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Abstract: The dichotomy in power consumption between digital and biological information process-
ing systems is an intriguing open question related at its core with the necessity for a more thorough
understanding of the thermodynamics of the logic of computing. To contribute in this regard, we put
forward a model that implements the Boltzmann machine (BM) approach to computation through an
electric substrate under thermal fluctuations and dissipation. The resulting network has precisely
defined statistical properties, which are consistent with the data that are accessible to the BM. It is
shown that by the proposed model, it is possible to design neural-inspired logic gates capable of
universal Turing computation under similar thermal conditions to those found in biological neural
networks and with information processing and storage electric potentials at comparable scales.

Keywords: thermodynamic computation; Boltzmann machine; statistical mechanics

1. Introduction

The relationship between energy dissipation and information erasure is one of the
most firmly established principles in the thermodynamics of computing [1].

In current digital computers, this dissipation is usually orders of magnitude greater
than the minimal theoretical limit because of the impossibility of digital logic gates to deal
with large thermal fluctuations.

For a digital computer to be capable of correctly storing information at temperature T
and to produce an electric signal that overcomes the heat bath noise energy kT, where k is
the Boltzmann constant, each bit requires electric voltages that depending on the specifics
of the chip typically range from ∼1 V to ∼15 V [2].

Biological information processing systems, on the other hand, which in a very basic
sense can be regarded as networks of threshold units connected by electrochemical wires,
perform their functions at the mV order of magnitude of the electric voltages and are
capable of dealing with the large fluctuations in their living environment.

A training procedure for the Boltzmann machine computational model that naturally
leads to network parameters with clear physical interpretation is introduced in this paper.

The general scheme is based on the construction of a prior density of the network’s
parameters by the maximum entropy principle.

The density is constrained by the observed data encoded like a quadratic Mixed Integer
Program (MIP) with a linear continuous substructure for the averages of connections and
biases and linear binary substructure for the hidden neurons.

The exploitation of these relatively simple substructures makes the fully connected
settings tractable. The possible implications for topics like unsupervised learning, causality
and out-of-distribution learning will be outlined and further discussed in a series of
forthcoming papers.
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In the present contribution, on the other hand, the physical significance of the max-
imum entropy prior is explored. It is argued that the scheme is not just a mathematical
artifact but in fact resembles the way in which actual biological brains perform computations.

It turns out that at least for the basic storage and transmission of bits of information
and for the construction of primitive gates capable of universal computation, the resulting
physical network and heat bath parameters are consistent with the values observed in bio-
logical neural networks. The proposed approach might therefore be a plausible theoretical
base on which to eventually build thermodynamic computers [3].

Our article is structured as follows. The required preliminary theoretical concepts,
which are the original Boltzmann machine paradigm and the Maximum Entropy Principle,
are described in Section 2.1 and Section 2.2, respectively.

Our specific elaboration of a Boltzmann machine with maximum entropy density
graph edges (or maximum entropy Boltzmann machine) is given in Section 2.3. Thereafter,
the capacity of the maximum entropy Boltzmann machine to store and communicate bits of
information among the nodes within the network is demonstrated through the definition
of the unit wire in Section 2.4. This is the starting point of our derivation regarding the
proposed model as a universal framework for computing. The main results are reported in
Section 3.

We start by defining the statistical mechanics of a physical realization of the unit wire
in Sections 3.1 and 3.2, and we prove the Turing completeness of our implementation
in Section 3.3. Section 3.4 describes a training algorithm that handles fully connected
graphs with cycles and therefore with the potential to go beyond Turing machines. The
effectiveness of the learning algorithm is tested by the training of a maximum entropy
Boltzmann machine for a reversible logic gate with fluctuating connections. A bound for
these fluctuations in terms of relevant parameters is provided in Appendix A.

Stochastic computational learning paradigms typically make use of parameters that
have no actual physical meaning. Our framework instead makes use of global parameters
with direct physical interpretation. The relevance of this for the potential use of the
maximum entropy Boltzmann machine as a formal model for biological brains is outlined
in Section 4, where additional discussions and conclusions are also given.

2. Materials and Methods
2.1. The Boltzmann Machine

A Boltzmann machine (BM) is a kind of spin glass [4] with Ising-like variables
xi ∈ {0, 1} and external disordered field hi. It is defined on a network whose nodes
are labeled by an index i = 1, . . . , N and with connections q = {qi,j}.

The energy of a configuration x = {x1, x2, . . . } is

H(x) = −
(

N

∑
i 6=j=1

qi,jxixj + ∑
i

hixi

)
, (1)

where the connections are symmetric (qi,j = qj,i) to prevent oscillating behaviors.
It is possible to absorb the external field hi into the self connection qi,i (since for Boolean

variables x2
i = xi) and thus have

H(x) = −
(

N

∑
i,j=1

qi,jxixj

)
. (2)

The probability distribution P(x) of the system is the Boltzmann one

P(x) =
1
Z

exp
(
−H(x)

T

)
, (3)
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where T is the temperature (in energy units, setting the Boltzmann constant k = 1) and

Z = ∑
x

exp
(
−H(x)

T

)
(4)

is the partition function (which gives the normalization of the distribution).
The update of the system is implemented by proposing a flip of the the value of a site

i and computing the difference of energy

∆Hi = H(x0, . . . , x̄i, . . . , xN)− H(x0, . . . , xi, . . . , xN). (5)

The flip is accepted the flip with probability

p(xi → x̄i) =
exp

(
−H(x0,...,x̄i ,...,xN

T

)
exp

(
−H(x0,...,x̄i ,...,xN

T

)
+ exp

(
−H(x0,...,xi ,...,xN)

T

) =
1

1 + exp
(

∆Hi
T

) , (6)

which is a logistic-like function.
Random, sequential and parallel implementations of the described general interacting

spin dynamics have been proposed, and the further development of algorithms such as Gibbs
sampling, parallel tempering or population annealing is an active area of research [5,6]. In
any case, the corresponding Markov chain converges to the Boltzmann distribution, since
it is ergodic (any state can be reached by any other state) and the flip probability satisfies
the detailed balance condition,

exp
(
−H(x0, . . . , xi, . . . , xN

T

)
p(xi → x̄i) = exp

(
−H(x0, . . . , x̄i, . . . , xN

T

)
p(x̄i → xi). (7)

Up to here, this is the description of a disordered magnetic system. From a machine
learning standpoint, one defines some units as “visible” and others as “hidden”. The
system is then trained so that it is able to understand the distribution of the data presented
to the visible units (i.e., to extract their correlations and store them into connections) and
to generalize the given set based on that distribution, thus originating some generative
process of interest [7].

Although the BM model is a very general setup for unsupervised learning, its training
in unrestricted fully connected settings is intractable [8]. The origin of this intractability
can be traced back to the existence of metastable “glassy” phases if arbitrary non-convex
coupling matrices are admitted [9].

In such spin-glass phases, the convergence time to the equilibrium distribution di-
verges, which effectively breaks down any learning scheme based on Markov Chain Monte
Carlo sampling of visible units.

Because of this inherent intractability, only graphs with particular restricted structures
had been considered in practice, like for instance directed acyclic networks [8].

The present contribution departs from the traditional distinction between fully unre-
stricted and restricted models by focusing on the adaptation of the graph structure to the
data at hand by the use of the Maximum Entropy Principle.

2.2. The Maximum Entropy Principle

Originally introduced to provide a unifying framework for statistical inference, com-
munication theory and thermodynamics [10–12], the Maximum Entropy Principle (MEP) is
rooted in Laplace’s interpretation of probabilities as degrees of belief or knowledge [13].

Instead of the requirement for frequency data to assign values to probabilities, MEP
formalizes the notion that the assignment should consider any prior available evidence and
assumptions about the situation which such probabilities are intended to describe, being
indifferent to any aspect outside these known evidence and assumptions.

In MEP, the knowledge about the internal states or configurations of a system is
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quantified by its entropy. In the absence of any prior knowledge or assumption, the entropy
measure results in an equal probability assignment for each configuration. The inclusion of
available data or prior knowledge therefore should constrain the entropy.

Our concern in the present work regards the distribution of BM graphs that are
consistent with a set of observable data. Given the number of units in the network, each
possible graph is characterized by its connectivity matrix, with no prior assumption beside
that the couplings between the network’s units are real numbers.

As a technical remark, it should be noted that in the present context, the entropy
measure is taken over continuous probability spaces. To use the same form of the entropy
of its original definition in statistical mechanics and information theory over discrete spaces,
a relative entropy is used in this contribution. By taking a uniform density as reference,
the resulting expression is the same as that for discrete spaces, simply substituting the
summation over configurations with integrals.

2.3. Maximum Entropy Boltzmann Machine

Consider a network of N units with binary state space. Each unit depends on all the
others by a logistic-type response function. Assume that d = 1, 2, . . . , D visible binary
vectors x(d) = {x(d)i } are presented to the system (we refer collectively to these data with
the symbod D). The response of each unit to reproduce a given vector d is defined as

x̂i = 1⇒ (−1)1−x(d)i

[
∑

j
qj,ix

(d)
j

]
≥ Vh. (8)

x̂i = 0⇒ (−1)1−x(d)i

[
∑

j
qj,ix

(d)
j

]
< V−h.

The q values are pairwise interactions between units, using the convention for which
the self-interactions qi,i are equivalent to shift (or bias) parameters. The voltages Vh and
V−h are thresholds associated to the 1 and 0 bit values, respectively.

By introducing the definition

Qi,d ≡ (−1)1−x(d)i

[
∑

j
qj,ix

(d)
j

]
, (9)

the inequalities (8) are equivalently written as

0 <
Qi,d

∆V
≤ 1, i = 0, 1, . . . , N d = 1, 2, . . . , D. (10)

The denominator in the above expression represents a reference voltage difference,
∆V ≥ Vh −V−h. For the network to be capable of reproducing the data D, it should be in a
configuration that satisfies Equation (10).

By imposing the condition that the network’s topology should comply with Equation (10)
on average, there are gr = qr − 〈qr〉 = 0, r = 1, . . . , N2 constraints to the connectivity
parameters. The entropy of the network on the other hand is given by S = −kT

∫
P ln PdP.

Following [10], the maximum entropy principle under given constraints leads to a
probability density for the q values that maximize the Lagrangian,

L = −
∫

P ln Pdq +
N2

∑
r=1

λrgr(q) + λ0

(∫
Pdq− 1

)
. (11)

The first term in the right side of Equation (12) is the entropy relative to a uniform
density, the second term accounts for the conditions imposed by the data set through the
system of inequalities (10), and the third term represents the normalization condition for
the density. The λ values are the usual Lagrange multipliers.
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Due to the concavity of the entropy, a stationary condition on the Lagrangian applied
with respect to P leads to the corresponding maximum entropy probability density,

P(q) = e
λ0
kT

N2

∏
r=1

e−
λr
kT (qr−〈qr〉), (12)

or, equivalently,

P(q) =
N2

∏
r=1

αre−αr(qr−βr), (13)

〈qr〉 =
1
αr

+ βr,

αr =
λr

kT
, λ0 = 0.

2.4. Implementation of the Unit Wire

The most basic component in both biological and electronic computers is the “unit
wire”, which permits the preservation in space and time of a unit (or “bit”) of informa-
tion [14].

To develop the formalism in a way that could be plausible for technological imple-
mentation or biological realization, the “unit” component stores a bit through a saturation
defined by the interval ∆V.

The “wires” q = (q0,0, q0,1, q1,0, q1,1), can be seen as edges in a graph like Figure 1,
which corresponds to a BM without hidden units under the data set D = {(0, 0), (1, 1)}.

The unit wire therefore translates into the MIP,

0 <
Qi,d

∆V
≤ 1, i = 0, 1; d = 1, 2. (14)

The data set associated to the unit wire leads to

0 < [〈q0,1〉+ 〈q1,1〉] ≤ ∆V (15)

0 < [−〈q1,1〉] ≤ ∆V

0 < [〈q1,0〉+ 〈q0,0〉] ≤ ∆V

0 < [−〈q0,0〉] ≤ ∆V.

In the simplest directed case, q1,0 = 0. If the bit of information stored at the in-
put x0 is preserved exactly, that is, without error, in the output unit x1, it turns out that
Q1,D ≡ 1

D ∑D
d=1 Q1,d = 1

2 q0,1. This implies,〈
Q2

1,D

〉
− 〈Q1,D〉2 =

1
4

[〈
q2

0,1

〉
− 〈q0,1〉2

]
≤ ∆2V. (16)

The optimal unit wire directed topology therefore should have connectivity parameters
taken from a distribution with variance bounded by Equation (16).
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Figure 1. Full Boltzmann machine topology for the unit wire. In the figure, b0 and b1 refer to the
biases, q0,0 and q1,1, respectively.

3. Results
3.1. Statistical Mechanics for a Physical Realization of a Boltzmann Machine

The maximum entropy treatment of the unit wire shows a general feature of the pro-
posed formalism, namely a set of closed relationships between the network’s topology, the
observed data and the neural activity. More importantly, it shows that these relationships
bound the voltages’ fluctuations for information storage and processing under dissipation.

Equation (12) or its equivalent form Equation (13), give a self-consistent statistical
mechanical description of a Boltzmann machine that is fully connected by electrical wires
and is immersed in a heat bath at temperature T. The Boltzmann machine and the heat
bath conform to a system that interacts with an environment through Ns ≤ N sensory units
that receive data.

The statistical description of the setup Boltzmann Machine + Heat Bath + Data is closed
through the solution of the Linear Program (LP),

0 <

〈
Qi,d

〉
∆V

≤ 1, i = 0, 1, . . . , Ns d = 1, 2, . . . , D. (17)

The LP Equation (17) defines a convex hull in RN2D with the vertices corresponding
to the observable units components {xi}d; i = 1, 2, . . . , Ns; d = 1, 2, . . . , D.

3.2. The Unit Wire Revisited

The LP for the directed unit wire reduces to,

0 <

〈
Qi,d

〉
∆V

≤ 1, i = 0, 1. d = 1, 2. (18)

This LP leads to the solution,

〈q〉 = (〈q0,1〉, 〈q1,0〉, 〈q0,0〉, 〈q1,1〉) = (2∆V, 0, 0,−∆V). (19)

Assuming that the response in electric charge by a unitary change in voltage is the same
for all the network’s units, the multipliers λr values can be written λr = λ = ∆C. Under a
given temperature and reference voltage for all the neurons and wires, the fluctuations on
the network’s parameters are therefore governed by

P(q) =
1
Z

e−
∆C
kT (q0,1−2∆V)e−

∆C
kT (q1,1+∆V). (20)

Equation (20) can be used to completely characterize the neuronal activity. Of par-
ticular interest are the fluctuations on the output given an input in the directed unit wire,
because these determine the system’s ability to preserve and transmit information with
zero or small errors. This precision in storage and transmission of information can be
characterized by the first two moments of x̂1(x0).
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In a more general setting, any statistical moment of any particular neuron, group of
neurons or function of groups of neurons can be estimated by Monte Carlo sampling of the
maximum entropy distribution of the network’s parameters.

The first moment of the response of a neuron xi, for instance, is given by,

〈
x̂i({xj 6=i})

〉
=

∫
q

P(q)

 1

1 + exp
(
−∆C

kT ∑j qj,ixj

)
dq (21)

≈ 1
τ

τ

∑
t=1

Sigmoidi(qt).

The numerical implementation of Equation (21) is based on the second form of the
maximum entropy density for the connectivity parameters, as shown in Equation (13). If
y is a uniform random deviate in the interval (0, 1), any particular parameter qr can be
sampled by the formula,

qr = −
kT

∆C · 1V
ln (1− y) + βr, (22)

βr = 〈qr〉 −
kT

∆C · 1V
.

After sampling the entire matrix q, a Monte Carlo sampling step is completed by
evaluating,

Sigmoidi(q) =
1

1 + exp
(
−∆C

kT ∑j qj,ixj

) . (23)

The procedure is formally encoded in Algorithm 1.

Algorithm 1 Pseudo-code for Monte Carlo sampling from the maximum entropy distribu-
tion.

1: Initialize: 〈qr〉 from a candidate solution of the MIP feasibility problem obtained
analytically or by Algorithm 2.

2: Initialize: βr = 〈qr〉 − kT
∆C·1V .

3: Assign value to size (desired number of samples).
4: Generate size× N2 uniform and independent random deviates y in the [0, 1] interval.
5: for s = 1 to size do
6: qr = − kT

∆C·1V ln (1− y) + βr
7: Generate xs by using Function.
8: end for
9: Function:

10: Pass In: q
11: Pass In: x
12: Update x by inserting q in Equation (23)
13: Pass Out: x
14: End Function

Numerical experiments have been performed for the directed unit wire considering the
in vivo temperature of 310.5 K. The voltage required for a Coulomb of charge to overcome
the fluctuations associated with this temperature is equivalent to 26.727 mV.

For the wire voltages, on the other hand, an estimate from the neurophysiology
literature of ∆V = 70 mV has been used [15]. With these values,

P(q) =
1
Z

e−
∆C

26.727∆C (q0,1+q1,1−70). (24)
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Figure 2 shows 100 Monte Carlo steps of the unit wire at each of its possible two inputs.
It is clear that with the chosen biologically consistent parameters, the unit wire-directed BM
responses fluctuate in such a way that the information stored at the input bit is preserved.

Topologies that more closely resemble the kind of structures found in biological
neural networks, with full connectivity and the possible inclusion of additional hidden
neurons for redundancy, are expected to further improve the signal-to-noise ratio of the
storage and transmission of information. The bounds of Equation (A3) discussed in the
Appendix A give further theoretical grounds for this assertion. A preliminary algorithm
for the training of fully connected models is introduced in Section 3.4. Figure 3 shows the
relative difference between the two visible units of a fully connected unit wire topology
obtained by the algorithm discussed in Section 3.4. It turns out that as expected, the full
connectivity improves the signal-to-noise ratio, which is further enhanced by the inclusion
of hidden neurons.

Figure 2. Monte Carlo sampling of the output neuron of the directed unit wire.
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Figure 3. Monte Carlo sampling of the visible neurons in fully connected unit wire graphs with no
hidden units (top) and three hidden units (botom).

3.3. Turing Completeness

To demonstrate that the proposed formalism contains a Turing complete information
processing system, the implementation of the logical negation (NOT, or also named inverter,
INV gate), the logical conjunction (AND) and the logical disjunction (OR) is presented.
These primitives are thereafter used to construct an exclusive OR (XOR) gate as an example
of the universal computation capabilities of the system.

The average outputs and their standard deviations given the inputs have been numeri-
cally studied by the use of the prescription given by Formula (21) and its generalization for
the estimation of second moments. The code for the numerical experiments can be found
in Ref. [16].

The so-called “primitive” gates AND: (0, 0) → 0, (0, 1) → 0, (1, 0) → 0, (1, 1) → 1 ,
OR: (0, 0) → 0. (0, 1) → 1, (1, 0) → 1, (1, 1) → 1, and NOT: (0) → 1, (1) → 0, together
with the already discussed unit wire ( IDENTITY or UNIT: (0)→ 0, (1)→ 1), are given by
directed networks in which the topology parameters have been explicitly constructed by
solving the corresponding system of inequalities, as shown in Equation (17).

The directed graph solutions for the primitives are
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NOT (INV):

〈q0,1〉 = −2∆V, (25)

〈q1,1〉 = ∆V,〈
qi,j
〉
= 0 ∀ (i, j) 6= {(0, 1), (1, 1)}.

OR:

〈q0,2〉 = ∆V, (26)

〈q1,2〉 = ∆V,

〈q2,2〉 = −
2
3

∆V,〈
qi,j
〉
= 0 ∀ (i, j) 6= {(0, 2), (1, 2), (2, 2)}.

AND:

〈q0,2〉 =
2
3

∆V, (27)

〈q1,2〉 =
2
3

∆V,

〈q2,2〉 = −∆V,〈
qi,j
〉
= 0 ∀ (i, j) 6= {(0, 2), (1, 2), (2, 2)}.

These primitives give a Turing-complete information processing system. This is
exemplified by the XOR gate: (0, 0) → 0, (0, 1) → 1, (1, 0) → 1, (1, 1) → 0, which is
constructed in the following manner: at each Monte Carlo step, a set of network parameters
for the AND, OR and INV gates is sampled. The given input (x0, x1) is thereafter processed
by the Boolean formula

XOR:

[x0 OR x1] AND [NOT (x0 AND x1)]. (28)

Figures 4–11 report the average outputs and their standard deviations given the
corresponding inputs for the primitives and the XOR gates. If necessary, the reference
potential is modulated in order to have the minimally required voltage separation of one
standard deviation to assign the correct output given the input. No modulation is required
for the primitives UNIT, INV and OR. The AND primitive displays the minimal distinction
requirement at 140 mV, and the XOR composed gate shows the transition to the one
standard deviation separation at 200 mV.

3.4. Networks with Hidden Neurons and Cyclical Connections for Machine Learning

From the presented results, it might be argued that the reason why the power consump-
tion inefficiency of digital computers is more pronounced in machine learning applications
than in other domains is that Turing completeness by irreversible digital gates is not the
best suited computation model for learning tasks. Machine learning applications will be
discussed in more detail in a series of forthcoming papers.

Here, we simply make a comparison of the XOR gate based on primitives and its
machine learning treatment counterpart.

Assume now that the visible units of the Boltzmann machine receive the stream of bit
sequences,

D = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)}. (29)
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Figure 4. Average output (solid line) and standard deviation of the output (dashed line) of the
unit wire.

Figure 5. Average output (solid line) and standard deviation of the output (dashed line) of the
INV gate.

Consider a fully connected Boltzmann machine (BM) with H hidden units. This
unrestricted BM setting admits cycles in the associated graph. Therefore, the trained
network will give a reversible version of the XOR gate.

To include the presence of hidden units in the Monte Carlo sampling procedure, the
following training scheme is used:

1. Give an initial connectivity matrix q and initial bits for the hidden units for each
sequence in D.

2. Generate a candidate connectivity matrix qc by the use of Equation (22).
3. Sample new sequences of bits by the application of Sigmoidi(qc).
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4. If the generated new sequences of bits satisfy a suitable improvement criterion over
the visible units, then update q = qc.

5. Repeat until a suitable convergence criterion is met.

Figure 6. Average output (solid line) and standard deviation of the output (dashed line) of the
OR gate.

Figure 7. Average output (solid line) and standard deviation of the output (dashed line) of the
AND gate.

The initial connectivity matrix is proposed through the properties of the LP, as shown in
Equation (17). Consider the related set of inequalities,

0 ≤
Qi,d

∆V
≤ 1, i = 0, 1, . . . , Ns d = 1, 2, . . . , D. (30)

The auxiliary LP given by the set of inequalities Equation (30) has a trivial solution,
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namely qr = 0 ∀ r. A probability density for this case should therefore satisfy 〈qr〉 = 0
and standard deviation equal to σ = D∆V√

N
(see Appendix A). A suitable initial guess for

the actual LP Equation (13) can therefore be sampled from a two-parameter exponential
density with βr = 0 and 1

αr
= σ for all r.

Figure 8. Average output (solid line) and standard deviation of the output (dashed line) of the XOR
gate at 70 mV.

Figure 9. Average output (solid line) and standard deviation of the output (dashed line) of the
AND gate.
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Figure 10. Average output (solid line) and standard deviation of the output (dashed line) of the
XOR gate.

Figure 11. Average output (solid line) and standard deviation of the output (dashed line) of the
XOR gate.

Once the training is completed, the Monte Carlo sampling is performed as indicated in
Section 3.3, using the BM architecture that results from the training procedure. The criteria
considered in steps 4 and 5 of the training stage for the XOR experiments are as follows.

Given a candidate graph qc, the first two bits of each sequence in D are presented
to the BM, which generates the remaining (visible and hidden) bits after rounding of the
function of Equation (23).

If the difference between the generated and actual third bits in D is reduced, then the
candidate graph is accepted and the BM is correspondingly updated.
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The training stage is finished when a zero difference between the third visible gener-
ated and actual bits in D is obtained.

Monte Carlo sampling is then performed by taking the q that results after training as
initial connectivities for the full BM.

The training stage can therefore be viewed as a “thermalization” period for the Monte
Carlo sampling. The complete procedure is more thoroughly specified by the pseudo-codes
given in Algorithms 1 and 2.

Algorithm 2 Pseudo-code for the thermalization stage of Monte Carlo sampling from the
maximum entropy distribution.

1: Initialize: qr drawn from a two-parameter exponential density with βr = 0 and 1
αr

=
D∆V√

N
. f itness = 0. best_q = qr. best_ f itness = f itness. Give a converge threshold for

fitness, conv.
2: Generate initial hidden variables bits for each xd in D by drawing from the distribution

p(0) = p(1) = 1/2.
3: Generate a uniform deviate y in the [0, 1] interval.
4: Update qr = − kT

∆C·1V ln (1− y) + βr
5: Generate x̂d, d = 1, . . . , D, by using Function.
6: Sum: summation of the number of different bits between x̂d and xd. in visible units of

interest. If Sum < 1− f itness, then update f itness = 1− Sum. Update best_q = qr .
7: Repeat until f itness ≥ conv.
8: Function:
9: Pass In: q

10: Pass In: x
11: Update x by inserting q in Equation (23)
12: Pass Out: x
13: End Function

Figure 12 shows the Monte Carlo sampling given by Algorithms 1 and 2 for a full BM
with one hidden unit at a reference voltage of 70 mV.

It is clear that in this reversible setup, the network is capable of a reliable processing
of the XOR gates with lesser voltages than its irreversible counterpart.

Figure 12. Average output (solid line) and standard deviation of the output (dashed line) of the XOR
reversible full BM gate at 70 mV.
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4. Discussion

In this contribution, a model of computation that combines the classical threshold
connected units paradigm with statistical mechanics and mathematical programming for
data processing is introduced.

The resulting approach leads to a self-consistent statistical description for the voltages
that characterize the physical connections of a Boltzmann machine under a given heat bath
and data.

These voltages can be modulated in regard to the information processing task at hand
in a well-defined manner.

The given formalism leads to the possibility of universal Turing computation by
Boltzmann machines with directed and also reversible topology at room or biologically
relevant temperatures. The resulting distribution of couplings that characterize the Boltz-
mann machine implies electric voltages differences comparable to those found in biological
neural networks.

The presented results might indicate a plausible route for the construction of thermody-
namic computers implemented on ad hoc electronic circuits or with emergent neuromorphic
hardware such as spintronic chips [17] or memristors [18].

From a more biological standpoint, the picture that emerges is that the proposed
maximum entropy Boltzmann machine (MEBM) represents a formal model for computation
that agrees with two key parameters that characterize the mammalian brain, namely the
temperature at which computations are performed and (after changing the conventional
sign of the reference voltage in inequalities Equation (17)) the resting potential of the
computational units.

A more subtle biological feature also captured by our model is that in contrast to
previous Boltzmann machine frameworks in which the disorder of the graph couplings
is “quenched”, the couplings of the MEBM fluctuate in such a way that give statistically
reliable neuron responses. This is reminiscent of the correlations’ variability inferred from
time series of firing neurons. For instance, according to [19]:

“The most straightforward interpretation of the widely observed relationship between
the activity of neurons in sensory cortex and animals’ behavioral choices is that random
fluctuations in the activity of sensory neurons influence perceptual decisions. If the decision
is supported by large pools of neurons (more than∼100 neurons), these random fluctuations
must be correlated between members of a pool. Understanding which signals give rise
to these correlations is therefore central to the interpretation of choice probabilities. The
results of multiple studies suggest that the correlation structure is not fixed but depends on
the task an animal performs. Recent evidence suggests that, at least for some tasks, part
of this signal reflects the influence of cognitive factors on sensory neurons, but there is
currently no agreed upon method that allows the relative magnitude of flexible top-down
and hard-wired bottom-up components to be quantified”.

In our model, the statistical properties of the couplings between neurons depend on
the task provided to the BM. These statistical properties are completely characterized in
terms of a probability density that, besides the task, depends on the already mentioned
observable macroscopic quantities of the neuronal network, the in vivo temperature and
the global reference voltage. An important avenue for further research will therefore be the
study of the variability of the neurons’ correlations within our framework in large-scale
BMs under data streams related to tasks of cognitive interest.

A central open question in machine learning is the effective handling of unlabeled
data. The construction of balanced representative data sets for supervised machine learning
for the most part still requires a very close and time-consuming human direction. Other
related currently pressing machine learning problems are causal relationships discovery
and out-of-distribution generalization. These questions are all related to unsupervised
tasks. Because the full Boltzmann machine paradigm provides a general framework to
perform unsupervised learning, another future research question valuable from a purely
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computational perspective is the development of efficient learning from data algorithms in
an unsupervised fashion.
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Appendix A. Bound for the Couplings Fluctuations

In this technical appendix, the bounded domain used for the initialization of the
learning algorithm introduced in the machine learning treatment of the reversible XOR gate,
Section 3.4, is justified. Moreover, it is argued that the derived bound in the fluctuations in
the couplings parameters of the graph nodes will be relevant for the generalization of the
learning procedure to large-scale networks.

The starting point is the mixed-integer program, as shown in Equation (10). Consider
the definition,

Q1,D ≡
1
D

D

∑
d=1

Q1,d. (A1)

By writing the mixed-integer program Equation (10) in terms of the quantity defined
by Equation (A1), it follows that

D

∑
d

N

∑
j

qi,jxj ≤ D∆V. (A2)

In Section 2.3, it has been shown that the maximum entropy distribution that charac-
terizes the network’s topology is written as a product of independent densities for each
node coupling if there exist solutions for set of inequalities Equation (10) under the data set.
Combining this with the observation that the maximum possible variance in the couplings
is attained in a configuration with all the network’s active nodes, the following bound for
the variance in the couplings’ fluctuations is obtained,

〈
q2

i,j

〉
−
〈
qi,j
〉2 ≤ (D∆V)2

N
. (A3)

The expression given by Equation (A3) relates the variability in the internal structure
of the network with the observed data, the network’s size and the global reference voltage.
From the maximum entropy density given by Equations (12) and (13), the expression
Equation (A3) is equivalent to (

kT
λi,j

)2

≤ (D∆V)2

N
(A4)

In the above expression, the multiplier λi,j can be interpreted like the electrical con-

https://github.com/ArturoBerronesSantos/bioplausBM
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ductivity between nodes i and j by using the typical duration of an interaction between the
nodes as the time unit.

In addition to the application of the bound Equation (A3) for the initialization of Algo-
rithm 2 presented in Section 3.4, it might be expected to be relevant to issues regarding the
maximum entropy Boltzmann machine on large-scale networks and data sets. For instance,
the statistical independence between couplings arises as a consequence of the satisfaction of
the constraints imposed by the data. The bounds Equations (A3) and (A4) therefore provide
a condition for the topological and physical quantities that characterize the network in
order for such a network to be able to learn and generalize from the given data, which
might then result in a useful guide to assess the convergence and improve the efficiency of
the training of the MEBM in large-scale situations. A particular implementation of these
ideas that is intended to be developed in future works is by the construction of an evolution
equation for the graph’s connectivities q. The bound Equation (A3) defines a maximum
entropy stationary state that by the inequalities (10) is linked to the learnability of the data
set. The learning process defined in this way is an evolution through correlated graph
configurations that tend to a stationary state, which corresponds to the maximum entropy
description of the data. This approach would also permit relating the MEBM formalism
to generalized evolutionary models based on entropy production like those discussed
in [20,21].
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