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Abstract: The identification and analysis of sentiment polarity in microblog data has drawn increased
attention. Researchers and practitioners attempt to extract knowledge by evaluating public sentiment
in response to global events. This study aimed to evaluate public attitudes towards the spread of
COVID-19 by performing sentiment analysis on over 2.1 million tweets in English. The implications
included the generation of insights for timely disease outbreak prediction and assertions regarding
worldwide events, which can help policymakers take suitable actions. We investigated whether
there was a correlation between public sentiment and the number of cases and deaths attributed
to COVID-19. The research design integrated text preprocessing (regular expression operations,
(de)tokenization, stopwords), sentiment polarization analysis via TextBlob, hypothesis formulation
(null hypothesis testing), and statistical analysis (Pearson coefficient and p-value) to produce the
results. The key findings highlight a correlation between sentiment polarity and deaths, starting at 41
days before and expanding up to 3 days after counting. Twitter users reacted to increased numbers
of COVID-19-related deaths after four days by posting tweets with fading sentiment polarization.
We also detected a strong correlation between COVID-19 Twitter conversation polarity and reported
cases and a weak correlation between polarity and reported deaths.

Keywords: sentiment analysis; microblog; COVID-19; emotion mining; data mining

1. Introduction

During the COVID-19 pandemic, traffic on almost all popular Social Media (SMs) has
increased by over 10%, mainly due to regional lockdowns and the need for additional
information regarding the virus. Posts on SMs have circulated expressing the positive
attitudes of those who believe that we are indeed dealing with a dangerous virus outbreak,
the negative attitudes of skeptics or even virus deniers, and neutral attitudes.

This study explored the fluctuation of sentiments on Twitter by examining the attitudes
towards officially reported COVID-19 cases and deaths. The subsequent sections will guide
the readers through an analysis of other similar studies, the methodology and findings
of the research, possible obstacles, consequences, and future enhancements to facilitate a
probable incorporation into a widely accepted solution.

SMs, such as Twitter, have allowed the global community to deal with COVID-19 by
offering reliable information, online connectivity, and real-time event tracking. However,
as later studies demonstrated, there have also been disadvantages in using SMs as a source
of information, for example due to fake news [1]. Moreover, the online anti-vaccination
movement shares many ties with COVID-19 deniers and conspiracy theorists [2].

The foundations for opinion mining and Sentiment Analysis (SA) were laid by Pang
and Lee [3]. According to them, opinion mining, emotion analysis, and/or subjectivity
analysis are defined as: “the areas that deal with the computational processing of opinion,
emotion, and subjectivity in the text”. SA is utilized for extracting knowledge [4–10]
from the Internet and SMs, which have been established as multi-functional networking
tools [11], enabling various mining tasks in complex information networks [12].
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Today, more than ever, we need ways and approaches to manage massive amounts
of data and mitigate global disasters like COVID-19. Governments, corporations, and
organizations require tools to evaluate such situations. The significance of this work is
attributed to the fact that COVID-19 has caused economic and psychological problems to
individuals and societies, on top of medical ones [13,14]. By addressing these points, we
can improve the knowledge-extraction capabilities by utilizing SMs’ data and elaborating
on trends or correlations between different data sources. For example integrating SMs’ data
with other crucial data, such as travel patterns, demographic information, or socioeconomic
characteristics, might yield a more-holistic comprehension of the circumstances underlying
COVID-19. This enhances the predictive, descriptive, and diagnostic analytics of this
study [15]. Moreover, SA can help indicate which topics are being discussed most on SMs
about the COVID-19 pandemic and can be used to explore trends on vaccination decisions
and, thus, aid policymakers to make targeted decisions [16].

The conceived approach builds upon three contextual processes: preprocessing and
polarization, hypothesis formation, and statistical analysis. The first process attempts to
assess the sentiment of posts on Twitter. The second process aims to form hypotheses related
to COVID-19 cases and deaths. The third process validates the existence of correlations
between the time series of these three variables (tweet sentiment, cases, and deaths). This is
achieved by addressing the following objectives:

1. Improve the sentiment polarization output by utilizing text preprocessing for accurate
and reliable results.

2. Validate trends on Twitter sentiment in relation to the actual number of COVID-19
cases and deaths to retrieve useful insights.

3. Develop an approach/methodology that creates opportunities for disease forecasting
by discovering and monitoring multivariable correlations, such as cases vs. polarity
or deaths vs. polarity.

Moreover, this study addressed the following research questions: Can tweets act as an
indicator for predicting polarity related to COVID-19 cases and deaths? Is there a correlation
between these three data labels (tweets, cases, deaths)? If yes, to what extent? Are there any
trends in these data labels? This study attempted to answer these questions envisioning
future improvements involving localization and multilingual aspects, association rule
mining, forecasting (the generated correlations may be used as input features for improving
forecasting accuracy), and comparative reporting of various similar approaches.

The next sections of this work are organized as follows. Section 2 presents a literature
review on relevant SA research attempts. The approach employed in this study is outlined
in Section 3, while the findings obtained are presented and analyzed along with possible
implications in Section 4. Lastly, the concluding part (Section 5) provides a summary of the
main findings and engages in a discussion on the limitations and potential future directions
of this study.

2. Background

COVID-19 research is one of the hottest trends since 2020. Multiple studies related to
SMs’ data and potential capabilities, such as forecasting outcomes, have been reported and
categorized according to the application domain (e.g., healthcare, politics, etc.) [17]. Other
studies combined SA, mainly using data from SMs and COVID-19. The most-representative
ones that are related to this study are reported here. They deal with topic/theme extrac-
tion [18], political interventions [19], sentiment extraction/categorization [20], news-sharing
behavior and communication trends [21], information diffusion and user interaction pat-
terns [22], multi-lingual misinformation [23], the sentiment context during lockdowns [24],
geo-tagged network analysis [25], and tools for improving SA [26] and tracking/predicting
worldwide outbreaks [27].

However, to the best of our knowledge, there are no similar published efforts that have
used SA on data from Twitter to find potential links between the polarity of sentiments and
the number of reported COVID-19 cases or deaths. Furthermore, this study introduces a fresh
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approach by utilizing hypothesis formation and statistical analysis to uncover the dynamics of
sentiment in microblogs, for which there is currently no similar established methodology.

More specifically, in [18], the authors retrieved the main topics related to COVID-19
posted on Twitter. From 2.8 million tweets, they identified around 167k related posts.
According to their categorization, there were four main themes about COVID-19: (i) its
origin (location), (ii) its source (causes that led to its transmission to humans), (iii) its impact
on people and countries, and (iv) methods for controlling its spread.

Political leaders have been using SMs for information dissemination since 2008. In
2020, a 23% growth in Twitter users was observed. They also communicate COVID-19
emotions related to informing the public. A data source of 12,128 tweets regarding
29 Indian political leaders was utilized. The data analysis involved NRC-based (emotion
lexicon) SA. The retrieved emotions included “anger”, “disgust”, “fear”, “joy”, “negative”,
“positive”, and more. The findings showcased that “positive” and “trust” are the most
common when authorities choose to intervene by posting guidelines [19].

SA was also conducted on tweets from India after the lockdown, using a dataset of
24k tweets for 4 days, from 25 March 2020 until 28 March 2020 [20]. The most-dominant
stems were “consult”, “manag”, and “disast”. An analysis was conducted by categorizing
the sentiments via 10 words (“anger”, “anticipation”, “disgust”, “fear”, “joy”, “negative”,
“positive”, “sadness”, “surprise”, and “trust”). The most-popular tweet sentiments were
“positive”, “trust”, and “negative” with a count of 24k, 16k, and 9.5k, respectively.

Park et al. investigated news-sharing behavior, along with information-transmission
networks from data related to COVID-19, gathered from 44k Korean Twitter users [21]. They
identified more than 78k relationships and found that communication regarding COVID-19
amongst users was more frequent and faster in terms of the spread of information.

Cinelli et al. investigated the diffusion of COVID-19 information by using data from
five different SMs (Gab, Instagram, Reddit, Twitter, and YouTube) [22]. They gathered 1.3 m
posts in total, with 7.4 m comments from 3.7 m users for 45 days from 1 January 2020 until
14 February 2020. Of these posts, 88.5% came from Twitter, and 94.5% of comments and
85.7% of users came from YouTube. After analyzing the spread of debatable information or
even misinformation, they concluded that Gab was the SM most prone to misinformation
spread. Finally, they concluded that the channels of information dissemination and their
contents depend on two factors: (i) the SM itself and (ii) the interaction patterns of groups
of users that discuss the topic.

In a similar study, Singh et al. attempted to investigate the sharing of COVID-19
information and misinformation on Twitter [23]. For a two-month period, from 16 January
to 15 March 2020, they collected 2.8 million tweets, along with 457k quotes and 18.2 million
retweets. The language of the tweets was predominately English (55.2%), followed by
Spanish (12.5%) and French (7.4%). Overall, 32 languages were recognized. The countries
that suffered the most demonstrated an increase in COVID-19-related tweets compared to
the pre-COVID-19 period. They also provided a worldwide tweet geo-location distribution
and compared it to the reported cases. Lastly, they summarized the identified themes using
the most-frequent words in the tweets, finding that just 0.6% of the tweets discussed myths
or conspiracy theories.

Sentiment within comments, hashtags, and posts from Twitter may be analyzed accord-
ing to trends by keywords such as “covid” and “coronavirus”. Common tools/methods
are Natural Language Processing (NLP) and sentiment classification with a Recurrent
Neural Network (RNN). The authors in [24] offered a solution for identifying the emotional
manifestations from Twitter data according to a specific topic and time interval. Another
study dealt with COVID-19 Twitter data collection from India. A total of 410,643 English
tweets were gathered from 22 March to 21 April 2020, to investigate the public sentiment
context during a lockdown period. Retrieving sentiment and emotions over time may
improve the understanding of public contexts and expressions during a crisis such as a
pandemic [28].
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Lopez et al. used text mining, NLP, and network analysis to investigate the perception
of COVID-19 policies by mining a COVID-19-related multi-language Twitter dataset [25].
From 22 January to 13 March 2020 (a 52-day period), they collected around 6.5 million
tweets. Of these, 63.4% were written in English, 12.7% in Spanish/Castilian, and the rest in
64 other languages. Extreme retweet bursts were observed in Europe in late February and
early March. Finally, they provided a geo-located distribution of 1625 tweets.

Samuel et al. tried to identify public sentiment associated with the pandemic using
COVID-19-related tweets in the U.S. and the R [29] statistical software 4.0.0 [26]. They
downloaded tweets from February to March 2020, and by using geo-tagged analytics, the
association with non-textual variables, SA, and classification methods, they found that
Naive Bayes performed better (91%) for sentiment classification of short (in length) COVID-
19 tweets compared to logistic regression (74%). Better performance was also identified for
long tweets, but with worse accuracy (57% and 52%, respectively).

Finally, another study by Hamzah et al. introduced the CoronaTracker, a worldwide
COVID-19 outbreak data analysis and prediction tool [27]. They utilized Susceptible–
Exposed–Infectious–Recovered (SEIR) predictive modeling to forecast the COVID-19 out-
break based on daily observations. In their methodology, they included SA on articles from
the news (561 positives and 2548 negatives) to further understand public reaction towards
the pandemic.

3. Research Design

This paper aimed to calculate the polarization of around 2.1 million tweets that were
retrieved throughout the period from 27 February 2020 until 28 August 2020, a period of
153 days. Then, it analyzed possible correlations between COVID-19 cases and deaths, as
reported on a worldwide scale. Our approach comprised three contextual processes: data
preprocessing and polarization, hypothesis formation, and statistical analysis processes, as
depicted in Figure 1, along with the research flow.

Figure 1. Contextual processes and flow of research approach.

3.1. Dataset

An important task for evaluating our approach was data accumulation. The investigated
period expanded from 27 February 2020 to 28 August 2020 with 2,146,243 harvested Twitter
posts (tweets) utilizing a custom-made Python script (crawler). The script harvested tweets in
English through Twitter’s search functionality, https://twitter.com/search-home (accessed on
27 February 2020), bypassing Twitter developer’s Application Programming Interface (API)’s
(https://developer.twitter.com (accessed on 15 February 2020)) limitations for data crawling,
such as the maximum number of retrieved tweets.

https://twitter.com/search-home
https://developer.twitter.com
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The main drawback of this approach is that the retrieved tweets need further pre-
processing compared with data retrieved from the official Twitter API. To collect tweets
without utilizing the Twitter API, alternative approaches such as web scraping or other
techniques might be employed. Insufficient or inaccurate data extraction results in the
absence of certain tweets, incomplete information, or obsolete content. Such occurrence might
result in biases, since specific tweets or user groups may be disproportionately represented or
underrepresented. Moreover, preprocessing techniques are essential for eliminating noise and
unnecessary data. Inadequate preprocessing may lead to an ineffective elimination of spam,
retweets, or off-topic content, resulting in a dataset that contains more-irrelevant information.

The search keywords included COVID-19 common synonyms such as “coronavirus”,
“covid”, “covid-19”, and “corona”. Tweets that mentioned any of these phrases were
included in the dataset. The selected keywords encompassed a variety of frequently
employed words to ensure a comprehensive compilation of tweets pertaining to the COVID-
19 theme. This approach aimed to consider various ways people may refer to the pandemic
on SMs. Yet, there were some limitations to this approach:

1. Although keywords are popular, they may not cover all COVID-19 expressions and
references. Misspellings, abbreviations, and other phrases may not be included.

2. Keyword matching ignores tweet context. If keywords are utilized in a different
context, this may include irrelevant or exclude relevant content.

3. Language changes with time, introducing new terminology and variants. The tweets may
lose significance as the epidemic spreads and the keywords become old or inadequate.

4. Keyword efficacy may vary by geography and culture. Some words may be more
popular in some places, biasing the dataset.

5. Spam, disinformation, and irrelevant content fill SMs. The technique may not filter
out such noise, affecting tweet quality and dependability.

All in all, to enhance the interpretation of such an analysis and assess the limitations
and deficiencies in datasets, researchers should possess a comprehensive understanding of
these restrictions.

The implemented crawler collected data for nine properties per tweet, as shown in
Table 1. For this paper, only the attributes text and datetime were utilized. The rest of the
attributes (e.g., username, tweet_id, or user_id) were discarded.

Table 1. Tweet description.

No Attribute Description

1 username The name of the user.
2 tweet_id The id of the tweet.
3 text The text posted with the tweet.
4 url The URL of the tweet.
5 n_retweet The number of times the tweet was retweeted.
6 n_favorite The number of times the tweet was marked as favorite (liked).
7 n_reply The number of replies to the tweet.
8 datetime The date and time of the tweet post.
9 user_id The user’s id.

3.2. Preprocessing and Polarization Analysis

Preprocessing improves accuracy and reliability. When data are preprocessed, miss-
ing or noisy data values that are the product of human or machine errors are dealt with.
This increases the data quality, consistency, and reliability. Therefore, certain types of text
transformations were applied, such as regex applications to remove whitespace, Hyper-
Text Markup Language (HTML), Uniform Resource Locators (URLs), hashtag elements,
tokenization, text filtering, removing common words, and finally, reverting the text by
detokenization. Polarization is a metric regarding the negativity or positivity of a tweet.
The general flow of the transformations of the preprocessing and polarization process is
depicted in Figure 2.
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Figure 2. Overview of tweet preprocessing and polarization.

Specifically, a custom-made regex was applied as a filter to remove invalid whitespace
in tweet text resulting from crawling. The utilized library was re (regular expression
operations) (https://docs.python.org/3/library/re.html (accessed on 28 September 2020))
in Python. The same was applied to the removal of HTML, URL, and hashtag elements. The
next step of text transformation refers to tweet tokenization. This was achieved by utilizing
the nltk.tokenize package (https://www.nltk.org/_modules/nltk/tokenize.html (accessed
on 10 October 2020)). Then, three libraries/packages/modules were incorporated, for
removing stopwords, utilizing their default lexicons. These were spacy (https://spacy.io/
(accessed on 28 October 2020)), genism (https://pypi.org/project/gensim/ (accessed on
11 November 2020)), and nltk.corpus.stopwords (https://www.nltk.org/_modules/nltk/
corpus.html (accessed on 12 November 2020)). We used three libraries, attempting to
enhance the stopword dictionary without manually adding words.

Next, the detokenization of tweets was executed. We incorporated an implementation
of Penn Treebank detokenization offered by the module nltk.tokenize.treebank (https:
//www.nltk.org/_modules/nltk/tokenize/treebank.html (accessed on 17 November 2020))
in the nltk toolkit, to prepare the final text transformation for retrieving polarization values.
For sentiment polarization, we incorporated the TextBlob (https://textblob.readthedocs.io/
en/dev/ (accessed on 20 November 2020)) library, which retrieves values per tweet rated
between −1 (most negative) and +1 (most positive). TextBlob provides a sentiment analysis
based on lexicons. Such a technique involves assigning scores to collections (sentences) of
words, using a predetermined lexicon of negative and positive words. Subsequently, an
average will be computed to determine the overall sentiment score of a sentence. Table 2
illustrates examples of raw and processed tweets and their retrieved polarity.

https://docs.python.org/3/library/re.html
https://www.nltk.org/_modules/nltk/tokenize.html
https://spacy.io/
https://pypi.org/project/gensim/
https://www.nltk.org/_modules/nltk/corpus.html
https://www.nltk.org/_modules/nltk/corpus.html
https://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
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Table 2. Examples of polarity values of raw and processed tweets.

Date Raw Tweet Text Raw Tweet Polarity Processed Tweet Text Processed Tweet Polarity

14 March 2020
...It’s very difficult to get ANY news
on the #coronavirus in #China—and

what is happening there now?
−0.65 difficult news happening −0.5

23 March 2020

So what’s going to be your
newspaper of choice for when the

time comes? Stay safe, stay isolated
& save lives #Coronavirus

#Healthcare #QBAIN
https:// lnkd.in/dzViDaX

+0.5
whats going newspaper choice time

comes stay safe stay isolated
save lives

+0.5

26 March 2020

Looking for peace of mind in these
uncertain times because of the
#Coronavirus ?! We’re offering

#mobile #patrols to businesses in
#Cardiff , #Newport , #Bristol and

around- such a cost effective
#security #solution which could

save you £££ from theft
and vandalism.

pic.twitter.com/idA1Xe4wZl

+0.3
looking peace mind uncertain times

offering businesses cost effective
save theft vandalism

+0.6

1 April 2020

Stranded at sea: Coast Guard says
cruise ships must stay offshore with

sick onboard. https://
krld.radio.com/articles/ap-ne

ws/coast-guard-cruise-ships-must-
stay-at-sea-with-sick-onboard . . .

via KRLD #CruiseShips #COVID19
#coronavirus #Florida

−0.7142 stranded sea coast guard says cruise
ships stay offshore sick onboard −0.7142

Finally, the sentiment polarization values of all tweets were grouped by day, retrieving
their average value. These text transformations were executed in a sequential manner,
attempting to improve the accuracy of the sentiment polarity’s reporting.

3.3. Hypothesis Formation

To help with all hypothesis statements and formation, we introduced two terms. The
term “before” or “lead” refers to tweets that prelude the actual COVID cases or deaths,
whilst the term “after” or “lag” refers to tweets that follow the actual COVID cases or
deaths. For instance, “three days before” means that we matched tweets published on
4 March 2020 with the number of new cases and deaths three days later on 7 March 2020.
“Three days after” means that we matched tweets published on 4 March 2020 with the
number of new cases and deaths three days earlier on 1 March 2020. We also noted that the
aggregated number of cases and deaths always increased during the period under scrutiny
(27 February 2020 to 28 August 2020). For that reason, the hypotheses were associated with
the COVID-19 daily cases and deaths as retrieved from the WHO https://covid19.who.int/
database on a worldwide scale.

In total, we tested 44 null hypotheses (HCB1-HCB22, HC0, HCA1-HCA21) related to
COVID-19 cases. Indicatively, three are presented in Table 3: (i) one with a polarization
lead (tweets 22 days before cases) and labeled as HCB22, (ii) one with no lead or lag (tweets
in the same day with cases) and labeled as HC0, and (iii) one with a polarization lag (tweets
21 days after cases) and labeled as HCA21.

https://covid19.who.int/
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Table 3. Indicative null hypotheses for COVID-19 cases.

Hypothesis Explanation

HCB22 The number of cases in a day is not correlated with a higher-on-average positive sentiment
polarity 22 days before.

HC0 The number of cases in a day is not correlated with a higher-on-average positive sentiment
polarity during the same day.

HCA21 The number of cases in a day is not correlated with a higher-on-average positive sentiment
polarity 21 days after.

Similarly, we tested 44 null hypotheses (HDB1-HDB22, HD0, HDA1-HDA21) related
to COVID-19 deaths in total. Indicatively, three are presented in Table 4: (i) one with a
polarization lead (tweets 22 days before deaths) and labeled as HDB22, (ii) one with no
lead or lag (tweets on the same day with deaths) and labeled as HD0, and (iii) one with a
polarization lag (tweets 21 days after deaths) and labeled as HDA21.

Table 4. Indicative null hypotheses for COVID-19 deaths.

Hypothesis Explanation

HDB22 The number of deaths in a day is not correlated with a higher-on-average positive sentiment
polarity 22 days before.

HD0 The number of deaths in a day is not correlated with a higher-on-average positive sentiment
polarity during the same day.

HDA21 The number of deaths in a day is not correlated with a higher-on-average positive sentiment
polarity 21 days after.

All hypotheses for both cases (HCB1-HCB22, HC0, HCA1-HCA21) and deaths (HDB1-
HDB22, HD0, HDA1-HDA21) as indicatively shown in Tables 3 and 4 were generated in
the same manner and are displayed in total in Table 5.

Table 5. HCB1 -HCB22, HC0, HCA1-HCA21 and HDB1-HDB22, HD0, HDA1-HDA21 status.

Before or After (Tweets) Hypotheses’ New Cases Status Hypotheses’ New Deaths Status

22 days before HCB22 Rejected HDB22 Accepted
21 days before HCB21 Rejected HDB21 Accepted
20 days before HCB20 Rejected HDB20 Accepted
19 days before HCB19 Rejected HDB19 Accepted
18 days before HCB18 Rejected HDB18 Accepted
17 days before HCB17 Rejected HDB17 Accepted
16 days before HCB16 Rejected HDB16 Accepted
15 days before HCB15 Rejected HDB15 Accepted
14 days before HCB14 Rejected HDB14 Accepted
13 days before HCB13 Rejected HDB13 Accepted
12 days before HCB12 Rejected HDB12 Accepted
11 days before HCB11 Rejected HDB11 Accepted
10 days before HCB10 Rejected HDB10 Accepted
9 days before HCB9 Rejected HDB9 Accepted
8 days before HCB8 Rejected HDB8 Accepted
7 days before HCB7 Rejected HDB7 Accepted
6 days before HCB6 Rejected HDB6 Accepted
5 days before HCB5 Rejected HDB5 Accepted
4 days before HCB4 Rejected HDB4 Accepted
3 days before HCB3 Rejected HDB3 Accepted
2 days before HCB2 Rejected HDB2 Accepted
1 day before HCB1 Rejected HDB1 Accepted

0 days HC0 Rejected HD0 Accepted
1 day after HCA1 Rejected HDA1 Accepted
2 days after HCA2 Rejected HDA2 Accepted
3 days after HCA3 Rejected HDA3 Accepted
4 days after HCA4 Rejected HDA4 Rejected
5 days after HCA5 Rejected HDA5 Rejected
6 days after HCA6 Rejected HDA6 Rejected
7 days after HCA7 Rejected HDA7 Rejected
8 days after HCA8 Rejected HDA8 Rejected
9 days after HCA9 Rejected HDA9 Rejected
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Table 5. Cont.

Before or After (Tweets) Hypotheses’ New Cases Status Hypotheses’ New Deaths Status

10 days after HCA10 Rejected HDA10 Rejected
11 days after HCA11 Rejected HDA11 Rejected
12 days after HCA12 Rejected HDA12 Rejected
13 days after HCA13 Rejected HDA13 Rejected
14 days after HCA14 Rejected HDA14 Rejected
15 days after HCA15 Rejected HDA15 Rejected
16 days after HCA16 Rejected HDA16 Rejected
17 days after HCA17 Rejected HDA17 Rejected
18 days after HCA18 Rejected HDA18 Rejected
19 days after HCA19 Rejected HDA19 Rejected
20 days after HCA20 Rejected HDA20 Rejected
21 days after HCA21 Rejected HDA21 Rejected

3.4. Statistical Analysis

Pearson correlation between sentiment polarity and COVID-19 cases or deaths was
utilized, with different combinations of tweets before and tweets after. The experiments for a
44-day period attempted to determine if a relationship between these two variables existed.

The Pearson product–moment correlation coefficient is a statistical measurement of the
correlation (linear association) between two sets of values. The Pearson product–moment
correlation coefficient for two sets of values, x and y, is given by the formula (Equation (1)):

r = ∑(x − x)(y − y)√
∑(x − x)2 ∑(y − y)2

(1)

where x and y are the sample means of the two arrays of values.
If the value of r is close to +1, this indicates a strong positive linear correlation. For

example (adjusted to this study’s context), this means that, when cases increase, polarity
increases or, when cases decrease, polarity decreases. On the other hand, if r is close to
−1, this indicates a strong linear negative correlation. For example, when cases increase,
polarity decreases or vice versa (polarity increases, cases decrease).

Coe f f icient(r) = Pearson(array1; array2) (2)

The strength of correlation can be described by the absolute valuesfor r (Equation (2))
as follows: 0.00–0.19 very weak, 0.20–0.39 weak, 0.40–0.59 moderate, 0.60–0.79 strong,
0.80–1.00 very strong [30].

As an extra statistical measure, a p-value calculation was performed. The p-value is the
probability of obtaining results that are at least as extreme as the results that are observed,
considering the assumption that the null hypothesis is correct [31]. This methodological
addition attempted to double-check hypotheses that connect sentiment polarization with
the number of cases or deaths. Therefore, the p-values per case (polarization-cases and
polarization-deaths) were extracted. As for the actual p-value, the alpha (α) value, also
known as the level of significance, was set to 0.05. This means that, for a p-value < 0.05, it
was considered that the null hypothesis was rejected, while for a p-value > 0.05, the null
hypothesis was accepted due to a lack of enough proposition against it. Yet, in general,
there is always a chance that a null hypothesis is true [32].

4. Results

This section presents the outputs from preprocessing and polarization, as well as the
statistical analysis for validating the hypothesis processes. Figure 3 reports on the output
from the preprocessing and polarization process, highlighting the sentiment polarization
analysis on raw tweets with no preprocessing (raw tweets) and preprocessing (processed
tweets) in daily resolution. Figure 3 shows how the polarity values were adjusted after
applying preprocessing (Section 3.2) to the gathered tweets. Moreover, according to Figure 3,
it is evident that, after preprocessing the tweets, the polarity levels tended to follow the
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same value patterns, yet exposing reduced polarity values. It is noted that the statistical
analysis process received as an input the processed tweets’ values. Figure 4 shows the
world-wide daily new cases and deaths for the investigated period (27 February 2020 to
28 August 2020).

The Pearson correlation was calculated for the time series of the processed tweets.
This process attempted to distinguish possible relationships between the variables cases vs.
polarity and deaths vs. polarity for the 153 investigated days. The goal was to discover a
qualitative measure of whether SMs’ data can be correlated with COVID-19, and, therefore,
expose predictive opportunities regarding cases and deaths.

Based on the p-values from Table 6, Table 5 depicts the status of the conceived hy-
potheses. For each column in Table 6, the maximum and minimum Pearson correlation
absolute values are in bold. For each row in Table 5, when observed along with Table 6,
several findings can be extracted. For example, for the first row related to hypotheses
HCB22 and HDB22 (22 days before), we can conclude that:

• New cases exhibited a strong negative correlation with polarity (cases increased, while
polarity dropped).

• New deaths exhibited a very weak positive correlation with polarity (deaths increased
and polarity increased, as well as deaths decreased and polarity decreased).

• New cases p-value < 0.05; therefore, the null hypothesis (HCB22) was rejected. HCB22:
The number of cases in a day was not correlated with a higher-on-average positive
sentiment polarity 22 days ahead.

• New deaths p-value > 0.05; therefore the null hypothesis (HDB22) was accepted.
HDB22: The number of deaths in a day was not correlated with a higher-on-average
positive sentiment polarity 22 days ahead.

For entries related to HC0 and HD0 (0 days):

• New cases exhibited a very strong negative correlation with polarity (cases increased,
while polarity dropped).

• New deaths exhibited a very weak negative correlation with polarity (deaths increased
and polarity decreased, as well as deaths decreased and polarity increased).

• New cases p-value < 0.05; therefore, the null hypothesis (HC0) was rejected. HC0:
The number of cases in a day was not correlated with a higher-on-average positive
sentiment polarity 0 days before/after.

• New deaths p-value > 0.05; therefore, the null hypothesis (HD0) was accepted. HD0:
The number of deaths in a day was not correlated with a higher-on-average positive
sentiment polarity 0 days before/after.

Figure 3. Changes in sentiment polarity after preprocessing.
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Figure 4. Changes in daily cases and deaths on a worldwide scale.

Despite their simplicity, Pearson correlation and p-value are well recognized and
extensively used in scientific research because of their wide application and maturity [33].
As discussed in Section 3.4, the Pearson coefficient may be utilized to quantify a correlation.
On the other hand, the p-value serves as a metric for determining the statistical signifi-
cance of a correlation. In our case, this threshold was set to 0.05. This means that for a
p-value < 0.05 it is considered that the null hypothesis is rejected, while for a p-value > 0.05
the null hypothesis is accepted due to insufficient evidence or arguments in opposition. For
example, the statuses of “Hypotheses New Cases” in both Tables 5 and 7 are all “Rejected”.
This happens, since the p-values of “New Cases” in Table 6 are all nearly 0, satisfying the
case that p-value < 0.05. Therefore, it is imperative to interpret the Pearson coefficient and
p-value in conjunction rather than separately.

Table 6. Pearson analysis and p-values for hypotheses.

Pearson p-Value

Before or After (Tweets) New Cases New Deaths New Cases New Deaths

22 days before −0.682397393 0.064007689 2.656751 × 10−22 0.4318411072
21 days before −0.668832958 0.094788235 3.457032 × 10−21 0.2438260698
20 days before −0.659785755 0.114805283 1.778129 × 10−20 0.1576280727
19 days before −0.654462348 0.077009274 4.540812 × 10−20 0.3440739433
18 days before −0.647419723 0.098690523 1.525454 × 10−19 0.2248666403
17 days before −0.648581248 0.111132148 1.251861 × 10−19 0.1714386103
16 days before −0.642864119 0.110891371 3.284914 × 10−19 0.1723742716
15 days before −0.637800131 0.100506525 7.590937 × 10−19 0.2164085749
14 days before −0.631030263 0.104354511 2.270785 × 10−18 0.1992412055
13 days before −0.623964697 0.114745846 6.926604 × 10−18 0.1578446973
12 days before −0.615586662 0.099098688 2.506834 × 10−17 0.2229455290
11 days before −0.608527263 0.072126649 7.195522 × 10−17 0.3756198922
10 days before −0.612990331 0.064721794 3.705770 × 10−17 0.4267106953
9 days before −0.609080218 0.060639591 6.631372 × 10−17 0.4565107126
8 days before −0.602979915 0.052506207 1.618103 × 10−16 0.5191964112
7 days before −0.602403416 0.032609932 1.758695 × 10−16 0.6890378327
6 days before −0.593575808 0.032416871 6.169950 × 10−16 0.6907843868
5 days before −0.596424444 0.022436303 4.132437 × 10−16 0.7831007437
4 days before −0.597113974 −0.02443483 3.748100 × 10−16 0.7643233905
3 days before −0.594898888 −0.03989054 5.124412 × 10−16 0.6244401717
2 days before −0.601584888 −0.035023577 1.978978 × 10−16 0.6673433965
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Table 6. Cont.

Pearson p-Value

Before or After (Tweets) New Cases New Deaths New Cases New Deaths

1 day before −0.598194551 −0.08960527 3.214907 × 10−16 0.2706860939
0 days −1 −0.102988581 5.370485 × 10−16 0.2052186403

1 day after −0.589327552 −0.103525311 1.113581 × 10−15 0.2028546523
2 days after −0.590766552 −0.105324435 9.125971 × 10−16 0.1950738874
3 days after −0.598896707 −0.147560598 2.908906 × 10−16 0.0687235141
4 days after −0.602324548 −0.179448648 1.778832 × 10−16 0.0264525313
5 days after −0.60894604 −0.187501582 6.764163 × 10−17 0.0202938748
6 days after −0.616741202 −0.210136379 2.104434 × 10−17 0.0091311637
7 days after −0.613129478 −0.216184442 3.629279 × 10−17 0.0072760296
8 days after −0.61366015 −0.250020096 3.351459 × 10−17 0.0018278124
9 days after −0.62382306 −0.279359638 7.081152 × 10−18 0.0004704534
10 days after −0.627804213 −0.297903763 3.791896 × 10−18 0.0001840738
11 days after −0.635435763 −0.334763794 1.116439 × 10−18 0.0000234179
12 days after −0.647962474 −0.368159086 1.391019 × 10−19 2.840249 × 10−6

13 days after −0.64904319 −0.41192768 1.156945 × 10−19 1.221343 × 10−7

14 days after −0.649966799 −0.432694794 9.877983 × 10−20 2.326802 × 10−8

15 days after −0.657188862 −0.452799342 2.815904 × 10−20 4.188228 × 10−9

16 days after −0.657710312 −0.456969479 2.568535 × 10−20 2.893469 × 10−9

17 days after −0.671844689 −0.490331816 1.978649 × 10−21 1.246703 × 10−10

18 days after −0.682830135 −0.525601893 2.442358 × 10−22 3.037625 × 10−12

19 days after −0.695486107 −0.546111834 1.952164 × 10−23 2.853218 × 10−13

20 days after −0.705188049 −0.577610178 2.570777 × 10−24 5.431783 × 10−15

21 days after −0.712609124 −0.596110089 5.153229 × 10−25 4.320166 × 10−16

Table 7. Hypotheses status for new cases and new deaths up to 50 days before.

Before (Tweets) Hypotheses New
Cases p-Values Status Hypotheses New

Deaths p-Values Status

50 days before 1.29 × 10−23 Rejected 5.67727 × 10−5 Rejected
45 days before 2.19 × 10−21 Rejected 0.018876142 Rejected
43 days before 2.19 × 10−21 Rejected 0.015088417 Rejected
42 days before 3.27 × 10−22 Rejected 0.032555018 Rejected
41 days before 5.48 × 10−22 Rejected 0.078846068 Accepted
40 days before 2.48 × 10−22 Rejected 0.125211833 Accepted
30 days before 1.22 × 10−24 Rejected 0.921742577 Accepted
27 days before 1.18 × 10−24 Rejected 0.706649347 Accepted
23 days before 1.31 × 10−22 Rejected 0.362643608 Accepted

4.1. Discussion

This section discusses the knowledge extracted by the results’ interpretation. It informs
about the insights regarding the COVID-19 crisis by utilizing data from Twitter. We focused
on extracting and reporting on the polarity from tweets and examining the correlation
strength of the polarity with the number of COVID-19 cases and deaths.

According to Figure 3, it is evident that the overall polarity of evaluated tweets from
27 February 2020 to 28 August 2020 with 2,146,243 harvested tweets showed a negative
trend, as the polarity values dropped. More specifically, the polarity values started dropping
after mid-April 2020. This can be attributed to the fact that, since the start of official data
reporting of COVID-19 (February 2020), people had been reluctant to accept that there was
indeed a pandemic [34]. Yet, on 17 April 2020, there was a greater number of reported daily
deaths (12,430). So, this was the triggering point for an established long-term negative
overall polarity trend.

According to Table 6, tweets before and after a day were strongly negatively correlated
with COVID-19 cases on average. However, tweets’ “after” correlation with COVID-19
cases exhibited a slightly stronger negative correlation. The average correlation values for
tweets “before” and tweets “after” with new cases were −0.624 and −0.640, respectively.
For both cases, the findings are sound since new cases increased, while polarity dropped
(negative trend). The strongest correlation between polarity and new cases was on the
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same day with a Pearson value of −1, while the weakest correlation was 1 day after, with a
Pearson value of −0.589327552. Overall, there was a strong correlation between COVID-19
Twitter conversations’ polarity with reported cases.

Moreover, tweets before and after a day were very weakly to weakly correlated
with COVID-19 deaths on average. Tweets’ “before” correlation with COVID-19 deaths
exhibited a very weak positive correlation, while tweets “after” exhibited a weak negative
correlation with COVID-19 deaths. The average correlation values for these periods were
+0.056 and −0.341, respectively. These findings can be interpreted as tweets’ “before”
polarity increased related to a day’s deaths, and then, there was a trend reversal for tweets’
“after” with a much greater negative correlation increase (after deaths were announced, the
polarity decreased further). More precisely, this trend reversal happened 4 days “before”
and negatively increased until 21 days “after”. It was also evident that the strongest
correlation between polarity and new deaths was at 21 days after, while the weakest was
at five days before. Overall, there was a weak correlation between COVID-19 Twitter
conversations’ polarity with reported new deaths.

In case the utilization of p-values as expressed in Section 3.4 was not disputed, all hy-
potheses associating new cases with tweets’ polarization had a p-value < 0.05; therefore, they
were rejected (Table 5). This was expected since new cases had an overall increasing trend,
while sentiment polarity exhibited a negative trend. As for the hypotheses associating new
deaths with tweets’ polarization, the values diversified. Yet, there was cohesion in the observed
trends. From HDB1-HDB22, HD0, and HD1-HD3, there was a p-value > 0.05; therefore, these
hypotheses were accepted. The remaining ones were rejected. This observation suggested that,
as the number of deaths on a date increased, there was a higher-on-average positive sentiment
polarity for 22 days before to 3 days after (a sum of 25 days).

As an expansion to Table 5, we checked the p-values for new cases and new deaths
up to 50 days before to identify the threshold of the day when the hypotheses’ status
change. According to Table 7, the hypotheses regarding new cases remained “rejected”,
while the hypotheses regarding new deaths changed from “accepted” to “rejected” 42 days
before the tweets. Therefore, the previously mentioned period of 25 days (according to
Table 5) was expanded to a period of 6.5 weeks or 45 days, starting from 3 days “after”
tweets and ending at tweets 41 days “before” the reported deaths. This suggests that
people tended to start posting tweets four days after a day when deaths increased with
diminished, yet positive polarization. Also, this means that the negativity in the tweets
remained connected with the daily deaths, i.e., the hypotheses remained accepted for a
very long period (45 days). When compared with the daily cases, the hypotheses remained
rejected for the initial and the expanded period under scrutiny.

4.2. Implications

Based on our findings, a tool that offers text SA functionalities to validate proposed
hypotheses related to a health crisis can be of great help to communities. For example,
healthcare/medical professionals, researchers, or policymakers could extract indicators
about existent psychological correlations resulting from SMs’ data. SMs offer numerous
opportunities for extracting or communicating public health information. Therefore, such
proactive opportunities should be exploited for improving public health officials’ online
presence, in conjunction with predictive models [35].

Moreover, researchers may investigate the predictive capacity of SMs’ sentiment,
considering the correlation between Twitter discussions linked to COVID-19 and the
number of reported cases and deaths. This may entail:

1. Generating correlation features for predictive algorithms to check if Twitter sentiment
patterns can forecast fluctuations in COVID-19 cases and deaths. This might facilitate
the development of real-time public health surveillance systems.

2. Analyzing the emotion expressed on SMs in different places (hotspot detection) and
comparing it to the number of reported events. This can aid in identifying COVID-19
hotspots or issues on SMs.
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3. Exploring the correlation between sentiment and public behavior in relation to COVID-19.
The emotions expressed on Twitter can influence public behavior, such as the adoption of
preventive measures or the level of engagement with health authorities. Gaining insight
into these connections can enhance the effectiveness of public health communication.

4. Performing temporal analysis, i.e., determining the duration between shifts in Twitter
sentiment and documented occurrences. This might potentially uncover the lead time
for preventative public health interventions.

5. Integrating SMs’ sentiment data with mobility patterns and socioeconomic parameters
to enhance the accuracy of prediction models and gain deeper insights into the spread
of diseases.

Utilizing SMs as a dynamic and real-time data source allows researchers to definitively
establish a correlation and obtain valuable insights for public health surveillance and action.

4.3. Limitations

This study was subject to possible biases and threats to validity, which we report here.
There were no geo-location restrictions (localization) when crawling the data; therefore, we
considered Twitter data spanning all over the world. We intended to deliver an approach
that utilizes SMs’ data and investigates and exposes possible correlations between public
sentiment regarding COVID-19 cases and deaths. Yet, this study could be reproduced
also by applying localization filtering on the input data (tweets), increasing its practical
implications. As already mentioned, the language for tweets retrieved was English. In
addition, our findings were subject to limited generalization since we used data from
only one SM, i.e., Twitter. Additionally, our approach could be extended to consider more
SM platforms as data sources. This would increase the likelihood of a more-thorough
real-world evaluation of the results.

Our data retrieval script (crawler) did not retrieve all the tweets related to COVID-19
available for the period of 27 February 2020 to 28 August 2020. This was due to minor
technical issues encountered during that period. These issues related to the server that
runs the script and its up-time. Nevertheless, we gathered around 14k English tweets per
investigated day on a global scale.

SA methods have certain issues that may result in the poor validity of the polarization
process. We did not attempt to enhance the polarization process, but we addressed the overall
preprocessing. Therefore, the output of the sentiment polarization may be subject to disputes.
Our improvements focused on text preprocessing techniques as reported in Section 3.2.

The hypotheses generated and their validation process (Pearson correlations and
p-values) contain certain arbitrary concepts that cannot guarantee absolute result validity.
For example, for the p-value, we set the alpha value to 0.05, adopting the empirical cut-off
threshold typically used by the statistics community [36].

5. Conclusions

COVID-19 is a pandemic accompanied by increased traffic on SMs, offering great
opportunities for knowledge extraction. The text contained in COVID-19 posts can act
as a data source for reaching conclusions or finding correlations between the attitudes or
reactions of the masses. SA is a process that measures the negativity or positivity of posts,
enabling practitioners and researchers to take action by generating assertions regarding
worldwide events. For example, authorities can assess government efficacy and modify
communication techniques or policies by monitoring public attitudes. Positive attitudes
may suggest public conformity, while negative sentiments may indicate areas of concern.
Timely insights from this work enable prompt modifications, making public health more
agile, thus improving legislation, resource allocation, and public health responses.

COVID-19 has become a global health concern. Online, people contribute large
volumes of data about economic, social, political, and health concerns. They disseminate
information and generate attitudes on specific problems. Therefore, we are in great need of
effective tools that allow timely tracking and alerting of the public in case of worldwide
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healthcare events such as a pandemic. That way, we can mitigate or reduce losses in terms
of human lives and the impact on societies and the economy. This paper attempted to offer
such functionalities by validating trends on Twitter and correlating them with COVID-19.
It also produced new insights for timely disease outbreak prediction by monitoring and
evaluating multivariable correlations, such as sentiment polarity text from SMs with the
actual numbers of COVID-19 cases and deaths. Possible implications were discussed more
thoroughly in Section 4.2.

The key finding of this paper was that SMs’ users react to increased numbers of
COVID-19-related deaths after four days by posting tweets with fading polarization. The
negative trend in tweet sentiment polarity associated with COVID-19 deaths expanded
to 45 days, unlike that associated with COVID-19 cases, while the negative correlation
became even stronger (polarity dropped) after death numbers were published. The overall
polarity of 2,146,243 tweets for the period under scrutiny (27 February 2020 to 28 August
2020) had a negative trend. People have been posting less-positive/more-negative tweets
as the COVID-19 pandemic continues to spread.

Further findings included that tweets one day before or after were strongly negatively
correlated with COVID-19 cases on average, while tweets’ “after” correlation with COVID-
19 cases exhibited a slightly stronger negative correlation. New cases increased, while
polarity dropped, forming a negative trend. The strongest correlation between polarity
and new cases was for the same day, and the weakest correlation was 1 day after. Overall,
there was a strong correlation between COVID-19 tweet polarity with reported cases.
Also, tweets a day before or after were on average very weakly/weakly correlated with
COVID-19 deaths. Tweets’ “before” correlation with COVID-19 deaths exhibited a very
weak positive correlation, while tweets “after” showcased a weak negative correlation with
COVID-19 deaths. Overall, there was a weak correlation between COVID-19 tweet polarity
with reported new deaths.

The trends in the correlation between tweet polarity and COVID-19 cases/deaths
may be affected by public sentiment’s reflection of awareness and adherence to preventive
measures and health guidelines. A positive attitude may suggest compliance, lowering
cases/deaths. On the other hand, a negative attitude may indicate public concern and
increase reported cases/deaths. SMs’ disinformation may also affect public opinion and
behavior, affecting reported cases/deaths. These explanations require further investigation
and possibly socio-psychological factors for a more-thorough comprehension [37].

Future Work

This work envisioned the generation of a decision support system that takes into
consideration SMs’ data to decide about healthcare-/medical-related problems [38], such
as epidemics. It combined more than 30 different parameters like population characteristics
(gender, life expectancy, age distribution, and more), indexes (economic, medical, and
more), and healthcare dynamics like Intensive Care Units (ICUs), medical staff per capita,
and vaccination programs. In addition, it considered various government policies applied
(social distancing, lockdown, and more), interactions like tourism and air-travel connections,
isolation from other countries, and SA on COVID-19 data retrieved from Twitter, but also
from other SMs.

More specifically, the next steps of this work include:

1. Performing Association Rule Mining (ARM) on tweets to discover the most-referenced
topics/discussions and visualize the results.

2. Reproducing the flow of our methodology, applying localization and language filter-
ing on the input data (tweets), elevating the practical implications. Varying locations
and nations have different regulations regarding the COVID-19 pandemic. Con-
sequently, analyzing tweets from different regions, countries, and languages may
provide more-valuable findings.



Informatics 2023, 10, 88 16 of 18

3. Comparing the outputs of the current SA approach with contradicting outputs from
other sentiment analyzers, such as an approach utilizing Neo4j/graphs [39] and
SentiStrength [4], while also studying the magnitude of sentiment polarity over time.

4. Conducting forecasting analysis using an ensemble or a multivariate approach utilizing our
SM dataset for predicting the course of the virus’s spread in relation to tweets’ polarization.

Author Contributions: Conceptualization, P.K.; methodology, P.K. and D.R.; software, P.K. and D.R.;
validation, P.K. and C.T.; formal analysis, P.K.; investigation, P.K., D.R. and C.T.; resources, C.T.; data
curation, P.K.; writing—original draft preparation, P.K.; writing—review and editing, P.K., D.R. and
C.T.; visualization, P.K.; supervision, C.T.; project administration, C.T.; funding acquisition, C.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-SF)
through the Operational Programme “Human Resources Development, Education and Lifelong
Learning 2014-2020” in the context of the project “Support for International Actions of the Interna-
tional Hellenic University”, (MIS 5154651).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
authors. The data are not publicly available due to more research analyses being performed.

Conflicts of Interest: Researchers at the School of Science and Technology, International Hellenic University.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
ARM Association Rule Mining
HTML HyperText Markup Language
ICU Intensive Care Unit
NLP Natural Language Processing
RNN Recurrent Neural Network
SA Sentiment Analysis
SEIR Susceptible–Exposed–Infectious–Recovered
SMs Social Media
URL Uniform Resource Locator

References
1. Apuke, O.D.; Omar, B. Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users.

Telemat. Inform. 2021, 56, 101475. [CrossRef] [PubMed]
2. Twitter, Inc. Coronavirus: Staying Safe and Informed on Twitter. 2021. Available online: https://blog.twitter.com/en_us/topics/

company/2020/covid-19.html (accessed on 3 September 2023).
3. Pang, B.; Lee, L. Opinion Mining and Sentiment Analysis. Found. Trends® Inf. Retr. 2008, 2, 1–135. [CrossRef]
4. Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A. Sentiment in short strength detection informal text. J. Am. Soc. Inf.

Sci. Technol. 2010, 61, 2544–2558. [CrossRef]
5. Paltoglou, G.; Thelwall, M. A Study of Information Retrieval Weighting Schemes for Sentiment Analysis. In Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala Sweden, 11–16 July 2010; Association for
Computational Linguistics: Uppsala, Sweden, 2010; pp. 1386–1395.

6. Thelwall, M. Sentiment analysis and time series with Twitter. Twitter Soc. 2014, 89, 83–95 .
7. Kapoteli, E.; Koukaras, P.; Tjortjis, C. Social Media Sentiment Analysis Related to COVID-19 Vaccines: Case Studies in English

and Greek Language. In Proceedings of the Artificial Intelligence Applications and Innovations, Crete, Greece, 17–20 June
2022; Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022;
pp. 360–372. [CrossRef]

8. Karagkiozidou, M.; Koukaras, P.; Tjortjis, C. Sentiment Analysis on COVID-19 Twitter Data: A Sentiment Timeline.
In Proceedings of the Artificial Intelligence Applications and Innovations, Crete, Greece, 17–20 June 2022; Maglogiannis, I.,
Iliadis, L., Macintyre, J., Cortez, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 350–359. [CrossRef]

http://doi.org/10.1016/j.tele.2020.101475
http://www.ncbi.nlm.nih.gov/pubmed/34887612
https://blog.twitter.com/en_us/topics/company/2020/covid-19.html
https://blog.twitter.com/en_us/topics/company/2020/covid-19.html
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1002/asi.21416
http://dx.doi.org/10.1007/978-3-031-08337-2_30
http://dx.doi.org/10.1007/978-3-031-08337-2_29


Informatics 2023, 10, 88 17 of 18

9. Ramírez-Tinoco, F.J.; Alor-Hernández, G.; Sánchez-Cervantes, J.L.; Salas-Zárate, M.d.P.; Valencia-García, R. Use of Sentiment
Analysis Techniques in Healthcare Domain. In Current Trends in Semantic Web Technologies: Theory and Practice; Springer
International Publishing: Cham, Switzerland, 2019; pp. 189–212. [CrossRef]

10. Georgiou, D.; MacFarlane, A.; Russell-Rose, T. Extracting sentiment from healthcare survey data: An evaluation of sentiment
analysis tools. In Proceedings of the 2015 Science and Information Conference (SAI), London, UK, 28–30 July 2015; p. 352.
[CrossRef]

11. Batrinca, B.; Treleaven, P.C. Social media analytics: A survey of techniques, tools and platforms. AI Soc. 2015, 30, 89–116.
[CrossRef]

12. Koukaras, P.; Berberidis, C.; Tjortjis, C. A Semi-supervised Learning Approach for Complex Information Networks.
In Proceedings of the Intelligent Data Communication Technologies and Internet of Things, Tamil Nadu, India, 27–28 August
2021; Hemanth, J., Bestak, R., Chen, J.I.Z., Eds.; Springer: Singapore, 2021; pp. 1–13. [CrossRef]

13. McBride, O.; Murphy, J.; Shevlin, M.; Gibson-Miller, J.; Hartman, T.K.; Hyland, P.; Levita, L.; Mason, L.; Martinez, A.P.;
McKay, R.; et al. Monitoring the psychological, social, and economic impact of the COVID-19 pandemic in the population:
Context, design and conduct of the longitudinal COVID-19 psychological research consortium (C19PRC) study. Int. J. Methods
Psychiatr. Res. 2021, 30, e1861. [CrossRef]

14. Keshky, E.; Sayed, M.E.; Basyouni, S.S.; Sabban, A.M.A. Getting through COVID-19: The pandemic’s impact on the psychology of
sustainability, quality of life, and the global economy–A systematic review. Front. Psychol. 2020, 11, 585897. [CrossRef] [PubMed]

15. Balali, F.; Nouri, J.; Nasiri, A.; Zhao, T. Data Analytics. In Data Intensive Industrial Asset Management; Springer International
Publishing: Cham, Switzerland, 2020; pp. 105–113. [CrossRef]

16. Alamoodi, A.; Zaidan, B.; Al-Masawa, M.; Taresh, S.M.; Noman, S.; Ahmaro, I.Y.; Garfan, S.; Chen, J.; Ahmed, M.; Zaidan, A.; et al.
Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy. Comput. Biol. Med. 2021,
139, 104957. [CrossRef]

17. Schoen, H.; Gayo-Avello, D.; Metaxas, P.T.; Mustafaraj, E.; Strohmaier, M.; Gloor, P. The power of prediction with social media.
Internet Res. 2013, 23, 528–543. [CrossRef]

18. Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hai, M.; Shah, Z. Top concerns of tweeters during the COVID-19 pandemic: A
surveillance study. J. Med. Internet Res. 2020, 22, e19016. [CrossRef]

19. Kaur, M.; Verma, R.; Otoo, F.N.K. Emotions in leader’s crisis communication: Twitter sentiment analysis during COVID-19
outbreak. J. Hum. Behav. Soc. Environ. 2021, 31, 362–372. [CrossRef]

20. Barkur, G.; Vibha, G.B.K. Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: Evidence from India. Asian J.
Psychiatry 2020, 51, 102089. [CrossRef] [PubMed]

21. Park, H.W.; Park, S.; Chong, M. Conversations and medical news frames on twitter: Infodemiological study on covid-19 in south
korea. J. Med. Internet Res. 2020, 22, e18897. [CrossRef] [PubMed]

22. Cinelli, M.; Quattrociocchi, W.; Galeazzi, A.; Valensise, C.M.; Brugnoli, E.; Schmidt, A.L.; Zola, P.; Zollo, F.; Scala, A. The
COVID-19 social media infodemic. Sci. Rep. 2020, 10, 16598. [CrossRef] [PubMed]

23. Singh, L.; Bansal, S.; Bode, L.; Budak, C.; Chi, G.; Kawintiranon, K.; Padden, C.; Vanarsdall, R.; Vraga, E.; Wang, Y. A first look at
COVID-19 information and misinformation sharing on Twitter. arXiv 2020, arXiv:2003.13907.

24. Nemes, L.; Kiss, A. Social media sentiment analysis based on COVID-19. J. Inf. Telecommun. 2021, 5, 1–15. [CrossRef]
25. Lopez, C.E.; Vasu, M.; Gallemore, C. Understanding the perception of COVID-19 policies by mining a multilanguage Twitter

dataset. arXiv 2020, arXiv:2003.10359.
26. Samuel, J.; Ali, G.G.; Rahman, M.; Esawi, E.; Samuel, Y. Covid-19 public sentiment insights and machine learning for tweets

classification. Information 2020, 11, 314. [CrossRef]
27. Hamzah, F.B.; Lau, C.; Nazri, H.; Ligot, D.V.; Lee, G.; Tan, C.L.; Shaib, M.; Zaidon, U.H.B.; Abdullah, A.B.; Chung, M.H.

CoronaTracker: Worldwide COVID-19 outbreak data analysis and prediction. Bull. World Health Organ. 2020, 1.
28. Das, S.; Dutta, A. Characterizing public emotions and sentiments in COVID-19 environment: A case study of India. J. Hum.

Behav. Soc. Environ. 2021, 31, 154–167. [CrossRef]
29. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020. Available online: https://www.R-project.org/ (accessed on 4 October 2023).
30. Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Thomson Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1996.
31. Ioannidis, J.P.A. The proposal to lower p value thresholds to 0.005. JAMA 2018, 319, 1429–1430. [CrossRef] [PubMed]
32. Nickerson, R.S. Null hypothesis significance testing: A review of an old and continuing controversy. Psychol. Methods 2000, 5, 241.

[CrossRef] [PubMed]
33. Komaroff, E. Relationships between p-values and Pearson correlation coefficients, type 1 errors and effect size errors, under a

true null hypothesis. J. Stat. Theory Pract. 2020, 14, 49. [CrossRef]
34. Islam, M.S.; Sarkar, T.; Khan, S.H.; Kamal, A.H.M.; Hasan, S.M.M.; Kabir, A.; Yeasmin, D.; Islam, M.A.; Chowdhury, K.I.A.;

Anwar, K.S. COVID-19–related infodemic and its impact on public health: A global social media analysis. Am. J. Trop. Med. Hyg.
2020, 103, 1621. [CrossRef] [PubMed]

35. Guo, Q.; He, Z. Prediction of the confirmed cases and deaths of global COVID-19 using artificial intelligence. Environ. Sci. Pollut.
Res. 2021, 28, 11672–11682. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/978-3-030-06149-4_8
http://dx.doi.org/10.1109/SAI.2015.7237168
http://dx.doi.org/10.1007/s00146-014-0549-4
http://dx.doi.org/10.1007/978-981-15-9509-7_1
http://dx.doi.org/10.1002/mpr.1861
http://dx.doi.org/10.3389/fpsyg.2020.585897
http://www.ncbi.nlm.nih.gov/pubmed/33281683
http://dx.doi.org/10.1007/978-3-030-35930-0_7
http://dx.doi.org/10.1016/j.compbiomed.2021.104957
http://dx.doi.org/10.1108/IntR-06-2013-0115
http://dx.doi.org/10.2196/19016
http://dx.doi.org/10.1080/10911359.2020.1829239
http://dx.doi.org/10.1016/j.ajp.2020.102089
http://www.ncbi.nlm.nih.gov/pubmed/32305035
http://dx.doi.org/10.2196/18897
http://www.ncbi.nlm.nih.gov/pubmed/32325426
http://dx.doi.org/10.1038/s41598-020-73510-5
http://www.ncbi.nlm.nih.gov/pubmed/33024152
http://dx.doi.org/10.1080/24751839.2020.1790793
http://dx.doi.org/10.3390/info11060314
http://dx.doi.org/10.1080/10911359.2020.1781015
https://www.R-project.org/
http://dx.doi.org/10.1001/jama.2018.1536
http://www.ncbi.nlm.nih.gov/pubmed/29566133
http://dx.doi.org/10.1037/1082-989X.5.2.241
http://www.ncbi.nlm.nih.gov/pubmed/10937333
http://dx.doi.org/10.1007/s42519-020-00115-6
http://dx.doi.org/10.4269/ajtmh.20-0812
http://www.ncbi.nlm.nih.gov/pubmed/32783794
http://dx.doi.org/10.1007/s11356-020-11930-6
http://www.ncbi.nlm.nih.gov/pubmed/33415612


Informatics 2023, 10, 88 18 of 18

36. Kennedy-Shaffer, L. Before p < 0.05 to beyond p < 0.05: Using history to contextualize p-values and significance testing. Am. Stat.
2019, 73, 82–90. [CrossRef] [PubMed]

37. Oyanedel, J.C.; Espinosa, A.; Çakal, H.; Paez, D. Socio-psychological perspectives on collective behavior and social movements.
2023, 14, 1266567. [CrossRef]

38. Koukaras, P.; Rousidis, D.; Tjortjis, C. Forecasting and Prevention Mechanisms Using Social Media in Health Care; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 891, pp. 121–137. [CrossRef]

39. Yan, X.; Jian, F.; Sun, B. SAKG-BERT: Enabling Language Representation With Knowledge Graphs for Chinese Sentiment Analysis.
IEEE Access 2021, 9, 101695–101701. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/00031305.2018.1537891
http://www.ncbi.nlm.nih.gov/pubmed/31413381
http://dx.doi.org/10.3389/fpsyg.2023.1266567
http://dx.doi.org/10.1007/978-3-662-61114-2_8
http://dx.doi.org/10.1109/ACCESS.2021.3098180

	Introduction
	Background
	Research Design
	Dataset
	Preprocessing and Polarization Analysis
	Hypothesis Formation
	Statistical Analysis

	Results
	Discussion
	Implications
	Limitations

	Conclusions
	References

