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Abstract: Up to 20% of renal masses ≤4 cm is found to be benign at the time of surgical excision,
raising concern for overtreatment. However, the risk of malignancy is currently unable to be accurately
predicted prior to surgery using imaging alone. The objective of this study is to propose a machine
learning (ML) framework for pre-operative renal tumor classification using readily available clinical and
CT imaging data. We tested both traditional ML methods (i.e., XGBoost, random forest (RF)) and deep
learning (DL) methods (i.e., multilayer perceptron (MLP), 3D convolutional neural network (3DCNN))
to build the classification model. We discovered that the combination of clinical and radiomics features
produced the best results (i.e., AUC [95% CI] of 0.719 [0.712–0.726], a precision [95% CI] of 0.976
[0.975–0.978], a recall [95% CI] of 0.683 [0.675–0.691], and a specificity [95% CI] of 0.827 [0.817–0.837]).
Our analysis revealed that employing ML models with CT scans and clinical data holds promise for
classifying the risk of renal malignancy. Future work should focus on externally validating the proposed
model and features to better support clinical decision-making in renal cancer diagnosis.

Keywords: renal cancer; classification; CT scans; machine learning

1. Introduction

Renal tumors, also known as kidney tumors, are abnormal growths that originate
within the renal tissue of one or both kidneys [1]. These tumors exhibit a wide spectrum
of behavior, ranging from benign (noncancerous) to malignant (cancerous) growths. The
clinical presentation of renal tumors can vary, with some patients remaining asymptomatic,
while others may experience a range of symptoms, including flank or lower back pain,
hematuria (blood in the urine), unexplained weight loss, and fatigue [2]. Surgical inter-
vention is the cornerstone of treatment for renal tumors, particularly for those that are
malignant or symptomatic. Surgical approaches may include partial nephrectomy, where
only the tumor and a small margin of healthy tissue are removed, or radical nephrectomy,
where the entire affected kidney is removed [3]. Despite the effectiveness of surgery in man-
aging renal tumors, there are growing concerns about the potential overtreatment of small
renal masses [4,5]. Studies have revealed that a significant proportion of small renal masses,
particularly those with a diameter of 4 cm or less, are benign lesions that may not pose a
threat to the patient’s health [6,7]. Surgical removal of these benign tumors may expose
patients to unnecessary risks and complications associated with surgery. Therefore, there
is a critical need for accurate classification of renal tumors using non-invasive techniques
to guide treatment decisions, enabling healthcare professionals to prevent unnecessary
surgery or other interventions and provide appropriate and effective care to patients [8].

Renal tumors are commonly diagnosed and categorized with the aid of computerized
tomography (CT) or magnetic resonance imaging (MRI) scans [9], which offer intricate
visualizations of the kidney. However, manually reading and annotating CT scans can be a
challenging and time-consuming task. In recent years, machine learning (ML) algorithms
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have shown promise in improving the efficiency and accuracy of renal tumor classification
based on CT imaging data [10–19]. Researchers have investigated texture features in CT to
differentiate renal tumors, with studies employing various texture predictors to improve
diagnostic accuracy [10–13].

For example, Deng et al. [10] conducted a study to explore the potential of computed
tomography texture analysis (CTTA) in identifying visually imperceptible differences
between benign and malignant renal tumors. The study focused on filtration histogram-
based parameters, such as entropy and skewness. The researchers discovered that entropy
was a useful parameter for differentiating renal cell carcinoma (RCC) from lipid-poor
angiomyolipoma, as well as chromophobe RCC from oncocytoma. Logistic regression
analysis revealed that both entropy and skewness at fine spatial filter (SSF2) were significant
parameters for distinguishing benign and malignant renal tumors. Specifically, an entropy
value greater than 5.62 demonstrated high specificity (85.7%) but low sensitivity (31.3%)
for predicting RCCs. However, the area under the receiver operating characteristic (ROC)
curve (AUC) was only 0.57 for entropy and 0.622 for skewness at SSF2, suggesting that the
diagnostic capability of CTTA alone may be limited. In another study, Johannes et al. [11]
employed radiomics and machine learning (ML) techniques to differentiate malignant and
benign renal masses on CT images. The study found that the random forest (RF) algorithm
achieved a significantly higher AUC of 0.83 compared to radiologists, who had an AUC
of 0.68. However, this study had a relatively small sample size, as it was based on data
from only 94 patients. Peng et al. [12] evaluated the performance of radiomics models
based on CT imaging data for the diagnosis of renal cancer. The results showed promise for
augmenting radiological diagnosis, particularly for differentiating clear cell RCC (ccRCC)
from non-ccRCC, with the highest AUC reaching 0.909. Varghese et al. [13] investigated the
diagnostic accuracy of CT-based texture features, such as entropy, mean, and uniformity, in
distinguishing renal mass subtypes. The overall contrast-enhanced computed tomography
(CECT)-based tumor texture model achieved an AUC of 0.87 (p < 0.05) for differentiating
benign from malignant renal masses. The potential of ML algorithms, particularly those
focused on texture features, lies in improving renal tumor classification and enhancing
diagnostic accuracy, which could lead to increased efficiency in diagnostics, reduced burden
on radiologists, and minimized inter-observer variability. Moreover, improved diagnostic
accuracy and tumor classification using imaging techniques would improve clinicians’
ability to appropriately select patients for surgery versus active surveillance and potentially
decrease the number of surgeries which are performed for non-malignant renal tumors.

In addition to hand-crafted texture analysis, deep learning (DL) models, such as con-
volutional neural networks (CNNs), have emerged as powerful tools for renal tumor classi-
fication based on imaging data [14–19]. These models have shown promise in enhancing
the diagnostic accuracy of renal tumor classification, which could ultimately lead to better
patient outcomes and more targeted treatment strategies. For instance, Oberai et al. [14]
developed a CNN-based classifier that utilized multiphase contrast-enhanced CT images
for renal tumor classification. The classifier achieved an area under the receiver operating
characteristic curve (AUC) of 0.82, demonstrating its potential for accurate tumor classifi-
cation. Similarly, Zabihollahy et al. [15] explored a DL-based method for the automated
classification of RCC from benign solid renal masses. Their semi-automated algorithm,
which used CECT images, achieved an AUC of up to 0.67. Tanaka et al. [16] employed
the Inception-v3 CNN model [20] for determining whether small solid renal masses were
benign or malignant. The model achieved the highest AUC of 0.846 with corticomedullary
phase (CMP) images, while the lowest AUC of 0.494 was observed with excretory phase
(EP) images. In another study, Uhm et al. [17] developed an end-to-end DL model for multi-
phase CT imaging that accurately differentiated between five major histologic subtypes
of renal tumors, including both benign and malignant tumors. The model achieved an
impressive AUC of 0.889, outperforming radiologists for most of the subtypes. However,
the study was limited to patients with three or more CT phases. Han et al. [18] applied a
DL neural network to classify RCC subtypes using biopsy results as labels. The method
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achieved an AUC of 0.9, with images acquired at three phases. Zhou et al. [19] investigated
the effect of transfer learning on CT images for benign and malignant renal tumor classifi-
cation. By cross-training the InceptionV3 model pretrained on the ImageNet dataset, they
achieved better performance at the patient level (accuracy increased by 2–5%) compared to
image-level models (0.69 accuracy). Despite these promising results, most studies relied on
multi-phase CT images. While multiphase CT imaging offers more detailed insights into
bodily tissues and structures, it also presents drawbacks, such as increased radiation expo-
sure, longer scanning time, higher costs, and potential unsuitability for patients with poor
kidney function due to the need for contrast agent clearance [21]. Predicting malignancy
risk before surgery using single-phase CT imaging remains a challenge. Roussel et al. [22]
conducted a comprehensive review of noninvasive imaging-based tools for characterizing
solid renal masses, highlighting their strengths and limitations.

In contrast to existing studies that primarily focus on either hand-crafted texture
features using traditional ML methods or multi-phase CT images using DL models, this
paper takes a more comprehensive approach by examining contrast enhanced CT images
and evaluating both traditional ML and DL models. Our objective is to propose a method
for pre-operative renal tumor classification that leverages readily available clinical and
CT imaging data. In our investigation, we explored various feature combinations and
compared the performance of traditional ML methods, such as XGBoost and RF, with
that of DL methods, such as Multilayer Perceptron (MLP) and 3D convolutional neural
network (3DCNN). Our findings indicate that the best results were obtained when com-
bining structured clinical data, such as patient demographics and medical history, with
radiomics features extracted from CT images. By integrating multiple data modalities, we
can substantially improve renal tumor classification, leading to increased accuracy and
the development of more effective diagnostic strategies. Future work should externally
validate the proposed model and features to further refine and enhance clinical support for
renal cancer diagnosis.

2. Materials and Methods
2.1. Data Source and Study Population

This study was conducted using data obtained from the KiTS21 cohort, which con-
sisted of a total of 300 patients who underwent either partial or radical nephrectomy for
radiographically detected renal tumor between 2010 and 2020 [23]. Clinical attributes and
imaging data, including patient demographics and comorbidity information, as well as
preoperative CT scans before surgery were used to build the classification models to classify
malignant and benign tumors. Examples of CT scans can be found in the Supplementary
Materials (Figure S1).

2.2. Data Processing
2.2.1. Clinical Attributes

The clinical attributes were grouped into three main categories: demographics, vital
signs, and comorbidities. Demographic information included the patient’s age at the time
of nephrectomy and gender. Age was treated as a continuous variable, while gender was
treated as a binary variable (male or female). Vital signs encompassed key health indicators,
such as body mass index (BMI) and tobacco use status. BMI, which is a measure of body fat
based on height and weight, was treated as a continuous variable. Tobacco use status was
treated as a binary variable, with patients classified as either tobacco users or non-users.
We also considered the presence of comorbidities, which are additional medical conditions
that coexist with the primary condition for which the patient is undergoing nephrectomy.
Specific comorbidities included in our analysis were myocardial infarction (heart attack)
and chronic obstructive pulmonary disease (COPD), among others. Each comorbidity was
treated as a binary variable, indicating whether the patient had a history of the condition
(yes or no). To provide a comprehensive overview of the patient cohort, we calculated the
prevalence of each comorbidity within the study population.



Informatics 2023, 10, 55 4 of 10

2.2.2. CT Scans

For CT scans, we performed a series of image processing and feature extraction steps
to prepare the data for analysis using both traditional ML methods and DL techniques. The
processing steps involved include image segmentation, resampling, normalization, region
of interest (ROI) extraction, radiomic feature extraction, and DL model input preparation.

We utilized voxel-wise majority voting [19] to perform image segmentation on the CT
scans. This approach involves combining the results of multiple segmentations to create
a final consensus segmentation, which is expected to be more accurate and reliable. To
ensure consistency across all CT scans, we resampled the images to achieve a common
voxel spacing of 0.78126 mm × 0.78125 mm × 0.78125 mm. This step allowed us to
standardize the resolution of the images for subsequent analysis. To correct for variations in
image intensity that may arise due to differences in scanner settings, we applied min–max
normalization to the CT scans. The intensity values were scaled such that the minimum
and maximum normalized values corresponded to the 5th and 95th percentiles of intensity,
respectively. For each patient, we identified the region of interest (ROI) containing the
largest tumor. The ROI was then cropped from the original CT scan for further analysis.
The size of the cropped image patch was determined based on the dimensions of the largest
tumor observed in the entire patient cohort.

For traditional ML methods, we used the PyRadiomics open-source platform [24] to
extract radiomic features from the cropped image patches. Radiomic features are quantita-
tive descriptors that capture phenotypic characteristics of tumors and their surrounding
tissue. The extracted features were grouped into several categories, including first-order
statistics (19 features), shape-based 3D (16 features), shape-based 2D (10 features), gray
level cooccurrence matrix (24 features), gray level run length matrix (16 features), gray level
size zone matrix (16 features), neighboring gray tone difference matrix (5 features), and
gray level dependence matrix (14 features). For input into the DL model, we normalized
the ROIs using a commonly used threshold range of −1000 to 400. This step helped to focus
on the relevant tissue structures while reducing noise and artifacts. We then downsampled
the image patches to a shape of 128 × 128 × 64 voxels to ensure compatibility with the
input requirements of the DL model.

2.3. Machine Learning Algorithms

We developed classification models to categorize patient outcomes using a variety of
algorithms, including both ML and DL methods. Specifically, we employed XGBoost and
RF as ML methods and MLP and 3DCNN as DL methods. XGBoost (eXtreme Gradient
Boosting) is a powerful gradient boosting algorithm known for its high performance in
classification tasks [25]. For our analysis, we selected a maximum tree depth of 6, logistic
regression as the objective, and employed a heuristic approach to select the fastest tree
method, while default values were used for the other parameters. RF is an ensemble
learning method that constructs multiple decision trees and combines their predictions
for improved accuracy and stability [26]. For both the XGBoost and RF models, we ex-
perimented with three different input configurations: (1) clinical attributes, (2) radiomic
features, which are extracted from using pyradiomics packages, and (3) a combination of
clinical and radiomic features.

The MLP, also known as a feedforward neural network, consisted of multiple fully
connected layers [27]. The MLP architecture was also used to process the clinical and
radiomic features, and its design included input, hidden, and output layers. The 3DCNN
architecture was designed to process volumetric image data and consisted of four convolu-
tional layers, each followed by a max pooling layer and a batch normalization layer. The
number of filters in the convolutional layers increased in the order of 8, 8, 16, 32, while the
kernel size remained fixed at (3,3,3) for all layers. The image patches with dimensions of
128 × 128 × 64 were used as input to the network. Figure 1 provides a visual illustration of
the entire classification model development process.



Informatics 2023, 10, 55 5 of 10

Informatics 2023, 10, x FOR PEER REVIEW 5 of 11 
 

 

The MLP, also known as a feedforward neural network, consisted of multiple fully 
connected layers [27]. The MLP architecture was also used to process the clinical and ra-
diomic features, and its design included input, hidden, and output layers. The 3DCNN 
architecture was designed to process volumetric image data and consisted of four convo-
lutional layers, each followed by a max pooling layer and a batch normalization layer. The 
number of filters in the convolutional layers increased in the order of 8, 8, 16, 32, while the 
kernel size remained fixed at (3,3,3) for all layers. The image patches with dimensions of 
128 × 128 × 64 were used as input to the network. Figure 1 provides a visual illustration of 
the entire classification model development process.  

 
Figure 1. Illustration of the prediction framework using different inputs: (a) clinical attributes; (b) 
radiomic features; (c) combination of clinical and radiomic features; (d) DL models. 

2.4. Experiments and Evaluation 
The dataset was divided into a training set and a test set using random sampling, 

with 80% of the data allocated for training and 20% reserved for testing. The training set 
was used to train and optimize the ML and DL models, while the test set was used to 
assess the models’ performance on unseen data. To optimize the ML model, we employed 
a five-fold cross-validation approach on the training set, while the hyperparameters were 
fine-tuned using a randomized search. The classification performance of the models was 
assessed using several evaluation metrics, including AUC, precision, recall, and specificity 
[28]. These metrics provide different perspectives on the models’ ability to accurately clas-
sify patient outcomes and minimize errors. To ensure robust performance estimates and 
account for potential variability in the results, we performed bootstrapping with 1000 it-
erations [29]. This approach allowed us to provide a 95% confidence interval (CI) for each 
evaluation metric, giving a more comprehensive understanding of the model’s perfor-
mance and its potential generalizability to new, unseen data. We also employed the Krus-
kal–Wallis test for comparing AUCs across different models for each input, and the Mann–
Whitney U test for comparing AUCs between two models [30]. 

3. Results 
In our study, we investigated a cohort of 300 patients who underwent either partial 

or radical nephrectomy due to radiographically detected renal tumor. Out of the entire 
patient population, 275 (91.7%) were diagnosed with malignant tumors, while the remain-
ing 25 (8.3%) patients were found to have benign tumors. Median radiographic tumor size 
was 4.1 cm. Table 1 provides an overview of the key characteristics of the study cohort.  
Interestingly, patients with benign tumors tended to be relatively older than those with 
malignant tumors, with a mean age of 60.8 years versus 58.7 years, respectively. In terms 

Patients

(a) Clinical attributes
• Demographics
• Vital signs
• Comorbidities
• …

(b) Radiomic features
• Statistics
• Textural
• Morphometrical
• …

Machine Learning Algorithms 
Input:
• Clinical only
• Radiomic only
• Both clinical and Radiomic

Labels
Output:
Malignant or not

C
on

v 
3D

3D
 M

ax
 

Po
ol

in
g

C
on

v 
3D M
ax

Po
ol

FC
1…

FC
2

(d) Deep features

(c) Both

Figure 1. Illustration of the prediction framework using different inputs: (a) clinical attributes;
(b) radiomic features; (c) combination of clinical and radiomic features; (d) DL models.

2.4. Experiments and Evaluation

The dataset was divided into a training set and a test set using random sampling, with
80% of the data allocated for training and 20% reserved for testing. The training set was
used to train and optimize the ML and DL models, while the test set was used to assess the
models’ performance on unseen data. To optimize the ML model, we employed a five-fold
cross-validation approach on the training set, while the hyperparameters were fine-tuned
using a randomized search. The classification performance of the models was assessed
using several evaluation metrics, including AUC, precision, recall, and specificity [28].
These metrics provide different perspectives on the models’ ability to accurately classify
patient outcomes and minimize errors. To ensure robust performance estimates and account
for potential variability in the results, we performed bootstrapping with 1000 iterations [29].
This approach allowed us to provide a 95% confidence interval (CI) for each evaluation
metric, giving a more comprehensive understanding of the model’s performance and its
potential generalizability to new, unseen data. We also employed the Kruskal–Wallis test
for comparing AUCs across different models for each input, and the Mann–Whitney U test
for comparing AUCs between two models [30].

3. Results

In our study, we investigated a cohort of 300 patients who underwent either partial or
radical nephrectomy due to radiographically detected renal tumor. Out of the entire patient
population, 275 (91.7%) were diagnosed with malignant tumors, while the remaining
25 (8.3%) patients were found to have benign tumors. Median radiographic tumor size
was 4.1 cm. Table 1 provides an overview of the key characteristics of the study cohort.
Interestingly, patients with benign tumors tended to be relatively older than those with
malignant tumors, with a mean age of 60.8 years versus 58.7 years, respectively. In terms
of gender distribution, the data show that a higher proportion of patients with malignant
tumors were male, with 62.2% (171 out of 275) of the total number of patients with malignant
tumors being male. The group of patients with malignant renal tumors had a higher
percentage of individuals who were current smokers and reported consuming more than
two alcoholic drinks daily compared to the group with benign renal tumors. Overall, the
data presented in Table 1 shed light on some of the key demographic vital signs of the
study cohort, providing a valuable foundation for further analysis and interpretation.

The distribution of the clinical attributes of benign and malignant patients are shown
in Figure 2. Among all the clinical attributes, uncomplicated diabetes mellitus and localized
solid tumor are the most common ones (20.7% of patients in malignant group and 4%
of patients in benign group have uncomplicated diabetes mellitus, and 14.5% patients in
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malignant group and 12% of patients in benign group have a localized solid tumor). For
most of the clinical attributes except malignant lymphoma and moderate to severe liver
disease, more patients in the malignant group were diagnosed.

Table 1. Characteristics of the study cohort.

Characteristics Total
(N = 300)

Benign
(N = 25)

Malignant
(N = 275) * p-Value

Demographics
* Age, mean (std) 58.9 (13.8) 60.8 (15.7) 58.7 (13.6) 0.158
Female, N (%) 120 (40.0) 16 (64.0) 104 (37.8) 0.011
Vital Signs
Body Mass Index, mean (std) 30.9 (6.7) 31.1 (6.6) 30.8 (6.7) 0.717
Smoking History, N (%)
Current Smoker 43 (14.3) 2 (8.0) 41 (14.9) 0.345
Never Smoked 137 (45.7) 15 (60.0) 122 (44.4) 0.133
Tobacco Use, N (%)
Never or not in last 3 months 295 (98.3) 25 (100.0) 270 (98.2)
Alcohol Use, N (%)
More Than Two Daily 17 (5.7) 0 (0.0) 17 (6.2)
Never or not in Last 3 moths 131 (43.7) 14 (56.0) 117 (42.5) 0.194
Quit in Last 3 months 1 (0.3) 0 (0.0) 1 (0.4)

Tumor Histologic Subtype, N (%)
Angiomyolipoma 5 (1.7) 5 (20.0) 0
Chromophobe 27 (9.0) 0 27 (9.8)
Clear cell papillary RCC 7 (2.3) 0 7 (2.5)
Clear cell RCC 204 (68.0) 0 204 (74.2)
Collecting duct undefined 1 (0.3) 0 1 (0.4)
* MEST 3 (1.0) 3 (12.0) 0
Multilocular cystic RCC 1 (0.3) 0 1 (0.4)
Oncocytoma 16 (5.3) 16 (64.0) 0
Papillary 28 (9.3) 0 28 (10.2)
RCC unclassified 2 (0.7) 0 2 (0.7)
Spindle cell neoplasm 1 (0.3) 1 (4.0) 0
Urothelial carcinoma 3 (1.0) 0 3 (1.1)
Wilms tumor 1 (0.3) 0 1 (0.4)
Other 1 (0.3) 0 1 (0.4)

* Age: age at nephrectomy; * MEST: mixed epithelial and stromal tumor; * p-value: Mann–Whitney U Test for
continuous variables, chi-square test for categorical variables.

Table 2 provides a detailed overview of the performance of all prediction models
evaluated in this study. Among the models tested, the combination of clinical and radiomic
features yielded the best overall performance, with an AUC [95% CI] of 0.719 [0.712–0.726],
a precision [95% CI] of 0.976 [0.975–0.978], a recall [95% CI] of 0.683 [0.675–0.691], and
a specificity [95% CI] of 0.827 [0.817–0.837]. The results of the Kruskal–Wallis Test indi-
cate that the models’ performance is significantly different for each input. Additional
information, including the results of the Mann–Whitney U test comparing AUCs between
two models, can be found in the Supplementary Materials (Table S1). An interesting
observation from the study was that the traditional ML model, RF, which utilized the
combination of clinical and radiomic features as input, performed slightly better in terms
of precision compared to the DL model. Specifically, the RF model achieved a precision
[95% CI] of 0.976 [0.975–0.978], while the DL model achieved a precision [95% CI] of 0.958
[0.956–0.960]. The difference in performance may be explained by the relatively small
dataset of CT scans used to train the DL model, which could have limited the model’s
ability to effectively identify and learn patterns within the data. It is also important to note
that most related DL-based studies that focus on classifying benign and malignant renal
tumors have utilized multi-phase CT images. In contrast, our study relied on single-phase
CT images, which may present different challenges and opportunities for model develop-
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ment. Overall, these findings underscore the value of integrating both clinical and radiomic
features for predicting renal tumor diagnosis. The successful combination of these features
has the potential to enhance the accuracy of tumor classification. However, further research
is needed to validate these findings, particularly in larger and more diverse patient cohorts.
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95% CI (0.592, 0.610) (0.956, 0.960) (0.571, 0.593) (0.723, 0.749)

Radiomic

MLP
mean (std) 0.581 (0.135) 0.948 (0.05) 0.575 (0.217) 0.676 (0.220)

95% CI (0.572, 0.589) (0.945, 0.951) (0.561, 0.588) (0.662, 0.690)

<0.001XGBoost
mean (std) 0.670 (0.133) 0.970 (0.026) 0.666 (0.158) 0.772 (0.183)

95% CI (0.662, 0.678) (0.968, 0.971) (0.656, 0.676) (0.761, 0.784)

RF
mean (std) 0.700 (0.116) 0.955 (0.039) 0.665 (0.132) 0.805 (0.164)

95% CI (0.893, 0.707) (0.953, 0.957) (0.657, 0.673) (0.794, 0.815)

* Both

MLP
mean (std) 0.584 (0.137) 0.951 (0.037) 0.586 (0.208) 0.686 (0.209)

<0.001

95% CI (0.575, 0.592) (0.949, 0.953) (0.573, 0.599) (0.673, 0.699)

XGBoost
mean (std) 0.718 (0.111) 0.972 (0.025) 0.673 (0.149) 0.800 (0.159)

95% CI (0.711, 0.725) (0.970, 0.974) (0.663, 0.682) (0.790, 0.810)

RF
mean (std) 0.719 (0.116) 0.976 (0.024) 0.683 (0.132) 0.827 (0.163)

95% CI (0.712, 0.726) (0.975, 0.978) (0.675, 0.691) (0.817, 0.837)

* MLP: multilayer perceptron; * RF: random forest; * Both: clinical and radiomic features; * p-value: Kruskal–
Wallis Test.

4. Discussion

In our study, we analyzed a cohort of 300 patients, the majority of whom had malig-
nant tumors, accounting for 91.67% (275/300) of the total cases. This high prevalence of
malignant tumors is not surprising, given that this is a restricted cohort [19], and all patients
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underwent either partial or radical nephrectomy due to suspected renal malignancy. We
observed notable differences (p-value < 0.05) in gender among patients with malignant
tumors, with a higher incidence of malignant renal tumors found among male patients.
This relationship has been described previously, as male sex is noted by the American
Urological Association’s Renal Mass Guideline to be one of the most reliable predictors
of malignancy along with tumor size [31]. The precise reasons for this gender difference
in renal tumor incidence remain unclear, and further research is needed to elucidate the
underlying mechanisms and risk factors.

Our study primarily focuses on differentiating between benign and malignant renal
tumors. By integrating information from both clinical attributes and pre-operative CT scans
into our model, we achieved better performance compared to using imaging data alone.
This approach leverages the complementary insights provided by clinical and imaging
data, offering a more comprehensive understanding of factors related to malignancy risk.
Combining these data sources leads to improved diagnostic accuracy and more effective
strategies for renal tumor classification, emphasizing the importance of considering mul-
tiple data modalities when developing diagnostic tools and highlighting the potential
benefits of integrating clinical and imaging data in renal tumor management [32,33].

The fact that all patients in our study underwent either partial or radical nephrectomy
underscores the complexity of accurately classifying patients with malignant and benign
renal tumors. The recommendation for nephrectomy even in patients with benign renal tu-
mors suggests that their clinical presentation and imaging findings closely resembled those
of patients with malignant tumors. This phenotypic similarity highlights the difficulty in
accurately differentiating between malignant and benign renal tumors when relying solely
on pre-operative assessments. Improving pre-operative classification methods is crucial
to reducing unnecessary surgeries and providing better patient outcomes by developing
more accurate and reliable tools for preoperative differentiation between malignant and
benign renal tumors.

Our study has several limitations. First, we relied exclusively on a public dataset of
only 300 cases, of whom 91.67% were malignant. This is an imbalanced dataset due to over-
representation of malignant tumor types compared to the expected rate of approximately
80% in the general population with tumors in this size range. Although we employed data
augmentation while training the 3DCNN model, incorporating additional scans and cases
in future studies, particularly for those with benign tumor types, could help improve the
model’s performance. Furthermore, using an independent dataset for validation would
enhance the reliability of our findings. Another limitation of this work is that it does not
include tumor types that have recently been added to the WHO classification of renal tumors
(e.g., low-grade oncocytic tumors). Future radiomics work should consider the inclusion of
such tumor types, which are not as common as the included tumors, but may be meaningful
for the performance of predictive models, improving patient care. Third, because these
data were published as part of a tumor segmentation task challenge, only a limited range of
clinical attributes are available. Future research should incorporate more diverse clinical data
modalities, such as clinical notes, genetic data, and additional clinical attributes, to provide a
more comprehensive understanding of the factors affecting renal tumor classification. Fourth,
our study tested a limited number of methods, specifically RF, XGBoost, MLP, and a 3DCNN
model. As more extensive datasets become available, future work could explore a wider
range of ML methods to enhance the model’s performance and accuracy.

Moreover, in addition to differentiating between benign and malignant renal tumors,
identifying specific subtypes of renal tumors, such as clear cell, papillary, or chromophobe
renal cell carcinoma, is also of paramount importance [13,18]. These subtypes exhibit dis-
tinct clinical characteristics and may require tailored treatment and surveillance strategies.
Therefore, accurate identification of tumor subtypes is crucial for guiding personalized
treatment plans for patients with renal tumors. To develop ML algorithms capable of
differentiating between benign and malignant lesions and identifying tumor subtypes, a
large dataset of annotated CT scans is typically required. This dataset should encompass a
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diverse range of lesions and subtypes to ensure that the algorithm can generalize effectively
to new cases [33]. Moreover, it is essential to rigorously evaluate the algorithm’s perfor-
mance using a validation dataset to confirm its accuracy in classifying lesions and subtypes.
Future research will focus on identifying specific subtypes utilizing more extensive datasets
and advanced ML techniques.

5. Conclusions

Our study aimed to develop a method for pre-operative renal tumor classification
using readily available structured clinical and CT imaging data. We tested both traditional
ML and DL methods to create the classification models. Our findings revealed that the
integration of clinical and radiomics features yielded the most robust performance, un-
derscoring the potential of ML and DL models in conjunction with CT scans and clinical
data for accurately classifying renal tumors and assessing malignancy risk. Future research
should concentrate on external validation of the proposed model and features, while also
examining the application of these models in clinical settings. Additionally, the integra-
tion of supplementary data sources, such as clinical notes and genomics data, should be
considered for enhanced classification performance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/informatics10030055/s1, Figure S1: Examples of CT scans;
Table S1: P-values from the Mann–Whitney U test comparing AUCs of two models.
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