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Abstract: Relation extraction from biological publications plays a pivotal role in accelerating scientific
discovery and advancing medical research. While vast amounts of this knowledge is stored within
the published literature, extracting it manually from this continually growing volume of documents is
becoming increasingly arduous. Recently, attention has been focused towards automatically extract-
ing such knowledge using pre-trained Large Language Models (LLM) and deep-learning algorithms
for automated relation extraction. However, the complex syntactic structure of biological sentences,
with nested entities and domain-specific terminology, and insufficient annotated training corpora,
poses major challenges in accurately capturing entity relationships from the unstructured data. To
address these issues, in this paper, we propose a Knowledge-based Intelligent Text Simplification
(KITS) approach focused on the accurate extraction of biological relations. KITS is able to precisely
and accurately capture the relational context among various binary relations within the sentence,
alongside preventing any potential changes in meaning for those sentences being simplified by KITS.
The experiments show that the proposed technique, using well-known performance metrics, resulted
in a 21% increase in precision, with only 25% of sentences simplified in the Learning Language in
Logic (LLL) dataset. Combining the proposed method with BioBERT, the popular pre-trained LLM
was able to outperform other state-of-the-art methods.

Keywords: sentence simplification; named entity recognition; relation extraction; BioBERT; BERN2

1. Introduction

Biological relationships refer to the connections, interactions, or associations between
different biological entities within living organisms or in biological systems [1,2]. These
biological relationships are crucial for understanding the complexity of living organisms
and their interactions with the environment. In recent times, the discovery of biological re-
lationships has progressed significantly due to advancements in cutting-edge technologies,
such as high-throughput sequencing, advanced imaging techniques, and computational
tools, and these findings are published in research papers [3–5]. The observed biological
interactions buried in the published literature hold significant value, contributing to drug
discovery, treatment development, and the comprehension of disease progression. With the
explosive growth in the published literature in the biological domain, biological relation
extraction (RE) is becoming increasingly challenging. Figure 1 depicts the exponential
growth in the published literature related to gene regulation [6,7]. Despite the significant
progress in Natural Language Processing (NLP), manual extraction remains the primary
method for RE in most public repositories [8]. While the approach produces high accuracy
and precision, the time-consuming nature of manual curation acts as a hindrance to scala-
bility and efficiency. Given the exponential growth in the literature, keeping up with new
discoveries can be challenging and may lead to delays in implementing applications.
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Despite the substantial efforts devoted to implementing machine- and deep-learning
NLP techniques in biological RE, the accuracies of existing approaches continue to be
relatively low [9]. Community challenges and workshops in information extraction and
related fields serve as collaborative platforms for researchers from diverse backgrounds
to address shared problems and benchmark state-of-the-art methods. The BioCreative VI
ChemProt challenge [10], held in 2017, comprised two tasks: the extraction of relational
pairs and the identification of interaction types, such as inhibition, binding, or induction
associations. Peng et al. emerged with the top-performing method in the BioCreative
VI ChemProt challenge, utilising an ensemble model that incorporated various machine-
learning algorithms, including support vector machines and deep-learning models [11].
Despite employing machine learning and deep-learning architectures, the ensemble method
produced subpar results, with a precision of 0.7266 and a recall of 0.5735, resulting in an
F-score of 0.6410. Their paper emphasised that the proposed ensemble method encountered
challenges in relation extraction, particularly with longer sentences in which the distance
between entities was substantial.

Several factors exist which limit the performance of RE methodologies in the context
of biological text. These include, for example, the use of domain-specific terminology, the
structural complexity of biological sentences, the limited availability of annotated data, and
the model’s lack of domain-specific knowledge and biological context [9,12,13]. Among the
factors, complex sentence structure poses a significant challenge in RE because the biological
literature frequently features complex sentence structures, including nested clauses and
long sentences [14,15]. Figure 2 depicts the distribution of the length of sentences (the
number of words in each sentence) for the LLL dataset [16]. The length of the longest
sentence in the LLL dataset is 89 words containing six phrases and 10 gene/protein entities,
some of which may be repeated. The presence of multiple entities and phrases affects the
ability of a model to accurately predict true regulatory interactions. Further, the presence of
highly specialised and domain-specific terms that may not be well represented in general
language models further amplifies the challenge in extracting biological relationships
accurately [9,17,18].
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The limitations of relation classification highlighted above, caused by the structural
complexity of biological text, can be alleviated by simplifying complex sentences, ensuring
that no information content is lost. Early attempts to simplify sentences used syntax and
part-of-speech tags such as nouns and verbs [19,20]. Bach et al. treated sentence simpli-
fication for relation extraction as a statistical problem [21]. These authors divided a full
sentence into a set of all possible simpler sentences and used a probability distribution score
to select the set that preserved the most information from the original sentence. Hakenberg
et al. proposed paraphrasing sentences by eliminating unwanted filler words and simplify-
ing the syntax of the sentence [22]. Syntactic simplification can be relatively ineffective in
the biological domain, due to complicated nature of sentence formation, named entities,
and relation descriptions. Moreover, such sentence reduction techniques can even alter
the complete meaning of a sentence. Miao et al. proposed a methodology that relied on
a prior knowledge base to extract relevant noun and verb entities to generate a simpler
sentence formation [23]. This method relies heavily on the availability of an up-to-date
knowledge repository, and is challenging due to a significant increase in newly discovered
entities and their interactions. Recent attempts at medical sentence simplification have used
trained model-based systems [24]. These efforts also focus on abstract-level paraphrasing.
Devraj et al. retrieved review articles from online databases to produce a simplified sum-
mary of technical abstracts and used the extracted data to train an encoder-decoder model
for text summarisation [25]. Wang et al. attempted to train a recurrent neural network
encoder-decoder model to perform neural machine translation [26]. Although both the
statistical and neural network models possess considerable potential for biological text
simplification and summarisation, the lack of availability of training corpora continues
to pose a challenge for these approaches. Related to biological text simplification, studies
have been conducted in relation to the usefulness of dependency parsing [27–29]. Junagadh
et al. proposed bioSimplify, a method that uses dependency-relation classification among
nodes to identify noun phrases in a sentence and normalise named entities appearing in
a text [20]. After named entity normalisation, bioSimplify attempts to further reduce the
structural complexity by splitting sentences by commas to identify independent clauses.
The method can lose important biological entity relational context by consuming interaction
definitions embedded in noun phrases. For example, the noun phrase “Spo0A-dependent
spoIIG operon promoter” when replaced with the entity tag GENE1 loses the information
about the causal relation between entities Spo0A and spollG. Percha et al. attempted a
biological entity relation extraction using a Stanford dependency parser for capturing nodes
appearing in a dependency path between two entities in a text [30]. Such simplification, by
ignoring relevant nodes that do not appear in the shortest dependency path between the
entities, may alter the meaning of the sentence due to the loss of relevant information. Also,
solely relying on a parser dependency node selection process for accurate relation extraction
is insufficient because it lacks the semantic and contextual understanding needed to handle
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ambiguities and complex relations in text. The use of robust large language models (LLMs)
combined with dependency parsing for sentence simplification has the potential to improve
the accuracy of relation extraction, particularly in complex domains like biology.

In this work, we deploy transformer-based parser dependency mapping to produce
biological sentence simplification for improved relation extraction and minimum loss
of information. We propose a novel Knowledge-based Intelligent Text Simplification
(KITS) method that performs informed detection of segments within a sentence relevant
to the relation under examination and evaluates the simplified sentence to ensure the
preservation of its original meaning. KITS distinguishes itself not merely by utilising parser
dependency graphs but by innovatively employing them for sentence simplification. In
contrast to conventional methods where text simplification occurs as a pre-processing step
before named entity recognition, our approach harnesses named entity recognition prior
to the simplification process. Additionally, for dependency parsing, we leverage spaCy’s
advanced transformer-based parser, introduced in 2020, capitalizing on the benefits offered
by transformers. Unlike most approaches that rely solely on the shortest dependency
path between entities for text simplification, our method takes a different approach by
considering both the parent and child nodes of the entity. Visually, this means not only
accounting for the shortest dependency path between entities, composed of their respective
parent nodes, but also including the neighbouring dependent nodes. Depending solely
on the shortest dependency path proves inadequate in addressing the intricacies of text
simplification, particularly in a biological context. By incorporating both parent and
child nodes of entities, our method enhances the ability to precisely capture the relational
context of entity interactions. Additionally, certain methods have employed the shortest
dependency paths for relation extraction [30]. However, dependency parsing, while offering
insights into word relationships, may fall short in relation extraction due to its inherent
lack of semantic understanding. Our proposed KITS implementation improves relation
prediction by integrating sophisticated relation classifier models. To our knowledge, the
majority of biological text simplification methods have not incorporated an assessment
of potential information loss resulting from the removal of significant portions of content.
These approaches have typically been applied uniformly to all sentences for simplification,
rather than employing a selective approach. KITS conducts a selective text simplification
using a controlling function using the positional distance between each entity’s simplified
sequential set of words to identify the reliability of simplified text.

The proposed method was used in conjunction with a Decision Tree Sequence (DTC)
classification model and with a BioBERT model for experimentation. Experiments with
the DTC produced a 14% improvement in precision, with only 42% of sentences simpli-
fied, compared to relation classification using full sentences. With BioBERT, our proposed
approach reported F-scores of 87.67% and 88.67% using the benchmark gene/protein in-
teraction corpora LLL [16] and HPRD50 [31]. This approach consistently demonstrates
improvements in the accuracy of relation extraction models across various datasets and
models. Our proposed method can be extended to other domains with similar text char-
acteristics, such as the presence of complex terminologies, structural intricacies, lengthy
sentences, and ambiguous relational contexts.

The remainder of the paper is organised as follows: Section 2 gives a brief description
of dependency parsing and relation extraction. Section 3 details our proposed contributions.
Section 4 discusses the experiments and results. Finally, Section 5 presents the conclusion
and future directions.

2. Preliminaries
2.1. Relation Extraction

In general, a relation between two entities can be lexical, negation, coreference, or
semantic [32]. Biological relation extraction algorithms attempt to accurately identify
semantic relationships among various entities [17]. The simplest form of relation extraction
(RE) is defined as R:= r(e1, e2, e3. . ., en) where r is the relation classification among n entities
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(ei). The nested form of RE, a more complicated form, is defined as R:= r(s1, s2, s3. . ., sn),
where r is the relation type and s can be either a simple form or a nested form of RE. While
a binary relation between two biological entities deploys a binary classification to predict
their semantic relationship, the multiclass relation estimates a semantic interaction and
classifies its type [33]. For example, an interaction between two gene/protein entities can
be either inhibitory or activatory. As shown in Figure 3 below, the simplest biological RE
is a three-step process including (i) pre-processing; (ii) entity tagging; and (iii) relation
extraction [34–36]. In the initial stage, pre-processing techniques are employed to refine
the extensive biological corpus. This involves selecting and formatting the literature pieces
relevant to the domain of study. Next, a Named Entity Recognition (NER) model scans the
pre-processed set of biological sentences, diligently identifying named entities of interest.
For example, in the sentence “AccB functions to negatively regulate transcription of the
accBC operon”, the NER model recognises AccB and accBC as gene/protein entities. These
identified entities are replaced and labelled with placeholders like “GENE1” and “GENE2”
for the purpose of anonymisation or to generalise the entities during analysis. These
replacement labels ensure the focus is on the relationship between entities. After labelling
the identified entities, the next step in the relation extraction process is relation classification.
Relation classification involves determining the specific type or category of relationship
that exists between the labelled entities. This step typically employs machine-learning
models or rule-based systems to assign a relationship label to the pair of entities, indicating
the nature of their interaction or connection within the context of the text. the relation
classification step would determine whether they are related through a specific biological
relationship, such as regulates, interacts with, inhibits, or encodes.
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For this work, RE is accomplished using two well-known NLP relation classification
models: the Decision Tree Classifier (DTC) and Bidirectional Encoder Representations
from Transformers for Biomedical Text Mining (BioBERT). The Decision Tree Classifier, a
supervised machine-learning technique, is well studied in the field of biological relation
extraction. DTCs are straightforward, efficient, and easy to implement [37]. They exhibit
robust performance in scenarios with sparse data and demonstrate resilience against over-
fitting on small datasets. However, the current limitation of DTCs lies in handling the
complexity of relations, particularly in biomedical terms. BioBERT, built upon BERT’s
transformer architecture with a focus on biomedical and clinical text processing, has gained
widespread popularity in the field of biological relation extraction [38]. However, BioBERT
faces challenges not only in dealing with the intricate structural nature of biomedical rela-
tions but also the associated computational burden. For NER, we used a pre-trained trans-
former model, Advanced Biological Entity Recognition and Normalisation (BERN2) [39].
BERN2 supports NER and Named Entity Normalisation (NEN) by deploying a single
multi-task pre-trained model to identify nine biological entities including species, genes
and proteins, DNA, diseases, and chemicals. BERN2 reported an F-score of 83.7 when
identifying gene/protein entities from the BC2GM dataset [38].
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2.2. Dependency Parsing

A parsing dependency tree (z) represents the syntactic dependencies, such as subjects,
objects, roots and modifiers, of words in an input sequence sentence x of length n, i.e.,
x = {x1, x2, x3, . . .. . ., in} where xi is the ith word in the sequence [40]. A dependency tree
comprises directed edges and nodes (Figure 4). The nodes represent words and the edges
represent grammatical dependencies among the words. An edge is directed from a parent
node (also known as a head or controlling word) to a child (or dependent) node. Extensive
research has been conducted into parsing techniques and their usefulness [41]. Recent
advancements in data-driven machine- and deep-learning methods have increased interest
in research into grammatical dependency.
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Figure 4. Parser dependency tree representation of a sentence using spaCy’s pretrained linguistic
model: en_core_web_trf. nsubj: nominal subject, asvmod: adverbial modifier, dobj: direct object,
prep: prepositional modifier; pobj: object of preposition; PROPN: proper noun, ADV: adverb,
ADP: adposition.

Several libraries and tools are available to facilitate parsing dependencies, includ-
ing spaCy, Natural Language Toolkit (NLTK) [42] and Stanford CoreNLP [43]. Stanford
CoreNLP offers a comprehensive and robust combination of rule-based and statistical
NLP modelling pipelines used for a range of biological text dependency parsing tasks [44].
spaCy offers an efficient, easy to use, pre-trained, and customizable NLP pipeline, and is
widely used for dependency parsing [45].

spaCy is an NLP library in Python that provides efficient tools for various tasks,
including dependency parsing. Among the array of pre-trained models in spaCy dedicated
to dependency parsing, en_core_web_trf stands out. This particular model adopts a
transformer-based approach, leveraging the BERT architecture to enhance its understanding
of English. The introduction of the transformer-based pipeline in spaCy v3.0 marked
a significant advancement, resulting in a 3% increase in overall accuracy compared to
its non-transformer counterpart, en_core_web_lg [46]. The parser pipeline achieved an
accuracy of 95.1% on the OntoNotes 5.0 corpus. The en_core_web_trf dependency parsing
pipeline has found application in various research studies for the initial reduction in
irrelevant information [47–49]. This utilisation helped to reduce the model’s processing
time when dealing with extensive datasets and is concurrently leading to improvements in
overall accuracies. Hence, harnessing the capability to handle complex linguistic structures
afforded by a transformer serving as the foundation of the pipeline, and considering its
successful applications for tasks in other domains, we utilised spaCy’s en_core_web_trf
parser dependency pipeline in this study.

3. Materials and Methods

In this section, we describe the processes carried out for the proposed biological
relation extraction using an informed sentence simplification technique and its inherent
self-evaluation in detail. Unlike many existing information extraction algorithms that
simplify sentences as part of a pre-processing step (Figure 3), KITS integrates sentence
simplification directly with NER outputs. This integration allows for a more targeted and
contextually relevant simplification, as it considers the specific entities and relationships
being analysed. One of the key distinctions of KITS in the realm of relation extraction and
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text simplification is its incorporation of self-evaluation. Unlike many traditional methods
that focus solely on simplifying sentences or extracting relations, KITS goes a step further
by systematically assessing the quality of the simplified sentences, improving the reliability
and accuracy of biological relation extraction.

As depicted by Figure 5, KITS includes three processes: (i) NER, (ii) sentence simpli-
fication, and the (iii) controlling function-based evaluation of simplified sentences. KITS
uses labelled entities to select dependency nodes, constructing the simplified sentence to
precisely represent the contextual relationship between these labelled entities within the
sentence. Therefore, each simplified sentence varies depending on the specific labelled
entity. The controlling evaluation of simplified sentences represents the potential deviation
in meaning from the original sentence, with a higher value suggesting a greater likelihood
of meaning change. Simplified sentences with evaluated values exceeding a predefined
threshold are rejected, and the original sentence is retained for relation extraction instead.
The different processes involved in KITS are discussed in following section.
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selection using controlling function evaluation. The red ‘x’ represents the rejected simplified sentence.

3.1. Named Entity Recognition (NER)

The proposed framework starts with tagging gene/protein pairs in sentences. As we
are using BERN2, its NEN and NER capability identifies not only a single-word entity but
also a group of words that are directly related to the named entity. For instance, consider
the following sentence:

“A protein initially called Hst23 was identified as a product of the yvyD gene of
Bacillus subtilis”

Here, instead of identifying yvyD as the gene/protein entity, BERN2 will suggest
the phrase “yvyD gene of Bacillus subtilis” as the named entity. Applying normalisation
ability of BERN2, we are able to reduce structural complexity without compromising the
lexical integrity of the sentence. To represent the agent and target units, we replace the
NER-identified entities (either single words or phrases) with replacement labels GENE1
and GENE2. Once the tagging of the set of sentences with all entities is completed, the
independent clauses present in a sentence are identified. The sentences are split by a
semicolon (;) which connects the related but independent clauses without a conjugational
relation in a sentence. In such sentences, entities involved in a causal relationship are
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unlikely to appear in separate independent clauses. It may be noted that prior to sentence
simplification, the set of entity-tagged sentences are pre-processed to identify sentences
containing independent clauses. We consider clauses containing both tagged entities as the
simplified version of the sentence. If the entities appear in separate independent clauses
in a sentence, we assume that these are unlikely to dictate a functional link, and thus
they are eliminated from further processing. As the pre-processing removes noisy data, it
will thereby contribute to improving model accuracy. The NER procedure is presented in
Algorithm A1 in Appendix A.

3.2. Text Simplification

To simplify the text without information loss, we leverage the spaCy’s pre-trained
English pipeline en_core_web_trf parser to exploit the importance of directly related parent
and child nodes present in the dependency parser tree. Parent nodes directly related to
child nodes are important for understanding the lexical significance of a child word in
a sentence. To extract all controlling and dependent words relevant to tagged entities,
and thus to accurately capture their causal interactions, we identify the parent nodes that
contain a tagged entity as their dependent child. After isolating the nodes that are directly
related to tagged entity words, the identified parent and child nodes are arranged as per
their position in the full sentence sequence. This selected and sequentially arranged set of
words is now the simplified version of the original complex sentence.

An example of our node selection process controlling entities in a sentence is given in
Figure 6. The method simplified the sentence “Transcription of GENE2 was dependent on
GENE1, and the mRNA was detectable from 2 h after the cessation of logarithmic growth
(T2 of sporulation)” to “Transcription of GENE2 was dependent on GENE1”, accurately
capturing the functional link between the entities without losing relevant information.
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Figure 6. Text simplification process using a dependency parser tree illustrating the selection of
nodes based on the labelled entities. The selection path for proposed text simplification is highlighted
in red.

Another prominent issue to be considered is that the essential and non-essential ele-
ments of a sentence depend on the entities and relationships we wish to extract. A long
sentence involving multiple entities may contain multiple interactions. The proposed
technique is dependent on the positioning of the tagged entity. This awareness of posi-
tioning allows text simplification to capture the interaction context precisely. An example
of text simplification of the same sentence with multiple entity pairs is given in Figure 7.
The sentence “Both SigK and GerE were essential for ykvP expression, and this gene was
transcribed from T5 of sporulation” has three gene entities: GerE, ykvP, and SigK. Of the
three variations of the sentence with labelled entities given in Figure 7, labelled entities
in sentence (i) and (ii) indicate a casual relation between GENE1 and GENE2, whereas
sentence (iii) does not indicate a regulatory relation.
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The parser dependency parent and dependent node selection method to simplify
biological sentences was able to capture the functional interaction between GENE1 and
GENE2 in sentences (i) and (ii). It was also able to capture the conjunction/compound
relation between GENE 1 and GENE2 in sentence (iii). The text simplification procedure is
presented in Algorithm A2 in Appendix A.

3.3. The Controlling Function for Simplified Sentences

As depicted in Figure 7, the simplified text more accurately represents meaningful rela-
tionships between entities when such relationships exist in the original sentence (Sentences
(i) and (ii)). However, in the absence of any relationship between entities, the simplified
sentence is not meaningful (Sentence (iii)). This is mainly attributed to the emphasis on
capturing dependent and causal relations, which are non-existent in cases where there is
no such relationship. This phenomenon is effective for the relationship classification model,
facilitating the identification of patterns in non-meaningful sentences and the absence of
relationships. However, when dealing with longer sentences in which entities are widely
separated without a direct relationship, the simplification of such complex sentences can
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inadvertently alter the meaning. This alteration occurs because the technique may simplify
the sentence into a phrase that conveys a relationship due to the omission of relevant nodes.
To mitigate this effect, we introduce a controlling function that considers the potential
omission of vital information from the sentence, which could lead to modifications. The
controlling function ( f ) between entities GENE1 and GENE2 (represented by e1 and e2), is
calculated as follows:

fe1e2 =
∣∣∣ile1
− i fe2

∣∣∣ (1)

where i is the index position of the word in the original sentence, le1 is the last word
of selected nodes that are related to e1 (GENE1), and fe2 is the first word of selected
nodes that are related to e2 (GENE2) and fe1e2 represents the distance between the two
independent phrases comprising the selected nodes for each entity. As illustrated in
Figure 8, the simplification of the sentence “A low concentration of GerE activated cotB
transcription by final GENE1 RNA polymerase, whereas a higher concentration was needed
to activate transcription of cotX or GENE2” results in the simplified form “activated
transcription by GENE1 polymerase needed activate transcription of cotX GENE2”. This
simplification erroneously suggests a functional or dependent relationship between the
activated transcription action of GENE1 and the active transcription of GENE2. In reality,
the original sentence indicates no direct relationship between GENE1 and GENE2. The
simplification technique, in cases where there is no direct relationship, may miss important
nodes and generate sentences that imply a relationship that does not exist.
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Figure 8. (i) Illustrates the chosen parents/dependent nodes for each entity (GENE1 and GENE2) for
text simplification using the proposed method in red (there were no entity-dependent nodes for the
sentence). (ii) Provides the simplified version of the sentence, emphasising the two distinct phrases
created from the selected nodes related to GENE1 and GENE2, represented as Phrase1 and Phrase2;
and (iii) indicates the index position of each selected node in each phrase as per the original sentence,
including the indexes representing ile1

and i fe2
in Equation (1).

Simplified text with an f value above a threshold (t∅) is more likely to alter the context
of the interaction. Thus, we reject the simplified sentences with f > t∅. The controlling
function evaluation procedure for simplified sentences is presented in Algorithm A3 in
Appendix A.

KITS allows the parser dependency entity-controlling nodes to simplify complex
biological sentences. The post-NER simplification technique attempts to accurately capture
the precise regulatory interactions between tagged entities for sentences with multiple
causal links. The simplified sentences can improve the prediction accuracy of the relation
classification model. The experiments and results of relation extraction from established
PPI corpora using the proposed method are discussed in the following section.
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4. Experiments and Results
4.1. Datasets

For the experimentation, we used three well-known gene/protein interaction bench-
mark corpora: LLL [16], HPRD50 [31] and BioInfer [50], with their special features given
in Table 1. The dataset LLL contained Bacillus subtilis gene interactions made publicly
available during the Learning Language in Logic 2005 challenge. The dataset HPRD50
was created from 50 Human Protein Reference Database (HPRD)-referenced abstracts. The
BioInfer corpus, which is the largest of the four, was created from abstracts referenced by
the Database of Interacting Proteins as containing at least one interacting protein pair. As
BioInfer is highly imbalanced, we selected 1000 positive and 1500 negative sentences for
training and the rest for validation.

Table 1. Characteristics of the PPI datasets.

Dataset Positive Negative Unique Sentences

BioInfer 2534 7132 1100
HPRD50 163 270 145

LLL 164 166 77

4.2. Experimental Setup

Three well known performance metrics were used for model comparison: recall (R)
and specificity (Sp) measure the rate of true positives and true negatives, respectively,
whereas precision (P) defines the accuracy of the model for the prediction of true posi-
tives. The F-score (F) is commonly used to measure the overall model accuracy, balancing
uneven distributions.

The sentences unique to each of the three corpora provided in Table 1 were subjected
to named entity recognition (NER) using BERN2, utilising the RESTful API web inter-
face accessible at http://bern2.korea.ac.kr/ (accessed on 2 October 2023). Dependency
parsing was performed using the transformer-based parser en_core_web_trf, which is
part of spaCy’s pipelines. The input data for both dependency parsing and the relation
classification model consists of sequences (sentences) in their original and simplified forms,
respectively. These sequences contain generic labelled entities, emphasising the entity pair
under consideration.

To assess the impact of the proposed text simplification technique on enhancing
relation extraction accuracy, we conducted experiments using two distinct models: (i) a
straightforward, computationally lighter, and easily understandable Decision Tree Classifier
(DTC), and (ii) a complex, sophisticated, pretrained, and computationally expensive model,
BioBERT. For the experiment with DTC, tokenisation and classification were performed
using the Scikit-learn’s countVectorizer and DecisionTreeClassifier packages in Python. For
the experiment with BioBERT, we deployed the relation classification model in Google
Notebook with a Pytorch framework. The pretrained BioBERT model biobert_v1.1_pubmed
with 768 dimensions of embedding vectors had the maximum token length to 128. For
optimisation, we used the BertAdam optimiser with settings of 2 × 10−5 for learning rate,
0.1 as the warmup rate and learning rate decay (weight decay rate) set to 0.01. The model
ran for 10 epochs with a batch size of 8. To evaluate the influence of the proposed KITS on
the relation extraction methods, we selected classic baseline models incorporating parser
dependency in their techniques for comparison using 10-fold validation with the KFold
library from Scikit-learn, a widely used technique in machine learning for evaluating a
model’s performance and generalisation ability. The chosen machine-learning methods for
assessing KITS performance with DTC included the following.

ASM (Approximate Subgraph Matching) and APG (All Path Graph kernel) as studied
by Panyam et al. [51], explore various graph kernels in conjunction with parser dependency
for enhanced biomedical relation extraction.

http://bern2.korea.ac.kr/
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PIPE, introduced by Zhang et al. [52], is a module that extracts protein–protein interac-
tion passages using an Interaction Pattern Generation structure to capture comprehensive
information, involving pruning sentences through middle clause removal with parser
dependency paths.

The selected neural network methods for assessing KITS performance with BioBERT
included the following.

DNN [53], proposed by Zhao et al., is a protein–protein interaction extraction method
utilising a deep neural network with greedy layer-wise unsupervised learning for pa-
rameter initialisation, enabling the model to learn intricate features from unlabelled data,
thereby improving performance and considering the shortest path between entities during
feature extraction.

Zhang et al. presented RNN + CNN [54], a hybrid model for biomedical relation
extraction, combining Recurrent Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs) to learn features from sentence and dependency sequences, and utilising
the shortest dependency path (SDP) to detect and extract biomedical relations.

Ahmed et al.’s “iLSTM + Attn” model [55] is an approach for identifying protein–protein
interactions that employs Structured Attention and LSTM to independently generate
dependency structure information, learning the structure through the model without direct
access to the actual dependency tree.

PIPE has been included in the results’ comparison with the KITS+BioBERT evaluation
due to its high recall score for the HPRD50 dataset.

4.3. The Experiment to Determine Threshold Value ( t∅)
To obtain most suitable value for the controlling evaluations threshold t∅, we con-

ducted several experiments with different values of t∅. Table 2 presents experimental results
with the LLL, HPRD50, and BioInfer datasets, exploring the impact of the threshold value
(t∅) on the performance of the relation extraction model using 10-fold cross-validation.

Table 2. Tenfold cross-validation results using a Decision Tree classifier (DTC) (in %) on 3 PPI corpora.
P: Precision, F: F-score and KITS: Knowledge-based Intelligent Text Simplification. Best results are
highlighted in bold.

Dataset LLL HPRD50 BioInfer

Model DTC BioBERT DTC BioBERT DTC BioBERT

Threshold P F P F P F P F P F P F

t∅ = 2 68.23 61.35 79.34 78.88 - - - - - - - -
t∅ = 3 75.57 76.23 81.23 82.43 - - - - - - - -
t∅ = 4 79.89 72.45 84.56 83.24 57.27 54.51 72.41 72.35 74.23 61.32 78.76 65.78
t∅ = 5 82.96 79.87 86.37 87.67 64.76 68.11 86.28 88.02 76.10 65.98 77.65 73.16
t∅ = 6 81.21 76.45 85.67 86.21 64.76 68.11 84.54 87.21 78.23 63.04 71.54 72.42
t∅ = 7 72.34 68.11 79.96 81.31 - - - - - - - -
t∅ = 8 67.45 64.98 75.43 74.56 - - - - - - - -

LLL, the smallest dataset with only 77 sentences, was chosen for a thorough investiga-
tion of threshold values. The optimal threshold value identified in LLL was then validated
in the larger datasets, HPRD50 and BioInfer. The model achieved its maximum f-score
at t∅= 5 for all datasets, where the performance of threshold value 5 exhibited greater
consistency than other values. The setting t∅ = 5 was chosen as it produced the best results.

4.4. Results

Among the 77 sentences in the LLL dataset, 3 sentences contained phrases separated
by semicolons. The first sentence had 21 relationships between two phrases, the second
sentence had 36 relationships among five phrases, and the third sentence had 1 relationship
with two phrases, a total of 58 relationships across the three sentences. We split these sen-
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tences by semicolons and treated them as individual sentences for relation extraction. This
splitting reduced the relationship count to 16, eliminating 42 relations in which the entities
were not present in the same phrase. This step not only reduced the number of sentences
for relation extraction but also eliminated false positives. All 42 eliminated relations were
true negatives. In the HPRD50 dataset, there was only one sentence with two phrases sepa-
rated by a semicolon and one relationship, which was present in one phrase. The phrase
not containing either of the two entities was eliminated. BioInfer contained 30 sentences
with phrases separated by semicolons, containing 222 interactions. The largest sentences
included seven phrases and 13 relationships. Upon splitting, the relationship count was
reduced to 88, eliminating 134 relationships as entities were placed in separate phrases.
Of these 134 eliminated relationships, 8 were false negatives. Our method, designed to
identify relationships where entities are situated in separate phrases separated by semi-
colons, demonstrated an accuracy of 95.48% in identifying true negatives. The remaining
relationships and their corresponding sentences underwent further processing for text
simplification and relation extraction.

Table 3 shows the overall performance of our model on the three PPI corpora compared
to various baseline RE methods that employ statistical and machine-learning techniques,
with and without sentence simplification, in terms of recall, precision, and F-score using
a Decision Tree Classifier. While our decision classifier model on its own could not show
major improvement compared to the previous statistical and machine-learning approaches,
KITS, when combined with the Decision Tree Classifier, exhibited a significantly improved
prediction accuracy. The use of the Decision Tree with our text simplification method
(Ssim) produced a 20.95%, 13.47%, and 9.9% increase in precision for LLL, HPRD50 and
BioInfer, respectively.

Table 3. Tenfold cross-validation results using Decision Tree Classifier (DTC) (in %) on 3 PPI corpora.
P: Precision, R: Recall, F: F-score and KITS: Knowledge-based Intelligent Text Simplification. Best
results are highlighted in bold.

Dataset BioInfer HPRD50 LLL

Method P R F P R F P R F

ASM 67.20 22.60 33.80 66.00 58.30 61.90 79.3 28.00 41.4
APG 68.60 28.60 40.40 62.30 69.90 65.90 84.70 57.30 68.30
PIPE 57.60 59.90 58.70 62.50 83.30 71.40 73.20 89.60 80.60

DTC (w/o KITS) 66.20 62.01 64.25 50.77 64.24 59.35 62.01 66.76 64.30
DTC (w KITS) 76.10 64.96 65.98 64.76 78.13 68.11 82.96 76.74 79.87

This method surpassed other machine-learning approaches on BioInfer, the largest
dataset among the three, showcasing the model’s capacity to effectively manage larger
and more diverse datasets. This underscores the model’s robustness and generalisability,
affirming its suitability for tasks involving extensive and varied data. While PIPE exhibited
higher F-score and recall, it fell short in precision compared to our model. The combination
of a high F-score and recall with a low precision is often linked to low specificity. In
biological relation extraction, where non-relations constitute the dominant class, accurately
identifying the absence of interactions is crucial. Our model demonstrates this ability, as
evidenced by its improved performance on the larger and imbalanced BioInfer dataset.
These experiments show that the proposed KITS, used with a Decision Tree model, has
a performance comparable to the advanced and more complex existing state-of-the-art
RE techniques.

The performance of the method using a fine-tuned BioBERT sequence classifier in
contrast to several baseline RE methods that leverage deep-learning techniques, for both
with and without the proposed sentence simplification, is given in Table 4. The results
from our simplified set of sentences produced a substantial improvement in classification
performance compared to using the original full sentences. We note that the BioBERT’s prior
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training within the biological context makes it a more accurate model for biological relation
extraction compared to a Decision Tree Classifier. However, there may be a possibility
that sentences with complex terminology and multiple entities can shift the focus from the
tagged entities, affecting BioBERT’s ability to correctly capture the interactional context
solely related to the entities in question. With only 25% of full sentences simplified for
LLL, BioBERT achieved a 15.57% increase in precision and a 6.93% increase in recall.
We compared our results with previous deep-machine-learning methods. The proposed
simplification method with BioBERT outperformed existing state-of-the-art approaches
in RE precision and F-score. The interactive pattern generation module PIPE achieved a
high recall score with HPRD50. However, PIPE’s low precision score indicates a high false
positive rate, thereby impairing its overall prediction ability. Our method has a higher
precision and F-score, indicating our model’s ability to capture most of the actual positive
instances, minimizing false negatives. For BioInfer, we recorded a recall score of 85.66, a
13% improvement over DNN. On all three datasets, the difference in precision and recall of
BioInfer is apparent. This difference can be attributed to almost three-times the number
of negative classifications as compared to the number of positive sentences. BioInfer was
the largest and most unbalanced dataset of the three PPI datasets under consideration, and
therefore most methods struggled to achieve high accuracies with this dataset.

Table 4. Tenfold cross-validation results using BioBERT (in %) on 3 PPI corpora. P: Precision, R: Recall,
F: F-score and KITS: Knowledge-based Intelligent Text Simplification. Best results are highlighted
in bold.

Dataset BioInfer HPRD50 LLL

Method P R F P R F P R F

PIPE 57.60 59.90 58.70 62.50 83.30 71.40 73.20 89.60 80.60
DNN 53.90 72.90 61.60 58.70 92.40 71.30 76.00 91.00 81.40

RNN + CNN 56.70 67.30 61.30 69.60 82.70 75.10 72.50 87.20 76.50
iLSTM + tAttn 61.80 54.20 57.60 78.60 78.70 78.50 84.80 84.30 84.20

BioBERT (w/o KITS) 70.14 79.25 74.31 76.45 80.36 75.24 70.80 84.23 83.81
BioBERT (w KITS) 73.16 85.66 77.65 86.28 81.43 88.02 86.37 91.16 87.67

The number of sentences successfully simplified for each data set is given in Table 5.
Although our sentence simplification technique resulted in the improved performance of
statistical and deep-learning models, the number of successfully simplified sentences was
limited. Our strict threshold (t∅ = 5) allowed 25%, 42%, and 37% of sentence simplifications
to replace original full sentences for the relation extraction for LLL, HPRD50, and BioInfer.
Certain sentences within the datasets were already in their optimal simplified form. In
these instances, we observed that the text simplification process preserved all words from
the original sentences, resulting in the simplified sentence being identical to the original.
This phenomenon likely occurs when all words in these sentences are relevant to the
context of the relationship. LLL, HPRD50, and BioInfer contained 12, 6, and 95 such
sentences, respectively.

Table 5. Number of sentences simplified with proposed method for each dataset.

Dataset Number of Sentences Successfully Simplified

LLL 84
HPRD50 185
BioInfer 3566

Table 6 presents the performance results for both DTC and BioBERT for the suc-
cessfully simplified set of sentences among the three PPI corpora, with and without the
proposed KITS. There was a consistent and substantial improvement in performance across
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all datasets and models. This finding emphasises the importance of simplifying the text
to retain pertinent information without altering its meaning, leading to a significant en-
hancement in the predictive capacity of the relation classification model. Specificity (true
negative rate) exhibited the most substantial improvement of all measures, indicating
the effectiveness of KITS in assisting models to accurately identify non-relations. In the
context of biological relation extraction, this is a crucial aspect as non-interactions are the
dominant classification.

Table 6. Tenfold cross-validation results using DTC and BioBERT (in %) for the successfully sim-
plified sentences among three PPI corpora. P: Precision, R: Recall, Sf: Specificity, F: F-score and
KITS: Knowledge-based Intelligent Text Simplification. Best results are highlighted in bold.

Dataset BioInfer HPRD50 LLL

Method P R Sf F P R Sf F P R Sf F

DTC (w/o KITS) 53.37 46.01 68.25 50.74 53.75 66.71 72.82 50.47 72.02 71.76 47.23 70.23
DTC (w KITS) 75.30 65.38 82.47 68.49 69.49 68.71 87.16 59.46 86.96 82.47 91.18 85.67

BioBERT (w/o KITS) 73.67 71.76 78.43 77.84 79.24 74.85 83.75 76.78 79.21 83.54 78.91 80.45
BioBERT (w KITS) 86.31 89.67 91.57 84.76 84.32 89.81 94.69 87.34 91.92 94.69 97.23 93.45

4.5. Error Analysis

In this section, we examine our model’s error analysis on the BioInfer, HPRD50, and
LLL corpora, summarised as follows.

• Indirect relationships and the presence of negative terms such as ‘unable’ or ‘inca-
pable’ make it more difficult for the model to accurately identify and extract positive
relationships between entities. For instance, in the sentence “However, the mutant
was unable to stimulate transcription by final GENE2-RNA polymerase from the
GENE1-dependent spoIIG operon promoter”, the direct mention of the relationship
between GENE1 and GENE2 is absent. Instead, the relationship between GENE1
and GENE2 is mediated through “the mutant” and “spollG”. Also, the presence of
the negative term ‘unable’ poses challenges for the model to accurately classify this
relationship as true.

• SpaCy’s ‘en_core_web_trf’ model may overlook the identification of all directly de-
pendent nodes in certain cases. For example, the sentence “In this work, we show
that GENE1 and GENE2 specifically interact with the Cdk1/CyclinB1 complex, but
not with other Cdk/Cyclin complexes, in vitro and in vivo” was simplified to “show
GENE1 and GENE2 interact”, resulting in the omission of important directly related
nodes like “Cdk1/CyclinB1 complex”. This oversight could be attributed to entities
being placed in a conjunctive form. To address this issue, an additional evaluation of
conjunctive entity placement in sentences is necessary.

• While most phrases split by semicolons in the three datasets were independent clauses,
the incorrectly rejected eight relations for BioInfer were from sentences in which the
purpose of the semicolon was to separate complex items in a list. This issue can be
mitigated by verifying the type of the phrase before elimination.

• Some sentences contain incorrect annotations. For instance, in the sentence “Quanti-
tation of the appearance of X22 banding in primary cultures of myotubes indicates
that it precedes that of other myofibrillar proteins and that assembly takes place in
the following order GENE2 myosin heavy chain GENE1”, the annotation depicts a
positive relationship between GENE1 and GENE2. However, the sentence conveys a
placement order of the entities without implying a causal relationship.



Informatics 2023, 10, 89 16 of 20

5. Conclusions

In this paper, we propose a novel text simplification method for improved biological
relation extraction called Knowledge-based Intelligent Text Simplification (KITS). Unlike
most sentence simplification methods, this technique is deployed after NER tagging, en-
abling the proposed model to retain the relevant labelled entity information needed for
relation extraction. We leveraged a dependency parsing method to identify the dependent
and controlling nodes of named entities for text simplification. Our method includes a
novel controlling function evaluation measure to represent the ability of simplified text to
retain the true context. The proposed method was tested on three PPI benchmark datasets
and obtained improved performances. The experimental results of the proposed KITS with
both BioBERT and DTC demonstrate the method’s efficacy in enhancing the accuracy of
both a basic and straightforward model as well as a sophisticated Large Language Model,
showcasing its versatility and effectiveness across different complexity levels. Future work
can focus on extending the proposed method to improve the performance of large-scale
text mining frameworks. Further, studies can be performed on the introduction of semantic
understanding of causal interactions embedded in a text to improve the text simplification
of nested and indirect entity relationships.
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Appendix A

In this appendix, we provide the pseudocode of three key algorithms used in the
paper. Algorithm A1 relates to the identification of named entities, Algorithm A2 relates to
text simplification and Algorithm A3 is for controlling the function evaluation of simplified
sentences. Algorithms A1–A3 are used in Sections 3.1–3.3, respectively.

https://github.com/BNLNLP/PPI-Relation-Extraction/tree/main/datasets/PPI/original
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Algorithm A1: NamedEntityRecognition(S)

Input: S = Set of sentences
Output: L = Refined NER Tagged Sentences

1 L← Initialise an empty List variable to contain refined tagged sentences of Si
2 For i = 1 to S Do
3 Ei ← Get all recognised gene/protein entity using BERN2
4 Pi (Ai, Ti)← Identify all possible pairs from Ei
5 Li ← Initialise an empty List variable to contain tagged variations of Si
6 For p = 1 to Pi Do
7 Sip ← Replace Ai with GENE1 and Bi with GENE2 in Si
8 If Sip contains a semicolon Do
9 Ssplit ← Split Sip by delimitator

10 Stemp = ””← Initialise an empty String variable
11 For ss = 1 to Ssplit Do
12 If GENE1 and GENE2 in Sss Do
13 Stemp = Sss← Replace the tagged sentence with

independent clause
14
15 Break loop
16 End If
17 End For
18 If Stemp != ”” Do
19 Sip = Stemp
20 End If
21 End If
22 Append Sip to Li ← Add the refined tagged sentence to Li
23 End For
24 Append Li to L← Add the refined tagged sentence for Si to L
25 End For

Algorithm A2: TextSimplification(S)

Input: S = Sentence
Output: Ssimp = Simplified sentence
Psimp = Index position of words in simplified sentence

1 nlp← load ‘en_core_web_sm’ from spaCy
2 Doc = nlp(S)← Tokenise the sentences
3 Ssimp ← Initialise an empty list variable to save words of the simplified sentence
4 Psimp ← Initialise an empty list variable to save position of words of the simplified sentence
5 For token in Doc Do
6 Sc = Get the dependent nodes of token
7 Sh = Get the parent nodes of token
8 If “GENE1” in Sc or “GENE2” in Sc Do
9 Append token to Ssimp

10 Append Position(token) to Psimp
11 Else If “GENE1” in token or “GENE2” in token Do
12 Append Sh to Ssimp
13 Append Position(Sh) to Psimp
14 End If
15 End For
16 Ssimp ← Rearrange Ssimp as per their token position in Ssimp
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Algorithm A3: ControllingFunctionEvaluation(Ssimp, Psimp, S)

Input: Ssimp = Simplified sentence
Psimp = Index position of words in simplified sentence

S = Original sentence
Output: Sf = Sentence used for relation classification

1 Seqgene1 ← Identify phrase containing GENE1
2 Seqgene1 ← Identify phrase containing GENE2
3 If Seqgene1 not equal to Seqgene1 then
4 Seqgene1_last ← Get the position of last word in Seqgene1
5 Seqgene2_first ← Get the position of first word in Seqgene2
6 If abs(Seqgene2_first-Seqgene1_last) then
7 Sf = S
8 End If
9 Else

10 Sf = Ssimp
11 End If
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