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Abstract: This paper proposes a coherent multi-population approach to mortality forecasting for
less developed countries. The majority of these countries have witnessed faster mortality declines
among the young and the working age populations during the past few decades, whereas in the
more developed countries, the contemporary mortality declines have been more substantial among
the elders. Along with the socioeconomic developments, the mortality patterns of the less developed
countries may become closer to those of the more developed countries. As a consequence, forecasting
the long-term mortality of a less developed country by simply extrapolating its historical patterns
might lead to implausible results. As an alternative, this paper proposes to incorporate the mortality
patterns of a group of more developed countries as the benchmark to improve the forecast for
a less developed one. With long-term, between-country coherence in mind, we allow the less
developed country’s age-specific mortality improvement rates to gradually converge with those of
the benchmark countries during the projection phase. Further, we employ a data-driven, threshold
hitting approach to control the speed of this convergence. Our method is applied to China, Brazil,
and Nigeria. We conclude that taking into account the gradual convergence of mortality patterns can
lead to more reasonable long-term forecasts for less developed countries.

Keywords: coherent mortality forecasts; less developed countries; mortality rotation; double logistic
function

1. Introduction

The past few decades have witnessed a drastic increase in life expectancy in less
developed countries around the world1. According to the 2017 revision of the World
Population Prospects (United Nations 2017), life expectancy at birth in the less developed
countries increased by 27.4 years (from 41.7 to 69.1) between 1950 and 2015, against the
13.6-year gain in the more developed countries (64.8 to 78.4). Meanwhile, the total population
in the less developed countries reached 6.13 billion in 2015, which was approximately five
times that of the more developed ones (1.25 billion). This fast mortality improvement in
the less developed countries would have huge impacts on the worldwide population aging
process and thus indicates a critical need for reliable mortality projection tools.

Although the life expectancy at birth in the less developed countries has been extensively
studied (Lin et al. 2012; Lutz et al. 2008; Raftery et al. 2013; Torri and Vaupel 2012), much
less attention has been paid to the age-specific mortality rates. However, the latter are
important in their own right, since they contain much richer information than the life
expectancy at birth, and are the necessary inputs to generate other useful demographic
indicators, such as the population structure, the dependency ratio, and the life expectancy
at age, e.g., 65.

Thus far, the best-known approach to stochastically forecasting the age-specific
mortality rates is the Lee and Carter (1992) model. In this model, the logarithms of
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the age-specific mortality rates are decomposed into a time-varying factor (the period
effect) and a set of age-specific sensitivity parameters with respect to this factor (the
age effect). Mortality projections are often obtained by extrapolating linearly the period
effect in the empirical studies. The Lee–Carter model has been extended in various
later studies, including Cairns et al. (2009); Li et al. (2015); Renshaw and Haberman
(2006). The two major assumptions of the Lee–Carter model are the linearity of the
period effect and the time-invariance of the age effect. The first assumption implies
that the trend in the aggregate decline in the logarithm mortality is linear, while the latter
implies that the relative improvement rates of the age-specific mortality are constant, i.e.,
ages with faster historical mortality declines are forced to maintain their faster decline
rate in the projection phase. Though there exists extensive literature confirming the
compatibility of these two assumptions with the post-war mortality data in industrialized
countries (Lee and Miller 2001; Tuljapurkar et al. 2000), very few studies have examined
their suitability for the less developed world.

As an illustration, Figure 1 plots the logarithm of the age-specific central death rates
of the five most populous countries in the world2—China, India, the US, Indonesia and
Brazil—in 1960 and 2015, respectively. Comparing the two panels, several observations can
be made. First, the aggregate mortality decline in each country is different. For example,
the aggregate decline in Indonesia over the sample considered was considerably smaller
than that of China. Second, the gaps between the mortality of the four less developed
countries and the US have been, in general, narrowing, indicating that the aggregate
mortality declines in these countries have been faster than those of the US. Third, the
mortality declines in these four less developed countries are rather imbalanced across ages.
On the one hand, the mortality rate dropped much faster for the young and the working
ages. In particular, mortality rates between ages 15 to 55, i.e., the majority of the working
ages, were lower in China than the US in 2015. On the other hand, the improvements in
elderly mortality have been much milder in all countries, and even more so for the less
developed countries. Specifically, while the mortality differentials between China and the
US have been reduced for the very old ages, such differentials remain roughly the same for
Brazil and have became even larger for Indonesia and India. Even for China, the reduction
in mortality differentials was still much smaller than those of the younger ages.
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Figure 1. The logarithm of the age-specific central death rates for the five most populous countries, China, India, the US,
Indonesia, and Brazil, in 1960 (left panel) and 2015 (right panel).
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The faster aggregate mortality decline combined with the imbalanced pattern over
ages would cause undesirable results when the Lee–Carter model is applied to forecast
the future mortality rates of each of the five individual countries. First, the projected
mortality rates of the four less developed countries would decrease at faster rates than
the US at the aggregate level. Second, and more importantly, the difference between the
projected age-specific mortality rates in these countries and their US counterpart will
increase proportionally over time, which obviously does not seem to be reasonable. In
particular, such diverging forecasts are inconsistent with the coherence condition (see, for
example, Hyndman et al. 2013; Li and Lee 2005), under which the projected age-specific
mortality rates in different populations should not be divergent over time.

Prior studies largely attribute the recent mortality improvements in the less developed
countries to factors such as modernization, improved health care coverage, better nutrition,
and the prevention of infectious diseases (Austin and McKinney 2012; Hensher et al. 2017;
Jeuland et al. 2013; Müller and Krawinkel 2005). While such socioeconomic transitions have
led to fast aggregate mortality declines, especially for infants, the young and the working
age population, they are unlikely to last for very long periods. In fact, chronic diseases
have already replaced infectious diseases in recent years and become the major causes of
death in many low- and middle-income countries (Abegunde et al. 2007). In other words,
the mortality patterns of many less developed countries are becoming closer to those of
the industrialized countries, where mortality declines have been slowing down at younger
ages, and at the same time accelerating among the elders (Li and Li 2017; Li et al. 2013).
This phenomenon can be explained by factors including healthier lifestyles, e.g., smoking
reduction (Peto et al. 1992), and medical advances in the treatment of chronic diseases
including cardiovascular diseases (Mensah et al. 2017). Hence, when it comes to mortality
projections for the less developed countries, one should account for the possibility that
the mortality patterns of these countries will gradually converge with those of the more
developed countries, rather than maintaining their own historical trends.

In the existing literature, the Li and Lee (2005) model is a popular approach when
accounting for the future changes in mortality patterns and generating coherent mortality
projections for multiple countries; that is, the projections of age-specific mortality rates
will not diverge among different countries in the long term. In this model, a set of
common age and period effects are first estimated using the mortality data of a group of
more developed countries. These parameters are then set as the benchmark and the less
developed countries are assumed to follow the benchmark in the projection phase. As a
result, the historical mortality patterns of the less developed countries do not affect their
long-term mortality trends, and coherent mortality projections between the modeled and
the benchmark countries are automatically ensured. While having the desirable coherence
property, the Li and Lee model has also some potential limitations. First, mortality patterns
in the less developed countries are assumed to immediately follow the benchmark patterns
in the projection phase. Such abrupt changes will cause an artificial structural break in the
projected mortality of the less developed countries and are thus rather unlikely in reality.
In addition, mortality projection is unfeasible for a population if its historical mortality
pattern significantly diverges from the benchmark. This regularly happens, as long as the
residual effects of the modeled population exhibit non-stationarity after the benchmark
age and period effects are imposed.

This paper proposes an innovative mortality rotation method to derive long-term
coherent mortality forecasts for the less developed countries. Specifically, we use the
historical mortality patterns of a collection of more developed countries as the benchmark,
and we allow the mortality patterns of a less developed country to gradually rotate to
the latter. In contrast to the Li–Lee model, we do not impose instant convergence in the
projection phase. Instead, for a less developed country, we allow its projected mortality
patterns to be weighted averages of their own historical patterns and the benchmark values,
with time-varying weights determined by the projected life expectancy. The weight of the
benchmark values gradually increases from 0 to 1 in the projection phase and remains
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there in the long run. In this way, coherent mortality projections are achieved between the
modeled and the benchmark countries. Moreover, the coherence will be achieved precisely
when the life expectancy gap between these two (sets of) countries becomes smaller than a
certain threshold. This latter is country-specific and is determined by a logistic regression
of the life expectancy gap on the current life expectancy level of the modeled country.
Finally, our method is applicable to countries with different past mortality patterns, even
for those significantly different from the benchmark values.

Our research is motivated in part by Li et al. (2013), who propose a rotation algorithm
to modify the age effect in the Lee–Carter model towards the preset benchmark values
in the projection phase. In their study, the benchmark values, as well as the speed of
convergence, are specified by the user. The idea of gradual mortality convergence has
also been considered by other existing studies. For example, the Continuous Mortality
Investigation Committee (CMI) proposes a prototype mortality projection model in which
the “current” age-specific mortality improvement rates will gradually converge with the
“long-term” rates, where the long-term mortality improvement rates and the speed of
convergence need to be specified by the user (CMI 2009). This method was recently applied
by Huang and Browne (2017) to China’s mortality data, in which the long-term mortality
improvement rates are borrowed from other countries. Compared to the existing studies,
the novelty of our approach is that a data-driven method is used to control the speed of the
rotation. In particular, we do not need to specify the number of years (the CMI model) or
the projected life expectancy level (Li et al. 2013) at which the rotation will be completed;
therefore, the subjectivity in the algorithm is reduced. The idea of achieving long-term,
coherent mortality forecasts for multiple populations is also considered, although via
different models, in Li and Lu (2017), Li and Shi (2021a, 2021b).

In the empirical analysis, we illustrate the proposed algorithm with three less developed
countries, China, Brazil, and Nigeria, which are the most populous countries in their
respective continents. A set of 10 more developed countries is used as the benchmark.
We show that our algorithm applies to countries that exhibit significant mortality divergence
from the benchmark (Brazil and Nigeria). Moreover, we show that the rotation algorithm
produces more intuitive projections for the age-specific mortality rates and the life expectancy
than the independent forecasts using the Lee–Carter model.

This paper is organized as follows. Section 2 describes the mortality models considered
in this study. Section 3 introduces the rotation algorithm applied to the mortality models.
Section 4 applies the rotation algorithm in an empirical setting. Section 5 concludes.

2. The Mortality Models

Let us consider the unisex population of one less developed country and a group of I
benchmark countries. In this paper, we use the Lee–Carter model for the less developed
country and the Li–Lee model for the benchmark countries3.

For the less developed country, the Lee–Carter model assumes that the logarithm of
the central death rate satisfies:

log mx,t = ax + bxkt + εx,t, (1)

kt = d + kt−1 + εt, (2)

for each age x and year t, where ax measures the average mortality level at age x; kt is the
period effect capturing the aggregate mortality trend and is assumed to follow a random
walk with a (constant) drift d; bx is the age effect measuring the sensitivity of log mx,t with
respect to kt; finally, εx,t and εt are normally distributed i.i.d. error terms.
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For the benchmark countries, the Li–Lee model assumes that the logarithm of the
central death rate for country i follows:

log mi,x,t = ai,x + BxKt + bi,xki,t + εi,x,t, (3)

Kt = d0 + Kt−1 + vt, (4)

ki,t = α0,i + α1,iki,t−1 + εi,t, (5)

where ai,x measures the average mortality level at age x in country i; Kt is the common
period effect for all countries and is modeled by a random walk with drift d0; Bx is the
common age effect, i.e., the common sensitivity of mortality at age x with respect to Kt; ki,t
and bi,x are the country-specific period and age effects, respectively, which measure the
fluctuations around the common mortality patterns for country i; finally, εi,x,t, vt and εi,t
are normally distributed i.i.d. error terms.

From Equations (4) and (5), we see that Kt is a non-stationary process with a persistent
impact, whereas ki,t’s are assumed to be stationary. Therefore, the common period effect Kt
is the single determinant of the long-term mortality trend, making the mortality forecasts
for all benchmark countries coherent. In the empirical application, if the ki,t of a country is
non-stationary, then this country is considered non-coherent with other countries, i.e., there
exists significant divergence between its historical mortality experience and the common
mortality patterns Bx and Kt. As suggested by Li and Lee (2005), one should not apply
the Li–Lee model in the forecasting practice of this country in this case. Finally, to ensure
comparability between the parameters, we impose the same normalization constraints
on the key parameters of the Lee–Carter and the Li–Lee model. Details on these two
models and the estimation algorithms are provided in various existing studies, such as
Li et al. (2018).

3. The Rotation Algorithm

Let us now proceed to forecast the mortality rates for a less developed country using
the rotation algorithm. In this section, we first introduce a general algorithm to rotate the
age and the period effects of the less developed country in the projection phase. Then, we
discuss a data-driven method to determine the weight parameters that control the speed of
the rotation.

3.1. Rotating the Age and Period Effects for Mortality Projections

The first step of mortality rotation is to extend the Lee–Carter model with time-
varying age effects bx and the drift term of the period effect d for the less developed
country. Intuitively speaking, in the projection phase, these two parameters are assumed
to gradually converge with the benchmark values Bx and d0 of the Li–Lee model. In the
sequel, we refer to the latter as the rotation of the age and the period effect, respectively.
Formally, let us denote the final year of the sample by T. Then, the forecasting model is
given by:

log mx,s = âx + bx,sks + εx,s, ∀s > T, (6)

ks = ds + ks−1 + εs, εs
i.i.d.∼ N (0, σ̂2). (7)

In Equation (6), log mx,s is the projected logarithm of the central death rate at age x
and year s; âx is the estimated average mortality level at age x; bx,s is the time-varying
age effect; ks is the period effect with the time-varying drift ds; σ̂2 is the estimated
volatility of the period effect. In the extended Lee–Carter model, âx and σ̂2 are time-
invariant and are estimated from Equations (1) and (2) using historical data. Finally,
following Lee and Carter (1992), we consider only the uncertainty of the period effect
when computing the uncertainty in the mortality projections.

The second step is to specify how bx,s and ds rotate in the projection phase. Specifically,
at the beginning of the projection phase, we allow the mortality improvement rate of the
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less developed country to depend entirely on its own historical mortality patterns. Then, in
the intermediate years, as its projected life expectancy increases, we allow the age-specific
mortality patterns of the modeled country to gradually approach those of the benchmark,
with the degree of “similarity” between the two sets of countries controlled by their life
expectancy gap in the previous year. Finally, when the life expectancy gap drops below
a certain threshold, we allow the mortality improvement rates of the modeled country
to coincide with the benchmark values, and the rotation is finished. From then on, the
mortality projections for the less developed country become coherent with those of the
benchmark countries.

Formally, we denote by b̂x, d̂, B̂x, and d̂0 the estimates of the corresponding parameters
using the historical mortality experiences of the modeled and the benchmark countries,
respectively. Further, we let the (projected) life expectancy for the i-th benchmark country
in the year u be ei

0,u, and define the benchmark life expectancy as the average life expectancy
of the benchmark countries:

eb
0,u =

1
I

I

∑
i=1

ei
0,u, ∀u = · · · , T, · · · . (8)

Moreover, we denote the (projected) life expectancy in year u of the less developed
country by e0,u, and define the life expectancy gap between this country and the benchmark
to be:

gu = eb
0,u − e0,u. (9)

Finally, we let g0 be the threshold life expectancy gap, which determines the completion
of rotation. For now, we assume that the value of g0 is exogenously given, and its precise
definition will be given later. The values of bx,s and ds in the projection are then given by:

ds+1 =

{
(1− w1s)d̂ + w1sd̂0, if gs > g0,

d̂0, if gs ≤ g0,
(10)

bx,s+1 =

{
(1− w2s)b̂x + w2s B̂x, if gs > g0,

B̂x, if gs ≤ g0,
(11)

for each x and s, with w1s and w2s being the weights in year s.
In general, w1s and w2s can have different functional forms, subject to the constraint

of reaching its terminal value 1 when gs ≤ g0. In our empirical application, however, we
illustrate the rotation algorithm with w1s = w2s = ws. Moreover, based on Li et al. (2013),
we assume that:

ws =
1
2

(
1 + sin

[π

2
(2w0,s − 1)

])
, (12)

where w0,s =
gT − gs

gT − g0
. (13)

In this way, ws equals 0 at the beginning of the projection phase, and increases to 1 as gs
decreases to g0. In the intermediate years, the value of ws depends on the value of gs.

Under the above rotation algorithm, e0,s evolves in a recursive way: it depends on
ws−1 through bx,s and ds, while ws−1 in turn depends on e0,s−1. Therefore, e0,s has no
closed-form expression, and simulations are required. As a result, the rotation method
produces the distribution of ws, instead of the point estimate, for each year. The simulation
of paths of (e0,s)s>T and the distribution of e0,s at a given future date s > T is discussed in
Li et al. (2018), which this paper is based on.

Note that constraining the Lee–Carter model to the life expectancy forecasts has
also been suggested in the literature in Andreev and Vaupel (2006) and Li et al. (2013),
which argue that similar constrained approaches can make long-term forecasts more stable.
However, these papers are concerned with single-population mortality models that do not
involve benchmark populations.
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3.2. Determining the Weight Parameter

It remains to specify the long-term threshold g0 for the life expectancy gap to complete
the definition of the weight parameters in Equations (12) and (13). Recall that in the rotation
algorithm, the modeled country becomes coherent with the benchmark countries when
the life expectancy gap becomes smaller than g0. By then, the mortality patterns of the
modeled country would have converged with the benchmark values, and thus the trend of
its projected life expectancy should be very close to, if not the same as, the trend for the
benchmark countries4. In this sense, g0 can be seen as a long-term life expectancy gap, i.e.,
the long-term mean of gs in Equation (9).

Existing studies have argued for the existence of such a long-term life expectancy gap
between less developed and more developed countries. For example, Raftery et al. (2013)
decompose the general transition from high to low mortality for a country into three
stages. Specifically, the first stage concerns its low life expectancy era, when the mortality
improvements are slow and associated with better hygiene and nutrition conditions. The
mortality improvements then accelerate in the second stage, especially for younger ages,
due to greater socioeconomic development and immunization against infectious diseases.
Finally, the third stage begins when the mortality improvements due to infectious diseases
have been almost exhausted. Compared to the first two stages, mortality improvements are
the slowest in the third stage and are mostly due to better treatment of non-communicable
diseases, such as cardiovascular or neoplasms, at old age (Fogel 2004; Riley 2001). Therefore,
the life expectancy gap between a less developed country starting from Stage 1 and a
developed one in Stage 3 would evolve as follows: (i) narrow at a low speed when its life
expectancy is low (Stage 1); (ii) narrow at a faster rate when its life expectancy increases
(Stage 2); and (iii) tends to stabilize as its life expectancy further increases (Stage 3).

In Figure 2, we plot the life expectancy gap with respect to the benchmark life
expectancy defined in Equation (8) against the life expectancy level in the same period
for 149 less developed countries5. First, we can see that the life expectancy gap tends to
decrease as the life expectancy level increases. Second, and more importantly, the speed of
decline depends non-linearly on the life expectancy level, which echoes the aforementioned
discussion. Specifically, the average decrease in the life expectancy gap is slow before the
life expectancy reaches 45; it accelerates when the life expectancy increases to between
45 and 70 and slows down again after the life expectancy exceeds 70. Hence, as the life
expectancy level of a less developed country further increases, the gap is likely to continue
to narrow for a certain period and become stable in the long term.

In fact, the aforementioned relationship between e0,s and gs can be fitted by the double
logistic function:

gs = k1 +
k2 − k1

1 + exp(− A1
b2
(e0,s − b1 − A2b2))

+
g0 − k2

1 + exp(− A1
b4
(e0,s −∑3

i=1 bi − A2b4))
+ εt, (14)

where A1 = 4.4 and A2 = 0.5 are normalization coefficients, and (k1, k2, b1, b2, b3, b4, g0)
is the vector of unknown parameters to be estimated. The double logistic function
has previously been used by the United Nations (Raftery et al. 2013) to capture the
relationship between the growth and the level of the life expectancy in different countries
and periods6. It allows gt to decline with decreasing speed, and finally converge to a
long-term mean characterized by g0. Equation (14) can be fitted by minimizing the squared
residuals of the observed and the fitted life expectancy gaps. For further discussion of the
double logistic function in the modeling of life expectancy, see Raftery et al. (2013) and
Castanheira et al. (2017). The double logistic function is applied to the 50% quantile of the
life expectancy gap (the solid line in Figure 2) and provides a very good fit.
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In general, not all less developed countries require a double logistic function to fit
their life expectancy gaps. In this case, we could use the simpler single logistic regression
model for the life expectancy gap:

gt = k +
g0 − k

1 + exp(− A1
b2
(e0,t − b1 − A2b2))

+ εt. (15)

Therefore, we need to first determine which logistic function is more suitable for a
less developed country. This can be done using information criteria such as the AIC and
the BIC ratios.
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Figure 2. Life expectancy gaps against the life expectancy level for the less developed countries
(in grey dots), the 50% quantile (dashed line), and the smoothed fit by the double logistic function
(solid line).

4. Empirical Analysis

In this section, we apply the rotation algorithm to three less developed countries,
China, Brazil, and Nigeria, which are the most populous countries in their respective
continents. First, we introduce the data used in the analysis, and then we discuss the
empirical results for each country.

4.1. Mortality Data

We use 10 more developed countries to construct the benchmark: Germany, Denmark,
Finland, France, The Netherlands, Switzerland, Sweden, the UK, the US, and Japan. The
unisex mortality rates of these countries were downloaded from the Human Mortality
Database (HMD)7. In particular, we use the central death rates in the 5-age and 1-year
blocks, i.e., 0–4, 5–9, . . . , 95–99, and from 1960 to 2015.

Mortality data for the three less developed countries are not included in the HMD
and were thus obtained from two other sources: the Population Division of the United
Nations (UN) and the World Health Organization (WHO)8. The UN dataset covers the
death counts and the corresponding exposures for a longer period (1960–2015), but the
data are divided into 5-year blocks. On the other hand, the WHO dataset contains more
granular death counts and exposures in 1-year blocks, but covers a shorter period, between
2000 and 2015. Moreover, the age groups are 0–4, 5–9, . . . , 80+ for the UN data, and 0, 1–4,
. . . , 85+ for the WHO data.
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In order to extract as much information as possible from the UN and WHO data,
we merge these two datasets in a format compatible with the mortality data of the
10 benchmark countries. The merged dataset contains the central death rates in 5-age
and 1-year blocks, with age groups 0–4, 5–9, . . . , 95–99 from 1960 to 2015. Technical details
are gathered in the Appendix of Li et al. (2018). Finally, we remark that the proposed
rotation algorithm is not only applicable to the forecasting of national mortality data but
also to life insurance and pension risk management applications, such as those considered
in Li et al. (2017), Li (2018), and Chen et al. (2021).

4.2. Empirical Results

We first determine the optimal logistic function for each of the three countries. In
particular, we find that the single logistic function is optimal for China, whereas the double
logistic function is more suitable for Brazil and Nigeria. The AIC and BIC ratios for both
regressions fitted to each of the three countries are presented in Appendix A.

Figure 3 shows the actual, fitted, and predicted future life expectancy gap for the
three countries along with the respective optimal logistic function. We see that the logistic
functions give reasonably good fits for China and Brazil. For Nigeria, the observed life
expectancy gap has a jump around e0 = 50, which results from the stagnation of its life
expectancy at birth in the 1990s. Although the double logistic function is not able to capture
this jump, it gives a satisfactory fit on the general decreasing pattern. By extrapolating the
logistic functions, we obtain a g0 of 3.9 years for China, 5.6 years for Brazil, and 3.9 years for
Nigeria. The g0 results of the three countries are plotted as horizontal lines in the figures.
Using these g0 values, the expected completion time of the rotation algorithm is 2022 for
China and 2029 for Brazil. For Nigeria, however, the rotation is not completed by 2100
(with the 50% quantile of the w2100 being 0.58). The weights for the three countries are
shown in Appendix B. Let us now turn to the historical mortality patterns, the projected
age-specific mortality rates, and the remaining life expectancy at 65 for each country. In
particular, we simulate 2500 paths to produce the projections by the rotation algorithm to
compute the life expectancy. The projected life expectancy at birth for the three countries
shows qualitatively similar patterns to the remaining life expectancy at 65, and these are
presented in Appendix C.
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Risks 2021, 9, 151 10 of 22

55 60 65 70 75 80 85 90 95 100

e
0

4

6

8

10

12

14

16

18

e
0
 g

a
p

(b) Brazil

40 50 60 70 80 90 100

e
0

0

5

10

15

20

25

30

35

e
0
 g

a
p

(c) Nigeria

Figure 3. The observed, fitted, and predicted life expectancy gaps for China, Brazil, and Nigeria
using their respective optimal logistic function.

4.2.1. China

Figure 4 plots the period and the age effects of China (kt and bx) and of the benchmark
countries (Kt and Bx). We see that Kt is rather close to linear, but kt has a non-linear pattern
over the sample period. Specifically, kt declines drastically between 1960 and 1975, flattens
between 1975 and 1995, and then resumes the steep decreasing trend afterwards. Therefore,
the assumption of the random walk with constant drift is clearly not appropriate for China.
Moreover, bx is decreasing in x, indicating faster historical mortality improvement rates
among the younger ages. In particular, China’s age effects are substantially lower for the
old ages than the benchmark values.

Figure 5 shows the projected mortality differential between China and the benchmark
countries, both in terms of the logarithm age-specific death rates (left panel) and the
remaining life expectancy at 65 (right panel). First, the left panel compares the observed
log mx,2015 and the projected 50% quantile of the log mx,2100 from the independent Lee–
Carter model, the Li–Lee model, and the rotation algorithm, respectively. We see that the
independent Lee–Carter model leads to a more substantial aggregate mortality decline and,
more importantly, rather imbalanced mortality improvements across ages. In particular,
while the mortality declines are huge at younger ages, they are projected to be very limited
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among the elders. In contrast, the projected log mx,2100 values of the Li–Lee model and the
rotation algorithm are rather similar and are much more balanced across ages.
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Figure 4. The historical period effects (left panel) and the age effects (right panel) of China and the benchmark populations.
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Figure 5. The projected logarithm age-specific death rates (left panel) and the remaining life expectancy at 65 (right panel)
of the average of the benchmark countries and China using different models. For the rotation algorithm, the 2.5%, 50%, and
97.5% quantile of the projected e65 are plotted.
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Meanwhile, the rotation algorithm leads to a projected e65,2100 that is 2.2 years higher
than that of the Lee–Carter model (24.4 vs. 22.2). Moreover, while the Li–Lee model
produces rather similar log mx,2100 values to the rotation algorithm, its projected e65,2100 is
significantly different (0.7 years lower than the rotation algorithm). The reason is that, due
to the imposition of instant coherence, the Li–Lee model generates different age-specific
mortality rates to the rotation algorithm in the early phase of the projection (before the
rotation is finished). Such differences will be reflected in the projected life expectancy and
carried over to the long term.

4.2.2. Brazil

From Figure 6, we see that the historical period effect of Brazil is very similar to the
benchmark values, especially since 1990. However, the bx values are substantially lower
than the Bx values for the teenage and young ages (10 to 25), and higher for infants and
the very old ages. One possible reason for the low bx values is the high historical violence-
related mortality rates of young people in the South and Central American countries
(Viner et al. 2011).
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Figure 6. The historical period effects (left panel) and the age effects (right panel) of Brazil and the benchmark populations.

Figure 7 suggests that the log mx,2100 values projected by the independent Lee–Carter
model are indeed much higher than those of the rotation model from age 10 to 25. Moreover,
the projected e65,2100 is 0.6 years higher when the rotation algorithm is used (23.7 vs. 23.1).
Our rotation algorithm yields similar projection results, as the mortality patterns of Brazil
are different from the benchmark values for only a few ages. On the contrary, Li–Lee
model is not applicable in this case, given the fact that the autocorrelation coefficient (α1,i
in Equation (5)) is 1.03 under the Li–Lee model when B̂x and K̂t are imposed.
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Figure 7. The projected logarithm age-specific death rates (left panel) and the remaining life expectancy at 65 (right panel)
of the average of the benchmark countries and Brazil using different models. For the rotation algorithm, the 2.5%, 50%, and
97.5% quantile of the projected e65 are plotted.

4.2.3. Nigeria

For Nigeria, we see from Figure 8 that the kt is not only much flatter than Kt but also
rather non-linear. Moreover, the bx values are rather irregular, with substantially higher
values for ages 0–4 and 15–30, and lower values for ages above 60 than Bx.
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Figure 8. The historical period effects (left panel) and the age effects (right panel) of Nigeria and the benchmark populations.
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Meanwhile, the projected log mx,2100 values displayed in Figure 9 are lower under the
rotation algorithm than the independent Lee–Carter model, except for infants and ages
around 30. Moreover, the rotation algorithm gives much higher projected e65,2100 than
the independent Lee–Carter model (12.4 vs. 9.8). The mortality projections of Nigeria are
significantly different to those of China and Brazil. The most important reason is that the
historical mortality level of Nigeria was comparatively low, and its life expectancy was
much lower than that of the benchmark mortality. Specifically, although the double logistic
function projects a very low g0, it is far from being reached in 2100 based on the large
historical life expectancy gap. As a result, the weight of the Li–Lee model was relatively
low in the projection phase, and the (low) historical mortality improvement of Nigeria still
exerts a dominant effect on the projection, which results in a low projected mortality level
in 2100. Similarly, its projected e65,2100 is still substantially lower than that of China and
Brazil. Finally, similar to Brazil, the autocorrelation coefficient is larger than 1 (1.09) for
Nigeria; thus, the Li–Lee projections are not feasible.
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Figure 9. The projected logarithm age-specific death rates (left panel) and the remaining life expectancy at 65 (right panel)
of the average of the benchmark countries and Nigeria using different models. For the rotation algorithm, the 2.5%, 50%,
and 97.5% quantile of the projected e65 are plotted.

5. Conclusions

This paper has proposed a mortality rotation approach for the coherent forecasting of
age-specific mortality rates in the less developed countries. While the historical mortality
patterns of these countries are generally different from the more developed ones, such
discrepancies are likely to diminish along with future socioeconomic developments. Our
approach incorporates the future changes in mortality patterns for the less developed
countries in the projection phase. In particular, we allow the mortality patterns of a
less developed country to be weighted averages of its own historical patterns and the
benchmark patterns derived from a set of more developed countries. The weights of the
benchmark values start from 0 and gradually increase to 1 as the projected life expectancy
gap between the less developed country and the benchmark more developed countries
decreases. Finally, coherence is achieved when the projected life expectancy gap reaches a
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lower threshold. In our analysis, we allow the threshold to be the long-term life expectancy
gap between the less developed country and the benchmark countries. This long-term
gap is projected by a logistic function of the historical life expectancy gaps on the life
expectancy levels.

The rotation approach is applied to China, Brazil, and Nigeria, the most populous
countries in Asia, South America, and Africa, respectively. We show that the rotation
algorithm is applicable to countries that exhibit significantly different mortality experience
to the benchmark developed countries (Brazil and Nigeria), where the projections of the
Li–Lee model are not feasible. Moreover, the rotation algorithm produces more intuitive
projections of age-specific mortality rates and life expectancy than the independent forecasts
of the Lee–Carter model.

There are a couple interesting possible extensions of the current work. First, in this
research, we have applied the Li–Lee model, which has time-invariant age effects, to the
benchmark mortality. As noted by many studies (see, for example, Li and Shi 2021a; Li
et al. 2013), the Li–Lee model will generate divergent mortality forecasts among ages. In
future research, it would be interesting to consider a rotation algorithm, such as the one
considered in Li et al. (2013), in addition to the Li–Lee model. In this way, the age-specific
mortality projections of the benchmark mortality themselves would be coherent in the
long run. Second, this research only considers three less developed countries. It would be
interesting to apply the proposed rotation algorithm to additional less developed countries,
such as those in Europe and North America.
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The following abbreviations and variables are used in this manuscript:

Variables of the Lee–Carter model:
log mx,t Log central mortality rate at age x in year t
ax The average mortality level at each age x
kt The mortality index at time t
bx The age-specific sensitivity of log mx,t to changes in kt
εx,t The normal error term in the log mx,t process
εt The normal error term in the kt process

Additional variables of the Li–Lee models
Bx Age effect of the common factor
Kt Period effect of the common factor
νt The normal error term in the common factor
α1,i The age-specific sensitivity of log central mortality rate to the population-specific index
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Appendix A. Optimal Logistic Function

We determine the optimal (single or double) logistic function for China, Brazil, and
Nigeria, using the Akaike information criterion (AIC) and Bayesian information criterion
(BIC). More specifically, the AIC and BIC ratios are given by the corresponding equations:

AIC = −2 log L̂ + 2k, (A1)

and
BIC = −2 log L̂ + k× log N, (A2)

where k is the number of free parameters, N is the size of the sample, and L̂ is the log-
likelihood of the model. The AIC and BIC ratios select the best model by balancing the
number of free parameters and the in-sample fit of the model. In particular, a lower BIC or
AIC indicates a better model.

For each country, we fit the double and the single logistic function (Equations (14)
and (15) in the paper) of its life expectancy gap gt to the life expectancy level e0,t. The
corresponding AIC and BIC ratios are gathered in Table A1. Both the AIC and BIC ratios
suggest that the single logistic function is optimal for China, while the double logistic
function is optimal for Brazil and Nigeria.

Table A1. The AIC and the BIC ratios of the single and the double logistic function of the life
expectancy gap for China, Brazil, and Nigeria. The lowest values of AIC and BIC for each country
are marked in bold.

AIC

Country Single logistic Double logistic

China −21.32 −16.23
Brazil 40.68 −13.75

Nigeria 154.14 140.36

BIC

Country Single logistic Double logistic

China −13.22 −2.05
Brazil 48.79 0.43

Nigeria 162.24 154.54

Appendix B. The Weight Parameter of the Rotation Algorithm

In this appendix, we show the simulated weights in the rotation algorithm for China,
Brazil, and Nigeria, following the simulation procedure in the section “The rotation algorithm”.

As shown in Figure A1, ws approaches 1 in 2020 on average for China. Meanwhile,
the 97.5% quantile of ws reaches 1 in 2018, while the 2.5% quantile is much lower and ends
at around 0.65 in 2100.
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Figure A1. The 2.5%, 50%, and 97.5% quantile of the weight over time for China.

As for Brazil, Figure A2 shows that the median rotation completion time is 2029.
Moreover, it is completed by 2040 in 97.5% of the simulated scenarios, and before 2020 in
2.5% of the scenarios. The 95% confidence bound of ws for Brazil is narrower than that of
China, indicating that Brazil’s historical mortality experience is less volatile.
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Figure A2. The 2.5%, 50%, and 97.5% quantile of the weight over time for Brazil.

Figure A3 shows that the rotation for Nigeria has, on average, not yet finished by the
end of the projection phase. In 2100, ws becomes 0.58 on average, and it becomes 0.8 (resp.
0.22) for the 97.5% (resp. 2.5%) quantile.



Risks 2021, 9, 151 18 of 22

2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
e

ig
h

t

Figure A3. The 2.5%, 50%, and 97.5% quantile of the weight over time for Nigeria.

Appendix C. The Projected Life Expectancy at Birth

The projected life expectancies at birth of China, Brazil, and Nigeria are plotted in
Figures A4–A6, respectively. In each figure, the average projected life expectancy of the 10
benchmark countries is also shown.
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Figure A4. The average projected life expectancy of the benchmark countries and China using the
rotation algorithm and the independent Lee–Carter model.
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Figure A5. The average projected life expectancy of the benchmark countries and Brazil using the
rotation algorithm and the independent Lee–Carter model.
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Figure A6. The average projected life expectancy of the benchmark countries and Nigeria using the
rotation algorithm and the independent Lee–Carter model.
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Notes
1 The United Nations defines the less developed countries/regions as all regions of Africa, Asia (except Japan), Latin America and

the Caribbean plus Melanesia, Micronesia and Polynesia, and the more developed countries/regions as all regions in Europe,
Northern America, Australia, New Zealand, and Japan. For ease of exposition, we will use the word “country” to refer to any
country or region.

2 The age-specific death rates are calculated using data from the 2017 revision of the World Population Prospects by the United
Nations. The ranking is based on population statistics as of 1 June 2018. Source: https://www.census.gov/popclock/print.php?
component=counter (accessed on 14 August 2021).

3 Besides these two models, there are many other linear extrapolation models consistent with our rotation algorithm, such as
Cairns et al. (2006) and Hyndman and Ullah (2007), as well as Li et al. (2021) for a single population and Dowd et al. (2011),
Hyndman et al. (2013), Li et al. (2019), Li and Lu (2018, 2019) for multiple populations. For summaries of linear extrapolation
models, we refer to Booth et al. (2002), Cairns et al. (2011), and Li and Hardy (2011).

4 When convergence is achieved, the improvement rates of the logarithm of the age-specific mortality rates are the same between
the modeled country and the benchmark countries. However, this does not necessarily lead to the same improvement rate of the
life expectancy, due to Jensen’s inequality.

5 The data were collected from the 2017 revision of the World Population Prospects. We excluded 9 less developed countries/regions
with life expectancy higher than 80 in 2010–2015, such as Hong Kong, Macao, and Singapore. The benchmark life expectancy was
calculated using 10 more developed countries: Germany, Denmark, Finland, France, The Netherlands, Switzerland, Sweden, the
UK, the US, and Japan.

6 The United Nations uses a simplified version of Equation (14) where k1 is set to 0.
7 Source: http://www.mortality.org/ (accessed on 14 August 2021).
8 UN Source: http://www.un.org/en/development/desa/population/ (accessed on 14 August 2021). WHO Source: http:

//apps.who.int/gho/data/view.main.60340?lang=en (accessed on 14 August 2021).
9 Source: http://www.mortality.org/ (accessed on 14 August 2021).

10 UN Source: http://www.un.org/en/development/desa/population/ (accessed on 14 August 2021). WHO Source: http:
//apps.who.int/gho/data/view.main.60340?lang=en (accessed on 14 August 2021).
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