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Abstract: In this paper, we propose a new multivariate mean-reverting model incorporating state-of-
the art 4/2 stochastic volatility and a convenient principal component stochastic volatility (PCSV)
decomposition for the stochastic covariance. We find a quasi closed-form characteristic function
and propose analytic approximations, which aid in the pricing of derivatives and calculation of
risk measures. Parameters are estimated on three bivariate series, using a two-stage methodology
involving method of moments and least squares. Moreover, a scaling factor is added for extra degrees
of freedom to match data features. As an application, we consider investment strategies for a portfolio
with two risky assets and a risk-free cash account. We calculate value-at-risk (VaR) values at a 95%
risk level using both simulation-based and distribution-based methods. A comparison of these VaR
values supports the effectiveness of our approximations and the potential for higher dimensions.

Keywords: principal component analysis; 4/2 stochastic volatility model; moment-generating func-
tion; risk management calculations

1. Introduction

In mathematical finance, principal component analysis (PCA) is used to reduce dimen-
sionality in the explanation of a vector of asset returns; see, for instance, Alexander (2001)
for discrete-time model applications. The methodology has also been used in continuous-
time stochastic processes for financial applications; see Escobar et al. (2010) and Escobar
and Olivares (2013) for its usage in collateralized debt obligations (CDO) and exotic finan-
cial derivatives pricing, as well as Escobar and Gschnaidtner (2018) and more generally
De Col et al. (2013) for factor and PC analyses applications to foreign exchange data.

When modeling financial or any complex data, one can focus on capturing the stylized
facts reported in the literature. The best-known features of financial data are as follows: fat
tails, changing volatilities and correlations, the leverage effect and co-volatility movements.
Examples of a refined fact of financial data are the smiles and smirks of the implied
volatility surface. To capture them, in Christoffersen et al. (2009), the authors proposed
a PCA-inspired stochastic covariance (SC) model using the popular Heston stochastic
volatility model Heston (1993) as the underlying component.

These features can be captured by rich SC models, with proper marginal structures. SC
models have received significant attention in the literature; the best-known representatives
are the stochastic Wishart family, see Da Fonseca et al. (2007); Gouriéroux (2006), and
the Ornstein–Uhlenbeck (OU) family, see Muhle-Karbe et al. (2012), of models, as well
as general linear-quadratic jump-diffusions, see Cheng and Scaillet (2007). Even though
these models show realistic advantages over the classical Black–Scholes model, they lose
their tractability as a result of an increase in model dimensions (i.e., an increase in the
number of parameters and simulation paths). This is commonly known as the curse of
dimensionality, and PCA is a viable method to control the problem with dimensionality.
Inspired by this, principal component stochastic volatility (PCSV) models are built from
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a linear combination of tractable one-dimensional counterparts. Their applications have
been studied in a series of papers since 2010; see, for example, De Col et al. (2013); Escobar
(2018); Escobar et al. (2010); Escobar-Anel and Moreno-Franco (2019).

Current PCSV models rely on Heston SV for the components, also known as the 1/2
model. A new model for single assets, namely, the 4/2 volatility process, was masterfully
presented in Grasselli (2016). Notably, the Heston model (the 1/2 model) predicts that the
implied volatility skew will flatten when the instantaneous volatility increases (e.g., finan-
cial crises), while another embedded structure, the 3/2 model see Platen (1997) predicts
steeper skews. The author argues that the two processes complement each other in better
explaining the implied volatility surface. There are many interesting, recent generalizations
of the 4/2 model, see, for example, Cui et al. (2021) and Kirkby and Nguyen (2020) and the
literature therein.

The works presented above mostly target the equity market and are built based
on geometric Brownian motion (GBM)-type processes, and they are hence not suitable
for commodities and volatility indexes. These asset classes display mean-reverting and
spillover effects, both of which are stylized facts not seen in equities. Mean-reverting effects
capture the stationary behavior of prices, which tend to go back to a long-term mean. On
the other hand, spillover refers to the impact of one asset on the trends (drift) of other
assets (i.e., the impact of one asset on the long term average “stationary price” of a second
asset). Our modeling in this paper will ensure that these two facts are captured.

Our modeling is inspired by a recent paper by Cheng et al. (2019) that introduces a
generalized multivariate mean-reverting 4/2 factor analysis (FA) model. The model uses the one-
dimensional mean-reverting 4/2 stochastic volatility proposed by Escobar-Anel and Gong (2020)
as the underlying model. They obtained an analytical representation of the characteristic func-
tion (c.f.) of a vector of asset prices as well as a second conditional c.f. for non-mean-reverting
nested cases. Thus, the FFT-based option pricing method, for example Carr and Madan (1999),
can be used, and exact simulation is possible. The authors further identified a set of conditions
that not only produces well-defined changes of measure, but also avoids local martingales for
risk-neutral pricing purposes.

In this paper, we make several contributions to the literature:

• We studied in detail a multivariate mean-reverting 4/2 stochastic volatility model
based on PCA, which is inspired in the general framework of Cheng et al. (2019).
The SC in the new model is decomposed into constant eigenvectors that capture
the correlation among assets and a diagonal eigenvector matrix whose entries are
modeled by the 4/2 process.

• The PCA structure allows us to find a semi-closed-form c.f. for the vector of returns.
It permits the extension to multidimensions of simple but accurate approximation
approaches, first introduced in Escobar-Anel and Gong (2020) for one dimension,
to find closed-form approximations to the c.f., which are proven to be accurate for
realistic parameter settings.

• We use the estimation approaches developed in Escobar-Anel and Gong (2020) to
estimate the parameters for special cases of the proposed model. Here, we use two
pairs of bivariate time series capturing both the asset and its variance. Estimation of
multidimensional processes is rare in the literature, and our work demonstrates that
many, but not all, of the parameters are statistically significant, confirming stylized
facts of commodity prices and volatility indexes such as stochastic correlation and
spill-over effects.

• A risk management application, based on a constant proportion strategies portfolio,
for example Merton (1975) and DeMiguel et al. (2009), demonstrates the accuracy of
the approximation.

The rest of the paper is organized as follows: in Section 2, we define the model and
derive two sub-models for two parametric constructions. Then, in Section 3, we expand
the theoretical results for the c.f.s obtained in Cheng et al. (2019) with approximations.
In Section 4, we focus on estimation for the multivariate mean-reverting 4/2 stochastic
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volatility model. The estimation method considered is based on the method developed in
Escobar-Anel and Gong (2020) with the introduction of a new scaling factor. Thereafter, in
Section 5, we construct a portfolio with two risky assets and one risk-free cash account, and
we subsequently calculate the value-at-risk (VaR) at a 95% level using various techniques.
Finally, Section 6 concludes the paper.

2. Model Definition

In this section, we define the general model. We first introduce a model with spillover
effects, and we later cover models with separable spillover effects and no spillover effects
as special cases. We also study the implications of the model on the covariance process.

2.1. General Model Setup

Suppose Xt = (X1(t), . . . , Xn(t))′ is a vector of assets. The dynamics for each asset
Xi(t) under the so-called historical measure P is defined as

dXi(t)
Xi(t)

=

[
Li +

n
∑

j=1
cij
(√

νj(t) +
bj√
νj(t)

)2 −
n
∑

j=1
βijln(Xj(t))

]
dt +

n
∑

j=1
aij
(√

νj(t) +
bj√
νj(t)

)
dWP

j (t),

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t), j = 1, . . . , n
(1)

where WP
i (t) and BP

j (t) are independent Brownian motions if i 6= j, and they are correlated

if i = j, that is, the quadratic variation 〈WP
i (t), BP

i (t)〉 = ρit, where ρi is constant. The

parameters for each νj(t) process are positive and satisfy the Feller condition: αjθj >
ξ2

j
2 .

Moreover, we assume that the mean-reverting level of νj(t) decreases as j increases; that is,
0 < θj < θj−1, for j = 2, . . . , n. This last feature is intended to sort the eigenvalues in order
of importance, and bj’s measure the “weight” of the 3/2 components.

This model is unlike a traditional mean-reverting model, as it takes into account the
spillover effects in the drift, which appear in the form of βij, i 6= j. We mentioned above
that the spillover effects show the impacts of one asset on others; these impacts shall not
be confused with correlations. The correlations are reflected in the price trend of both
assets, capturing co-movements between assets. Spillover effects describe the impact on
the mean-reverting level of one asset by others (i.e., the shift in the long term mean due to
the movements of other assets). The concept of spillover effects can be understood as how
much, for example, a demand curve of one good shifts according to the change in factors
of other goods. In addition, although this paper does not dwell into risk-neutral pricing,
we should highlight that changes of measure are feasible on each principal component
along the lines of Proposition 4 in Escobar-Anel and Gong (2020), this is changes of the

type: dWP
j = λj

(√
νj(t) +

bj√
νj(t)

)
dt + dWQ

j , dBP
j = λnuj

√
νjdt + dBQ

j .

Equation (1) can be written in matrix form as follows:

dXt = diag(Xt)
[
(L + CVt − B · ln(Xt))dt + Σ

1
2
t dWP

t
]
. (2)

where Wt = (WP
1 (t), . . . , WP

n (t))′ is a vector of independent standard Brownian motions;

B =


β11 · · · β1n
...

. . .
...

βn1 · · · βnn

, L = (L1, . . . , Ln)′, C =


c11 · · · c1n
...

. . .
...

cn1 · · · cnn

, Vt =

((√
ν1(t) +

b1√
ν1(t)

)2, . . . ,
(√

νn(t) + bn√
νn(t)

)2
)′

and ln(Xt) = (ln(X1(t)), . . . , ln(Xn(t)))′.
We first assume that the eigenvalues of the matrix −B = (−βij) are all negative; this

is similar to the literature, see Langetieg (1980) and Larsen (2010). This assumption will
be used to explain some of the estimation results. Here, B captures the spillover effects,
while C contains risk premiums associated with the assets, and the long-term average for
the assets is determined by E

[
B−1(L + CVt

)]
.
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We next assume a principal component decomposition on the instantaneous covari-
ance matrix Σt: Σtdt = Adiag(Vt)A′dt, where A = (aij)n×n is an orthogonal matrix with
constant entries, and it captures the correlations among assets. We craft the matrix C in such
a way that allows for c.f. analytical approximations; that is C = AC̃ + 1

2 (A ◦A), where
C̃ = diag(c1, . . . , cn) and (A ◦A) denotes the Hadamard product of A. The dynamics of
log price Yi(t) = ln(Xi(t)) is as follows:

dYi(t) =

[
Li +

n
∑

j=1
aijcj

(√
νj(t) +

bj√
νj(t)

)2 −
n
∑

j=1
βijYj(t)

]
dt + ∑n

j=1 aij
(√

νj(t) +
bj√
νj(t)

)
dWP

j (t),

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t), j = 1, . . . , n.
(3)

Based on the applications, our model can be reduced to three subcases for which we
are able to approximate the c.f. with analytic functions:

• bj = 0: This is a generalization of Escobar et al. (2010) to multivariate mean-reverting
asset classes. If n = 1, we get the model considered in Benth (2011).

• ρj = 0: This case applies to the assets whose price series demonstrates an abnormal
increase or decrease, but no leverage effect is observed for the assets of interest. The
term “leverage effect" was first defined and studied in Black (1976). It describes the
negative correlation between an asset’s volatility and its return.

• bj = 0, ρj = 0: This case can be generated by either of the two previous cases. It
applies better to assets that exhibit mild behavior in their price series; at the same
time, no leverage effect is identified.

We explain how to approximate the c.f. with analytic functions for these three cases in
Section 3.

2.1.1. Separable Spillover Effect

In this section, we assume a convenient structure in the spillover matrix B to obtain
the c.f., and by doing so, we obtain another solvable case. Here, we further simplify the
model by rewriting it in terms of n independent processes. We demonstrate this procedure
by first writing Equation (3) in matrix form:

dYt = (L + AC̃Vt − BYt)dt + Adiag(Vt)
1
2 dWP

t . (4)

Multiplying both sides of Equation (4) by A−1, we get

A−1dYt = (A−1L + A−1AC̃Vt −A−1BYt)dt + diag(Vt)
1
2 dWP

t . (5)

Suppose the matrix B can be written as follows: B = AB̃A−1, where B̃ = diag(β̃1, . . . , β̃n)
is a diagonal matrix (i.e., whose entries are eigenvalues of B). Using this result, and applying a
simple transformation Mt = A−1Yt, we arrive at a new mean-reverting process with diagonal
matrix B̃:

dMt = (A−1L + C̃Vt − B̃Mt)dt + diag(Vt)
1
2 dWP

t .

Each element of dMt is a mean-reverting 4/2 stochastic volatility process, as in
Escobar-Anel and Gong (2020). That is,

dMj(t) =

[
L̃j + c̃j

(√
νj(t) +

bj√
νj(t)

)2 − β̃ j Mj(t)
]

dt +
(√

νj(t) +
bj√
νj(t)

)
dWP

j (t)

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t)

〈dWP
j (t), dBP

j (t)〉 = ρjdt

(6)

where L̃j =
n
∑

i=1
Lia∗ij, and a∗ij are the entries of A−1. Furthermore, dMt is also a vector of

independent processes.
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2.1.2. Model with No Spillover Effects

In this section, we assume no spillover effects among the assets (i.e., matrix B is
diagonal). This further simplifies our model to

dXi(t)
Xi(t)

=

[
Li +

n
∑

j=1
cij
(√

νj(t) +
bj√
νj(t)

)2 − βiln(Xi(t))
]

dt +
n
∑

j=1
aij
(√

νj(t) +
bj√
νj(t)

)
dWP

j (t),

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t), j = 1, . . . , n
(7)

The corresponding matrix representation has the same form:

dXt = diag(Xt)
[
(L + CVt − B · ln(Xt))dt + Σ

1
2
t dWP

t
]
, (8)

with B = diag(β1, . . . , βn). The dynamics of log price Yi(t) = ln(Xi(t)) are then
dYi(t) =

[
Li +

n
∑

j=1
aijcj

(√
νj(t) +

bj√
νj(t)

)2 − βiYi(t)
]

dt + ∑n
j=1 aij

(√
νj(t) +

bj√
νj(t)

)
dWP

j (t),

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t), j = 1, . . . , n.
(9)

2.2. Properties of the Variance Vector

We devote this subsection to exploring the properties of the variance vector. This is
important for understanding the instantaneous volatilities implied by our model. Recall
that empirical data is related to these volatilities; therefore, one should ensure that these
implied processes reflect the stylized facts of the data they cater to.

Let œ2
t denote the variance vector; by definition, this is œ2

t = diag(Σt) = (A ◦A)Vt.
As defined before, Vt is a vector of 4/2 processes (the sum of 1/2 and 3/2 processes).
Therefore, œ2

t can be written in terms of a linear combination of these two processes:

œ2
t =


∑

j=1
a2

1j
(
νj(t) +

b2
j

νj(t)
+ 2bj

)
...

∑
j=1

a2
nj
(
νj(t) +

b2
j

νj(t)
+ 2bj

)

 =


∑

j=1
a2

1jνj(t)

...
∑

j=1
a2

njνj(t)

+


∑

j=1
a2

1j
( b2

j
νj(t)

)
...

∑
j=1

a2
nj
( b2

j
νj(t)

)

+


∑

j=1
a2

1j2bj

...
∑

j=1
a2

nj2bj


This model for the variance can be interpreted as factor model with n 4/2 factors.

Due to the popularity of factor models for explaining asset classes, it stands to reason that
volatility indexes (these variances) can also be expressed in terms of factors, which could
reflect intrinsic and systemic economical movements.

One can obtain the dynamics of œ2
t more explicitly:

dœ2
t =


∑

j=1
a2

1j

[(
αj(θj − νj(t)) +

b2
j

ν2
j (t)

(
ξ2

j − αjθj + αjνj(t)
))

dt + ξ j(
√

νj(t)− b2
j ν

3
2
j (t))dBP

j (t)
]

...

∑
j=1

a2
nj

[(
αj(θj − νj(t)) +

b2
j

ν2
j (t)

(
ξ2

j − αjθj + αjνj(t)
))

dt + ξ j(
√

νj(t)− b2
j ν

3
2
j (t))dBP

j (t)
]


From the above stochastic differential Equation (SDE), we are able to obtain the
variance and covariance of the vector dœ2

t via quadratic variations. Note that these can be
interpreted as the volatility of variance and the correlation among variances (co-volatility
movement), respectively:

〈dσ2
i (t), dσ2

i (t)〉 =
n

∑
j=1

a4
ij

[
ξ j(
√

νj(t)− b2
j ν

3
2
j (t))

]2

dt (10)
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〈dσ2
i (t), dσ2

j (t)〉 =
n

∑
k=1

a2
ika2

jk

[
ξ j(
√

νj(t)− b2
j ν

3
2
j (t))

]2

dt (11)

Equations (10) and (11) suggest that the instantaneous variance and covariance of œ2
t

are locally stochastic (i.e., driven by the same Brownian as the underlying).

3. Characteristic Functions and Approximations

In this section, we derive the c.f.s for the previously presented cases involving spillover
effects and no spillover effects, using Proposition 2 and Corollary 1 from Cheng et al. (2019),
in line with the approximation approach from Escobar-Anel and Gong (2020). In
Escobar-Anel and Gong (2020), the authors obtained analytical approximations of the c.f.’s
for the special cases ρ = 0, b 6= 0; b = 0, ρ 6= 0 using results from Grasselli (2016). Taking
advantage of the principal component structure of the model, we demonstrate that the c.f.
representations boil down to a multiplication of one-dimensional approximations.

Next, we show the c.f. for the general model and its submodels described in Section 2,
namely the model with general spillover effects (Section 3.1) and the model with separa-
ble spillover effects (Section 3.2). Then, in Section 3.3, we present the principle used to
approximate the c.f.’s.

3.1. Characteristic Function for Model with Spillover Effects

Let us first define Zt = eBtYt such that eBt is a matrix exponential; then Zi(t) is
represented as

dZi(t) =
n

∑
j=1

(
eBt
)

ij

Lj +
n

∑
k=1

aijcj

(√
vk(t) +

bk√
vk(t)

)2
dt +

n

∑
j=1

(
eBt
)

ij

{
n

∑
k=1

ajk

(√
vk(t) +

bk√
vk(t)

)
dWk(t)

}
(12)

For convenience, we use
(
eBt)

ij as the ij-th component of the matrix eBt. Note that Zi(t)
is no longer a mean-reverting process, although it accounts for time-dependent coefficients.

Corollary 1. Let (Z(t))t≥0 evolve according to the model in Equation (12). The c.f. ΦZ(t),v(t) is
then given as follows:

ΦZ(t), ˚ t(T, ω) = E
[
exp iω′(Z(T)− Z(t)) | Z(t) = zt, v(t) = vt

]
=

n

∏
k=1

ΦGG(T, 1; L(ω), hk(ω), gk(ω), αk, θk, ξk, ρk, bk, ck, vk,t, Z(t))

where hk(ω, t) = ∑n
j=1 ajkck f j(ω, t), L(ω, t) = ∑n

j=1
Lj
n f j(ω, t), gk(ω, t) = ∑n

j=1 ajk f j(ω, t)
and f j(ω, t) = ∑n

m=1 iωm
(
eβt)

mj. Moreover, ΦGG is a one-dimensional generalization of the c.f.
from Grasselli (2016) provided in Lemma A1 of Cheng et al. (2019).

The proof follows as a direct application of the proof of Proposition 2 in Cheng et al. (2019).

3.2. Characteristic Function for Model with Separable Spillover Effects

To derive the c.f. of Mi(t), we perform the transformation Sj(t) = eβ̃ jt Mj(t), recogniz-
ing that the c.f. of Sj(t) has been derived in Escobar-Anel and Gong (2020). Hence, the
c.f. of Yt is a product of the corresponding c.f. of Sj(t). The result is summarized in the
following corollary.
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Corollary 2. Let ΦMR

(
T, u; L, c, a, β, α, θ, ξ, ρ, b, ν(t), Z(t)

)
denote the characteristic function

provided in Proposition 2.1 in Escobar-Anel and Gong (2020); then, the characteristic function of
Yt is given by the following equation:

E(eiu′YT |Ft) =
n

∏
j=1

ΦMR
(
T, u∗; L̃j, c̃j, 1, β̃ j, αj, θj, ξ j, ρj, bj, νj(t), Sj(t)

)
(13)

where u∗ is a new vector of real numbers with element u∗j = ∑
i=1

uiaije
−β̃ jt.

The proof is straightforward; using the relationship Yt = AMt, we know that each
individual process Yi(t) is a linear combination of Mj(t), j = 1, 2, . . . , n, and therefore Sj(t),
processes. The product u′YT can be further written in terms of Sj(t):

u′YT = u′AMT =
n

∑
j=1

n

∑
i=1

uiaij Mj(T) =
n

∑
j=1

n

∑
i=1

uiaije
−β̃ jtSj(T) =

n

∑
j=1

u∗j Sj(T).

The independence property of random variables leads to Equation (13).

3.3. Approximation Principle and Results

We have learned that the c.f. can be written in terms of a product of the c.f.’s of n
independent one-dimensional processes thanks to principal component decomposition.
These one-dimensional processes are only different in the structure of the matrix exponen-
tial term (i.e., eBt), which is deterministic, and they resemble the same Z(t) process seen
in Escobar-Anel and Gong (2020). Therefore, the principles to approximate ΦZ(t), ˚ t(T, ω)
follow those adopted in Escobar-Anel and Gong (2020). In other words, we only need
to calculate an approximation to the individual c.f. ΦGG, and the approximation can be
realized under three scenarios, as described in Section 2: bj = 0; ρj = 0 and the trivial case
of bj = 0, ρj = 0.

For completeness, the formula for ΦGG in Cheng et al. (2019) is as follows:

ΦGG(T, u; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = exp
{

iu
∫ T

t
A(s)ds

}
ν(t)iu bρ

ξ g(t) exp
{
−iuρ

g(t)ν(t)
ξ

}
×E
[

ν(T)iu bρ
ξ g(T) exp

{
iu
( ∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds

+ρ
g(T)ν(T)

ξ

)}
| Ft

]
.

ΦGG cannot be solved in closed-form due to the lack of a representation of the moment
generating function of an integrated Cox-Ingersoll-Ross (CIR) process with time-dependent
integrands. Therefore, we propose an analytic function that approximates the unsolvable
conditional expectation:

E
[

ν(T)
bρ
ξ g(T) exp

{∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds + ρ

g(T)ν(T)
ξ

}
| Ft

]
≈ E

[
ν(T)

bρ
ξ g(T) exp

{
ρ

g(T)ν(T)
ξ

− n
∫ T

t
ν(s)ds−m

∫ T

t

1
ν(s)

ds
}
| Ft

]
,

for some complex constants m and n: m ≈ −
∫ T

t C(s)ds, n ≈ −
∫ T

t B(s)ds, and D(s) = 0,
for s ∈ [t, T]. We propose the following two approximations:

• Midpoint: m =
min
[t,T]

(C(s))+max
[t,T]

(C(s))

2 , n =
min
[t,T]

(B(s))+max
[t,T]

(B(s))

2 .

• Average: m = 1
T−t

∫ T
t C(s)ds, n = 1

T−t
∫ T

t B(s)ds.
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The approximated conditional expectation is solvable, as it fits the framework of
Grasselli (2016). We summarize the results in the following corollary for the general model
with spillover effects, which includes separable spillover effects as a special case.

Corollary 3. Given deterministic functions Bj(s) and Cj(s), defined in Lemma A1 in Cheng et al. (2019),
and gj(s), defined in Corollary 1 for s ∈ [t, T],

E
[

νj(T)
bjρj
ξ j

gj(T) exp
{ ∫ T

t
Bj(s)νj(s)ds +

∫ T

t
Cj(s)

1
νj(s)

ds +
∫ T

t
Dj(s) ln(νj(s))ds

+ ρj
gj(T)νj(T)

ξ j

}
| Ft

]
can be approximated by analytic functions for constants mj and nj satisfying

nj =


min
[t,T]

(Bj(s))+max
[t,T]

(Bj(s))

2 , if midpoint approach is considered
1

T−t
∫ T

t Bj(s)ds, if average approach is considered

mj =


min
[t,T]

(Cj(s))+max
[t,T]

(Cj(s))

2 , if midpoint approach is considered
1

T−t
∫ T

t Cj(s)ds, if average approach is considered

under three scenarios:

• bj = 0: Given bj = 0, C(s) = 0 and D(s) = 0, s ∈ [t, T]. If nj ≥ −
α2

j

2ξ2
j
, then

E
[

exp

{∫ T

t
Bj(s)νj(s)ds + ρj

gj(T)νj(T)
ξ j

}
| Ft

]
≈ E

[
exp

{
ρj

gj(T)νj(T)
ξ j

− nj

∫ T

t
νj(s)ds

}
| Ft

]

=

( (Bjξ
2
j + α)

(
e

√
Aj (T−t)

− 1
)
+
√

Aj
(
e

√
Aj (T−t)

+ 1
)

2
√

Aje

√
Aj+αj

2 (T−t)

)− 2αjθj
ξ2

j e

νj (t)

(
(Bjαj−2nj )

(
e

√
Aj (T−t)

−1
)
−Bj

√
Aj
(

e

√
Aj (T−t)

+1
)

(Bj ξ2
j +αj )

(
e

√
Aj (T−t)

−1
)
+
√

Aj
(

e

√
Aj (T−t)

+1
)
)

,

Bj = −
ρj gj(T)

ξ j
, Aj = α2

j + 2njξ
2
j ,

(14)

• bj 6= 0, æj = 0: Given bj = 0, ρj 6= 0 and D(s) = 0, s ∈ [t, T]. If mj > −
(2αjθj−ξ2

j )
2

8ξ2
j

,

nj ≥ −
α2

j

2ξ2
j
, then

E
[

exp
{ ∫ T

t
Bj(s)νj(s)ds +

∫ T

t
Cj(s)

1
νj(s)

ds
}
| Ft

]
≈ E

[
exp

{
−nj

∫ T

t
νj(s)ds−mj

∫ T

t

1
νj(s)

ds

}
| Ft

]

=

(
γj(T, νj(t))

2

)kj+1
νj(t)

−
αj θj
ξ2

j Kj(T)
−
(

1
2 +

kj
2 +

αjθj
ξ2

j

)
e

1
ξ2

j

(
θj (T−t)−

√
Hjνj (t)coth

(√Hj (T−t)

2

)
+αjνj (t)

)
Γ
(

1
2 +

kj
2 +

αj θj
ξ2

j

)
Γ(kj + 1)

× 1 F1

(
1
2
+

kj

2
+

αjθj

ξ2
j

, kj + 1,
γj(T, νj(t))2

4Kj(T)

)
,

kj =
1
ξ2

j

√
(2αjθj − ξ2

j )
2 + 8mjξ

2
j , Hj = α2

j + 2njξ
2
j , γj(T, νj(t)) =

2
√

Hjνj(t)

ξ2
j sinh

(√Hj (T−t)

2

) ,

Kj(T) =
1
ξ2

j

(√
Hjνj(t)coth

(√Hj(T − t)

2

)
+ αj

)
.

(15)

Corollary 3 follows directly from Propositions 2.2 and 2.3 in Escobar-Anel and Gong (2020).
The approximation for the c.f. when there are no spillover effects follows the same procedure as
presented in Corollary 3. For the case when the spillover effects are separable, we obtain a sum
of independent mean-reverting 4/2 stochastic volatility processes, as indicated in Equation (6).
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As a result, Propositions 2.2 and 2.3 in Escobar-Anel and Gong (2020) can be directly applied to
approximate the c.f.s for these processes.

4. Estimation

In this section, we consider the model with separable spillover effects as the underlying
model for estimation. In this way, on the one hand, we fulfill the purpose of studying
spillover effects among assets, and on the other hand, we avoid the complexity of a matrix
exponential1. Recall that the model with separable spillover effects can be expressed
as follows:

dYt = (L + AC̃Vt − BYt)dt + Adiag(Vt)
1
2 dWP

t .

where B is constructed such that it can be decomposed into a product of three matrices:
B = AB̃A−1. In this case, dYi(t) is a linear combination of independent processes dMj(t),
that is, dYt = AdMt with

dMj(t) =

[
L̃j + c̃j

(√
νj(t) +

bj√
νj(t)

)2 − β̃ j Mj(t)
]

dt +
(√

νj(t) +
bj√
νj(t)

)
dWP

j (t)

dνj(t) = αj(θj − νj(t))dt + ξ j

√
νj(t)dBP

j (t)

〈dWP
j (t), dBP

j (t)〉 = ρjdt

For simplicity, we focus on two dimensions, hence studying pairs of assets with
their respective volatility indexes. For example, VIX (VVIX) and VSTOXX (VVSTOXX),
USO (OVX) and GLD (GVZ), or USO (OVX) and SLV (VXSLV). Then, we follow the same
estimation procedure outlined in Escobar-Anel and Gong (2020), splitting the parameters
into two groups: volatility group and drift group.

After a data description in Section 4.1, Section 4.2 estimates tEstVolGpnder the model
with separable spillover effects, we first need to estimate covariance matrix (Σ̂) from
asset data as a long-term average of the SC matrix (Σt). This permits us to produce and
estimate for the constant eigenvectors, denoted as Â. With the estimated eigenvectors, we
decompose our original asset processes into the sum of independent mean-reverting 4/2
models. The volatility group then consists of parameters for the underlying CIR processes
driving the principal components: bj, αj, θj, ξ j. Section 4.3 tackles the estimation of drift
group parameters, using least squares.

Volatility indexes are functions of implied volatility, model free and directly calculated
from option prices from the market. Here, we use volatility indexes data as a convenient proxy
for instantaneous volatility. In fact, instantaneous volatility is rather impossible to capture from
empirical data, even with high-frequency data, as it requires instantaneous periods rather than
the available discrete periods. On the other hand, once a model is specified, volatility indexes
can be used to represent instantaneous volatility with some multiplicative (scaling) adjustment
or factor; see, for example Luo and Zhang (2012), Zhang and Zhu (2006) and references therein.
The relationship between the instantaneous volatility and the volatility index, for example VIX,
can be expressed in terms of a closed-form equation, where the difference between the two
lies in a multiplicative factor. In a recent paper, see Lin et al. (2017), the author determines
the connection between instantaneous and implied volatility, assuming Grasselli’s 4/2 model
Grasselli (2016) with jumps.

Due to the short horizon of volatility indexes (21-day options), the multiplicative
factor could be close to one in a region of the parametric space, which implies that volatility
indexes are almost equal to instantaneous volatilities regardless of the structural choice of
the underlying model. As precautions and inspired by these pioneering works, we intro-
duce scale parameters to adjust empirical volatility indexes data to estimate instantaneous
volatilities. This is done such that the empirical means of the observed variance series
(Vobs

t ) match the corresponding long-term asset variances. These new scaling parameters
are estimated at an early stage and are methodologically independent of other parameters.
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4.1. Data Description

We consider the following pairs of assets and volatilities: The first study is on VIX
(S&P 500 Volatility Index) and VSTOXX (Euro STOXX 50 Volatility Index); here, we also use
the volatility indexes VVIX and VVSTOXX, respectively. The second group is comprised
of USO (Oil ETF) and GLD (Gold ETF), with OVX and GVZ as the respective volatility
indexes. The third and final group is made up of SLV (Silver ETF) and GLD, with VXSLV
and GVZ as the respective volatility indexes. All these data sets are daily in the period
from late 2010 to early 2020.

Our estimation method consists of two stages: we first estimate the parameters in
the assets’ data (called drift group), and then the parameters in the assets’ volatilities
(called the volatility group). The sample size of the raw data is different across all the
assets and volatility indexes. Hence, we must further process the data to better suit our
estimation purpose, in particular ensuring that we take only the trading days when both
assets and their volatilities can be observed. Figures 1–3 depict the pairs of asset data
and their volatility indexes. Note that the volatility index data is quoted as annualized
volatility multiplied by 100. When we use the volatility index for estimation, we transform
the volatility index to daily volatility by dividing by 100×

√
250.

(a) Data: VIX and VVIX. (b) Data: VSTOXX and VVSTOXX.

Figure 1. Historical VIX (VVIX) and VSTOXX (VVSTOXX) data.

(a) Data: USO and OVX. (b) Data: GLD and GVZ.

Figure 2. Historical USO (OVX) and GLD (GVZ) data.
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(a) Data: SLV and VXSLV. (b) Data: GLD and GVZ.

Figure 3. Historical SLV (VXSLV) and GLD (GVZ) data.

4.2. Estimation of Volatility Group Parameters

The model used for estimation of the “volatility group” parameters in this section is
the model with separable spillover effects, described next for completeness.

Recall that Equation (6) gives us the representation for each principal component that
reflects on our mean-reverting 4/2 stochastic volatility model; that is, dlog(Xt) = dYt = AdMt,
with dMi(t) defined as

dMi(t) =

[
L̃i + c̃i

(√
νi(t) +

bi√
νi(t)

)2 − β̃i Mi(t)
]

dt +
(√

νi(t) +
bi√
νi(t)

)
dWP

i (t)

dνi(t) = αi(θi − νi(t))dt + ξi
√

νi(t)dBP
i (t)

〈dWP
i (t), dBP

i (t)〉 = ρidt

The estimation procedure for this model setup can be summarized as follows. We
first transform the data using matrix A to produce the Mi(t) process following the rela-
tionships among Xt, Yt and Mt. Then, we can use the estimation method developed in
Escobar-Anel and Gong (2020) for each Mi(t) process. Finally, we recover the parameters
for each Xi(t) process.

4.2.1. Estimation of Matrix A and the Scaling Parameters S

In the next sections, we estimate the parameters in the volatility group. The empirical
results are summarized in Table 1. The first step is to estimate matrix A, as it connects
log asset prices Yt and principal components Mt. Recall that A is an orthogonal matrix
comprising the eigenvectors of covariance matrix Σt. Given daily data, we estimate A by
first calculating the empirical covariance matrix Σ̂ and applying eigenvalue decomposition:

Σ̂ = Âdiag(σ(1), . . . , σ(n))Â′,

where (σ(1), . . . , σ(n)) is a vector of the eigenvalues of Σ̂, and Â is the estimate of matrix A.
In Table 1, we include the results for Σ̂, Â and eigenvalues (σ(1), σ(2)) from empirical data.
Note that Â is not unique in that the signs of each element in the matrix can be manipulated
such that the column vectors are still the eigenvectors for the corresponding eigenvalues,
while Â preserves its orthogonality.

As mentioned at the beginning of this section, volatility indexes are a useful proxy
for instantaneous volatility; however, they may require scaling adjustment. Let
Vobs

t = (V(1)
t , . . . , V(n)

t )′ denote the squared observed volatility indexes data for n as-
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sets. We introduce a scale parameter si to bridge observed volatility indexes’ series V(i)
t s to

theoretical variances via the following relationship:

SVobs
t = (A ◦A)Vt (16)

Vt = (A ◦A)−1SVobs
t , (17)

where S is a diagonal matrix with diagonal vector (s1, . . . , sn). In theory, si is a function of
t, T, bi, αi, θi, ξi, see Luo and Zhang (2012), and Zhang and Zhu (2006), some of which fall
into the volatility group and are to be estimated. Hence, devising an estimate that does not
depend on these parameters is crucial. We propose an estimate that matches the long-run
first empirical moment of both sides of Equation (16). The long-term average of the left-
hand side of Equation (16) can be directly calculated from squared volatility indexes’ data.
The long-term average of the right-hand side may not seem as straightforward, as it deals
with a stochastic process. In our definition, (A ◦A)Vt is the diagonal of the covariance
matrix and refers to the instantaneous variance process. Therefore, in the long run, the
expectation of the variance process should converge to the variance of the underlying asset.
Let σ̂2

i denote the empirical long term variance of asset i, and let µ̂i denote the long-term
average of the corresponding squared volatility index data. We estimate si as

ŝi =
σ̂2

i
µ̂i

. (18)

Substituting Equation (18) and Â back to the right-hand side of Equation (17), the
long-term average is σ(1)

...
σ(n)

 = E
[
(A ◦A)−1ŜVobs

t

]
,

which matches the left-hand side of Equation (17) in terms of the long-term average, as
Vt is the eigenvalue of Σt and converges to (σ(1), . . . , σ(n)) in the long run. Table 1 also
displays the results for Σ̂, (σ(1), σ(2)) and (ŝ1, ŝ2).

Table 1. Empirical results (a) covariance matrix and long term average of squared volatility indexes;
(b) eigenvectors, eigenvalues and scaling factors

(a)

VIX & VSTOXX USO & GLD SLV & GLD

Σ̂
(

0.0062 0.0030
0.0030 0.0048

) (
4.78× 10−4 4.62× 10−5

4.62× 10−5 1.255× 10−5

) (
0.0724 0.0331
0.0331 0.0237

)
(µ̂1, µ̂2) (0.0034, 0.0028) (6.01×10−4, 1.67×10−4) (3.62×10−4, 1.18×10−4)

(b)

VIX & VSTOXX USO & GLD SLV & GLD

Â
(

0.7825 −0.6226
0.6226 0.7825

) (
0.9918 −0.1278
0.1278 0.9918

) (
0.8925 −0.451
0.451 0.8925

)
Ȧ

(
2.725 −1.725
−1.725 2.725

) (
1.0169 −0.0169
−0.0169 1.0169

) (
1.3429 −0.3429
−0.3429 1.3429

)
(σ(1), σ(2)) (2.1372, 0.592) (0.121, 0.0299) (0.0891, 0.007)

(ŝ1, ŝ2) (1.8074, 1.7229) (0.795, 0.7518) (0.799, 0.8)

4.2.2. Estimation of Volatility Group

Let (Â ◦ Â)−1 = Ȧ = {ȧij}n
i,j=1, and let the j-th eigenvalue of Σt be defined as

Vj(t) = νj(t) +
b2

j
νj(t)

+ 2bj. Then, Vj(t) is represented by
n
∑

i=1
ȧji ŝiV

(i)
t according to

Equation (17). Suppose V(i)
t = (V(i)(t1), . . . , V(i)(tn)) is a series of squared volatility



Risks 2021, 9, 141 13 of 23

indexes for asset i observed on ΩT = {ti}m
i=0, t0 = 0, tm = T; then, at time 0 ≤ tk ≤ T, we

have Vj(tk) =
n
∑

i=1
ȧji ŝiV(i)(tk).

In theory, we expect the Vt series to be non-negative, since it is related to the series
of instantaneous variances (A ◦A)Vt for the underlying assets. In practice, however, we
observe inconsistencies in some cases. For example, as Figure 4a illustrates, V2(t) has a
number of negative values (labeled by “V2”), which are non-negligible. Next, we perform
a preliminary analysis to locate the root of the issue.

(a) Principal components. VIX (VVIX) and VSTOXX
(VVSTOXX).

(b) Principal components after modification. VIX
(VVIX) and VSTOXX (VVSTOXX).

Figure 4. Principal components with volatility indexes’ data.

To solve the problem of inconsistency without modifying our model, we deal with
the negative values as if they are missing values. We thus replace the negative values by
the weekly averages centered on those negative values. Figure 4b illustrates the series of
V1(t) and V2(t) after this modification. Furthermore, Figure 5 presents two series: V1(t)
and V2(t) after transforming the original OVX and GVZ data. In this case, we do not
observe the inconsistency shown in Figure 4b, which means that the data supports our
model. The figure also illustrates the trend as expected, with the first principal component
generating the largest variation (V1(t)) in asset price compared to the second principal
component (V2(t)).

Figure 5. Principal components. Data: USO (OVX) and GLD (GVZ).

In Figure 6a, we also observe some inconsistency in silver ETF (SLV) and gold ETF
(GLD) data between 2011 and 2012. Given that the correlation between SLV and GLD is
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large, V2(t) series stays close to 0, which implies that the two assets are likely driven by
the same random factor. Since the negative values do not appear as often as in Figure 4a
and are close to 0, we simply take the absolute value of the negative values and show the
modified series in Figure 6b.

Now that we have prepared all the data for estimation, we apply the estimation method
developed in Escobar-Anel and Gong (2020) to V1(t) and V2(t) to estimate b1, α1, θ1, ξ1 and
b2, α2, θ2, ξ2. Note that, in all three scenarios, the minimum of V2(t) is approximately zero,
which implies that b2 is 0 as seen from Figures 4b, 5 and 6. Therefore, it is sufficient to
model V2(t) as a CIR (1/2) process instead of a 4/2 process. On the other hand, the “spikes”
occurred frequently in V1(t)—labeled as “V1” and shown by the figures—are signals that
V1(t) should be a 4/2 process given all three pairs of assets-and-volatility index data.
Since we assume that V2(t) follows a CIR process, we estimate α2, θ2, ξ2 using maximum
likelihood. Tables 2–4 list the estimated parameters and their standard errors (s.es) with the
chosen data sets for parameters in the volatility group.

The inference on the parameters (asymptotic mean and variance) is performed via
parametric bootstrap. In other words, we simulate the corresponding processes with the
estimated parameters 1000 times and repeat the estimation procedure for each simulation.
In the end, we obtain a pool of 1000 sets of estimates. The law of large numbers suggests
that the means calculated from the pool of estimates are the asymptotic means for each
estimator. It is interesting to see how the first principal component not only accounts for
most of the variation, but it also absorbs the complexity of the problem. In other words.
the tables show that the first component requires the advanced 4/2 modeling (i.e., b 6= 0),
while the second component can be better explained with the simpler 1/2 model (b = 0).

(a) Principal components. Data: SLV (VXSLV) and
GLD (GVZ).

(b) Principal components after modification. Data:
SLV (VXSLV) and GLD (GVZ).

Figure 6. Principal components with volatility indexes’ data.

Table 2. Estimated volatility group parameters with empirical data (VIX and VSTOXX).

Data: V1(t) Data: V2(t)

b̂ 3.11 ×10−4 ∼ 0
Mean of b̂ (s.e) 4.511×10−4(1.1581×10−6) 0(0)

α̂ 42.1811 19.1624
Mean of α̂ (s.e) 41.6498(0.0695) 19.5827(0.0552)

θ̂ 0.0079 0.0027
Mean of θ̂ (s.e) 0.0076(4.8578×10−6) 0.0027(8.0796×10−6)

ξ̂ 0.3436 0.3885
Mean of ξ̂ (s.e) 0.3537(1.3937×10−4) 0.3877(5.1103×10−4)
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Table 3. Estimated volatility group parameters with empirical data (USO and GLD).

Data: V1(t) Data: V2(t)

b̂ 1.6776×10−5 ∼ 0
Mean of b̂ (s.e) 7.5578×10−5(1.3892×10−6) 0(0)

α̂ 3.62 5.3597
Mean of α̂ (s.e) 5.9253(0.0465) 5.6994(0.0186)

θ̂ 8.9803×10−4 1.1859×10−4

Mean of θ̂ (s.e) 4.6621×10−4(7.4231×10−6) 1.1779×10−4(2.4962×10−7)
ξ̂ 0.0271 0.0231

Mean of ξ̂ (s.e) 0.02(2.4446×10−4) 0.0231(5.3704×10−6)

Table 4. Estimated volatility group parameters with empirical data (SLV and GLD).

Data: V1(t) Data: V2(t)

b̂ 2.0968×10−5 ∼ 0
Mean of b̂ (s.e) 7.4123×10−5(2.85×10−7) 0(0)

α̂ 5.178 24.3083
Mean of α̂ (s.e) 7.7687(0.0664) 24.8349(0.057)

θ̂ 8.3026×10−4 3.8644×10−5

Mean of θ̂ (s.e) 4.6417×10−4(7.5518×10−6) 3.8753×10−5(6.5274×10−8)
ξ̂ 0.0307 0.0343

Mean of ξ̂ (s.e) 0.024(3.0304×10−4) 0.0344(1.1187×10−5)

4.3. Estimation of Drift Group

Similarly, we use the least square approach to estimate parameters in the drift group.
Tables 5–7 display the results. Some parameters are assessed to be non-significant based on
the p-values. We decide to keep all the parameters because our sample sizes are not large
enough to draw concrete conclusions on the significance of the parameters.

Note that the estimated parameters reported in the tables are for the parameters of
the M1(t) and M2(t) processes. We can recover the estimates for original parameters using
the relationship we defined earlier; that is, L̂ = ÂL̃, B̂ = ÂB̃Â−1, and Ĉ = ÂC̃ + 1

2 (Â ◦ Â).
The estimates for the original parameters are reported in Table 8. The diagonal entries in
the B̂ matrices provide information on the mean-reverting speed for all the assets. Note
that for the pair SLV and GLD, one of the eigenvalues (−0.5401) of B̂ does not satisfy the
assumption imposed on the eigenvalues of B, which is a sign that the data does not support
this particular model. The correlation coefficients are not included because they are not
affected by the transformation.

Table 5. Estimated drift group parameters (VIX and VSTOXX).

Data ˆ̃Li p-Value ˆ̃ci p-Value ˆ̃βi p-Value ρ̂ p-Value

M1(t)&V1(t) 25.6041 0 −114.6521 0.436 6.1077 0 0.5621 0
M2(t)&V2(t) 9.4459 0 73.6448 0.734 15.6266 0 0.00419 0

Table 6. Estimated drift group parameters (USO and GLD).

Data ˆ̃Li p-Value ˆ̃ci p-Value ˆ̃βi p-Value ρ̂ p-Value

M1(t)&V1(t) 0.8096 0.154 −416.2006 0.214 0.214 0.134 −0.3723 0
M2(t)&V2(t) 2.6418 0.07 −646.7339 0.384 0.5701 0.079 −0.00294 0
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Table 7. Estimated drift group parameters (SLV and GLD).

Data ˆ̃Li p-Value ˆ̃ci p-Value ˆ̃βi p-Value ρ̂ p-Value

M1(t)&V1(t) 4.5459 0.009 842.936 0.153 1.0183 0.008 −0.2323 0
M2(t)&V2(t) −1.5092 0.23 −1787.0546 0.16 −0.5401 0.191 0.1228 0

Table 8. Estimated original drift group parameters.

Data L̂ Ĉ B̂

VIX&VSTOXX (25.9172, 8.5495)
(
−89.4091 46.0451
−71.1886 −57.3209

) (
9.7978 −4.6378
−4.6378 11.9365

)
USO&GLD (0.4653, 2.7236)

(
−412.2959 −82.6444
−53.1823 641.9225

) (
0.2198 −0.0451
−0.0451 0.5643

)
SLV&GLD (4.7379, 0.7032)

(
752.7178 −805.8599
380.2658 1595.3

) (
0.7013 0.6273
0.6273 −0.2231

)

It is worth noting that L̂ in Table 8 does not reflect the actual mean-reverting level.
Therefore, to determine the mean-reverting level for each asset, we must go back to
Equation (4) and rewrite it in following format:

dYt = B(B−1L + B−1AC̃Vt − Yt)dt + Adiag(Vt)
1
2 dWP

t .

We can now see that the mean-reverting level is B−1L plus a random component,
which we define as H(Vt) = B−1AC̃Vt. The long term mean indicated by the model is
basically B−1L +E

[
H(Vt)

]
. We report these estimates in Table 9 and compare them with

the averages calculated from empirical data.
As Table 9 shows, the estimated MRLs are close to the empirical log price averages,

except for the USO case, where the estimated mean is smaller than the empirical mean.
This latest point might be due to the impact of the initial value on the stationary value of a
4/2 process. Moreover, the VIX and VSTOXX pair has the largest mean-reverting speed
compared to the other two commodity ETF pairs. This is not a surprise, as evidenced by
empirical data. Volatility indexes tend to return to the mean faster due to an economic
cycle, whilst commodities normally have a longer time horizon to revert to the mean level
due to scarcity, demand and supply.

Table 9. Estimated original drift group parameters.

Data B−1L E
[
H(Vt)

] Estimated
Mean-Reverting Level Empirical Averages

VIX&VSTOXX (2.9042, 3.0832) (−0.0952, −0.0631) (2.809, 3.0219) (2.6497, 2.9139)
USO&GLD (3.1598, 5.0794) (−0.961, −0.2547) (2.244, 4.8247) (3.1342, 4.8096)
SLV&GLD (2.7242, 4.5075) (0.2215, 0.2158) (2.9457, 4.7232) (2.9468, 4.8645)

5. Application to Risk Measures

Risk measures in financial risk management are used to determine the minimum
amount of capital to be kept in reserve in worst-case scenarios as a way of protecting
financial institutions. There are many risk measures in the literature, see, for example,
Artzner et al. (1999) and McNeil et al. (2005), one of which is considered fundamental:
Value-at-Risk (VaR), which is a distribution-based risk measure. In other words, a VaR
calculation takes into account the distribution of the underlying (VaR is in fact a quantile).
It is more robust to outliers than mean and variance.

In this section, we compute the VaR of a portfolio consisting of two assets and a cash
account, in line with the previous estimation section. We must first find the distribution of
this portfolio, which might not be available due to, in particular, the correlations among the
underlyings. In the language of mathematical statistics, we must find the joint distribution
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of USO and GLD to compute VaR. In general, finding closed-form expressions for the joint
distribution of two non-Gaussian stochastic processes is theoretically difficult. In fact, USO
and GLD have complex distribution functions under our multidimensional 4/2 model
setting. Fortunately, this is feasible in our model, as we can express the joint distribution at
any given date of USO and GLD in terms of two independent random variables, which
simplifies our problem significantly and allows for the use of c.f.s to compute the properties
of the portfolio distribution.

5.1. Portfolio Setup

Suppose that we have a portfolio Π consisting of two assets X1(t) and X2(t):

Π(t) = φ1(t)X1(t) + φ2(t)X2(t) + φ3(t)B(t), (19)

where φ1 and φ2 represent the weights of X1(t) and X2(t) in the portfolio, and B(t) is a cash
account with interest rate r. In a short period of time, we can also write the problem using
the self-financing condition and relative portfolio weights π1, π2 and (1− π1 − π2); that is,
the proportion allocated to the assets and cash account, allocations see Campell et al. (1997):

dΠ(t)
Π(t)

= π1
dX1(t)
X1(t)

+ π2
dX2(t)
X2(t)

+ (1− π1 − π2)rdt. (20)

Constant allocations will be considered (i.e., constant π), as they constitute the most
popular investment strategy in the market, supported by Merton (1975). From the process
dXi(t)
Xi(t)

, we can easily obtain dYi(t) (Yi(t) = log(Xi(t)) by using Ito’s lemma. When compar-

ing dXi(t)
Xi(t)

and dYi(t), we observe that only the drift term is adjusted, while diffusion terms
stay the same. Assuming that (X1(t), X2(t)) are modeled by Equation (2), the log prices
(Y1(t), Y2(t)) then have the SDE specified in Equation (4) under the PCSV framework.
Moreover, we can also write dXi(t)

Xi(t)
in terms of dYi(t):

dXi(t)
Xi(t)

= dYi(t) +
1
2 ∑

j
a2

ij

(√
νj(t) +

bj

νj(t)

)2

dt.

Hence, we rewrite Equation (20) as follows:

dΠ(t)
Π(t)

= π1

[
dY1(t) +

1
2

2

∑
j=1

a2
1j

(√
νj(t) +

bj

νj(t)

)2

dt
]
+ π2

[
dY2(t) +

1
2

2

∑
j=1

a2
2j

(√
νj(t) +

bj

νj(t)

)2

dt
]

+ (1− π1 − π2)rdt.

(21)

It is known that Y1(t) and Y2(t) are linear combinations of two independent stochastic
processes or random variables M1(t) and M2(t):

dY1(t) = a11dM1(t) + a12dM2(t), (22)

dY2(t) = a21dM1(t) + a22dM2(t). (23)

We now substitute dY1(t) and dY2(t) in Equation (21) with Equations (22) and (23):

dΠ(t)
Π(t)

= (π1a11 + π2a21)dM1(t) +
1
2
(π1a2

11 + π2a2
21)

(√
ν1(t) +

b1

ν1(t)

)2

dt

+ (π1a12 + π2a22)dM2(t) +
1
2
(π1a2

12 + π2a2
22)

(√
ν2(t) +

b2

ν2(t)

)2

dt + (1− π1 − π2)rdt.

(24)
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From Equation (24), we can conclude that dΠ(t)
Π(t) is also a linear combination of dM1(t) and

dM2(t), with adjustment to the drift terms, which does not affect the independent relationship
between dM1(t) and dM2(t). We organize Equation (24) into the following expression:

dΠ(t)
Π(t)

= dM∗1(t) + dM∗2(t) (25)

where dM∗1(t) and dM∗2(t) are independent, with

dM∗i (t) =

[
L∗i + c∗i

(√
νi(t) +

bi√
νi(t)

)2 − β∗i M∗i (t)

]
dt + a∗i

(√
νi(t) +

bi√
νi(t)

)
dWP

i (t),

where L∗1 = L̃1a∗1 + (1−π1−π2)r, L∗2 = L̃2a∗2 , c∗i = c̃ia∗i +
1
2 a∗∗i , β∗i = β̃ia∗i , a∗i = ∑2

j=1 πjaji,

and a∗∗i = ∑2
j=1 πja2

ji.
Note that for convenience, we included the growth rate on the cash account into the

long-term average of M∗1(t). From a mathematical perspective, M∗1(t) is constructed based
on M1(t), which is the first principal component that determines the most variation among
the assets. As a result, M∗1(t) affects the performance of Π(t) more than M∗2(t) financially.
For this reason, the effect of the growth rate on the portfolio can also be interpreted as if it
impacts the long-term average of M∗1(t). Now, we apply Ito’s lemma to Equation (25) to
obtain the dynamics for ln(Π(t)):

dln(Π(t)) = dM̃∗1(t) + dM̃∗2(t) (26)

where

dM̃∗i (t) =

[
L∗i +

(
c∗i −

1
2
(a∗i )

2)(√νi(t) +
bi√
νi(t)

)2 − β∗i M̃∗i (t)

]
dt + a∗i

(√
νi(t) +

bi√
νi(t)

)
dWP

i (t).

It is straightforward to find the characteristic function of dln(Π(t)) using the above
mentioned results.

5.2. The Density Function of the Portfolio Π(t)

From Equation (26), our portfolio now essentially contains two new “assets” that are
independent of each other. Thanks to this independence, we can derive the characteristic
function as well as the density function of our portfolio. Since our goal is to calculate the
VaR, it is convenient to use a density function and integrate numerically. In this section, we
list two approaches to obtain such a density function.

5.2.1. Density Function via Convolution

One way in which to obtain the conditional density function for ln(Π(T)) is via
convolution of two conditional density functions for M̃∗1(T) and M̃∗2(T). In probability, if
two random variables X and Y are independent, with density functions fX(x) and fY(y),
respectively, then the density for Z = X + Y, fZ(z), can be found via convolution; that is,

fZ(z) =
∫ ∞

−∞
fX(x) fY(z− x)dx. (27)

If X and Y have analytical density functions, then the convolution method is straight-
forward. In our case, we obtain the conditional c.f. first. The Fourier inversion of the
conditional c.f. theoretically gives the density function. However, due to the structure of
our original c.f. and the approximations, we need to invert both the original c.f. and the
approximated c.f.s numerically for the corresponding density functions. For M̃∗1(T) and
M̃∗2(T), we can obtain their conditional corresponding density functions f1(m1|Ft) and
f2(m2|Ft) by inverting the c.f. of Z̃∗1 (t) = eβ∗1t M̃∗1(t) and Z̃∗2 (t) = eβ∗2t M̃∗2(t):
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f1(m1|Ft) =
1

2π

∫ ∞

−∞
e−ium1 ΦMR

(
T, u; L∗1 , c∗1 , a∗1 , β∗1, α1, θ1, ξ1, ρ1, a∗1b1, ν1(t), e−β∗1tZ̃∗1 (t)

)
du. (28)

f2(m2|Ft) =
1

2π

∫ ∞

−∞
e−ium2 ΦMR

(
T, u; L∗2 , c∗2 , a∗2 , β∗2, α2, θ2, ξ2, ρ2, a∗2b2, ν2(t), e−β∗2tZ̃∗2 (t)

)
du. (29)

We can now write Equation (32) as a convolution of Equations (28) and (29):

f (p|Ft) =
∫ ∞

−∞
f1(m1|Ft) f2(p−m1|Ft)dm1. (30)

A challenging part of this method is that we must first invert the semi-closed c.f.s
to obtain the density functions for M̃∗1(t) and M̃∗2(t)—artificial assets—which involves
approximations. As we have well-developed approximation approaches for ΦMR, we
can apply the results to obtain the analytic function as an approximation of the c.f. for
individual artificial assets and then find the density via Fourier inversion. Then, we can use
Equation (30) to obtain the density of the portfolio. The approximation approaches work
well in a parametric region, as demonstrated in Escobar-Anel and Gong (2020), for three
scenarios (bi = 0, ρi 6= 0; bi 6= 0, ρi = 0; bi = 0, ρi = 0); the goodness of approximations
depends on L∗i , c∗i , a∗i , β∗i , αi, θi, ξi, ρi, bi.

5.2.2. Density Function via Fourier Inversion

Another, more direct means of obtaining the density function is to apply an inverse
Fourier transform to the characteristic function. Before we provide the formula for the
characteristic function, we consider the transformation Z̃∗i (t) = eβ∗i t M̃∗i (t). By Ito’s lemma,
we have

dZ̃∗i (t) = eβ∗i t

[
L∗i +

(
c∗i −

1
2
(a∗i )

2)(√νi(t) +
bi√
νi(t)

)2
]

dt + eβ∗i ta∗i
(√

νi(t) +
bi√
νi(t)

)
dWP

i (t).

The next corollary explains how to derive the characteristic function.

Corollary 4. Let ΦMR

(
T, u; L, c, a, β, α, θ, ξ, ρ, b, ν(t), Z(t)

)
denote the characteristic function

provided in Proposition 2.1 in Escobar-Anel and Gong (2020); then, the characteristic function of
ln(Π(T)) is given by the following equation:

E(eiuln(Π(T))|Ft) =
2

∏
i=1

ΦMR
(
T, u; L∗i , c∗i , a∗i , β∗i , αi, θi, ξi, ρi, a∗i bi, νi(t), Z̃∗i (t)

)
(31)

where L∗1 = L̃1a∗1 + (1− π1 − π2)r, L∗2 = L̃2a∗2 , c∗i = c̃ia∗i +
1
2 a∗∗i , β∗i = β̃ia∗i , a∗i = ∑2

j=1 πjaji,
a∗∗i = ∑2

j=1 πja2
ji.

Let p denote all possible values in the domain of ln(Π(T)); the density function hence
follows from

f (p|Ft) =
1

2π

∫ ∞

−∞
e−iupE(eiuln(Π(T))|Ft)du. (32)

It can be seen that the c.f. of the portfolio does not have a closed-form representation,
since it is a product of semi-closed c.f.s (ΦMR). As a result, we could use the approximations
developed in Section 3.3.

5.2.3. Numerical Implementation of Selected Method

The Fourier inversion method and the convolution method theoretically yield the
same density function for the portfolio. Moreover, in a portfolio that only consists of two
(artificial) risky assets, both methods are not complicated to implement. We implement
the convolution method with partial simulation for applications with only two assets.
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However, it would be more efficient to use the Fourier inversion method when the portfolio
has a large pool of assets (e.g., over 100). To see this, note that, for n >> 2 assets, the
convolution method involves the simulation of n processes with n + 1 integrations; in
contrast, the Fourier inversion method reduces the number of integrations to just one.
We summarize the numerical implementation to compute the conditional density function
of the portfolio in the following steps:

• Step 1: Simulate two CIR processes ν1(t) and ν2(t) and compute ΦMR for M̃∗1(t)
and M̃∗2(t).

• Step 2: Invert the c.f.s obtained in Step 1 to obtain f1(m1|Ft) and f2(m2|Ft).
• Step 3: Numerically integrate the product of the conditional density of M̃∗1(T) and

M̃∗2(T) for the conditional density function of ln(Π(T)).

Even though we use partial simulation to obtain the density function of the portfo-
lio, partial simulation is not time-consuming, as efficient methods exist to simulate CIR
processes; see, for example, Andersen (2007). Moreover, both the convolution method and
the direct Fourier inversion method require either fewer simulations or no simulations
(via approximations), compared to a full simulation approach, which would require the
simulation of four processes. In the case where semi-closed c.f.s are involved, we would
only need to simulate at most n ≥ 2 processes (νi(t) for i = 1, . . . , n process), instead of a
simulation of the M̃∗1(t) processes altogether (2n processes). Most importantly, thanks to
PCA decomposition, we would likely need m such volatility drivers to explain the SC of
n assets with m << n. This means a substantial reduction in computational complexity
(partial, simulations, integrations or approximations).

In summary, under a PCSV framework, partial simulation is a good choice in terms
of efficiency. The PCA reduces computational complexity, as fewer diffusions may be
required to explain the variation of all assets. Our approximations further improve the
efficiency for computing the c.f.s with analytic functions.

In the next application section, we apply the convolution method from Section 5.2.1 to
compute the VaR at popular quantile αq = 0.95 (VaR0.95).

5.3. The VaR for a Portfolio of USO and GLD

In this section, we consider a pair of risky assets: USO and GLD, and we study VaR0.95 un-
der an investment strategy: equally weighted risky assets only (π1 = π2 = 0.5)2. These have
been proven to be robust and reliable strategies in the seminal work of DeMiguel et al. (2009).
In Table 10, we report the VaR0.95 values and their s.es. We consider a well-known asymp-
totic result for quantiles to calculate the s.es for VaRαq as derived in Stuart et al. (1994):

s.e(VaRαq) =

√
αq(1− αq)

n f (VaRαq)
2 ,

where αq is the quantile of the portfolio distribution (in this case, it is 95%); n is the sample
size, and f (VaRαq) is the probability distribution function (density function) evaluated
at VaRαq .

Case: π1 = π2 = 0.5

In this case, we use the information from Tables 1b, 3 and 6 to obtain parameters that
generate M̃∗2(T) or M̃∗1(T). Figures 7 and 8 confirm that density functions from theory are
in line with the simulations. We compute and compare VaR0.95 values from four sources:
simulation of the portfolio (Simulation), density function without approximation (Den-
sity w/o Approximation), approximated density function using the midpoint approach
(Approx. Density (M)) and approximated density function using the average approach
(Approx. Density (A)).
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(a) Density and histogram for M̃∗1 (t).
(b) Density and histogram for M̃∗2 (t).

Figure 7. Case 1: Density and histogram for M̃∗1 (t) and M̃∗2 (t).

Figure 8. Case 1: Density and histogram for ln(Π(T)).

Table 10. VaR0.05 for ln(Π(t)) from four sources.

Simulation Density w/o
Approximation Approx. Density (M) Approx. Density (A)

VaR0.05 2.7833 (0.004006) 2.783 (0.00401) 2.7832 (0.003988) 2.783 (0.004008)

We use linear interpolation here to calculate the quantile if αq falls between two critical
levels calculated from histogram and density functions. Standard errors are reported
in parantheses.

6. Conclusions

This paper studied the properties of a multivariate mean-reverting 4/2 stochastic
volatility model based on principal component decomposition. In particular, we studied the
variance and covariance processes as well as several submodels of interest to the industry
(e.g., separable or no spillover effects, multivariate mean-reverting Heston models). We
also obtain an expectation representation for the c.f. of the asset prices with respect to
the paths of the stochastic volatility process. Two closed-form approximations to the c.f.
are presented in Section 3, these are the first efficient calculations of c.f. for multivariate
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mean-reverting stochastic covariance models. In Section 4, we implemented a two-step
estimation methodology to three sets of data involving two asset classes, commodities and
volatility indexes. The study confirms stylized facts commonly attributed to commodities,
like spillover effects, are also observed in the joint dynamic of volatility indexes, which
has not been previously reported; it also displays the role and need of scaling parameters
between instantaneous variance and volatility indexes in a multidimensional setting.

In Section 5, we further tested our approximation methods in a risk management
setting by computing one of the most popular risk measures, namely, VaR. Since VaR is
a distribution-based risk measure, our analysis confirms the effectiveness of the c.f. ap-
proximations in a multidimensional setting for a portfolio of advanced stochastic processes.
Although our analysis was in two dimensions, the methodology is transferable to any
dimension, e.g., a portfolio with a large number of underlying assets. In such case, the
average-based approximation can greatly save time in calculating distribution-based risk
measures, the alternative is the MontCarlo simulation of a high number of continuous-time
processes with the subsequent loss in precision.
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Notes
1 The estimation methodology for volatility group parameters (Section 4.2) can also be applied to the general model,

as for drift group parameters (Section 4.3) some modifications are needed to account for the vector autoregressive
structure coming from spillover effects.

2 Similar results were obtained for equally weighted assets case (π1 = π2 = 1
3 ).
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