeh (Zadeh 1965) and is a variant of fuzzy
functions, the components of which are fuzzy numbers.

Let us analyze the results obtained in this work. First, the results of transformation
show that negative fuzzy values prevail. This is exclusively related to the nature of the value
functions (11). In prospect theory, the negative values’ estimates play a more important
role than their positive estimates. This is a reflection of the loss aversion in individuals. To
choose the optimal prospect, such asymmetry of fuzzy estimates is not of importance. In
the above illustrated example, both generalized fuzzy estimates are negative, which did
not affect the choice of the optimal prospect.

Fuzzy value estimates are robust estimates. Otherwise, the degree of fuzziness of
the initial estimates has little effect on the degree of fuzziness of the resulting fuzzy value
estimates. This fact is a positive characteristic of the proposed version.
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