
risks

Article

Transformations of Telegraph Processes and Their
Financial Applications

Anatoliy A. Pogorui 1 , Anatoliy Swishchuk 2 and Ramón M. Rodríguez-Dagnino 3,*

����������
�������

Citation: Pogorui, Anatoliy A.,

Anatoliy Swishchuk and Ramón M.

Rodríguez-Dagnino. 2021.

Transformations of Telegraph

Processes and Their Financial

Applications. Risks 9: 147. https://

doi.org/10.3390/risks9080147

Academic Editor: Mogens Steffensen

Received: 2 July 2021

Accepted: 5 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Zhytomyr Ivan Franko State University, Valyka Berdychivska St. 40,
10008 Zhytomyr, Ukraine; pogor@zu.edu.ua

2 Department of Mathematics & Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada;
aswish@ucalgary.ca

3 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur. C.P.,
64849 Monterrey, Mexico

* Correspondence: rmrodrig@tec.mx

Abstract: In this paper, we consider non-linear transformations of classical telegraph process. The
main results consist of deriving a general partial differential Equation (PDE) for the probability
density (pdf) of the transformed telegraph process, and then presenting the limiting PDE under Kac’s
conditions, which may be interpreted as the equation for a diffusion process on a circle. This general
case includes, for example, classical cases, such as limiting diffusion and geometric Brownian motion
under some specifications of non-linear transformations (i.e., linear, exponential, etc.). We also give
three applications of non-linear transformed telegraph process in finance: (1) application of classical
telegraph process in the case of balance, (2) application of classical telegraph process in the case of
dis-balance, and (3) application of asymmetric telegraph process. For these three cases, we present
European call and put option prices. The novelty of the paper consists of new results for non-linear
transformed classical telegraph process, new models for stock prices based on transformed telegraph
process, and new applications of these models to option pricing.

Keywords: classical telegraph equation; transformations of telegraph equation; asymmetric telegraph
equation; Black–Scholes formula; European call and put options

MSC: Primary 60K35; Secondary 60K99; 60K15

1. Introduction

In 1951, Goldstein and Kac (see Goldstein (1951); Kac (1974) and also Kac (1950))
proposed an interesting random motion model for the movement of a particle on the
line (or one dimension). The particle was moving at a constant velocity v in any of the
two directions and traveling a random distance drawn from an exponential probability
distribution with parameter λ. Therefore, this is a random motion driven by a Poisson
process with intensity λ. After one movement, the particle changes its direction of motion
in the opposite direction under the same stochastic conditions. This particle motion can be
modeled as a random motion governed by a switching Poisson process with alternating
directions and having exponentially distributed holding times.

In an independent manner, Goldstein and Kac solved this problem and they found that
the solution satisfies the one-dimensional telegraph equation, which has a similar mathe-
matical form as the Heaviside telegraph equation appearing in deterministic problems of
wave propagation in electrical transmission lines, namely:

∂2 f (t, x)
∂t2 + 2λ

∂ f (t, x)
∂t

= v2 ∂2 f (t, x)
∂x2 .
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In the case of the random motion probabilistic model this equation is also called the
Goldstein—Kac telegraph equation or classical telegraph equation.

This seminal work have been extended in many publications worldwide by introduc-
ing variations of this basic idea. For instance, we should mention applications in financial
market theory of the one-dimensional jump telegraph process, which is a generalization of
the telegraph process, Ratanov (2007, 2010), López and Ratanov (2012, 2014), and Ratanov
and Melnikov (2008). Explicit formula for the distribution of the integrated telegraph pro-
cess (or Kac’s process) first appeared in Janssen and Siebert (1981). Its proof was presented
in Steutel (1985) (see also Orgingher (1990) for more details). Some connections between
telegraph equation and heat equation may be found in Janssen (1990) along with asymp-
totic properties of integrated telegraph process. Distributions of the integrated telegraph
process were obtained in Di Masi et al. (1994) in both symmetric (intensities of transitions
are same) and asymmetric cases (intensities of transitions are different). In the hydrody-
namic limit, this process approximates the diffusion process on the line. Some probabilistic
analysis of the telegrapher’s process with drift by means of relativistic transformations
were considered in Beghin et al. (2001). Variety of transformations of telegraph process and
its association with many areas were studied by Orsingher; see Orsingher (1985); Orsingher
and Beghin (2009); Orsingher and De Gregorio (2007); Orsingher and Ratanov (2002); Ors-
ingher and Somella (2004); Orgingher (1990). They include hyperbolic equations, fractional
diffusion equations, random flights, planar and cyclic random motions, among others.
Some recent works consider a telegraph equation with time-dependent coefficients Ange-
lani and Garra (2019), Markov-modulated Lévy processes with two different regimes of
restarting Ratanov (2020), some generalizations of the classical Black–Scholes models in
finance Stoynov (2019), jump-telegraph process with exponentially distributed interarrival
times Di Crescenzo and Meoli (2018), and a model to describe the vertical motions in
the Campi Flegrei volcanic region consisting of a Brownian motion process driven by a
generalized telegraph process Travaglino et al. (2018).

The application of the telegraph process for option prices was studied in Ratanov (2007);
Ratanov and Melnikov (2008); Ratanov (2010), Kolesnik and Ratanov (2013). Some applica-
tions of classical telegraph process in finance were considered in Pogorui et al. (2021b).

We note that the classical telegraph process is the simplest case of one-dimensional
random evolutions (REs). A good introduction to RE may be found in Pinsky (1991).
Random evolutions driven by the hyper-parabolic operators were considered in Kolesnik
and Pinsky (2011). Many ideas, methods, classifications, applications, and examples of REs
are presented in the handbook Swishchuk (1997). Many applications of REs in finance and
insurance are considered in Swishchuk (2000).

In this paper, we consider transformations of classical telegraph process. We also give
three applications of transform telegraph process in finance: (1) application of classical
telegraph process (h(x) = x) in the case of balance; (2) application of classical telegraph
process (h(x) = x) in the case of dis-balance; and (3) application of asymmetric telegraph
process (h(x) has a special form presented below) in finance. The novelty of the paper
consists of new results for transformed classical telegraph process, new models for stock
prices, and new applications of these models to option pricing. Function h(x) is used
to generalize classical telegraph equation to obtain, e.g., asymmetric telegraph process,
diffusion process on a circle, etc.

The main idea of application of telegraph process in finance is the following one:
Instead of the geometric Brownian motion (GBM) we propose the following model for the
price St of a stock at time t :

Sε
t = S0 exp(x(t)),

where x(t) =
∫ t

0 v(s)ds, v(t) is a continuous-time Markov chain with state space (v1, v2),
and with λi being the rates of the exponential waiting times, i = 1, 2.

To satisfy Kac’s conditions, we consider the scaled model for stock price:
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Sε
t = S0 exp

(
ε−1

∫ t

0
v
( s

ε2

)
ds
)

,

and then taking a limit when ε→ 0. In this manner, process Sε
t converges weakly to GBM

Ŝt = S0 eµt+σW(t), with specific constants µ and σ, and {W(t)} is the Wiener process. We
use the latter model to calculate European call and put options pricing.

For example, the modeling of cash flow in high-frequency and algorithmic trading can
be fitted by this model. If transactions happen in a short time (i.e., every millisecond), then
because of the scale 1/ε2, v(t/ε2) is switched quickly between two states {v1, v2} according
to Markov chain ξ(t/ε2). Hence, Sε

t is changing quickly as well. If we use a longer time
interval t/ε2, instead of time t in milliseconds, we can fit this model for different purposes
such as market making, liquidation, acquisition, etc., purposes. Thus, we can apply our
asymptotic results considered above. Our modeling approach is an alternative to the well-
known Black–Scholes model based on geometric Brownian motion. It is well-known that
Brownian motion (Wiener process) has some mathematical difficulties that make it difficult
to fit to real data. For instance, it has trajectories continuous everywhere but differentiable
nowhere, it is fractal with Hausdorff dimension equals 1.5, it has zero length of free path,
and infinite velocity at any point of time.

The paper is organized as follows: Section 2 considers transformations of classical
telegraph process. Section 3 presents financial applications of transformed telegraph
process. Section 4 concludes the paper.

2. Transformations of Classical Telegraph Process

Suppose that x(t) is the telegraph process, such that

d
dt

x(t) = (−1)ξ(t)v, (1)

where v > 0, ξ(t) is an alternating Markov process with phase space X = {0, 1} and
infinitesimal generator matrix (or intensity matrix)

Q =

(
q00 q01
q10 q11

)
=

(
−λ λ
λ −λ

)
.

Consider a differentiable function h : R → R, such that there exists the inverse
function h−1. Let us introduce the following process,

z(t) = h(x(t)). (2)

Then,

d
dt

z(t) =
d
dt

h(x(t)) = h′(x(t))(−1)ξ(t)v = h′
(

h−1(z(t))
)
(−1)ξ(t)v.

The bivariate process {z(t), ξ(t)} is a Markov process Korolyuk and Swishchuk (1995),
Swishchuk (1997, 2000), and its infinitesimal generator L is given by

Lϕ(x, n) = h′
(

h−1(x)
)
(−1)nv

∂

∂x
ϕ(x, n) + Qϕ(x, n),

where Qϕ(x, n) = qn0 ϕ(x, 0) + qn1 ϕ(x, 1), n = 1, 2.
Or in more details

Lϕ(x, 0) = vh′
(

h−1(x)
) ∂

∂x
ϕ(x, 0)− λϕ(x, 0) + λϕ(x, 1)

Lϕ(x, 1) = −vh′
(

h−1(x)
) ∂

∂x
ϕ(x, 1)− λϕ(x, 1) + λϕ(x, 0).
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Denote by f (x, n, t), x ∈ R, t ≥ 0 the pdf of the process {z(t), ξ(t)} in the case when
ξ(t) = n, n ∈ {0, 1}. Then,

∂

∂t
f (x, n, t) = L f (x, n, t)

or in more details

∂

∂t
f (x, 0, t) = vh′

(
h−1(x)

) ∂

∂x
f (x, 0, t)− λ f (x, 0, t) + λ f (x, 1, t)

∂

∂t
f (x, 1, t) = −vh′

(
h−1(x)

) ∂

∂x
f (x, 1, t)− λ f (x, 1, t) + λ f (x, 0, t).

Equivalently, these equations can be expressed in matrix form as follows:

 ∂
∂t − vh′

(
h−1(x)

)
∂

∂x + λ −λ

−λ ∂
∂t + vh′

(
h−1(x)

)
∂

∂x + λ

( f (x, 0, t)
f (x, 1, t)

)
=

(
0
0

)
.

Let us define the following notation,

f (x, t) := f (x, 0, t) + f (x, 1, t).

It is easily seen that f (x, t)dx is the pdf of z(t) at x, i.e., f (x, t)dx = P(z(t) ∈ (x, x + dx)).
Then, f (x, t) satisfies the following equation,

det

 ∂
∂t − vh′

(
h−1(x)

)
∂

∂x + λ −λ

−λ ∂
∂t + vh′

(
h−1(x)

)
∂

∂x + λ

 f (x, t) = 0,

or equivalently, (
∂2

∂t2 − v2
(

h′
(

h−1(x)
))2 ∂2

∂x2 + 2λ
∂

∂t

)
f (x, t) = 0. (3)

It is well-known under Kac’s conditions Kac (1950) that the telegraph process x(t)
converges weakly to Wiener process W(t) and, hence, h(x(t)) converges weakly to h(W(t)).
Passing in the last equation to the Kac’s limit Kac (1950), i.e., when λ→ +∞ and ν→ +∞
in such a way that ν2/λ→ σ2 > 0, we obtain

∂

∂t
fh(w)(x, t) =

σ2

2
(h′(h−1(x)))2 ∂2

∂x2 fh(w)(x, t), (4)

where fh(w)(x, t) is the pdf of the process h(W(t)).
On the other hand, the pdf f (x, t) of the telegraph process with the initial density

distribution g(x) and equally probable velocities v and −v satisfies the telegraph equation(
∂2

∂t2 − v2 ∂2

∂x2 + 2λ
∂

∂t

)
f (x, t) = 0, t ≥ 0, x ∈ R, (5)

and initial conditions

f (x, 0) = g(x),
∂

∂t
f (x, t)

∣∣∣∣
t=0

= 0.

It is well-known that the unique solution of Cauchy problem (5) is given by the
following formula

f (x, t) =
e−λt

2
(g(vt− x) + g(vt + x)) +

e−λt

2v

∫ vt

−vt
g(y + x)p(y, t)dy,
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where p(y, t) =
(

λI0

(
λ
v

√
(vt)2 − y2

)
+ ∂

∂t I0

(
λ
v

√
(vt)2 − y2

))
.

In the particular case, when the telegraph process starts from x = 0, with equally
probable velocities v and −v, its pdf f (x, t) satisfies the telegraph equation(

∂2

∂t2 − v2 ∂2

∂x2 + 2λ
∂

∂t

)
f (x, t) = 0 (6)

with initial conditions f (x, 0) = δ(x), ∂
∂t f (x, t)

∣∣∣
t=0

= 0, and is given by

f (x, t) =
e−λt

2
(δ(vt− x) + δ(vt + x))

+
e−λt

2v

(
λI0

(
λ

v

√
(vt)2 − x2

)
+

∂

∂t
I0

(
λ

v

√
(vt)2 − x2

))
, (7)

where (vt)2 ≥ x2.
It is also well-known that if a random variable X has the pdf fX(x) and Y = h(X) and

there exists the inverse function h−1, then the pdf fY(y) of Y is as follows:

fY(y) = fX

(
h−1(y)

)∣∣∣∣dh−1

dx
(y)
∣∣∣∣.

Therefore, the solution fh(x, t) of Equation (2) with initial conditions fh(x, 0) =

g
(
h−1(x)

)
, ∂

∂t fh(x, t)
∣∣∣
t=0

= 0 is given by the following formula:

fh(x, t) =
e−λt

2

∣∣∣∣dh−1

dx
(x)
∣∣∣∣

×
{(

g
(

vt− h−1(x)
)
+ g
(

vt + h−1(x)
))

+
1
v

∫ vt

−vt
g
(

y + h−1(x)
)(

λI0

(
λ

v

√
(vt)2 − y2

)
+

∂

∂t
I0

(
λ

v

√
(vt)2 − y2

))
dy
}

,

where (vt)2 ≥
(
h−1(x)

)2.
In particular, the solution fh(x, t) of Equation (2) with initial conditions fh(x, 0) =

δ
(
h−1(x)

)
, ∂

∂t fh(x, t)
∣∣∣
t=0

= 0 is given by the following formula:

fh(x, t) =
e−λt

2

∣∣∣∣dh−1

dx
(x)
∣∣∣∣

×
{(

δ
(

vt− h−1(x)
)
+ δ
(

vt + h−1(x)
))

+
1
v

(
λI0

(
λ

v

√
(vt)2 − (h−1(x))2

)
+

∂

∂t
I0

(
λ

v

√
(vt)2 − (h−1(x))2

))}
,

where (vt)2 ≥
(
h−1(x)

)2.
Now, let us consider a case where h is a differentiable mapping h : R→ R or (C) and

the inverse function does not necessarily exist for it.
In particular, in the case where h(x) = eix, we have

d
dt

z(t) =
d
dt

eix(t) = ieix(t) d
dt

x(t) = iz(t)(−1)ξ(t)v.

Hence,

d
dt

cos x(t) = v(−1)ξ(t)+1sin x(t)
d
dt

sin x(t) = v(−1)ξ(t)cos x(t).



Risks 2021, 9, 147 6 of 21

By assuming α(t) = cos x(t) and β(t) = sin x(t), we have

d
dt

α(t) = v(−1)ξ(t)+1β(t)

d
dt

β(t) = v(−1)ξ(t)α(t).

The process {(α(t), β(t)), ξ(t)} is Markov and its infinitesimal generator L is given by
the formula Korolyuk and Swishchuk (1995)

Lϕ(α, β, ξ(t))

= v(−1)ξ(t)+1β
∂

∂α
ϕ(α, β, ξ(t)) + v(−1)ξ(t)α

∂

∂β
ϕ(u, v, ξ(t)) + Qϕ(α, β, ξ(t)).

Denoting by f (α, β, n, t), x ∈ R, t ≥ 0 the pdf of the process {(α(t), β(t)), ξ(t)} in the
special case when ξ(t) = n, n ∈ {0, 1}, we have

∂

∂t
f (α, β, n, t) = L f (α, β, n, t)

or in more details
∂

∂t
f (α, β, 0, t) =

−vβ
∂

∂α
f (α, β, 0, t) + vα

∂

∂β
f (α, β, 0, t)− λ f (α, β, 0, t) + λ f (α, β, 1, t)

∂

∂t
f (α, β, 1, t)

= vβ
∂

∂α
f (α, β, 1, t)− vα

∂

∂β
f (α, β, 2, t)− λ f (α, β, 1, t) + λ f (α, β, 0, t). (8)

Passing to the polar coordinate system α = r cos ϕ, β = r sin ϕ, we have

∂

∂α
f =

∂

∂r
f cos ϕ − ∂

∂ϕ
f

sin ϕ

r
∂

∂β
f =

∂

∂r
f sin ϕ− ∂

∂ϕ
f

cos ϕ

r
. (9)

Taking into account that f does not depend on r and substituting (9) into (8), we have

∂

∂t
f (ϕ, 0, t) = v sin2 ϕ

∂

∂ϕ
f (ϕ, 0, t)− v cos2 ϕ

∂

∂ϕ
f (ϕ, 0, t) + λ f (ϕ, 1, t)

∂

∂t
f (ϕ, 1, t) = −v sin2 ϕ

∂

∂ϕ
f (ϕ, 1, t) + v cos2 ϕ

∂

∂ϕ
f (ϕ, 0, t)− λ f (ϕ, 1, t) + λ f (ϕ, 0, t).

Denote by
f (ϕ, t) := f (ϕ, 0, t) + f (ϕ, 1, t).

In much the same manner as we obtained (3), we have

det
(

a11 −λ
−λ a22

)
f (ϕ, t) = 0,

where
a11 =

∂

∂t
− v sin2 ϕ

∂

∂ϕ
+ v cos2 ϕ

∂

∂ϕ
+ λ

a22 =
∂

∂t
+ v sin2 ϕ

∂

∂ϕ
− v cos2 ϕ

∂

∂ϕ
+ λ.

It is easily verified that

det
(

a11 −λ
−λ a22

)
=

∂2

∂t2 + 2λ
∂

∂t
− cos22ϕ

∂2

∂ϕ2 +
sin 4ϕ

2
∂

∂ϕ
.
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Therefore, the pdf f (ϕ, t) satisfies the following equation:(
∂2

∂t2 + 2λ
∂

∂t
− v2cos22ϕ

∂2

∂ϕ2 + v2 sin 4ϕ

2
∂

∂ϕ

)
f (ϕ, t) = 0, (10)

with initial conditions f (ϕ, 0) = δ(ϕ), ∂
∂ϕ f (ϕ, t)

∣∣∣
ϕ=0

= 0.

Passing to the Kac’s limit in (10) as λ → ∞ and v → ∞, such that v2

λ → σ2 > 0
we obtain

∂

∂t
f (ϕ, t) =

σ2

2

(
cos22ϕ

∂2

∂ϕ2 f (ϕ, t)− sin 4ϕ

2
∂

∂ϕ
f (ϕ, t)

)
.

By analogy with a diffusion process on a line, this equation can be interpreted as the
equation for a diffusion process on a circle De Gregorio and Iafrate (2020).

Remark 1. Let us consider the case where h(x) = ex, i.e., z(t) = ex(t). Then we have h′(h−1(x)) =
x. That is, (

∂2

∂t2 − v2x2 ∂2

∂x2 + 2λ
∂

∂t

)
f (x, t) = 0, t ≥ 0, x ∈ R. (11)

The solution to the last equation with the initial conditions fh(x, 0) = δ(ln(x)) = δ(x− 1),
and ∂

∂t fh(x, t)|t=0 = 0, is given by the following formula:

f (x, t) =
e−λt

2|x| (δ(vt− ln(x)) + δ(vt + ln(x)))

+
1
v

(
λI0

(
λ

v

√
(vt)2 − (ln x)2

)
+

∂

∂t
I0

(
λ

v

√
(vt)2 − (ln x)2

))
, (12)

where (vt)2 ≥ (ln x)2.

Remark 2. We note that if λ → ∞ and v → ∞, such that v2

λ → σ2 > 0, i.e., under the Kac’s
condition Kac (1974), the process ex(t) weakly converges to the geometric Brownian motion eW(t)

that is used for many authors for modeling of a stock price in the Black–Scholes formula.

3. Financial Applications of Transformed Telegraph Process

In this section, we give three applications of transformations of telegraph process in
finance: (1) application of classical telegraph process (h(x) = x) in the case of balance;
(2) application of classical telegraph process (h(x) = x) in the case of dis-balance; and (3)
application of asymmetric telegraph process (h(x) has a special form presented below)
in finance.

We note that the asymmetric telegraph process is a telegraph process where the particle
is allowed to move forward or backward with two different velocities, v1, v2, Beghin et
al. (2001), De Gregorio and Iafrate (2020), and López and Ratanov (2014). Furthermore,
two different velocity switching rates λ1 and λ2, are allowed in this process. Thus, the
underlying telegraph signal can be modeled as a continuous-time Markov chain {X(t), t ≥
0} with state space (v1,−v2), where λi is the rate of the exponential sojourn time when
the telegraph signal is in state (−1)i+1vi, i = 1, 2, and X(0) is uniformly distributed on
(v1,−v2). Then, the asymmetric telegraph process is defined as x(t) =

∫ t
0 X(s)ds.

It is straightforward to recover the classical telegraph process as a particular case
when v1 = v2 = v, and λ1 = λ2 = λ.

Thus, in our case, the balance condition for classical telegraph process means (v1 +
v2)/2 = 0, i.e., v2 = −v1, and this is the case because v1 = v2 = v; thus, v + (−v) = 0.
Dis-balance condition for classical telegraph process means that (v1 + v2)/2 6= 0, i.e.,
v2 6= −v1. Thus, we have different velocities v1, v2, that satisfy the dis-balance condition.
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We note that in the case of asymmetric telegraph process the transformed telegraph
process may be presented by the following function h(x) :

h(x(t)) =
∫ t

0

[v1 − v2

2
+

v1 + v2

2
(1X(0)=v1

− 1X(0)=−v2
)(−1)N(s)

]
ds,

where N(t) is a counting process which has intensities λi and λi+(−1)i+1 for switching times
S2i−1 and S2i, respectively, i = 1, 2.

3.1. Application of Classical Telegraph Process in Finance: Balance Case

It is possible to derive an analog model of the Black–Scholes formula after an applica-
tion of the asymptotic results presented in Pogorui and Rodríguez-Dagnino (2008, 2009);
Pogorui et al. (2021a).

The classical symmetric telegraph process is defined as follows: a particle is allowed
to move forward or backward with velocities v,−v, in an alternate manner, and the process
has a velocity switching rate λ. Hence, the underlying telegraph signal can be modeled as a
continuous-time Markov chain {X(t), t ≥ 0}with state space (v,−v), where λ is the rate of
the exponential sojourn time in the interval when the telegraph signal is in state (−1)i+1v.
Therefore, the classical symmetric telegraph process is defined as x(t) =

∫ t
0 X(s)ds.

The probability law of the asymmetric telegraph process has an absolutely continuous
component f that satisfies the following hyperbolic Equation (see Beghin et al. (2001)):

∂2 f (t, x)
∂t2 = v2 ∂2 f (t, x)

∂x2 − 2λ
∂ f (t, x)

∂t
.

By taking the limits for λ, v→ +∞, such that

v√
λ
→ σ,

one obtains the governing equation of a Brownian motion (Kac-type condition). it is also
possible to show that the classical symmetric telegraph process converges in distribution to
a Brownian motion, i.e.,

x(t)→d σW(t),

where W(t) is a Wiener process (standard Brownian motion) and

σ :=
v√
λ

.

Let us consider the following model for a stock price:

St = S0 ex(t), (13)

where x(t) is a classical symmetric telegraph process. Under above-mentioned Kac’s
conditions we can state that

St = S0 ex(t) →d Ŝt := S0 eσW(t).

After applying Itô’s formula (Shreve (2004)), we found Ŝt satisfies the following stochastic
differential Equation (SDE):

dŜt = bŜt dt + σŜt dW(t), (14)

where

b :=
σ2

2
.
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Now, let us define the following process:

Z(t) := exp
{( b− r

σ

)
Wt −

1
2

( b− r
σ

)2
t
}

,

where r > 0 is the interest rate, and Wt = W(t).
Then, it is not difficult to see that EP[Z(t)] = 1, hence according to Novikov’s result

Novikov (1980), this process is a positive martingale. Now, let us define the probability
measure Q (recall EP[Z(t)] = 1) on a complete probability space (Ω,F ) :

Q(A) := EP[Z(T)1A],

where 1A is the indicator operator of the set A ∈ F , and the process Z(t) is defined above.
In a similar manner, we can define the following process:

Ŵt := Wt −
( b− r

σ

)
t,

where b is defined above.
We can find that the stochastic process Ŵt is a standard Wiener process after applying

Girsanov’s theorem Shreve (2004), under the probability measure Q. After this fact, measure
Q is called a risk-neutral or martingale measure. Then, our stock price Ŝt in (14), under the
risk-neutral measure Q, satisfies the following SDE:

dŜt = rŜt dt + σŜt dŴt, σ =
v√
λ

. (15)

Therefore, we can write the equivalent Black-Scholes formula for European call option
price C(t) for our model in (15):

C(t) = S0N(d1)− Ke−r(T−t)N(d2), (16)

where

d1 :=
ln(S0/K) + (r + v2/2λ)(T − t)

(v/
√

λ)
√

T − t
, (17)

d2 := d1 − (v/
√

λ)
√

T − t,

and
N(x) = Φ(x) =

1√
2π

∫ x

−∞
e−

u2
2 du

is the cdf (cumulative distribution function) of a standard normal random variable with
zero mean and unit variance, K is a strike price, and T is the maturity.

Example 1 (European call option for limiting telegraph process in balance case). Let us
suppose the following numerical values: S0 = $50, K = $50, r = 0.01, v = 0.01, λ = 0.01, T = 1.
Then, applying Formulas (16) and (17), we can obtain the following European call option price at
time t = 0 :

C(0) = 50× 0.559617− 50× e−0.01×1 × 0.519938 = $ 2.2426

or C(0) = 224.26 cents.

Below we show the numerical values of time evolution of C(t) dependent on λ (upon
fixing v), on v (upon fixing λ), see Figure 1, and of C(t) as a function of v and λ after fixing
t, see Figure 2.
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Figure 1. Time evolution of European call option price C(t) as a function of v (a) and λ (b).

(a) (b)

Figure 2. Time evolution of European call option price C(t) as a function of v and λ for t = 0 (a) and
t = 0.6 (b).

Remark 3. In Figure 3 we show the cost behavior according to Equation (16) as a function of σ.
The Black–Scholes limit case occurs by letting σ = v/

√
λ = 0.01/

√
0.01 = 0.1.
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Figure 3. Time evolution of European call option price C(t) as a function of σ.

Now, we can say that on longer time interval the BS formula works better but on
shorter time interval our formula produces a better performance. The same for volatility: If
volatility is bigger than 0.1, then C(t) is bigger.
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3.2. Application of Classical Telegraph Process in Finance: Dis-Balance Case

Now, we study the one-dimensional transport process in the case of dis-balance. We
consider first the scaled telegraph process and its limiting case (Section 3.2.1). Then, we
applied the limiting process to option pricing; the stock price in this case is modeled as a
geometric limiting telegraph process (Section 3.2.2).

3.2.1. Asymptotic Results for Scaled Telegraph Process

Consider a Markov process {ξ(t), t ≥ 0}with two states {0, 1} and the generator matrix

Q = λ

(
−1 1

1 −1

)
.

Let us introduce the following random evolution or transport process

x(t) = x +
∫ t

0
v(s)ds, (18)

where

v(t) =
{

v0, when ξ(t) = 0;
v1, when ξ(t) = 1.

The generator A of the bi-variate process

{ς(t) = (x(t), ξ(t)), t ≥ 0}

is as follows
Aϕ(x, 0) = v0

∂

∂x
ϕ(x, 0) + λϕ(x, 1)− λϕ(x, 0)

Aϕ(x, 1) = v1
∂

∂x
ϕ(x, 1) + λϕ(x, 0)− λϕ(x, 1),

where ϕ ∈ D(A) is the domain of A, and x ∈ R.
The generator A can be interpreted in the following equivalent manner: Denote by

Z = R× {0, 1} and

Tt ϕ(x, i) =
∫

R
ϕ(z)P{ς(t) ∈ dz | ς(0) = (x, i)}, i ∈ {0, 1}.

Then,

Aϕ(x, i) = lim
4t→0+

T4t ϕ(x, i)− ϕ(x, i)
4t

.

Considering ui(x, t) = Tt ϕ(x, i), we have

∂

∂t
ui(x, t) = ATt ϕ(x, i) = Aui(x, t).

Let us introduce the scaled telegraph process

xε(t) = x0 +
1
ε

∫ t

0
v
( s

ε2

)
ds, (19)

with velocities vi/ε , i ∈ {0, 1}. It is easily seen that v
(

t
ε2

)
is Markovian and its generator

is of the form 1
ε2 Q.

Thus, we have the system of Kolmogorov differential equations:

∂

∂t
uε

0(x, t) =
v0

ε

∂

∂x
uε

0(x, t) +
λ

ε2 uε
1(x, t)− λ

ε2 uε
0(x, t)
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∂

∂t
uε

1(x, t) =
v1

ε

∂

∂x
uε

1(x, t) +
λ

ε2 uε
0(x, t)− λ

ε2 uε
1(x, t), (20)

or in matrix form
∂

∂t
uε(x, t) =

1
ε

V∇uε(x, t) +
1
ε2 Quε(x, t) (21)

where

uε(x, t) =
(

uε
0(x, t)

uε
1(x, t)

)
, V =

(
v0 0
0 v1

)
,

and

V∇ =

(
v0

∂
∂x 0

0 v1
∂

∂x

)
, Q = λ

(
−1 1

1 −1

)
.

Now, consider the potential matrix of ξ(t), Korolyuk and Swishchuk (1995), Swishchuk
(1997, 2000):

R0 =
∫ ∞

0

(
Π− eQt

)
dt,

where eQt =
{

pij(t); i, j ∈ {0, 1}
}

are transition probabilities, and

Π =

(
1
2

1
2

1
2

1
2

)

is the projector matrix on N(Q) = ker(Q). It is easily verified that R0 = Π− (Q + Π)−1.
The balance condition implies v0+v1

2 = 0, i.e., v1 = −v0. It is easily verified that the
balance condition can be also written as ΠVΠ = 0 (see Korolyuk and Swishchuk (1995),
Swishchuk (1997, 2000)).

We are interested in the following dis-balance case: v0 = v + ∆1 and v1 = −v− ∆2,
where ∆i = εai, i = 1, 2, ε > 0. It is easy to see that the generator of ζε(t) =

(
xε(t), ξ

(
t

ε2

))
has the following form:

Aε =
1
ε

V∇+ A∇+
1
ε2 Q,

where

A =

(
a1 0
0 a2

)
.

Denote as uε
i (x, t) = Tε

t ϕ(x, i) =
∫

Z ϕ(z)P{ζε(t) ∈ dz/ζε(0) = (x, i)}.
Then, much in the same way we obtain the following matrix equation

∂

∂t
uε(x, t) =

1
ε

V∇uε(x, t) + A∇uε(x, t) +
1
ε2 Quε(x, t). (22)

By applying asymptotic expansion, Korolyuk and Swishchuk (1995), we have:

uε(x, t) = u(0)(x, t) +
∞

∑
n=1

εn
(

u(n)(x, t) + v(n)
(

x, t/ε2
))

, (23)

where u(n)(x, t), n = 0, 1, 2, . . . are the regular terms of the expansion whereas v(n)(x, t/ε2),
n = 1, 2, . . . are the singular ones.

Then, by substituting (23) into (22), we obtain

Qu(0)(x, t) = 0, Qu(1)(x, t) + V∇u(0)(x, t) = 0,

Qu(2)(x, t) + V∇u(1)(x, t) + A∇u(0)(x, t)− ∂

∂t
u(0)(x, t) = 0, (24)

Qu(k+2)(x, t) + V∇u(k+1)(x, t) + A∇u(k)(x, t)− ∂

∂t
u(k)(x, t) = 0,
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for k ≥ 0.
Thus, u(0)(x, t) ∈ N(Q), i.e., Πu(0)(x, t) = u(0)(x, t).
From (24) it follows that

u(1)(x, t) = R0V∇u(0)(x, t) + c1(t), (25)

where c1(t) ∈ N(Q).
Much in the same way, we have

Qu(2)(x, t) =
∂

∂t
u(0)(x, t)−V∇u(1)(x, t)

=
∂

∂t
u(0)(x, t)−V∇R0V∇u(0)(x, t)−V∇c1(t)− A∇u(0)(x, t). (26)

From the properties of Π it follows that

ΠQu(2)(x, t) = 0

=
∂

∂t
u(0)(x, t)−ΠV∇R0V∇Πu(0)(x, t)−ΠA∇Πu(0)(x, t). (27)

Hence, the first term u(0)(x, t) of the Expansion (23) satisfies the diffusion Equation (27).
The matrix Equation (22) can be written as follows:(

∂
∂t −

v
ε

∂
∂x − a1

∂
∂x + λ

ε2
λ
ε2

λ
ε2

∂
∂t +

v
ε

∂
∂x + a2

∂
∂x + λ

ε2

)
u(ε)(x, t)

= Ψu(ε)(x, t) = 0.

It is easily seen that the function fε(x, t) = uε
0(x, t) + uε

1(x, t) is the solution of the
following equation:

det(Ψ) fε(x, t) = 0. (28)

Let us write (28) in more detail as follows:[(
2λ

∂

∂t
−v2 ∂2

∂x2 + λ(a2 − a1)
∂

∂x

)

+ ε2
(

∂2

∂t2 + (a2 − a1)
∂2

∂x∂t
− v(a2 + a1)

ε

∂2

∂x2 − a1a2
∂2

∂x2

)]
(29)

× fε(x, t) = 0.

Let us define the notation u(0)(x, t) := (u0(x, t), u1(x, t)) and f0(x, t) := u0(x, t) +
u1(x, t). Since uε(x, t) > u(0)(x, t) as ε > 0 Korolyuk and Swishchuk (1995), we have
limε→0 fε(x, t) = f0(x, t).

From (29) it follows that(
∂

∂t
− v2

2λ

∂2

∂x2 +
a2 − a1

2
∂

∂x

)
f0(x, t) = 0. (30)

Hence, if a2 6= a1, then f0(x, t) satisfies the diffusion Equation (30) with drift a1−a2
2

and diffusion v2
√

λ
.

Remark 4. It follows from (30) that scaled telegraph process xε(t) in (19) weakly converges to a
diffusion process with drift coefficient a1−a2

2 and diffusion coefficient v2
√

λ
.
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3.2.2. Application in Finance: Black-Scholes Formula for Geometric Limiting
Telegraph Process

The well-known geometric Brownian motion (GBM) is used to model a price St of a
stock (Shreve (2004)) at time t, such that

St = S0 exp(µt + σWt), (31)

where µ and σ are the drift and volatility of the stock, respectively, and {Wt} is the
Wiener process.

After substituting µ = a1−a2
2 and σ = v√

λ
in (31) the diffusion equation for the

process {µt + σWt} can be obtained. Therefore, the Black–Scholes formula is obtained by
considering an exponential Brownian motion for the share price St.

As a consequence, we propose the following formula for the price St of a stock at time
t (see (19)):

Sε
t = S0 exp

(
ε−1

∫ t

0
v
( s

ε2

)
ds
)

,

where v(s) is defined in (19) above. This formula represents an alternative to the formula-
tion based on GBM.

This new formulation can be used to model cash flow in high-frequency and algorith-
mic trading. In many financial applications transactions happen in short periods of time
(every millisecond), thus the stochastic process v(t/ε2) is switched quickly between two
states {v0, v1} according to an underlying Markov chain ξ(t/ε2), because of the scale 1/ε2,
and it means that Sε

t is changing quickly as well. In some cases, we can assume longer
periods of time t (instead of time in milliseconds), thus t/ε2 can be used and it might be
needed in applications, such as liquidation, acquisition, market making, etc. Therefore, we
can apply our asymptotic results considered above for a better model fitting in these cases.
For instance, below we show how to obtain an option pricing formula that is analogue
to the Black–Scholes formula, for our model of a stock price. Of course, our modeling
approach and results may be applied to other problems in mathematical finance, such as
portfolio optimization, optimal control, etc.

Thus, by applying the results from the previous subsection we can state the following
weak convergence

Sε
t →ε→0 Ŝt,

in Skorokhod topology, where

Ŝt = S0 exp
{

a1 − a2

2
t +

v√
λ

Wt

}
.

Now, applying Itô’s formula (Shreve (2004)), then Ŝt satisfies the stochastic differen-
tial equation:

dŜt = µ̂Ŝt dt +
v√
λ

Ŝt dWt,

where

µ̂ :=
a1 − a2

2
+

v2

2λ
.

Let us define the following stochastic process:

Z(t) := exp
{( µ̂− r

v/
√

λ

)
Wt −

1
2

( µ̂− r
v/
√

λ

)2
t
}

,

where r > 0 is the interest rate.
Hence, EP[Z(t)] = 1, and using Novikov’s result (Novikov (1980)), we conclude that

this process is a positive martingale.
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Let us define the new probability measure Q (recall EP[Z(t)] = 1) on a complete
probability space (Ω,F ) :

Q(A) := EP[Z(T)1A],

where 1A is an indicator operator of the set A ∈ F , and Z(t) is the stochastic process
defined above.

We also define the stochastic process:

Ŵt := Wt −
( µ̂− r

v/
√

λ

)
t,

where µ̂ is defined above.
After applying Girsanov’s theorem (Shreve (2004)), under the probability measure Q,

the stochastic process we conclude that Ŵt is a standard Wiener process. We call measure
Q a risk-neutral or martingale measure. Then, under the risk-neutral measure Q our stock
price Ŝt satisfies the following SDE:

dŜt = rŜt dt +
v√
λ

Ŝt dŴt.

Therefore, we can write the Black–Scholes formula for European put option price P(t)
for our model:

P(t) = Ke−r(T−t)N(−d2)− S0N(−d1) (32)

where

d1 :=
ln(S0/K) + (r + v2/2λ)(T − t)

(v/
√

λ)
√

T − t
, (33)

d2 := d1 − (v/2
√

λ)
√

T − t,

and N(x) is the cdf of a standard normal random variable with zero mean and unit variance,
K is a strike price, and T is the maturity.

We note that

−d1 :=
ln(K/S0)− (r + v2/2λ)(T − t)

(v/
√

λ)
√

T − t
,

and
−d2 = (v/2

√
λ)
√

T − t− d1.

We also note that European call option price is:

C(t) = S0N(d1)− Ke−r(T−t)N(d2),

where d1, d2 are defined in (33).

Example 2 (European Put Option for Limiting Telegraph Process). Suppose the numer-
ical values S0 = $50, K = $50, r = 0.01, v = 0.02, λ = 0.02, T = 1. Therefore, applying
Formulas (32) and (33), we obtain the following European put option price at time t = 0 :

P(0) = 50× e−0.01×1 × 0.471814− 50× 0.44376854 = $1.167542

or P(0) = 116.7542 cents.

Below we present some graphs of the time evolution of P(t) as a function of λ (upon
fixing v), and as a function of v (upon fixing λ); see Figure 4, and on v and λ after fixing t;
see Figure 5.
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Figure 4. Time evolution of European put option price P(t) and dependent on v (a) and λ (b).
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Figure 5. Time evolution of European put option price P(t) and dependent on v and λ for t = 0 (a)
and t = 0.6 (b).

Remark 5. In Figure 6 we show the cost behavior according to Equation (32) as a function of σ.
The Black–Scholes limit case occurs by letting σ = 0.14.
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Figure 6. Time evolution of European put option price P(t) as a function of σ.

Now, we can say that on longer time interval the BS formula works better but on
shorter time interval our formula produces a better performance. The same for volatility: If
volatility is bigger than 0.14, then P(t) is bigger.
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3.3. Asymmetric Telegraph Process and Its Financial Application

The asymmetric telegraph process is a telegraph process where the particle is allowed
to move forward or backward with two different velocities, v1, v2; and it has been studied
in Beghin et al. (2001) and López and Ratanov (2014). Furthermore, this stochastic process
can have two different velocity switching rates λ1 and λ2. Hence, the underlying telegraph
stochastic signal is modeled as a continuous-time Markov process (X(t), t ≥ 0) with state
space (v1,−v2), where λi is the rate of the exponential sojourn time when the telegraph
signal is in state (−1)i+1vi, i = 1, 2, and X(0) is uniformly distributed on (v1,−v2). Hence,
the asymmetric telegraph process is defined as x(t) =

∫ t
0 X(s)ds. It is clear that the classical

telegraph process can be recovered as a particular case when v1 = v2 = c, λ1 = λ2 = λ.
The probability law of the asymmetric telegraph process has an absolutely continuous
component f and it satisfies the following hyperbolic Equation (see Beghin et al. (2001)):

∂2 f (t,x)
∂t2 = (v1v2)

∂2 f (t,x)
∂x2 + (v2 − v1)

∂2 f (t,x)
∂t∂x − (λ1 + λ2)

∂ f (t,x)
∂t

+ 1
2 [(v2 − v1)(λ1 + λ2)− (λ2 − λ1)(v1 + v2)]

∂ f (t,x)
∂t .

Under Kac-type conditions we can take the limit in the first equation, and we can
obtain the governing equation of a Brownian motion with drift. Hence, after taking the
limits for λi, vi → +∞ in such a manner that

λ1

λ2
→ ν2 > 0,

vi√
λi
→ σi, i = 1, 2,

λ2v1 − λ1v2

λ1 + λ2
→ δ,

it is not difficult to show that the marginal distributions of the asymmetric telegraph
process converges to a drifted Brownian motion

x(t)→d δ t + σW(t),

where W(t) is a standard Brownian motion and

σ :=
σ1σ2√

(σ2
1 + σ2

2 )/2
.

Remark 6. We note that for the symmetric case, v1 = v2 = c, λ1 = λ2 = λ, the symmetric
telegraph process x(t) under Kac’s conditions converges to standard Wiener process with volatility
σ = c/

√
λ :

x(t)→d (c/
√

λ)W(t).

Let us consider the following model for a stock price:

St = S0 ex(t),

where x(t) is a telegraph process. Under above-mentioned Kac’s conditions we can
state that

St = S0 ex(t) →d Ŝt := S0 eδt+σW(t).

Applying Itô’s formula (Shreve (2004)), the stochastic process Ŝt satisfies the follow-
ing SDE:

dŜt = aŜt dt + σŜt dWt,

where

a := δ +
σ2

2
.
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Let us define the following stochastic process:

Z(t) := exp
{( a− r

σ

)
Wt −

1
2

( a− r
σ

)2
t
}

,

where r > 0 is the interest rate.
Hence, EP[Z(t)] = 1, and applying Novikov’s result (Novikov (1980)), we conclude

that this process is a positive martingale. Now, let us define the new probability measure
Q (recall EP[Z(t)] = 1) on a complete probability space (Ω,F ) :

Q(A) := EP[Z(T)1A],

where 1A is an indicator operator of the set A ∈ F , and Z(t) is the stochastic process
defined above.

We can also define the following process:

Ŵt := Wt −
( a− r

σ

)
t,

where a is defined above.
By applying Girsanov’s theorem (Shreve (2004)), under the probability measure Q,

then we conclude that the stochastic process Ŵt is a standard Wiener process. We call
measure Q a risk-neutral or martingale measure. Thus, under the risk-neutral measure Q
our stock price Ŝt satisfies the following SDE:

dŜt = rŜt dt + σŜt dŴt.

Therefore, we can write the alternative form of Black–Scholes formula for European
call option price C(t) for our model:

C(t) = S0N(d1)− K e−r(T−t)N(d2), (34)

where

d1 :=
ln(S0/K) + (r + σ2/2)(T − t)

σ
√

T − t
, (35)

d2 := d1 − σ
√

T − t,

σ :=
σ1σ2√

(σ2
1 + σ2

2 )/2
, σi :=

vi√
λi

, (36)

and N(x) is the cdf of a zero mean normal random variable with unit variance, K is a strike
price, and T is the maturity.

Example 3 (European Call Option for Asymmetric Limiting telegraph Process). Suppose
the numerical values S0 = $50, K = $50, r = 0.01, v1 = 0.01, v2 = 0.02, λ1 = 0.01, λ2 =
0.02, T = 1. Therefore, after applying formulas (34)-(36), we have σ1 = 0.1, σ2 = 0.141421356,
thus σ = 0.1155, and that European call option price at time t = 0 is:

C(0) = 50× 0.557383− 50× e−0.01×1 × 0.51151487 = $2.547891

or C(0) = 254.7891 cents.

Now, below we present some graphs of the time evolution of C(t) dependent on λ1, λ2
(upon fixing vi), on v1, v2 (upon fixing λi), see Figure 7, and on v1 and λ1, see Figure 8.
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(a) (b)

Figure 7. Time evolution of European call option price C(t) by fix λ, t = 0 (a) and t = 0.6 (b) in the
asymmetric case.

(a) (b)

Figure 8. Time evolution of European call option price C(t) for fix v, t = 0 (a) and t = 0.6 (b) in the
asymmetric case.

Remark 7. In Figure 9 we show the cost behavior according to Equation (34) as a function of σ.
The Black–Scholes limit case occurs by letting σ = 0.115079291 (according to (36)).
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Figure 9. Time evolution of European call option price C(t) as a function of σ.

Now, we can say that on longer time interval the BS formula works better but on
shorter time interval our formula produces a better performance. The same for volatility: If
volatility is bigger than 0.115079291, then C(t) is bigger.
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4. Conclusions and Future Work

In this paper, we considered transformations of classical telegraph process. We also
presented three applications of transform telegraph process in finance: (1) application
of classical telegraph process in the case of balance, (2) application of classical telegraph
process in the case of dis-balance, and (3) application of asymmetric telegraph process
in finance. For these three cases, we presented European call and put option prices. The
novelty of the paper consists of new results for transformed classical telegraph process,
new models for stock prices and new applications of these models to option pricing.

As for the future work we could consider other problems in mathematical finance,
such as portfolio optimization, optimal control, etc. Furthermore, we will calibrate λ, v and
σ according to high-frequency and algorithmic trading (HFT) real data to see a better fit of
our model. We will also try to apply our models of a stock price to optimization problems
in HFT, such as optimal liquidation, acquisition, and market making. We will perform a
comparative analysis of different models, including ours, in finance based on real data,
as well.
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