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Abstract

:

Crowdsourcing has gradually become an effective e-government process to gather citizen complaints over the implementation of various public services. In practice, the collected complaints form a massive dataset, making it difficult for government officers to analyze the big data effectively. It is consequently vital to use data mining algorithms to classify the citizen complaint data for efficient follow-up actions. However, different classification algorithms produce varied classification accuracies. Thus, this study aimed to compare the accuracy of several classification algorithms on crowdsourced citizen complaint data. Taking the case of the LAKSA app in Tangerang City, Indonesia, this study included k-Nearest Neighbors, Random Forest, Support Vector Machine, and AdaBoost for the accuracy assessment. The data were taken from crowdsourced citizen complaints submitted to the LAKSA app, including those aggregated from official social media channels, from May 2021 to April 2022. The results showed SVM with a linear kernel as the most accurate among the assessed algorithms (89.2%). In contrast, AdaBoost (base learner: Decision Trees) produced the lowest accuracy. Still, the accuracy levels of all algorithms varied in parallel to the amount of training data available for the actual classification categories. Overall, the assessments on all algorithms indicated that their accuracies were insignificantly different, with an overall variation of 4.3%. The AdaBoost-based classification, in particular, showed its large dependence on the choice of base learners. Looking at the method and results, this study contributes to e-government, data mining, and big data discourses. This research recommends that governments continuously conduct supervised training of classification algorithms over their crowdsourced citizen complaints to seek the highest accuracy possible, paving the way for smart and sustainable governance.
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1. Introduction


Governments are mandated to deliver services to the public through a wide range of responsibilities in diverse sectors, including but not limited to health care [1], waste management [2], roadworks [3], land affairs [4], emergency services [5], and energy [6]. These services are intended to improve welfare and security by targeting various societal levels. Nevertheless, at times, the quality of these services falls short of public expectations, hence generating a series of complaints from members of the public. In traditional governance, it is common for citizens to express their complaints through physical channels, often through visits to relevant government offices or by sending formal letters to the respective government agencies [7]. Another way is through elected representatives, whom constituents can approach to relay their concerns [8]. These conventional modes, however, have demonstrated significant inefficiencies, primarily attributed to the extensive administrative processes involved. It often causes a substantial number of complaints to be lost in the long chain of procedures before reaching the decision-making ranks [9]. Another issue is the inadequate workforce to handle these complaints [10], making complaints, albeit received, sidelined due to insufficient resources to carry out follow-up actions. These problems inevitably make governments fail to translate citizen feedback into tangible improvements in public service delivery.



In today’s information era, e-government, or digital government services, emerges as a contemporary way to provide more effective provision and management of public services, by bringing in digital transformation. This revolution towards the digitization of government services is, in fact, a necessity to streamline administrative processes [11], hence reducing the need for paperwork [12] and, consequently, the associated costs and time [13]. The public is also provided with access to information about ongoing governmental activities, policymaking, and policy implementation [14]. These digital services are accessible from any location and at any time of the day, augmenting the overall experience of the public. Consequently, e-government promises an expedited, cost-effective, and efficient means of registering citizen complaints over public services. The better accessibility and efficiency offered by e-government means citizens can express their complaints through a broader array of accessible channels and significantly shortened procedural chains [15]. Besides this, better transparency provides a more direct look into the management and follow-up actions associated with these complaints. In the end, the enhanced accessibility and efficiency, combined with increased transparency, foster a sense of accountability within governmental institutions [16], improving the public’s confidence in the ability of their government to address their needs effectively.



Indeed, e-government has allowed a crowdsourced process of citizen complaints facilitated by multiple channels for complaint submission. While crowdsourcing improves public engagement [17], it, however, makes the government unable to process the much-increased influx of complaints efficiently [18]. It raises the need for a more capable mechanism to classify these complaints, thereby expediting their routing to appropriate governmental bodies. Recently, Large Language Models (LLM) have triggered the rise of Generative Artificial Intelligence (GenAI) [19], including GPT-4 (OpenAI), Bard (Google), and Claude 2 (Anthropic). LLM and GenAI promise huge potential for automated classification. However, they are prone to hallucinations [20], which increases the risk of delivering seemingly plausible but improper solutions to citizen complaints. They also require relatively extensive data and a huge amount of energy to train and run the models [21], making it impractical to classify crowdsourced citizen complaints at different scales of applications with highly fluctuating amounts of input. Another promising solution is Transfer Learning, which applies pre-trained models on new problems [22]. However, it remains impractical when no pre-trained models are available locally. Using pre-trained models from other regions is highly risky since the characteristics of citizens and their complaints are tightly related to the socio-cultural and physical features of an area.



In that sense, basic data mining remains more practical to facilitate a low-cost classification of crowdsourced citizen complaints with less energy required at various scales of applications. In the literature [23], commonly used data mining algorithms for classification purposes include k-Nearest Neighbors (kNN) [24], Random Forest (RF) [25], Support Vector Machine (SVM) [26], and AdaBoost [27]. Still, each algorithm interacts with large datasets differently, which influences the behavior of the classification process, potentially resulting in less-than-optimal outcomes [28,29,30]. Their application thus demands a cautious understanding of these behaviors, effectively leveraging their capabilities while being aware of their constraints. Therefore, this research aimed to discover the accuracy of these prominent algorithms in classifying crowdsourced citizen complaints. Practically, this study attempted to run the algorithms alternately over the same large dataset of citizen complaints, perform accuracy testing for each algorithm, and conduct comparative testing to discover the best algorithm for the given dataset. Consequently, the dataset should contain raw complaint data gathered through multiple e-government channels, through which this study can observe the behavior of each algorithm over the real-world problem in question: the massive influx of citizen complaints induced by digitized government services. This study went on to answer the following research questions:




	
RQ1 How accurate are k-Nearest Neighbors, Random Forest, Support Vector Machine, and AdaBoost in classifying crowdsourced citizen complaints?



	
RQ2 What is the most accurate data mining algorithm for the purpose?



	
RQ3 How do their accuracies differ for the classification process?









2. Literature Review


2.1. Data and Text Mining: An Overview


In the era of big data, data analytics has taken central significance in various sectors. At the core of data analytics, data mining and text mining are the two most essential terminologies [31]. The first one, data mining, enables individuals and institutions to extract valuable information from unstructured textual data [32]. The versatile applications of data mining manifest across various domains. For instance, data mining has been applied to analyze working skills [33]. Meanwhile, in the transportation sector, it is used to calculate the risks of road accidents [34]. In short, the extensive impact of the data mining process resonates across numerous sectors, reinforcing its significance. Technically, central to the data mining process are its fundamental functions: classification, clustering, association, sequencing, and forecasting [35,36]. Each plays a key role in shaping the analytics, hence determining the nature and utility of the information extracted. Particularly, classification groups data by portraying a class or target attribute, thus attributing distinct characteristics to the separated data [37,38]. The division allows for the discovery of patterns within the data and the identification of relations among different datasets.



Furthermore, data analytics is inherently dependent on data representativeness, as it significantly affects the performance of machine learning algorithms [39]. During data processing, numerous issues come into consideration, with two of the most important being data selection and the functions used [40,41]. They require a balance between the desired effectiveness of analytics and the feasibility of running the analysis using the computational hardware available. In terms of functions, both clustering and classification perform the grouping of data. In clustering, however, there is no immediate need to display class or target attributes. Instead, clustering focuses on structure and relationships within data, grouping together data points that exhibit a high degree of similarity [42]. The distinction often significantly affects the outcome of the data analysis. Next, association discovers the relationships between concurrent events within a specific period. It unveils patterns that may not be immediately apparent, hence enhancing the understanding of interactions within the data [43]. Meanwhile, sequencing, often seen as an extension of association, serves to represent the plural form of association. Technically, it identifies different relationships within a specified period from the obtained data [44].



Moreover, text mining is part of data mining with a specific focus on text data [45]. It generally involves several processes, e.g., tokenization, filtering, stemming, tagging, and analyzing. Tokenization splits the input text into individual word-like units, so-called tokens, breaking the raw text into manageable units [46]. Meanwhile, filtering sifts the tokens by eliminating irrelevant words (“stop words”) that do not contribute meaningful information for analysis (e.g., prepositions and conjunctions) [47]. It helps subsequent stages focus solely on words with semantic weight within the text. Furthermore, stemming identifies root forms from the filtered words [48]. It helps reduce dimensionality by grouping words with the same root, even if they appear in different grammatical forms in the text. In addition, tagging is primarily used in English language documents. It involves finding the base form of each word, which further refines the text for the final stage of text mining [49]. Moreover, analyzing discovers relationships between documents. It considers the frequency of occurrence of each word within the text [50]. As a result, text mining can extract meaningful patterns and associations from unstructured textual data, hence transforming raw textual data into actionable insights.




2.2. Classification in Data Mining


In data mining, classification helps organize massive datasets into smaller, manageable subsets [35,37]. In that sense, classification proves useful for text mining, where it works as text classification. Technically, it categorizes natural language or textual data into specific classes or categories, giving order and structure to the otherwise unstructured textual data [36,38]. In practice, text classification helps data analytics with the capability to understand inherent details in the data. It is particularly beneficial when dealing with natural language, which has complex syntax, diverse grammatical forms, and numerous semantic details [51]. Text classification renders them analyzable, facilitating the extraction of meaningful insights from the textual data. It is also applicable in different situations, including sentiment analysis, language detection, product classification, and topic classification. In sentiment analysis, for example, text classification detects sentiments, whether positive or negative, expressed by users or customers. By classifying text based on the sentiments they convey, businesses, for instance, can gain valuable insights into consumer sentiment toward their products or services, enabling them to identify areas of success or potential improvement [35]. In other words, these potential applications leverage the capability of text classification to discover and classify patterns within textual data, thus underscoring the versatility and utility of text classification.



Of the four observed algorithms, none offer perfect technical characteristics for classification purposes. kNN has high transparency from its direct use of training data points for prediction [52]. In contrast, SVM, RF, and AdaBoost are often considered black box models. However, techniques like variable importance measures in RF provide some model explanation [53]. In addition, SVM permits the extraction of support vectors to aid interpretation. In terms of computational efficiency, kNN has a low training cost but a high prediction cost, as each new data point requires distance calculations against the entire training set [54]. SVM also has a high prediction cost, along with intensive memory requirements. In comparison, ensemble methods like RF and AdaBoost have higher training costs, due to the building of multiple models, but relatively fast predictions [55]. Again, factors like dataset size affect the practical application of each algorithm. In terms of accuracy, SVM might outperform kNN, especially with kernels, on nonlinear data or smaller samples [56]. For high-dimensional data, RF might exceed kNN and SVM in some cases, by mitigating the curse of dimensionality. Both RF and AdaBoost demonstrate higher accuracy than single decision trees, underscoring the power of ensembles [57].



In practice, the accuracy of classification algorithms is dependent on their capacity to accurately assign data points to predefined categories or classes. The four observed algorithms exhibit unique strengths and weaknesses attributable to their underlying methodologies. kNN adapts to changing data distributions through dynamic neighbor selection [58,59]. It provides transparent, flexible predictions but faces difficulties in high dimensions. Meanwhile, RF utilizes the crowd effect from aggregating many trees to enable precise predictions [60,61]. It could hence enhance accuracy through ensembles but scales poorly. Furthermore, SVM has a high computational complexity that scales significantly with dataset size [62,63], limiting its applicability for large-scale problems without advances like parallelization. In a highly critical classification, it thus expects superior margins between classes given sufficient data and resources. In addition, AdaBoost directs attention to errors [64], allowing more accurate subsequent models. This gradient boosting technique enhances the overall performance. Still, it boosts weak learners iteratively but remains prone to overfitting. In general, ensemble methods trade training time for robust predictions by combining diverse models. Looking at these explanations, no perfect algorithm exists for all applications, but understanding the strengths and weaknesses of these approaches allows selection tailored to the problem at hand.




2.3. Observed Algorithms


2.3.1. k-Nearest Neighbors (kNN)


Basically, k-Nearest Neighbors is a classification algorithm recognized for its efficacy in both textual and numerical data classification [52]. Conceptually, kNN is a supervised learning algorithm, deriving its ability to classify new data instances by leveraging both sample and testing data. Technically, kNN classifies data instances based on the proximity to their nearest neighbors or closest class [65]. The underlying thought is that items with similar characteristics tend to exhibit proximity to each other. Thus, new data instances are assigned to the class that is most frequently represented among its nearest neighbors. In practice, the measure of “closeness” or “distance” in kNN algorithm is typically calculated using the Euclidean distance (Equation (1)) [66]. The distance between two data instances in this multidimensional space reflects the degree of similarity between them, providing a quantitative basis for assigning a new data point to a particular class. However, this focus on proximity does not imply a deterministic characteristic. Indeed, the ability of kNN to adjust to changes in data distribution through its selection of the “k” parameter, which dictates the number of nearest neighbors to be considered, gives flexibility that leads to robust performance across diverse applications [58,59].
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(1)




where:




	
  d      : Euclidian distance from data object to   i   and data object to   j  ;



	
  m     : number of variables/parameters;



	
    X   i k     : data object   i   on data   k   variable; and



	
    X   j k     : data object   j   on data   k   variable.









2.3.2. Random Forest (RF)


Particularly effective in classification, regression, and unsupervised learning [67], Random Forest [25] relies on three key aspects: (a) bootstrap sampling for building a prediction tree; (b) random predictions generated by each decision tree; and (c) a prediction algorithm that merges the results of each decision tree by leveraging a voting system for classification [60,61]. RF works by merging decision trees, forming a so-called “forest.” RF generates an array of trees, which together form a robust predictive model. The forest, once built, undergoes analysis. It involves gathering predictions from a certain number of trees, with the prediction outcomes selected according to the simple majority rule. Consequently, categories or classes that frequently appear as prediction results, based on the classification of k trees, are selected. In this sense, Random Forest offers built-in robustness against overfitting [68]. The low correlation between models is the key, as the trees protect each other from their individual errors. If the predictions from individual trees are not perfectly correlated, some trees will be wrong, but many will be right; thus, as a group, the trees are able to move in the correct direction.




2.3.3. Support Vector Machine (SVM)


SVM is especially recognized for its better precision among classification algorithms [69]. It was first developed as a linear classifier but now allows non-linear applications by deploying kernels, hence enhancing its flexibility and adaptability to varied data structures [70]. SVM works by constructing a hyperplane to segregate classes optimally. This hyperplane is not arbitrarily determined; instead, it is established through a process involving vectors and support margins. It is a particular characteristic of SVM that underscores its robustness as a classification tool [71]. Technically, the hyperplane serves as the distinguishing barrier between classes. In a two-dimensional SVM, the class separator manifests as a line. The complexity increases in a three-dimensional SVM, where the separator is a plane. When the dimensionality exceeds three, the separator is viewed as a hyperplane. Thus, SVM ensures an accurate mapping regardless of the dimensionality of the dataset. Despite the merits, SVM is known to work better with smaller to medium-scale datasets [62], since the computational complexity grows quadratically with the size of the input data. Nevertheless, the rapid advance of computational power and parallel computing techniques could allow SVM to manage larger-scale data in the future.




2.3.4. AdaBoost


AdaBoost, also referred to as Adaptive Boosting, is a prominent example of ensemble learning methodologies in machine learning [72,73]. It has been widely recognized for its capacity to substantially enhance the accuracy of the prediction of base learners [64]. Basically, AdaBoost generates various classifiers to seek an optimal one. Besides this, it offers the ability to transform a weak or simple classifier into a strong or more complex one. This capability is what classifies it as a boosting algorithm: it achieves improved accuracy for the base learner by minimizing errors attributed to weak classifiers. Each iteration of the AdaBoost algorithm is designed to emphasize the data instances misclassified during the previous iteration. Practically, it generates subsequent classifiers that are better at predicting these difficult instances correctly, hence fostering an improved overall prediction accuracy. One example pointed to its usage in conjunction with the Radial Basis Function–Support Vector Machine (RBF–SVM) classifier [74]. Under the application of AdaBoost, the RBF–SVM classifier is directed to paying particular attention to samples that were incorrectly classified in prior attempts. In that sense, AdaBoost helps to iteratively reduce the overall error rate of the model [75].






3. Case Study: Crowdsourced Citizen Complaints in Tangerang City, Indonesia


Asia, home to over 60% of the world’s population, has seen tremendous growth in digital transformation [76]. Its expansion in technological and innovation capabilities, supported by a sizeable market, has given it a crucial role in the global digital revolution. In fact, Asia is one of the world’s largest producers and markets for digital products and services [77]. Besides countries in Eastern Asia (e.g., China, South Korea, Japan, and Taiwan), which have become major global players, Southeast Asian countries have emerged as a new frontrunner in digital transformation. In terms of innovation, Southeast Asia is home to a growing number of tech startups and unicorns, with the region’s vibrant startup ecosystem contributing to global digital innovation [78]. In areas such as fintech, e-commerce, and other digital services, Southeast Asia is at the forefront of modernization, offering unique solutions tailored to local needs and contexts.



In Southeast Asia, Indonesia has captured most of the region’s digital transformation. The rapid growth of digitalization in Indonesia has been driven by the growing Internet penetration, not only in terms of user base [79] but also Internet-based digitalization in numerous sectors [80], including governmental affairs. In Indonesia, the shifting to e-government is undergoing in various public sectors, with urban areas in Java Island being the leading region of digital innovations in the delivery of public services [81,82]. The sheer growth of e-government in Indonesia is, in fact, fostered by its supporting regulations. The Presidential Regulation (Perpres) of the Republic of Indonesia no. 95 of 2018 [83] governs all matters related to e-government in the country. It states that, to realize a clean, effective, transparent, and accountable government, an electronic-based government system is a necessity. It has become a regulatory framework for every region in Indonesia to provide quality and reliable public services to all subsets of the population.



Since Indonesia’s population is concentrated on Java Island, it is typical to see more significant progress in the implementation of e-government in regions within the island [81]. In the western part of Java, Tangerang City (Figure 1) has shown a rather notable example of e-government [84], mainly because it is part of Jabodetabekpunjur [85], Indonesia’s main urban agglomeration, and home to many commuters working in Jakarta [86], the epicenter of economic activities in the country. In terms of international significance, Tangerang City hosts the Soekarno–Hatta International Airport, one of Asia’s busiest airports [87]. In 2016, the City Government of Tangerang released a super app called Tangerang LIVE [88] (Figure 2, left side). The city government developed the super app to provide various services and information to citizens in one platform, integrating issue-specific apps on e-commerce, license and permits, emergency services, sports, and many others [89]. Citizens can access these services digitally, making it easier and more convenient for them to access information and services from the government.



In the super app, the city government includes LAKSA (Figure 2, right side). The LAKSA app (Layanan Aspirasi Kotak Saran Anda) gives the citizens of Tangerang City a direct digital channel to crowdsource suggestions and criticisms over public services to the government [90]. For security and legal purposes, the LAKSA app is only accessible for the residents of Tangerang City. They are distinguished by detecting residential region-identifying numbers in national identity cards (Kartu Tanda Penduduk, or KTP) used during user registration. In its back-end operations, LAKSA also aggregates complaints crowdsourced through other digital channels. Currently, the city government pulls complaints submitted initially to its official Facebook and Instagram accounts and complaint-related comments from its online news sites [91]. However, multi-channel crowdsourcing has made it difficult for the government to manage the massive datasets, thereby requiring an accurate classification algorithm to ensure an agile and correct routing of the complaints to relevant governmental bodies. Thus, this study used the LAKSA app as the case study to find the most accurate algorithms to classify crowdsourced citizen complaints.




4. Materials and Method


4.1. Research Design


This study, to answer the research questions, followed a 6-stage research design (Figure 3). The first stage, data collection, focused on gathering a dataset of crowdsourced public complaints, which were aggregated from multiple submission channels. The raw complaints, to deliver comparable characteristics, were submitted by the same population (i.e., citizens) toward various public services of the same government. In the second stage, data annotations, the raw training dataset was processed with the help of domain experts to build a structured baseline for the classification patterns. Furthermore, stages III–VI were performed by using Python programming language on top of Jupyter Notebook installed in Anaconda Navigator. The third stage, text preprocessing, which was the beginning of text mining [92], processed the datasets through 6 steps to prepare an analyzable dataset for pattern training and implementation [93]. In the pattern training stage, the dataset was divided into training and testing datasets. The algorithms were first trained using the training dataset with varied parameters. After they learned the classification pattern, they were tested using the testing dataset. Their performances were assessed using Confusion Matrix in the fifth stage. Then, the pattern implementation stage tested them again under varying parameters to increase confidence in their accuracy.




4.2. Data Collection and Annotation


The LAKSA app aggregates complaints submitted through multiple channels. However, public comments on social media and online news sites require manual collection. This consumes the most time and money for the government, making it desirable to use classification algorithms for an automated process. Since they needed considerable time to manually monitor, decide on the collection, and record the metadata, using a dataset with the most recent citizen complaints was impossible. Thus, this study used a dataset containing aggregated complaints crowdsourced from May 2021 to April 2022. The complaint data from that period have been classified (annotated) by the domain experts, i.e., officials from the City Government of Tangerang. The complaints have also been handed over to relevant governmental bodies, where most of them have been followed up, proving that the manual classification has been validated. They could therefore be utilized as the training and testing datasets for this research.




4.3. Text Preprocessing


The first step, case folding, removed varieties in the original letter cases, which, in this study, were all changed to lowercase. The second step, filtering, removed non-alphabetic characters, including dots, commas, colons, and other punctuations, to ensure a clean letter-only text. Next, this study tokenized the cleaned text by dividing the sentences into word-like units (tokens). In the stemming step, the tokenized dataset was further cleaned by removing unnecessary parts of the tokens. Since the complaint data used were in Indonesian, with many affixes, this study decomposed every word into its root form by removing the prefixes, suffixes, infixes, and confixes. This step also eliminated stop words, using the Sastrawi library [94], to let the algorithm understand the structure and meaning of the sentences. In the fifth step, splitting, this study used simple random sampling [95], since it offers a low bias in model performance. The splitting applied an 80:20 split ratio [96], in which 80% of the complaint data were taken as the training data, and the rest were the testing data. Then, the sixth step, vectorization, converted the training and testing datasets into a format understandable by the classification algorithms using the TF–IDF method (Term Frequency–Inverse Document Frequency; Equation (2)). Technically, it is a numerical statistical method that determines the weights for each term in a text [97].
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where:




	
  t f    : text frequency;



	
  d f   : frequency of documents; and



	
  n     : number of documents.









4.4. Pattern Training


In this stage, the observed algorithms underwent their training with the designated training dataset. The pattern training produced predicted categories of complaint data, the credibility of which was then cross-verified by comparing it with the actual categories presented in the testing data [98]. The cross-verification acted as empirical proof to assess the accuracy of the algorithm’s predictions and its capability for categorizing previously unnoticed data correctly [65]. Besides this, to ensure the optimal performance of these classification algorithms, they were subjected to iterative testing with various parameters. It aimed to fine-tune the algorithms and exploit their full potential in discovering and classifying patterns accurately. In a real-world application as such, it is critical to note that different algorithms might yield optimal performances with varying parameter settings, reflecting their underlying computational characteristics.




4.5. Confusion Matrix


This stage assessed the performance of the algorithms by employing a confusion matrix [99], which formed tabulated data indicating the amount of correct or incorrect classifications, according to the decision by the algorithm. Technically, the confusion matrix captured critical information on the binary comparison between the actual categorizations and those predicted by the classification algorithms [100]. It could manifest as instances where data belonging to category “a” were incorrectly predicted as category “b”. The confusion matrix enabled the identification and quantification of the misclassifications by specifying the number of “a” category data points that were incorrectly classified as “b”, or vice versa. In this study, the main parameter for contrasting classification algorithms was accuracy. Accuracy, in this context, was determined by comparing the quantity of correctly predicted data against the aggregate number of testing data.




4.6. Pattern Implementation


Moreover, this study conducted pattern implementation for the algorithms by varying parameters or mixing algorithms with potential kernels or base learners. The rationale was that varying parameters of the mix would produce more diverse results, hence offering a more comprehensive assessment of the accuracy testing [51]. Technically, this stage bolsters the overall robustness of the research, since the findings were not exclusively dependent on a single algorithm or a fixed critical parameter. The aggregation also mitigated the inherent biases and potential weaknesses of individual algorithms, allowing for a more reliable and comprehensive analysis [101]. In the end, the results of pattern implementation strengthened the level of confidence in the validity and reliability of the results by mimicking possibilities in real-world applications.





5. Results


5.1. Data Collection and Annotation


When gathering complaint data for the observed period (May 2021–April 2022) from the LAKSA app, a dataset of 9865 complaints was initially considered. This collection had been classified (annotated) by officers from the City Government of Tangerang into a massive array of 320 categories. During the preliminary observation, there was a significant amount of uncategorized data present in the dataset. This might be caused by practical opportunities to conduct direct follow-up actions to certain complaints, making it unnecessary for the officers to classify the data in the first place. However, for this study, unclassified data as such brought uncertainty in the accuracy testing, as the absence of annotations by the domain experts rendered these data useless for either pattern training or confusion matrix. Thus, the decision was to eliminate the uncategorized data from the dataset to ensure the reliability of text mining and data analysis. The data removed totaled 3544, returning a dataset of 6321 categorized complaints. Despite the decreased dataset size, this significantly enhanced the utility of the remaining data.



Following the removal of uncategorized data, the only issue present was the remarkably large array of categories (320). This resulted in a considerably low average of complaints per category. Since patterns typically emerge from an adequate number of data points, it would be difficult for the algorithms to learn the patterns of complaints included in any of the categories. Given the difficulty introduced by this issue, the categories underwent a simplification process. The simplified categories had to be general but still representative enough to let the algorithms recognize the pattern of each category. They had to also allow the algorithms to distinguish differences among the patterns. After careful consideration, this operation condensed the 320 categories into four broad but distinct ones, i.e., disasters, infrastructure, social, and nation-related affairs (Table 1). “Disaster” included complaints related to floods, fire, or other emergencies. “Infrastructure” covered those relevant to public works, energies, roads, and similar issues. “Social” included complaints related to intra- and inter-community issues. Then, “nation-related affairs” covered issues relevant to ideological and political affairs at regional and national levels.




5.2. Text Preprocessing


Following the data collection and annotation, the dataset was taken into the text processing stage. This was performed on all remaining 6321 complaint records that were not removed in the initial data cleaning process. Thus, the text processing conducted a 6-step procedure on the refined dataset. Table 2 depicts an example string of preprocessed complaint data resulting from the first four stages of text preprocessing, i.e., case folding, filtering, tokenizing, and stemming. In the example, the case folding changed all capitals to lower case (e.g., G → g), while filtering removed the punctuation (dots, commas). After that, tokenizing converted the text into smaller pieces (tokens), producing the simplest form of human-readable units that were understandable for machine learning algorithms. Then, the stemming process returned the words to their original forms without affixes (e.g., menindak → tindak). Looking at the example, the transformation from original into preprocessed text was significant, making the data more manageable for the algorithms.



Furthermore, the last two steps in text processing were data splitting and vectorization. In the data splitting, the folded, filtered, tokenized, and stemmed data were divided into the training and testing datasets. As aforementioned, the splitting followed an 80:20 ratio through simple random sampling, a conventionally accepted balance providing sufficient data for training while reserving an adequate amount for unbiased testing. As a result, there were 5056 training data entries and 1265 testing data entries. After the data splitting (Table 3), the vectorization was conducted using the TF–IDF method. Figure 4 provides an example of the vectorization process by showing the transformation of 10 sample data points into vectors using the TF–IDF method. Basically, it demonstrates the fundamental transition from qualitative (text) data to quantitative (numerical) representations, facilitating the application of machine learning algorithms to the text data.




5.3. Pattern Training and Confusion Matrix


After all the data had been preprocessed, each of the algorithms underwent separate pattern training using the training dataset (5056 datapoints). For each algorithm, the pattern learned was tested for its accuracy over the testing dataset (1265 datapoints). The assessment compares the number of the testing datapoints correctly or incorrectly classified into the four predictive categories (disaster, infrastructure, social, and nation-related affairs). The results of the accuracy assessment for each algorithm were tabulated into a confusion matrix, which allows a comparative assessment between all predictive and actual classification categories. In a confusion matrix, categories on the horizontal axis (top row) show the actual classification of the complaint data, while categories on the vertical axis (left column) show the predictive classification.



In the matrix, numbers at the intersection of predictive and actual categories refer to the number of datapoints that were assigned in the respective pairing of actual and predicted categories. Each number should be read in the column direction and corresponds to the respective pairing of an actual category and a predicted one. Values at the intersection of identical actual and predictive categories show the successful classifications by the algorithm. This indicates instances where the actual and predicted categories are perfectly aligned, demonstrating the ability of an algorithm to categorize the complaints correctly. In contrast, numbers at the intersection of different actual and predicted categories represent instances where the algorithm incorrectly assigned complaint datapoints from their actual categories to inappropriate predicted categories.



The first algorithm deployed was the kNN algorithm. After the pattern training, patterns learned by the kNN algorithm were tested using the testing dataset. Table 4 shows the confusion matrix for the kNN algorithm, implying the classification capabilities of the algorithm for complaint data in the four simplified categories. For instance, 17 complaints originally in the “disaster” category were correctly classified. However, there were 36 instances of incorrect classification, with 27 misclassified into the “infrastructure” category and nine being falsely categorized as “social” complaints. Then, to aggregate the accuracy, total datapoints, classified into identical pairings of actual and predictive categories (correct classifications), were divided by total datapoints in the testing data (Table 3). Based on Equation (3), the accuracy of k-NN was found to be 85%.


    A   z   =     X   C       X   E      



(3)




where:




	
    A   Z     : accuracy (  A  ) for algorithm   Z  ;



	
    X   C     : total data (  X  ) classified correctly (  C  ) in the predictive categories;



	
    X   E     : total data (  X  ) in all actual categories of the testing dataset (  E  ) → 1265.










 





Table 4. Confusion matrix for the k-Nearest Neighbors algorithm.
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Actual Category

	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs




	
Predicted Category






	
Disaster

	
17

	
0

	
0

	
0




	
Infrastructure

	
27

	
433

	
59

	
2




	
Social

	
9

	
48

	
611

	
41




	
Nation-Related Affairs

	
0

	
0

	
1

	
17




	
Accuracy

	
85.2%









The second classification algorithm tested was the Random Forest. Table 5 is the confusion matrix for the RF algorithm, which is also crucial to discover the effectiveness of the RF algorithm in comparison to other classification techniques. In the confusion matrix, the “disaster” category indicated a total of 23 correct predictions, while 30 instances were misclassified. In contrast, the “infrastructure” category exhibited a substantially higher number of correct predictions, amounting to 437, with only 44 instances being incorrectly classified. Similarly, the “social” category displayed a robust performance with 608 correct predictions and 63 incorrect predictions. However, the “nation-related affairs” category showed a relatively weaker performance, with 27 correct predictions and 33 incorrect predictions. By using Equation (3), the RF-based classification outperforms the classification using the kNN algorithm with a higher accuracy of 86.6%.



The third pattern training was conducted using the SVM algorithm. For the “disaster” category, SVM with a linear kernel produced 31 correct predictions, whereas 22 instances were misclassified. In the “infrastructure” category, the algorithm exhibited a strong performance with 433 correct predictions and 48 incorrect predictions. Moreover, the “social” category revealed another impressive performance by the SVM algorithm, with 628 correct predictions and a mere 43 incorrect predictions. However, the “nation-related affairs” category presented a somewhat balanced outcome, with 30 correct predictions and an equal number of incorrect predictions. Based on Equation (3), the SVM algorithm with a linear kernel surpasses the performances of both the Random Forest and kNN algorithms with a higher accuracy of 89.2%. Table 6 presents the confusion matrix for SVM with a linear kernel, forming a parametric model.



The next pattern training was conducted using the AdaBoost algorithm, which was deployed over SVM–linear kernel as the base learner. Table 7 provides the confusion matrix for the AdaBoost algorithm. In the “disaster” category, the algorithm produced 23 correct predictions and 30 incorrect predictions. Meanwhile, the “infrastructure” category demonstrated a robust performance, with 449 correct predictions and only 32 incorrect predictions. Additionally, the “social” category displayed an impressive performance, with 607 correct and 64 incorrect predictions. Still, the “nation-related affairs” category presented a relatively weaker performance, with 29 correct predictions and 31 incorrect predictions. By using Equation (3), deploying AdaBoost with SVM–linear kernel as the base learner produces a classification accuracy of 87.5%. In other words, AdaBoost with SVM–linear kernel as the base learner offers higher accuracy than Random Forest and kNN. However, its accuracy is lower than the original SVM algorithm with the same kernel.




5.4. Pattern Implementation


Furthermore, this study conducted pattern implementation by deploying the same algorithms over the same training and testing datasets but under varying parameters. This is crucial to see how the algorithms would perform in real-world applications. For the kNN algorithm, this study assumed that the selection of an optimal “k” value was crucial for the algorithm. The pattern implementation for kNN, therefore, probed into the role of the “k” parameter toward its performance. Table 8 presents the performance of the algorithm at the varying “k” values. In the table, the first row shows the “k” values, which marked the varying numbers of nearest neighbors that the algorithm referenced in the classification process. The second row shows the corresponding accuracy achieved by the kNN algorithm, indicating how often the algorithm correctly classified the complaint data, providing a snapshot of its predictive capability. Looking at the table, the performance of kNN indeed fluctuated along with different “k” values. Particularly, the “k” value of 40 produced the highest accuracy (85%). This highlights that the kNN algorithm delivers an optimal performance when the “k” parameter is set to 40 within this particular dataset.



The second pattern implementation focused on the Random Forest algorithm. The assumption was regarding the significance of tuning the number of trees in the algorithm to optimize its classification performance. Consequently, the primary parameter for comparison was the number of trees employed in the settings. Table 9 offers an overview of the classification performance of the RF algorithm under varying numbers of trees. Looking at the results, the settings with 50 trees produced the highest accuracy compared to other configurations. Usually, increasing the number of trees is expected to enhance accuracy, albeit at the expense of slower learning. This trend consistently occurred when the number of trees ranged from 1 to 50. Interestingly, a continuous decrease in accuracy occurred when the number of trees increased beyond 50, which, in this study, was 60 or 70. This suggested a curve-like performance of the RF algorithm under varying numbers of trees.



The third pattern implementation deployed SVM as the classification algorithm. A crucial aspect of SVM classification involves the selection of kernels, which thus served as the primary parameter for comparison in this study. Four kernels, i.e., linear, radial basis function (RBF), polynomial, and sigmoid kernels, were employed separately in the analysis. Table 10 presents the results of the pattern implementation using SVM with the four separate kernels, revealing generally satisfactory accuracy results. Looking at the results, SVM with a linear kernel produced the highest accuracy at 89.2%, closely followed by SVM with sigmoid and polynomial kernels, which exhibited accuracies of 88.7% and 88.6%, respectively. SVM with the RBF kernel returned the lowest performance, with an accuracy of 88.1%. However, the discrepancy in accuracy between the highest and lowest-performing configurations was a mere 1.1%, indicating relatively minor variations in performance across the different kernel configurations.



The fourth pattern implementation examined the performance of the AdaBoost algorithm. As a boosting algorithm, AdaBoost requires a base learner, for which the algorithm works as a booster. In this study, three base learners, i.e., RF, Decision Trees, and SVM–linear kernel, were separately deployed. Table 11 provides detailed results of the accuracy assessment for AdaBoost employing the three separate base learners. Looking at the table, the classification using AdaBoost with SVM–linear kernel as the base learner achieved an accuracy of 87.5%. In contrast, implementing AdaBoost with Decision Trees as the base learner produced a considerably lower accuracy of 73.7%. Meanwhile, the performance of AdaBoost with RF as the base learner exhibited a moderate result of 84.9%. The results highlight substantial differences in the use of different base learners, with a striking 13.8% gap between the highest- and lowest-performing configurations.



Moreover, Table 12 lists the accuracy of classifying the crowdsourced textual data of citizen complaints using the four observed algorithms, i.e., kNN, RF, SVM, and AdaBoost, under different configurations. Looking at the table, the SVM algorithm with a linear kernel produced the highest accuracy (89.2%) compared to other algorithms and settings. This exceptional performance was closely followed by the same algorithm employing two different kernels, i.e., sigmoid (88.7%) and polynomial kernels (88.6%). In stark contrast, the classification process using AdaBoost with Decision Trees as the base learner exhibited the lowest accuracy, with a considerable margin from the second-lowest configuration, i.e., AdaBoost with RF as the base learner, which achieved an accuracy of 84.9%. Despite the notable differences in accuracy between the highest- and lowest-performing configurations, the results indicate that the overall variation in accuracy levels was insignificant. Excluding the lowest-performing configuration, which appears to be an outlier, the remaining settings exhibit only a 4.3% difference in accuracy. In other words, apart from the outlier, the classification algorithms demonstrated relatively consistent performance across various configurations.





6. Discussion


In the observed case of Tangerang City, West Java, Indonesia, the city government, as has also been reported by Nindito et al. [102] and Madyatmadja et al. [103], has implemented pioneering crowdsourcing of public complaints in the country through its LAKSA app, official social media accounts, and government-run online news sites. Despite these innovative initiatives, the local government struggles to efficiently redirect public complaints to the relevant government bodies. Confirming similar problems noted by Almira et al. [104], Nyansiro et al. [105], and Bakunzibake et al. [106], manual monitoring, decision-making, and metadata recording processes consume a considerable amount of time and resources. In a more extended period, it has proven, as also stated by Sunindyo et al. [107] and Goel et al. [108], to be a significant bottleneck in the management and resolution of citizen complaints. Since the availability of officially annotated datasets was constrained by manual processes, it was consequently challenging for this study to obtain a dataset containing the most recent citizen complaints. This supports the pressing need to develop and implement more sophisticated and automated solutions that can classify public complaints, to make it easier for government officials to redirect the complaints to the appropriate government bodies [109,110,111].



In responses to the first (RQ1) and second research questions (RQ2), separately employing four classification algorithms, i.e., k-Nearest Neighbors, Random Forest, Support Vector Machine, and AdaBoost, produced different levels of accuracy. Looking at Table 12, the SVM algorithm performed well above the other three in classifying citizen complaints. This is particularly evident since its combination with four separate kernels resulted in slightly varied classification accuracies, with an accuracy range between 88.1% and 89.2%, which still remained higher than the results of other algorithms under different configurations. The results further demonstrated the versatility of SVM for classification purposes, which have been proven in various fields [112,113,114]. Meanwhile, RF and kNN followed in the second and third places, respectively. Still, their small margin to the performance of SVM implied the possibility of utilizing them for different datasets of crowdsourced citizen complaints, as also demonstrated by Sano et al. [115] for RF and Tjandra et al. [116] for kNN. In last place, AdaBoost gave more varied results depending on the base learners used. Interestingly, AdaBoost produced lower performances than the independent accuracy of RF and SVM. This confirms Reyzin and Schapire [117], who found that, in certain conditions, boosting algorithms could deliver a worse performance, despite a higher margin distribution.



Furthermore, as data mining techniques, the four classification algorithms being observed could perform differently under different configurations. For kNN (Table 8), this study found significant increases in accuracy along with a rise in “k” values under 40. However, after reaching the maximum accuracy at k = 40, its accuracy decreased consistently, albeit with smaller margins for the same incremental increases or decreases. This confirms that the behavior of the kNN algorithm significantly depends on the number of “k” [58,118], with larger “k” values increasing the accuracy significantly, until the configuration reaches an optimum value. Meanwhile, the RF algorithm performed variably under different numbers of trees, with the optimum value being 50 trees (Table 9). Confirming previous studies [119,120], it implies the typical behavior of the Random Forest algorithm, which produces a threshold for an optimal number of trees. However, there were no significant differences in accuracy for the same incremental changes in the number of trees below and above the optimum value. In parallel to other studies [121,122,123], the diminishing returns in the classification accuracy of RF, as the number of trees increases beyond an optimal point, may be attributed to overfitting or increased model complexity, which could negatively impact the generalizability of the algorithm.



For the SVM algorithm, the configurations focused on the use of separate kernels. In general, the levels of accuracy, when employing different kernels (Table 10), did not produce significant results for the given dataset. The best-performing configuration, i.e., SVM with a linear kernel, confirms the findings of Raghavendra and Deka [124] regarding its predictive ability. Meanwhile, the polynomial and sigmoid kernels performed somewhat equally. The worst performing kernel, i.e., radial basis function, although it insignificantly differed from the other three kernels, implied a dataset-specific capability of the kernel in learning, but not in predicting [125]. Still, the insignificant differences in performance across the various kernel types highlight the importance of selecting an appropriate kernel to achieve optimal classification results for a given dataset. On the other hand, the accuracy levels of classification using the AdaBoost algorithm with three separate base learners, i.e., RF, Decision Trees, and SVM, show relatively different results (Table 11), with SVM (with a linear kernel) as the base learner performing the best. This makes sense, since SVM also produced the best accuracy among the four observed algorithms in this study. Despite not being conventionally preferable for AdaBoost [126,127], SVM was proven to be a highly performing base learner for AdaBoost, especially for the given dataset of crowdsourced citizen complaints.



Moreover, all the observed algorithms, despite having different levels of accuracy for overall classification (Table 12), exhibited similar trends when predicting complaint data in individual categories. Table 13 showed the raw data of predictions correctly classified by each algorithm into the categories, which were compared to the original amount of data for the respective categories in the initial training dataset (Table 3). Looking at the percentage of correct predictions, all the algorithms performed well in the “infrastructure” and “social” categories with levels of accuracy above 90%. In contrast, the average accuracy of their predictions for “disaster” and “nation-related affairs” did not even reach half of the amount of original data for the categories. This may have occurred because there was a smaller amount of data available for the “disaster” and “nation-related affairs” in the original dataset, making the algorithms unable to grasp adequate knowledge from the pattern training. Considering the amount of training data available for each category and the levels of accuracy that came with it, the results confirm the findings of Kale and Patil [128] and Bzdok et al. [129], who stated that the accuracy of text mining increases logarithmically when the amount of training data increases. This implies that further training remains necessary to improve the accuracy of predictive classification in any given dataset.




7. Conclusions


E-government systems aim to streamline and enhance government–citizen interactions. Tangerang is a prime example of a city that has embraced e-government, with its administration developing an electronic system (LAKSA) for receiving public complaints through various channels. However, the actual implementation of this e-government system has encountered challenges, particularly in the management of massive complaint data sourced from less-moderated platforms, such as social media and online news sites. These data often appear unstructured, lacking categories or classes that would facilitate efficient channeling to the appropriate government agencies. This research, to overcome this obstacle, proposed the application of data mining techniques, specifically classification algorithms, as a practical solution for categorizing and organizing vast amounts of unstructured complaint data. For the given dataset from the Government of Tangerang City, this study assessed four algorithms, i.e., kNN, RF, SVM, and AdaBoost, to discover one with the best accuracy for classification. It would allow the government to better manage the challenges posed by unstructured complaint data and ensure the timely and appropriate handling of public complaints. This proactive approach would not only improve the overall efficiency of e-government systems but also strengthen the relationship between governments and their constituents in an increasingly digital world.



This study measured the accuracy of each algorithm in classifying the citizen complaint data of Tangerang City that was aggregated by the LAKSA app. The primary measure involved a confusion matrix over four classification categories, which compared the amount of correct prediction data with the testing data. The results showed that, according to accuracy level, the best classification algorithm to classify the complaint data was the Support Vector Machine algorithm using the linear kernel, with an accuracy rate of 89.2%. SVM, in fact, remained the best-performing algorithm under different configurations with any of the observed kernels. Practically, other classification algorithms with a minimum accuracy threshold of 85%, i.e., k-Nearest Neighbors and Random Forest, could also be used for the dataset. However, AdaBoost, for the given dataset, was prone to low levels of accuracy, except when paired with SVM as its base learner. Besides, this study found that categories with a lower amount of training data (“disaster” and “nation-related affairs”) demonstrated lower accuracy levels. In contrast, those with a higher volume of training data (“infrastructure” and “social”) exhibited considerably higher accuracy levels. This observation underscores the need for continuous supervised training with a larger volume of training data to enhance accuracy across all categories.



In addition, the findings hold significant potential for informing the decision-making process within the Government of Tangerang City. Insights from the accuracy testing of classification algorithms allow authorities to make informed choices on the most effective methods for categorizing and managing the massive amount of unstructured citizen complaint data. Besides, the results offer broader relevance beyond the case study, as they can serve as valuable references for other administrative regions across Indonesia. Particularly, these findings can guide the implementation of data classification strategies, specifically in the context of public complaints, enhancing e-government systems on a national scale. Beyond its practical applications, this study also provides a foundation for further research in the field of data classification. The performance assessment of various algorithms enables researchers to explore alternative word weighting methods, such as Bag-of-Words and Word2Vec, to further optimize the classification process. Moreover, future research needs to develop an Indonesian text mining library. The extremely rare availability of such resources presents a challenge for researchers and practitioners, as it limits the accessibility of localized tools and techniques. Thus, future studies can contribute to the body of knowledge of Indonesian text mining resources, ultimately benefiting the broader scientific community and the country’s e-government efforts.
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Figure 1. Location of Tangerang City (iii) in Banten Province (ii), Indonesia (i). 
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Figure 2. Graphical user interface of the Tangerang LIVE super app (left) and LAKSA app (right). Screenshots taken on 8 March 2023. 
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Figure 3. Research design. 
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Figure 4. Example results of the text vectorization using TF–IDF. 
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Table 1. Dataset divided into four simplified categories, with uncategorized data removed.
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Dataset

	
Actual Categories




	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs






	
Datapoints

	
265

	
2403

	
3353

	
300




	
Total

	
6321











 





Table 2. An example of text preprocessing unit.






Table 2. An example of text preprocessing unit.





	Before Text Preprocessing
	After Text Preprocessing





	Genangan di Jl. Raden Fatah, Parung, Serab,

Ciledug, Kota Tangerang mengakibatkan

kemacetan dan jalan berlubang, mohon kepada

dinas terkait untuk menindak lanjuti agar aktivitas warga tidak terganggu. Terima kasih.
	genang raden fatah parung macet lubang

tindak lanjut aktivitas warga ganggu










 





Table 3. Data splitting into the training and testing datasets.
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Split Datasets

	
Actual Categories




	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs






	
Training Dataset

	
Datapoints

	
212

	
1922

	
2682

	
240




	
Total

	
5056




	
Testing Dataset

	
Datapoints

	
53

	
481

	
671

	
60




	
Total

	
1265











 





Table 5. Confusion matrix for the Random Forest algorithm.
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Actual Category

	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs




	
Predicted Category






	
Disaster

	
23

	
0

	
1

	
0




	
Infrastructure

	
21

	
437

	
59

	
2




	
Social

	
9

	
44

	
608

	
31




	
Nation-Related Affairs

	
0

	
0

	
3

	
27




	
Accuracy

	
86.6%











 





Table 6. Confusion matrix for the Support Vector Machine algorithm with a linear kernel.
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Actual Category

	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs




	
Predicted Category






	
Disaster

	
31

	
3

	
1

	
0




	
Infrastructure

	
14

	
433

	
28

	
2




	
Social

	
8

	
45

	
628

	
28




	
Nation-Related Affairs

	
0

	
0

	
4

	
30




	
Accuracy

	
89.2%











 





Table 7. Confusion matrix for the AdaBoost algorithm (base learner: SVM with a linear kernel).
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Actual Category

	
Disaster

	
Infrastructure

	
Social

	
Nation-Related Affairs




	
Predicted Category






	
Disaster

	
23

	
0

	
1

	
0




	
Infrastructure

	
21

	
449

	
60

	
2




	
Social

	
9

	
32

	
607

	
29




	
Nation-Related Affairs

	
0

	
0

	
3

	
29




	
Accuracy

	
87.5%











 





Table 8. Pattern implementation of the kNN algorithm under varying “k” values.
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	k
	10
	20
	30
	40
	50
	60
	70
	80
	90
	100



	Accuracy (%)
	58.7
	81.5
	84.8
	85.2
	84.8
	84.4
	83.7
	83.7
	83.7
	83.2







Note: Blue-colored cells indicate the configuration with the highest accuracy.













 





Table 9. Pattern implementation of the Random Forest algorithm under varying number of trees.
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	No. of Trees
	1
	2
	3
	10
	20
	30
	40
	50
	60
	70



	Accuracy (%)
	76.0
	76.2
	80.3
	83.8
	85.4
	85.8
	86.0
	86.6
	85.8
	84.5







Note: Blue-colored cells indicate the configuration with the highest accuracy.













 





Table 10. Pattern implementation of th