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Abstract: The article is devoted to methods and models of designing systems for the digital transfor-
mation of industrial enterprises within the framework of the Industry 4.0 concept. The purpose of this
work is to formalize a new notation for graphical modeling of the architecture of complex large-scale
systems with data-centric microservice architectures and to present a variant of the reference model
of such an architecture for creating an autonomously functioning industrial enterprise. The paper
provides a list and justification for the use of functional components of a data-centric microservice
architecture based on the analysis of modern approaches to building systems and the authors’ own
results obtained during the implementation of a number of projects. The problems of using traditional
graphical modeling notations to represent a data-centric microservice architecture are considered.
Examples of designing a model of such an architecture for a mining enterprise are given.
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1. Introduction

Today, one of the main trends in the development of technological production is the
digital transformation of enterprises within the framework of the Industry 4.0 concept [1–6]
(Figure 1). The term digital transformation is understood as a transition to a qualitatively
new level of business process implementation, which implies minimizing or completely
excluding (where possible) human participation in technological work [1,2,7–9]. It means
that currently implemented business processes with direct human participation, including
with the help of information and automated systems, should be reduced to an autonomous
executable software and hardware form. Thus, the key vector of digital transformation of
industrial enterprises is the development of new software and hardware intelligent systems
based on modern and promising technologies and tools of Industry 4.0 [1–11].

To one degree or another, most industrial enterprises are now actively working in
the field of development, implementation, and pilot testing of robotic complexes with
various levels of autonomy, including unmanned aerial vehicles, unmanned transport
systems and technological installations, as well as the use of certain artificial intelligence
methods for solving problems of monitoring, planning, and managing technological pro-
cesses [6,8,9,12,13]. A relatively new direction can be attributed to the concept of a Digital
Twin of an enterprise, which is a high-precision dynamic virtual representation of the
enterprise, which has a two-way control connection with its physical counterpart and
represents the de facto finalizing part of the digital transformation [2,11–23].

At the same time, despite success in the practical implementation of individual tech-
nologies, the issues of organizing effective integration of all solutions in the form of a com-
plete autonomous production system remain obvious and critical problems on the way to
their scaling and, in fact, to the actual digital transformation of enterprises [1,3–5,8,14,15,17].
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First of all, this problem is related to the need to make significant changes in the structural
and functional schemes for implementing business processes of enterprises, which involve
reworking the operated hardware and software systems to a data-centric microservice type
of architecture. The complexity of processing operational systems is due both to the need
for additional economic investments in already operating software products, and to the
high risks of disrupting the continuity and safety of production processes (including the
associated economic costs) when putting “raw” systems into trial operation.
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The second part of the problem is the lack of a general understanding of the model
of such an architecture and, in particular, some generalized unified representation of its
components and their structural and functional relationships. Thus, in order to implement
such large-scale projects as the digital transformation of industrial enterprises, the issues of
developing competent graphical models of the future structural and functional architectures
of an integrated digital enterprise management system play significant roles due to the
peculiarities of the formulation of initial requirements [24–27], namely:

• The need to find a compromise when compiling and reading the model between users
who have competencies in understanding business processes and do not understand
the software implementation of systems, and developers who do not have knowledge
of the subtleties of business processes, but require a clear understanding of the tasks
assigned to them [21,28–30];

• The complexity of formalization, and in some cases a complete lack of understanding
of the final functional and non-functional requirements for a digital enterprise as a
single system [3–7,19,24–26];

• The need to take into account the existing enterprise architecture, which, among other
things, may include the execution of individual business processes in “manual mode”
in order to bring it to microservice and data-centric types [30–35];

• The inclusion in the architecture of the future system of many loosely coupled new
and promising technologies that have not yet been implemented at the enterprise at
the time of the start of design, as well as the lack of successful examples of successful
integration of such solutions [36–43].
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Existing methodological approaches to the development of models of system archi-
tecture, such as, for example, “4 + 1” [44] and “C4” [45], which offer a specification of the
minimum and sufficient set of diagrams that need to be formed at the design stage for
subsequent development of system, in our opinion, do not fully meet all the requirements
set out. Thus, the principle of hierarchical communication of elements inherited in all
methodological approaches from the upper “conceptual level” of the architecture to the
lower “physical deployment level” is suitable only for small or new systems, since the
diagrams used inevitably become unreadable due to the redundancy of structural elements
and relationships between them [27,29,30,34,37,44,45]. In addition, only at the conceptual
level, the process of drawing up an architecture model may be completely incomprehensi-
ble to people who do not have specific skills in system design and knowledge in the field
of notation, and, at the same time, the participation of industry specialists in the process of
drawing up an architecture model is absolutely necessary, since this guarantees the correct-
ness of the model and, consequently, minimizing the number of errors in its subsequent
software implementation. Based on the above, we can conclude that there is a need for
a design methodology that considers the main requirements of digital transformation of
enterprises and that has the properties of expressiveness and compactness.

Thus, the key objective of this study is to form proposals to improve the efficiency of
the design processes of modern complex large-scale systems based on the generalization of
approaches to the presentation of a data-centric microservice model of the architecture of an
autonomously functioning production system for the “digital” (i.e., a digitally transformed)
enterprise using original approaches to graphical modeling that adequately meet the new
requirements of Industry 4.0 and traditional architectural design methodologies, as well as
the formal presentation of an example model of such an architecture.

2. Formalizing a Data-Centric Microservice Architecture
2.1. Microservices

Let us look at some aspects of Industry 4.0 technologies in the framework of digital
transformation of enterprises to determine generalized requirements for architecture design.
As already noted, one of the key features of the digital enterprise architecture is its imple-
mentation in a microservice form [30,32–35]. A microservice is an elementary (indivisible)
functional task from the list of implemented business processes, which can (and should)
be performed by software in offline mode, or (unavoidable in the case of a phased digital
transformation of enterprises) in automated or manual mode by an enterprise specialist. At
the same time, the main indicator of the actual digital transformation of an enterprise is the
transition from manual or automated task execution mode to their autonomous execution
by software microservices.

The process of interaction of microservices in the implementation of business processes
of an enterprise should be regulated using specialized infrastructure software components,
united by the general term “Digital Platform” [25,31,32,37]. The main features of the
platform part of the microservice architecture are the following:

• Use of a common integration bus with a flexible application program
interface [9,11,16,24,25,27,32,34–38];

• Formalization of the relationship between microservices (information exchange pro-
cess) in the terminology of “publisher–subscriber” and regularization of such relation-
ships by the message broker [45–48].

The implementation of these components in the architecture of a digital enterprise
is determined by the need to provide primary data received from end nodes to all inter-
ested parties. At the same time, the microservices themselves are such end nodes, and the
publisher–subscriber relationship extends virtually to each of the nodes; i.e., each microser-
vice acts both as a data publisher and as a subscriber. The functions of message brokers
are formulated as managing such relationships based on the principle of defining and
declaring a topic/topic on the integration bus from the publisher, connecting all subscribers
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who need topic data to this topic, and directly converting data to the desired form before
transferring it from one component to another.

There are a number of advantages of such an information interaction scheme due
to the availability of data for any components, but the microservice paradigm does not
imply the stationarity of the architecture itself in terms of the composition of its elements.
This means that at some point in time, certain components can be excluded, replaced,
or added to the overall architecture, and therefore, there is a dynamic in the technical
plan of the entire system’s functioning. At the design stage, however, formalizing such
dynamics of structural relationships between functional components is not a trivial task.
In addition, it is worth noting that the very conditions of information exchange between
microservices in such a formulation are a dynamic process with non-stationary parameters
of components (data relevance, accuracy, format, etc.), as a result of which the broker must
have some aspects of “intelligence”, representing a set of message analysis functions. In
other words, the task of a broker in the architecture of an autonomously functioning system
is not only to compare supply and demand for data (creating a pipeline) but also to control
the contents of such connections—by manipulating the position of message packets in the
queue. However, at the moment we do not know specific examples of the implementation
of such functions, and their formalization is a subject for a separate scientific work.

Moreover, speaking about the non-stationary component composition of the architec-
ture, we mean that the work of functional microservices that ensure the implementation
of business tasks of the enterprise should be controlled by a number of service compo-
nents. By such components we mean the following: quality control services that track
performance indicators of functional microservices, such as, for example, performance
(calculation time) and accuracy of results. Expressed in the terminology of the agent ap-
proach and understanding an autonomously functioning production system as a rational
agent, these components act as “critics”. Other components are microservice management
services—orchestration and virtualization, performing the functions of enabling/disabling
or redistributing the placement of microservices in case of their poor quality work. At the
same time, disabling one microservice assumes, if at all possible, its replacement by another
component performing the same specified function. The connection of a replacement
component is possible by accessing external resources—services of software vendors or
specialized services, such as source code repository storage systems. However, this ap-
proach is currently difficult to implement, carries significant risks in the field of information
security and, as a result, requires separate careful consideration.

2.2. Data-Centricity

The concept of data is also being reinterpreted in the context of digital transformation
to the form of “data as a service”, and today there is such a concept as “data-centric archi-
tecture” [25,27,45–52]. Data-centricity means building the entire architecture of interaction
between microservices and the logic of their work around data. This approach assumes
that the system architecture should consider the specifics of how functional components
work with data in order to implement their autonomous operation. In other words, mi-
croservices must have knowledge of their own functionality, defined as data structures
that are sent to external inputs and outputs. However, this approach is not obvious at all
and is practically not interpreted at the initial stage of architecture design. We do not deny
the critical importance of the data themselves in the system being designed, but still, the
system design and development process should initially rely on the goals and objectives
of business processes and not on the signs of their implementation (i.e., the appearance of
data in general).

Regarding the functional purpose of data as a service, it is assumed that they should
describe sufficiently all the parameters of the enterprise state to allow autonomous execu-
tion of business processes by functional services. In this formulation, the issue of organizing
primary data becomes essential, the volumes of which will create a high load on the indus-
trial network and, of course, limit the time of their processing on the integration bus until
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microservices receive it. In order to reduce the load on the network and increase the speed
of working with data, today it is proposed to change the format of their representation
from primary nodes (smart and robotic devices) to layouts in the form of special objects—
time-series data packages (time-series data object) [37,46,48,51]. Such an object is organized
according to the principle of uniformity and uniformity of the data contained in it over a
certain time interval. At the same time, regarding the new format of data representation as a
time series object, the databases of industrial systems that form the enterprise’s distributed
information storage should be reorganized accordingly; i.e., existing relational databases
should be subject to significant changes in the internal organization of data storage by
casting them in the form of time series databases.

At the same time, the method of storing data in distributed storage should be regulated
even at the stage of forming data packages by publishers before they get on the integration
bus. This means that in such tasks as, for example, the organization of dispatching control
of autonomous robotic agents of a transport system, it makes sense to create a certain
buffer gateway that provides information interaction of agents within the technological
environment, and data transfer from agents to the common integration bus of the enterprise
is carried out only after the layout of homogeneous data (by type of agents and structure
of the data itself) in accordance with certain schemas. This approach can be explained by
the fact that one of the primary subscribers to the topic “technical agent telemetry” is a
dispatching service that performs the functions of centralized management of technical
agents. Accordingly, for such a service, it does not matter whether it receives data for each
of the agents separately or receives data from all homogeneous agents in a single packet,
assuming that data are received simultaneously in both cases. Moreover, for the service
components—the message broker, the integration bus, and the database management
system—it would be much more convenient and easier to receive data in one package,
thereby reducing the time for the processes of receiving, storing, and providing data.

Therefore, it can be determined that data in a digital enterprise needs to be stored, pro-
cessed, and transmitted in the form of a specific object—a time series. However, functional
microservices with the same purpose, i.e., their internal computational models, can use
different parameters of a time series (row size, data frequency, data set in general, etc.). As
a result, it is also quite difficult to determine at the design stage the unified parameters
(scheme) of the layout of primary data from homogeneous agents in one package for
transmission to a common integration bus. It is necessary either to take into account the
specifics of each specific existing functional microservice of the same type from different
manufacturers, which, of course, is very laborious, or to have some conceptual apparatus
of their general principles of operation (i.e., to build on known common functions) and
tools for interpreting data packet processing for them.

The second way to solve the problem of working with data can be divided into
two components:

• Functional microservices must independently declare to the platform’s service mod-
ules the data layout schemes that they need to perform their tasks; i.e., in fact, they
must have some knowledge of their own abilities. This eliminates the need for unifica-
tion of data layout schemes for the same type of systems from different manufacturers;

• During the design stage, however, the specifics of working with data should be
considered; i.e., graphical interpretations are needed that illustrate the schemes of
microservices working with data at the level of abstraction of key data modification
methods for their transformation by a broker on the integration bus.

2.3. Conceptual Model of the Digital Enterprise Reference Architecture

It is worth noting that most enterprises today do not have all the described properties
of a data-centric microservice architecture, which is necessary for a full-fledged digital
transformation [1–7]. Some of the information, automation, and other systems involved in
the implementation of individual business processes, although maybe having elements of a
service-oriented paradigm, still require significant improvements.
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As a result, the integration of Industry 4.0 technologies aimed at the digital transfor-
mation of the enterprise can (and should) be carried out primarily by working out the
techno-working project documentation of the future system and gradually making changes
to the methods of organizing and functioning its own business processes. To do this, we
suggest the following considerations to be guided by:

1. Redesign of the structural and functional architecture of business process imple-
mentation to a microservice type, with formalization of the order of interaction of
microservices to the type of publisher–subscriber relations;

2. Organization of autonomous receipt of primary data to all interested parties, car-
ried out by formalizing the functionality of microservices and providing a formal
representation of the required data structures to ensure their operation.

In particular, it should be noted that each individual enterprise is a unique case of a
set and settings of components of the structural and functional architecture of business
process implementation, which seriously complicates the process of formalizing unified
requirements for the architecture of a digital enterprise.

Thus, with enterprises of the same industry and similar in terms of organization meth-
ods and technologies used, sometimes even located in the same holding company, often
the same business processes can be carried out in one case manually by specialists, and in
another case using information and automated or autonomous systems from completely
different manufacturers and, as a result, with a different configuration. As a result, it is al-
most impossible to rely on specific architecture examples to formulate general requirements
for a digital enterprise.

Based on the understanding of very common properties, i.e., directly executed business
processes, such as, for example, dispatching, production planning, and enterprise resource
management, the following structure can be determined:

1. Conditional division of the entire architecture into a technological environment in
which various technical agents operate (smart devices, piloted, robotic and unmanned
equipment), and an information management or distributed computing environment,
which is a symbiotic poorly delimited mixture of information, automated or other
classes of software systems.

2. Identification of key information and control contours that directly affect the tech-
nological environment dispatcher (operational) management systems, specialized
technological systems, and enterprise resource management systems.

3. Various requirements (and actual possibilities for their implementation) for the reliabil-
ity and performance of technical, software, and information support for technological
and information management environments.

4. The presence of rigid client-server vertical links both between the agents of the
technological environment and the contours of information and management systems,
and between the information and management systems themselves, in which the
processes of information interaction for the implementation of business processes are
carried out using proprietary software interfaces.

5. Availability of similar lists of information to describe the entire problem environment:
historical, current, and forecast states of technical and infrastructure agents; historical,
current, and forecast planned production indicators, as well as sets of control actions
to achieve such indicators; and sets of elementary (indivisible) functional tasks of
implemented business processes, indicators of quality metrics of their execution, as
well as their inherent lists of data received at the input and produced at the output as
a result of work.

All the listed generalized features of modern industrial enterprises for the implementa-
tion of digital transformation should be taken into account or, speaking, for example, about
point 4, completely eliminated. Therefore, the main guideline for ensuring autonomous
execution of business processes is the need to increase interoperability between agents
of the technological environment and information management systems by bringing the
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schemes of their organization and interaction to the data-centric microservice type of
architecture [9,10,15,17,20–27,30–42,45–47]. By such architecture, we mean the following:

1. Availability of unified application programming interfaces to ensure information
interaction processes based on a single and flexible communication template.

2. Regularization of information interaction processes using specialized service software
components—integration buses, brokers, and message queues.

3. Tracking performance indicators and managing individual agents and systems ac-
cording to their functional characteristics (accuracy) and technical implementation
(performance), by including components such as computing resource orchestration
and virtualization services in the architecture.

4. Organization of receiving primary data of the “lower” (executive) level to all interested
parties with minimizing the load on the data transmission environment by reduc-
ing messages to a specific form—time series objects, using appropriate time series
databases, as well as specialized service components for data modification—mappers.

5. Division of all business processes into elementary (indivisible) tasks—microservices
that have knowledge about their own functional needs and capabilities (incoming and
outgoing data) and are organized as “black boxes” in relation to each other; i.e., they
work independently of the operation and configuration of other microservices.

A generalized example of a conceptual model of the reference architecture of a digital
enterprise is shown in Figure 2.
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However, as noted earlier, it is impossible to implement all the listed components
of the data-centric microservice architecture without making significant changes to the
systems used at enterprises. As a result, to implement the digital transformation of the
enterprise, it is necessary to implement the following steps:
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1. Ensure the integration landscape by working out the project techno-working docu-
mentation to bring the enterprise architecture in line with the requirements set out, as
well as roadmaps reflecting the list of necessary changes.

2. Develop and implement the basic platform part of the architecture, which includes
all the necessary service components involved in the organization of information
exchange between agents and information and management systems.

3. Redesign or replace the operated systems with components with microservice architecture,
i.e., divide business processes into separate independent elementary functional blocks.

4. Include quality control and functional microservices management services in the architecture.
5. Integrate missing functional microservices that provide autonomous execution of

business processes, including robotic elements, intelligent management modules, and
the Digital Twin of the enterprise.

3. Graphical Modeling of the Digital Enterprise Architecture
3.1. Problems of Using of Classical Notations

Based on proposals to bring the enterprise architecture to a form suitable for digital
transformation, first of all, the question arises about the need to develop project docu-
mentation that provides an actual reference plan and a quality control tool for work. The
main tool for this purpose is traditionally graphical modeling of architecture. However,
taking into account the features described in Section 2, we can conclude that there is some
discrepancy between the existing notations of graphical modeling.

Thus, in part of our works [53,54], we were engaged in the development and research
of a digital platform for intelligent management of transport and technological processes of
open-pit mining operations. At the early stages of designing the architecture of the platform,
following ACDM/ATAM methodologies for tradeoff-based architecting of complex large-
scale systems [21–23], as well as taking into account the requirements of ISO 25010, we
identified the key qualitative attributes of the system—modifiability, scalability, security,
and performance, assuming the non-stationarity of the architecture throughout its lifecycle
and the need to support its high efficiency. However, due to the complexity of the original
object, the use of standard languages for formal graphical description of systems caused
great difficulty. Working at the “upper” (conceptual) level of architecting, we were faced
with the fact that, on the one hand, it was necessary to use a service-oriented style, i.e.,
to characterize the horizontal relationship between fundamentally different agents and
services (both existing and to be developed), and on the other hand, to show the dynamics of
the relationship of such agents and services. Keeping in mind some general considerations
on how the architecture could be organized and armed with common sense, we identified
the need to first start from the functional purpose of the platform and the entire system as a
whole. In other words, we tried to determine the prototype of the future architecture of the
entire enterprise system based on the generalization of business processes and operated
systems, as well as the inclusion of such a concept as a Digital Twin, limiting it to the main
business process—the management of autonomous technical agents in the extraction of
mineral raw materials.

Using an agile approach to software development and forming an abstract prototype
of the digital enterprise architecture, we identified the main structural and functional
elements and selected critical services that need to be checked for viability [21–23,28–30].
Such services primarily included elements of the infrastructure (the platform itself) and
functional modules of the Digital Twin. In accordance with this, we developed the MVP
(minimal viable product) version of a digital enterprise [53,54], which allowed us to proceed
to further research on ways to architect such systems in order to form the most generalized
version of the metamodel of the architecture of a digital mining enterprise.

However, the issues of interpreting the resulting model of system architecture at the
specification stage in the form of diagrams describing it adequately and not excessively
became no less acute than at the initial design stage. First of all, one of the main problems
was the lack of a direct connection between graphical representations of business processes,
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for which such notations as BPMN, IDEF, etc., can be used, and diagrams of the technical
(software) implementation of the system architecture in the form of diagrams in UML nota-
tion. The second problem was the redundancy of the resulting diagrams, which are difficult
to read and control, which, in our opinion, can lead to errors at different stages of the product
lifecycle. Another problem that was mentioned earlier is the lack of convenient diagrams
illustrating the dynamics of the structural and functional architecture of the system.

Figure 3 shows a simplified example of using the UML notation for graphical modeling
of the dynamic relationship between the structure of services (automated software systems)
and microservices in the framework of the task of centralized management of autonomous
technical agents (robotic dump trucks and excavators) of an open-pit mining enterprise [4,6].
This scheme, of course, does not reflect all the microservices involved in the process of
managing autonomous technical agents, but even in this form, it perfectly demonstrates
the disadvantages of traditional notations, namely, the following:

• Redundancy of the number of structural and functional elements and their descriptive
component for an unambiguous understanding of the functionality of microservices;

• Redundancy in the number of links between elements for unambiguous understanding
of data transfer processes between microservices in order to ensure their operation (and
the inability to display links without intersections at all, as required by all notations);

• There is no clear dynamics of relationships between elements that characterize the
complex operation of microservices when solving a common business problem.
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MGIS—mining and geological information system, ERP—enterprise resource planning system.

Of course, when creating this diagram, we tried to combine the Component Diagram
and the UML ClassDiagram, so that it could be divided into two separate diagrams.
However, to meet all these shortcomings, two diagrams would not be enough, and we
would have to additionally use an Activity Diagram to illustrate the order of operations
of services within the scope of the task, as well as an ER or DFD diagram to illustrate the
structure of data and the sequence of their modification to ensure the operation of services.
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Thus, no simple and non-redundant way was found for unambiguous graphical modeling
of the system architecture using existing notations.

In search of a solution to this problem in the scientific literature, we encountered the
Industry 4.0 business process modeling language I4PML (Industry 4.0 Process Modeling
Language) [50]. I4PML is essentially an add-on to the language of the formal description
of systems—UML (Unified Modeling Language)—in the form of inclusion and allocation
of additional designations of Industry 4.0 elements in standard UML structural forms.
Due to the fact that the UML itself is already sufficiently abstract, this is what makes it
possible to formalize some key elements of Industry 4.0 through it. We recognize the
usefulness of unifying such concepts as “Internet of things device”, “computing cloud”,
“act of perception”, and “act of execution” at the stage of pre-project and project conceptual
development. However, we believe that their application is not universal for all tasks and
technologies of Industry 4.0, and in the case of modeling an architectural solution, it is
not exhaustive due to the weak formalization of specific technical solutions for organizing
information interactions. Another argument against I4PML is the absence of such concepts
as “publisher–subscriber relationships” and “data modification scheme”. Nevertheless, the
language itself is still young, and we see that in the future after accumulating sufficient
experience in developing and integrating Industry 4.0 technologies, it will be followed by
significant changes (or the appearance of another specialized language).

Thus, we formulated a number of criteria that should be taken into account when
compiling a graphical model of a data-centric microservice architecture, and which we
used later to solve the problem of this study:

1. Reflect the most complete component composition of the architecture in the form of
functional blocks (microservices), while reflecting the sequence of their interactions in
solving a business problem.

2. Minimize the number (or completely eliminate) the intersections of communication
lines between components in the diagram.

3. Minimize the number of diagrams that provide a complete description of the end-to-
end relationship between the components of a business task (functions/microservices),
the list and dynamics of data for solving such tasks, as well as a set of data processing
methods for solving problems (methods).

3.2. DEAL 1.0 Notation

To solve the problem of graphical modeling of the architecture of a digital enterprise,
we determined the possibility of using separate UML notation diagrams to describe the
technical implementation of microservices, taking into account their slight modification,
as well as their hierarchical arrangement into a common family of graphical models as
in “4 + 1” or “C4”, namely, the following:

• “Functional Diagram” of the enterprise for forming the most general zero conceptual
level of architecture. This scheme is not included in the UML, but it is understandable
to direct users (industry experts of the enterprise), can be compiled by them, and
opens up opportunities for further detailing of individual business task microservices
by specialists in software design and development.

• “Process Diagram” describing the structural and functional relationship of services
and/or microservices involved in the execution of a single business process. This
diagram is based on a UML Class Diagram, a UML Activity Diagram, as well as
some ideas from the design of microprocessor electronics circuits. Depending on the
complexity of the described business task, this diagram can be depicted immediately
for microservices, or in the form of two consecutive hierarchically linked diagrams—
for services and for microservices.

• “Microservice Architecture Diagram” illustrating the pre-program view of a microser-
vice, highlighting all the basic methods necessary to implement its functional task, as
well as its actual physical deployment location. This diagram is formed on the basis of
a Component Diagram and a UML Class Diagram.
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• “Pipeline Diagram” illustrating the relationship between two microservices on the
principle of data publisher and subscriber, as well as the direct data structures that
supply and receive microservices within their functionality. This diagram is also based
on a UML Class Diagram and some elements from ER notation diagrams.

We named the proposed approach to design a digital enterprise architecture model
“DEAL 1.0”—Digital Enterprise Architecture Language [55] (Figure 4).
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The key basis of the proposed notation of graphical architecture modeling is the
formalization of knowledge about processes, operations (elementary indivisible functional
tasks—microservices), methods (used to solve problems), the sequence of interactions of
components, information about structures, and dynamics of data changes (Figure 5).
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3.3. Conceptual Level (0): Organizational and Functional Diagram

The zero “conceptual” level of our approach to modeling the architecture of a digital
enterprise involves using a fairly simple and widely used organizational and functional
diagram. We do not think it makes sense to explain how it is built, but we would like to
highlight some key aspects related to the reasons for its use:

1. Modern enterprises are complex systems with a difficult to formalize connection
between business tasks. The description of the full list of such tasks, the sequence of
their implementation, quality criteria, data, and methods of solution can be described
only with the participation of specialists of the enterprise itself. However, employees
of enterprises do not always have knowledge of graphical modeling notations, so
the initial design point with the minimum entry threshold must be found—i.e., the
simplest diagram possible.

2. Moreover, as a rule, each enterprise already has an organizational model that identifies
key decision makers and departments involved in business processes. Turning an
organizational model into a functional one is quite simple and does not require
specific knowledge and skills in developing system modeling diagrams—it is enough
to replace the designations of decision makers and departments in the organizational
model with business tasks that are central to their activities.

Figure 6 shows an example of such an organizational and functional diagram applied
to a mining enterprise. In this diagram, the intent is to exclude branches related to the
management of financial, economic, and human resources activities in order to illustrate
exactly the key technological processes and highlight the business task that was shown in
Figure 3.
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3.4. Process Layer (1): Process Diagram

Following our notation, it is then necessary to “fall through” into each of the tasks
to create diagrams describing which elementary (indivisible) operations they consist of
(microservices) and what is the order of these operations (interaction of microservices).
Figure 7 shows such a diagram for the task of centralized management of robotic agents.
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For ease of perception, individual microservices, which in the architecture of a digital enter-
prise imply an independent existence with a weak connection with other microservices,
were grouped by control contours—which agents and systems (services) they belong to
in the existing enterprise architecture. Keep in mind that such a grouping and simulta-
neous display of services and microservices is more undesirable than optional. If it is
impossible (difficult) to move from a Functional Diagram to a Process Diagram indicating
microservices, it is worthwhile to form in a hierarchical relationship first a diagram of the
sequence of connecting services (i.e., group microservices by agents and control contours),
and then proceed to its detailed form, decomposing each service into separate independent
indivisible functional microservices.
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In this type of diagram, the designer assigns a unique identification number to all
microservices. For example, the microservice “Data Aggregation” of the agent “Technical
Agent” (robotic dump truck) is assigned the number 1. At the same time, we do not see the
need for a strict order of assigning identification numbers, since they serve exclusively to
indicate the connection between microservices, and the sequence of functions performed
during their information interaction. Keep in mind that different business tasks can (and
should) use the same microservices, because the service-oriented architecture implies the
inheritance of functions, as a result of which the identification number for each microservice
must be unique and use the same for diagrams of different tasks.

Each microservice has an external input (IN) and output (OUT) for receiving and trans-
mitting data, which directly correlate with the concepts of “publisher” and “subscriber”.
To avoid redundancy of connections and their intersection, we propose to indicate the
connection of two services in the form of a flag: data from the external output of one
microservice should go to the input of some other microservice, which converts it into new
data and sends it to its external output for transmission to the input of the next microservice
(s), etc. At the same time, the flag itself always indicates the identification number of the mi-
croservice from which the information comes, and on the right number of the microservice
to which the information is sent. We borrowed and reinterpreted this approach to marking
connections from the field of designing microprocessor boards, where the problem of read-
ability of element connections has been known for quite a long time. In particular, when
designing circuits for microprocessor boards, the “end-to-end” connection of elements is
used to avoid intersections of conducting tracks, which in some ways is similar to the idea
of a weakly connected end-to-end connection of microservices—“pipelines”.



Informatics 2023, 10, 4 14 of 24

In view of the possible disordered assignment of identification numbers to microser-
vices and the determination of their sequential interaction, we propose to depict the
sequence of microservices operations within the framework of a simulated business prob-
lem in the right part of this diagram. This process part is intended to show the order
in which the functions of microservices are performed and what information should be
transferred from one microservice to another at what point in time. At the same time, the
order of operations of microservices is focused exclusively on data, i.e., the data-centric
architecture is traced, since in the left part of the diagram, a specific microservice of one
type can be changed to another microservice (another software vendor) that provides better
performance indicators (considering the performance of identical functionality).

Another feature of this diagram is the fact that microservices at this level are an abstract
designation of the functional task being performed and can be implemented both in the
form of specific software and in the form of an operation performed by a specialist—an
employee of the enterprise in manual mode. One unaccounted-for-problem at the moment
is the display of a list of already-existing microservices. For this purpose, it is possible to use
a frame with table entries, numbering, names, and functions of microservices, generated
automatically.

Thus, the “alphabet” of the Process Diagram is as follows:

1. The diagram is divided into two parts: the left structural part shows the services/
microservices involved in the implementation of the business process, as well as their
relationships with other services/microservices to perform their own functions; the
right part shows the order in which services/microservices perform functions during
the implementation of the business process.

2. “Service”/“Microservice”—indicated as a rectangle divided into three parts: the
upper part contains the name of the service/microservice, the lower left part serves
as an “ external input “(IN) for subscribing to data and contains the identification
number of the service/microservice, and the lower right part serves as an “external
output” (OUT) for publishing (publishing) data.

3. “Flag”—indicates the connection in the left part of the diagram between two services/
microservices, containing in the left part the number of the service/microservice from
which the information comes, and on the right the number of the service/microservice to
which the information comes.

4. “Communication line”—indicates the connection on the right side of the diagram
between the “checkboxes” to determine the sequence or parallelism of microser-
vices. The absence of an input communication line in time implies asynchronous, i.e.,
independent of the previous operation and mode of operation of the microservice.

3.5. Implementation and Execution Level (2): Microservice Architecture Diagram and
Pipeline Diagram

The next step in modeling the architecture of a digital enterprise is to create diagrams
of microservice architectures and Pipeline Diagrams. The order of development of these
diagrams does not matter; however, they assume both a direct hierarchical relationship
with the Process Diagram and a direct horizontal relationship with each other. To go to
the diagram of the microservice architecture, it is necessary to “fall” into each separate
microservice, and to go to the Pipeline Diagram, it is necessary to “fall” into each separate
connection between two microservices.

The Microservice Architecture Diagram (Figure 8) is a combination of a Component
Diagram and a UML Class Diagram. In the upper “component” part, the name of the
physical location (deployment) of the microservice (in our case, it is a “Technical Agent”)
is displayed, as well as the necessary technical information about the methods, tools, and
conditions for performing the placement of the microservice—this can be, for example, the
technical characteristics of computing devices.
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The main part of this chart displays the following:

1. “Microservice”—a vertical rectangle divided into four parts: in the upper part, the
microservice ID and name are displayed; in the middle left part, the microservice
“methods” are displayed; in the middle right part are “data” for external output; in
the lower part, “configuration” is displayed:

• “Methods”—a set of simple (computational) operations that a given microservice
operates to implement a given function and that can be implemented either using
program code or manually by enterprise specialists;

• “Data”—information that the microservice produces based on the results of
performing its own functions (methods) and that is sent to an external output;

• “Configuration”—a software representation of the microservice structure that
reflects a set of service parameters of the microservice (ID, address, port, type,
state, quality of work, etc.) for the broker to organize its interaction on the
integration bus with other microservices, as well as meta-information of the
structure of its external input (IN) and external output (OUT).

2. “Links”—horizontal rectangles with a connecting line that indicate the following:

• “Method links” (IN)—links associated with other microservices that transmit
information to microservice methods for implementing its functions;

• “Data links” (OUT)—links associated with an external output for publishing and
transmitting information to other microservices;

• “Inheritance links”—links associated with shared inherited methods from the
enterprise service library that are necessary for the operation of the microser-
vice (for example, a request for configuration, setting up data-sending schemes,
determining system time, etc.).

The DEAL Pipeline Diagram is a combination of the UML Class Diagram and the ER
Diagram principles. The Pipeline Diagram (Figure 9) shows a direct connection between
the output (OUT) and input (IN) of two microservices—“pipeline”. The microservice from
which information is received (OUT) in this connection should be shown on the left, and
the microservice to which information is received (IN) should be shown on the right. This
diagram indicates the following:
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1. “Microservice”—a horizontal rectangle divided into three parts: the upper part con-
tains the identification number and name of the microservice; the middle part contains
the “list of data”; the lower part contains the program view of the “data package”.

2. “Data list”—a block containing the name of data sent or received by microservices
during the implementation of their functions, as well as human-readable data charac-
teristics: number type, measurement range, unit of measurement, etc.

3. “Data package”—formats of program representation of data at the output and input
of microservices, necessary for subsequent data transformation by the broker on
the integration bus in order to actually implement information transfer between
microservices in accordance with their capabilities and needs.
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The Microservice Architecture Diagram and the Pipeline Diagram suggest the possibil-
ity of switching from one to the other; they can be understood by both industry specialists of
enterprises and software developers; in fact, they allow one to move to the direct software
implementation of the digital enterprise architecture and, in our opinion, fully meet the
ideology of data-centric microservice system architecture.

4. An Example of the Implementation of a Digital Enterprise Architecture
4.1. DEA 1.0—Digital Enterprise Architecture Metamodel

In accordance with the above proposals for implementing the digital transformation
of the enterprise, as well as based on the generated diagrams in the DEAL 1.0 notation, we
developed a functional software metamodel of the architecture [56], which is a prototype
version of an open-source digital mining enterprise and has the following characteristic
features (Figure 10):

1. Due to the complexity of predestination and the actual impossibility of processing op-
erated systems that are directly involved in the main technological process—mineral
extraction in the developed model—key agents and systems are presented not in
microservice form, but in the form of services—enlarged modules. These modules are
as follows:

• AETechnicalAgent—technical agents, which mean robotic machines of the min-
ing transport complex (dump trucks and excavators) operating inside the techno-
logical environment, collecting and providing primary data;

• AEAHS—dispatching system for the mining transport complex (AHS ACS),
which is responsible for monitoring the condition and managing technical agents;
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• AEMGIS—mining and geological information system (GGIS), which is conven-
tionally responsible for determining the geostructure of a quarry and estimating
the reserves of a field;

• AEERP is an enterprise resource planning and management system that performs
high-level production management tasks.
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All the listed agents and systems in the developed metamodel are functioning com-
ponents and directly carry out conditional (incomplete) information exchange during the
implementation of the business process. At the same time, each of the agents and systems
has knowledge about their own functionality (configuration), which they report to the
corresponding service components of the model in order to publish or receive data that are
necessary or obtained during the implementation of their own functions. The proposed
model assumes the following unified types of messages from services:

• AvailableData—announcement about the possibility of publishing data;
• RequiredData—declaration of the list and structure of required data;
• GetStatus—warning about the possibility of receiving data;
• SetConfig—request to install the configuration and service;
• GetInConfig—request to obtain the configuration of the input data structure;
• GetOutConfig—request to obtain the configuration of the outgoing data structure;
• Command—not a deterministic command.

In accordance with the type of agent or system, each of the services publishes data
that are produced based on the results of its work and aggregated in the platform part of
the model according to the corresponding data topics (topics), to which other services can
connect to receive such data:

• TechnicalAgentData—the topic declared by the technical agent;
• AHSData—a topic declared by the dispatching system for the mining transport complex;
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• MGISData—a topic declared by the mining and geological information system;
• ERPData—topic declared by the enterprise resource planning and management system.

Each of the services (agents and systems) also has information about its own qualitative
state of functioning, the program view of which is currently implemented as follows:

export enum ServiceStateTypes {

• Normal—normal mode of operation;
• NotSet—not configured;
• CorruptedModule—there are obstacles to normal operation;
• Fatal—critical error}.

2. The platform part of the AEBus architecture (Digital Platform) AEBus is a set of service
components and libraries that directly ensure the effective interaction of functional
services (agents and systems) and includes the following:

• The “Integration Bus” service, which is actually implemented unified software
interfaces for applications (agents and systems), as well as a single library of
methods that agents and systems access to connect to a common message trans-
mission scheme.

The library of application programming interfaces contains several types of possi-
ble connections—for services (existing and non-recycled systems) and for microservices
(for new or recycled systems).

The ServiceApiInterface implements a typical CRUD (create, read, update, and delete)
concept, which allows one to create, read, update, or delete data in the system. This
interface extends the AppService class (or another similar technology for performing
asynchronous/high-load operations). The interface can be used for operated systems
without making significant changes to their software implementation.

The MicroServiceApiInterface unifies interactions with any microservice by provid-
ing a single point of access to data, configurations, and entity types. This interface can
(and should) be used for all existing services or those being developed and included in the
architecture of microservices.

The ServiceState interface provides internal interactions of the service components of
the platform for managing functional services and microservices.

• The “Broker, message queue, and mapper” service consists of several separate mi-
croservices that perform the functions of organizing communication between services
(creating a pipeline), listening for data requests and messages about publishing data,
forming message queues, manipulating (adding, deleting, etc.) messages in queues,
and modifying the data contained in messages to bring them up to date. They are
derived from the incoming data structure formats from some microservices to the
required formats of others.

The architecture metamodel including methods and tools of the library is available on
the GitHub repository in open access under the MIT license, available for download and
free use: https://github.com/kinozal1/DEAMetamodel/ (accessed on 29 November 2022).

4.2. Description of Functional Modeling of DEA 1.0 Operation

The process of functioning of the developed software metamodel of architecture,
which is named Digital Enterprise Architecture 1.0 (Digital Enterprise Architecture), is
carried out as follows:

1. The services of the digital platform—AEBus—are being initialized.
2. AEBus services are ready to work and are waiting for microservices to be connected.
3. Initialization of microservices AETechnicalAgent, AAHS, AEERP, and AEMGIS is

taking place. The microservice knows its initial configuration and the address of the
platform broker. After initialization, the microservice is registered, and it reports its
configuration according to the following structure:
export class RegisterService {

https://github.com/kinozal1/DEAMetamodel/
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name: string; // service name
address: string; // address
port: number; //
port type: ServiceTypeTypes; // type }

4. After registration, the platform broker stores a view of each of the microservices in
the following format:
export class ServiceInfo {
id: number; // id number
name: string; // name
available: boolean; // availability
instance: any; // instance
config: any; // configuration
quality: number; // quality
type: ServiceTypeTypes; // type
port: number; // port
address: string; // address }
Further, the entire process is carried out in asynchronous mode in a cyclic form.

5. The AETechnicalAgent service registers an event about publishing data:
{ topic: TopicTypes.TechnicalAgentData, // topic name
event: MessageTypes.AvailableData, // with communication about the publication of data (list
and its structure)
sender: ServiceTypeTypes.AETechnicalAgent, // name of the message sender }

6. The broker adds an event to the queue and checks for subscribers to the current
TechnicalAgentData tag.

7. The AEAHS service registers data necessity events (a) and, after receiving and pro-
cessing them, data publication events (b) and (c):

(a) { topic: TopicTypes.TechnicalAgentData, // topic name
event: MessageTypes.RequiredData, // request to receive data (list and its structure)
sender: ServiceTypeTypes.AEAHS, // name of the sender of the message }

(b) { topic: TopicTypes.MGISData, // name of the topic
event: MessageTypes.AvailableData, // message about publishing data (list and its structure)
sender: ServiceTypeTypes.AEAHS, // name of the sender of the message }

(c) { topic: TopicTypes.ERPData, // topic name
event: MessageTypes.AvailableData, // message about publishing data (list and its structure)
sender: ServiceTypeTypes.AEAHS, // name of the sender of the message }

8. The broker adds events to the queue and checks for matches in the publisher and
subscriber queues. It finds a match for available data from the AETechnicalAgent
microservice (technical agent) and the need for data acquisition by the AEAHS service
(SCC dispatching system). It initiates the receiving of data from the AETechnicalA-
gentthe AETechnicalAgent Data queue, converting the data to the required format,
and transmitting them to the AEAHS service.

9. The AEMGIS service registers data necessity events:
{ topic: TopicTypes.MGISData, // name of the topic
event: MessageTypes.RequiredData, // message for receiving data (list and its structure)
sender: ServiceTypeTypes.AEMGIS, // name of the sender of the message }

10. The broker adds an event to the queue and checks for matches in the publisher and
subscriber queues. It finds a match with the AEAHS service. It initiates the receiving
of data from AEAHS, converting and transmitting data to the AEMGIS service.

11. The AEERP service registers data necessity events:
{ topic: TopicTypes.ERPData, // topic name
event: MessageTypes.RequiredData, // message for receiving data (list and its structure)
sender: ServiceTypeTypes.AEERP, // name of the sender of the message }
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12. The broker adds an event to the queue and checks for matches in the publisher and
subscriber queues. It finds a match with the AEAHS service. It initiates the receiving
of data from AEAHS, converting and transmitting data to the AEERP service.

Figure 11 shows a visualization of the operations of the metamodel in accordance with
the process described above.
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The main idea of the proposed approach using a unified library is the possibility of
flexible integration of microservices and organization of their information interaction in the
current architecture according to common standards (interfaces) without significant changes
in the software implementation of the systems used in enterprises. The implementation
of libraries also implies storing unified templates of microservice abstractions, which
provide the possibility of further expanding the existing architecture to include missing
microservices that ensure enterprise autonomy. Each object of microservice interaction
(interfaces, data objects, data modification logic) is stored in an external generalized library
and, if necessary, is connected by each microservice separately.

5. Discussion

Based on the results of the work carried out, the following was achieved:

1. The analysis of the generalized structural and functional architecture of business
processes of modern industrial enterprises was carried out, within which the key
features that need to be taken into account or changed for the implementation of their
digital transformation were identified.

2. Specific iterative steps necessary for the implementation of digital transformation of
enterprises in terms of bringing the architecture of business processes to a data-centric
microservice form were proposed.

3. The rationale for the need to develop a graphical modeling language for designing
systems with a data-centric microservice architecture that meets the requirements of
Industry 4.0 was given.
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4. A method for formalizing such a language—Digital Enterprise Architecture Language
1.0—was proposed.

5. A formal representation of the unified reference metamodel of the digital enterprise
architecture DEA 1.0, which can provide autonomous execution of business processes,
was given.

6. An example of a software implementation of such a metamodel was shown, as well
as an example of experimental modeling of its operation, in which the functional
viability of the chosen approach was determined.

The proposed metamodel of the digital enterprise architecture DEA 1.0, in general,
corresponds to the data-centric microservice approach, since it contains all the necessary
service components responsible for organizing the information interaction of microservices
and takes into account the development features of missing promising microservices,
including those related to the Digital Twin of the enterprise. At the same time, at this
stage, the model does not implement a Time-Series Database (TDBM), which is necessary to
improve the performance of large data transfer processes. However, the proposed approach
considers this feature and, in the future, the TDBM can be easily implanted into the existing
architecture. In the future, it is planned to expand the developed libraries and refine the
service components responsible for monitoring the quality of microservices, orchestration,
and virtualization, as well as to study the functioning of the platform part of the model
under a high-performance load in order to refine the architecture.

Regarding the DEAL 1.0 notation, it is quite difficult at the moment to talk about its
full compliance with the challenges of designing Industry 4.0 systems. However, when
developing it, we focused on the following key points:

1. The possibility of application for various subject areas (industrial enterprises). Despite
the fact that this paper provides an example exclusively for mining, the alphabet of the
language retains the traditional principles of graphical modeling and, in our opinion,
is sufficiently unified, so that most of its elements can be applied to the design of a
system from another subject area (for example, the construction sector).

2. The need to find a compromise between industry specialists and system developers.
Thus, the organizational and functional diagram is easy to understand for both parties
and is the starting point for design. Further diagrams, of course, have their own
specifics, but with the formalization of the sequence of operations (Process Diagram)
or, for example, the representation of a set of operations and data obtained from the
results of their work (Microservice Architecture Diagram), they can be specified as in
the contract, from the point of view of software development, form, i.e., performed in
manual mode, and in directly pre-programmed form.

3. With significant refinement of the notation, in particular the creation of functions
for the automatic generation of a list of microservices, it will be possible to ensure
control of the architecture design in terms of both the correctness of the formation
of microservices themselves (strict decomposition to the simplest operations) and
compliance with the rules on the inadmissibility of duplication of functions in the
architecture of the entire system.

4. Reduction of redundancy of elements and links, visual representation of links. The
use of “flags” in the most voluminous scheme—the Process Diagram—in our opinion
significantly simplifies the perception of both the sequence of connections and con-
nections between microservices in general. The reduction of the elements, in this case,
can be achieved by controlling the inadmissibility of duplication of microservices as
required by the microservice paradigm. In other words, when creating a diagram
for the next process, we do not create new entities (microservices) but take them, if
available (corresponding to the functional purpose), from a common “library”.

5. The possibility of a visual joint representation of the elements of a data-centric mi-
croservice architecture that displays both the dynamics of the structural and functional
relationship of components and data modification schemes used in the course of in-
formation exchange between such components. We do not claim that DEAL 1.0 is
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fully ready to become a key notation for Industry 4.0, but we offer one of the possi-
ble options for a new design method that formalizes key approaches to the phased
construction of autonomously functioning digital enterprises.

It is also worth noting that the proposed method of graphical modeling does not reflect,
in our opinion, another important (third) level of technical functioning of the system, which
describes the organization of service components and the order of their interaction with
functional microservices. In the future, we plan to continue work in this direction, including
the software implementation of the alphabet in the form of an embedded library in open
source graphical modeling tool environments.
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