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Abstract: H-score is a semi-quantitative method used to assess the presence and distribution of
proteins in tissue samples by combining the intensity of staining and the percentage of stained nuclei.
It is widely used but time-consuming and can be limited in terms of accuracy and precision. Computer-
aided methods may help overcome these limitations and improve the efficiency of pathologists’
workflows. In this work, we developed a model EndoNet for automatic H-score calculation on
histological slides. Our proposed method uses neural networks and consists of two main parts. The
first is a detection model which predicts the keypoints of centers of nuclei. The second is an H-score
module that calculates the value of the H-score using mean pixel values of predicted keypoints. Our
model was trained and validated on 1780 annotated tiles with a shape of 100 × 100 µm and we
achieved 0.77 mAP on a test dataset. We obtained our best results in H-score calculation; these results
proved superior to QuPath predictions. Moreover, the model can be adjusted to a specific specialist
or whole laboratory to reproduce the manner of calculating the H-score. Thus, EndoNet is effective
and robust in the analysis of histology slides, which can improve and significantly accelerate the
work of pathologists.

Keywords: object detection; digital pathology; deep learning; prediction model; neural network

1. Introduction

Immunohistochemical analysis constitutes a classic technology used to assess the
expression and spatial distribution of a particular protein biomarker in tissue samples. This
method is widely used in clinical practice, especially in diagnostics in oncology, such as
in the identification and classification of a tumor, as well as its localization and mutation-
specific status. A qualitative and semi-quantitative evaluation of slides is carried out
by a pathologist, something which has a number of limitations including, for example,
the subjectivity of the specialist’s evaluation, the limited range of grades of staining (scale
from 0 to 3+), the time-consuming nature of the assessment, and the complexity of scaling
the process for large projects. An increasing number of works indicate that computer-aided
analysis can replace or at least facilitate and standardize the work of pathologists [1–3].
H-score, a method of assessing the extent of nuclear immunoreactivity, something that is
applicable to steroid receptors, is used in the semi-quantitative assessment of the degree
of slide staining, first mentioned in research in the 1980s [4,5]. Since then, H-score has
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been successfully applied in immunohistochemical analysis [6–8] and has recently even
been reborn into a digital image analysis-based approach, called the pixelwise H-score [9].
Automated H-score proves to be a successful and efficient alternative to visual H-score.

With the invention of the first whole-slide scanners in the 1990s [10], it became possible
to make whole-slide images of various tissues with a level of resolution whereby nuclei
become distinct. With the advent of the first digital slides, the first algorithms for their
analysis appeared, which included trainable and non-trainable algorithms [11–14]. Whole-
slide image analysis has many challenging aspects, such as in the cases where the slide
is large in terms of pixels while the region of interest may be less than 10 pixels. Also,
a slide could contain a large number of such regions in different places, the information
about which needs to be aggregated and analyzed. Therefore, whole-slide images are often
divided into smaller square images, or tiles, and processed separately, with subsequent
aggregation of the information received from each tile.

Digital pathology tools, such as neural networks, can significantly facilitate the work
of pathologists in that they provide results with a level of accuracy and precision that
conventional methods cannot provide. Whole-slide images contain a large amount of
information that is not always visible to the human eye, especially when it is necessary
to process myriads of similar slides in a row. Therefore, pathologists can process only a
small part of the entire image, the so-called “region of interest”, which can bias the final
score of the whole slide. These factors contributed to the growth of interest in the use
of neural networks for the analysis of whole-slide images, particularly histology images.
Neural networks rose to prominence with the invention of AlexNet [15] and, later, when
neural networks outperformed humans in the classification of images [16], which further
increased interest in the development of deep learning methods. Convolutional neural
networks proved to be effective in image analysis and processing. At present, CNNs are
quite popular in the analysis of histology images such as in detection, tissue classification,
annotation, and quantification. Their strong performance means that they do not require a
large amount of training data. This contrasts with visual transformers [17], which are only
gaining in popularity. Therefore, in this paper, a convolutional architecture was chosen for
our model.

The main concept in the detection is how to represent the position of an object. This can
be represented as a Bounding Box (a vector of a length of 4, which contains the coordinates
of the upper-left and lower-right). There are many methods and models that use this
approach with Bounding Boxes. For instance, in [18], the authors used convolutional neural
networks, where ResNet [19] and ResNeXt [20] were used as the backbone. The main
feature of this work is the presence of additional layers with embeddings that improve the
detection and classification of nuclei, unlike standard models of this type, such as those in
reference [21].

CNN architectures come in a broad range, including VGG, ResNet, Unet, and others.
The Unet architecture was created specifically for medical imaging, and it has become
very successful in this area. It looks like an HourGlass that compresses and decompresses
the supplied image to create a heatmap. In order to compute the H-score, we must know
the number of nuclei with varying staining levels on the slide. For the determination of
the H-score, neural networks can function as detectors that locate and categorize the cells
on the slide. Here, utilizing all of these methods, we provide EndoNet, the model for
automatic H-score calculation on histological slides.

2. Methods
2.1. Data

Our dataset consists of slides of endometrium obtained from immunohistochemical
(IHC) analysis of progesterone and estrogen receptors. The slides were taken from two dif-
ferent sources: the EndoNuke [22] open histology dataset (the “bulk” part) and a pathology
laboratory dataset (hereinafter called PathLab dataset). There are some differences in the
slides, such as in terms of methods of staining, equipment, reagents for staining, types of
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tissue, etc., which make the detection a challenging task. Within the manual annotation of
the dataset, nuclei stained with antibodies to the progesterone (1E2, VENTANA) or estrogen
(SP1, VENTANA) receptor in Ventana BenchMark XT stainer (Ventana Medical-Systems,
Oro Valley, AZ, USA) were labeled with the definition of one of two localizations: “stroma”
or “epithelium” classes. Due to their gigapixel size, whole slides were cut into small tiles,
examples of which are shown in Figure 1.

Figure 1. Example of a part of whole slide (left) and cut tiles (right).

The EndoNuke dataset consists of 1740 manually annotated tiles. The annotation
comprises a set of keypoints for each nucleus within a tile. These keypoints encompass
the x and y coordinates of the nucleus center, and class (stroma or epithelium). To clarify,
if there are 100 cells within a tile, the annotation takes the form of an array with a size of
(100, 3). Tiles in EndoNuke are images of various sizes in pixels (mainly 200 × 200 and
400 × 400 pixels), because slides have different µm/pixel values, but they all capture
a field of view of 100 × 100 µm. All tiles were resized (by bilinear interpolation) into
512 × 512 pixels before being fed as inputs into the model.

The PathLab dataset consists of 40 tiles. Initially, slides from PathLab were received
without annotation; thus, they were cut into tiles and annotated. Each cell was classified not
only by stroma and epithelium, but also by color (blue cell, weak brown, medium brown,
and strongly brown). Therefore, these tiles were used both for the detection task and for the
H-score estimation task. The protocol for the annotation of tiles from the laboratory matches
the EndoNuke [22] annotation protocol; two experts annotated, independently from each
other, a set of 20 tiles, some overlapping, to measure the agreement between the tiles. Since
such an annotation is a time-consuming task, a total of 7 slides were used, with 1 slide
being mutual for both annotators. Five tiles were cut from each slide from different areas
without overlapping. First, to calculate the agreement, we established matches between
keypoints for pairs of experts using a Keypoint Similarity measure [23]:

KS(xi, xj) = exp

(
−
∣∣xi − xj

∣∣2
s2

)
(1)

where

xi, xj = point locations;
s = scale parameter, which equals the mean square nuclei radius.

These similarities formed a matrix, treated as an adjacency matrix for a bipartite graph,
and we employed the Hungarian algorithm [24] to find the best keypoint matches based
on maximum similarity. After matching, we computed Kohen’s kappa statistics [25] to
measure the agreement. Since 1 slide was mutual for measuring consent, 40 annotated tiles
appeared in the PathLab dataset (both annotations of the mutual slide are used for future
analysis). Tiles from PathLab are primarily 395 × 395 pixels, but they also capture the
field of view of 100 × 100 µm. They have also been resized (via bilinear interpolation) into
512 × 512 pixels so that the size of all tiles is the same.
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All datasets were merged and split into training, validation, and test parts in a propor-
tion of 3:1:1 (1068 in training, 356 in validation, and 356 in the test part). The training part
was used to train the model, the validation part was used to select the best epoch during
the training, and the test part was used to evaluate the model.

2.2. General Architecture

EndoNet is a deep learning-based model for predicting H-score in stroma and epithe-
lium on endometrium slides. The model consists of two important parts. The first part is a
detection model that detects nuclei and predicts their keypoints using input tiles. In the
context of deep learning and object detection tasks, keypoints refer to localized points or
landmarks on a specific object that are used to identify and track key features or attributes
of the object. A keypoint is a vector of length 3, which contains the coordinates of the center
of the object x and y and the class of the object. The second part is a module for calculating
the H-score based on the predicted keypoints. The general architecture of the EndoNet
model is presented in Figure 2.

Figure 2. Architecture of EndoNet model. Tiles go through an Image-to-Image model to be converted
into heatmaps, while Keypoint Extractor obtains the coordinates and classes of the centers of nuclei
and passes them to the H-score Module to calculate H-score in stroma and epithelium.

The detection model consists of an Image-to-Image model and a Keypoint Extractor.
The Image-to-Image model is an HourGlass model because it has an encoder, narrowing
an image into a smaller array, and a decoder, expanding this array to the size of the input
image. Input tiles go through the Image-to-Image model to be converted into a heatmap,
which shows the location of the cores in the input image. Following this, the heatmaps
are processed via the Keypoint Extractor, and keypoints are obtained. The keypoints
include the coordinates of the nuclei centers and their corresponding class (stroma or
epithelium). At the output of the Keypoint Extractor, an array of keypoints and their
associated probabilities is generated for each image.

The input image, along with the derived keypoints, undergoes processing in the
Histoscore Module. This module performs the following steps: it extracts a small area
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around each keypoint from the input image, translates this pixel set into the HSV color
space, then compares the pixel’s hue and value with predefined thresholds. Subsequently,
it assigns a color label (ranging from non-stained to weak, medium, or strong-stained) to
each keypoint. After this color-labeling process, the H-score is computed separately for
stroma and epithelium as a weighted sum of the cell percentages for each color category.

2.3. Detection Model Architecture

To detect the object’s position, we used a modified version of the usual Bounding Box,
which captures the coordinates of the object’s center (a vector of length 2). Since we only
need the 2 coordinates of the nuclei centers instead of the 4 for Bounding Boxes, we reduce
the number of predicted values by half. Instead of directly predicting the coordinates of
objects, it is possible to predict a probability map, called a heatmap. A heatmap is a field of
probabilities of the object being at each point: the higher the value in the pixel, the greater
the probability of finding the object. Accordingly, the maximum of the probability peak
corresponds to the center of the cell nucleus. The coordinates of the peaks on the heatmap,
which can be found with the max-pooling procedure, are the coordinates of the center of
the expected object. The Image-to-Image model generates two heatmaps, one for each class
(stroma and epithelium). Each heatmap displays the probabilities of exclusively locating
nuclei of a single class.

As an Image-to-Image model, we used such architectures such as UNet, UNet++,
LinkNet, and FPNet (Supplementary Materials Figures S3–S5). These models consist of
an encoder, which compresses and extracts essential information from the image, and a
decoder, which expands the image after the encoder. The architecture of the decoder is
mirrored to the architecture of the encoder.

Predicting keypoints using heatmaps is an Image-to-Image task, and convolutional
neural networks perform well in this regard. After obtaining heatmaps as logits of neural
networks, we need to extract keypoints from them. We first aggregate all heatmaps. This
aggregated heatmap is then subjected to a pooling operation with a parameterized kernel
size (this depends on the size of input image; we used a kernel size equal to 13) and a stride
of 1; the points in this heatmap that match the pooled results indicate local maxima. Each
detected local maximum translates into a keypoint; the x and y coordinates on the heatmap
determine its position, the value from the aggregated heatmap at that location defines the
confidence, and the channel from the original heatmap denotes the class. The class of a
keypoint is determined using the heatmap from which it originates. In other words, each
heatmap yields keypoints belonging to only one class. Following that, the keypoints can
be post-processed, which includes thresholding by confidence level and a weighted boxes
fusion procedure [26].

2.4. Training of Detection Model

To find the optimal architecture for the detection model, a grid search of parameters
was performed. We were in a situation where we had to trade off between the desire to
conduct a grid search encompassing all conceivable parameters and the time needed for
calculations. As a result, we opted to confine ourselves to a curated list of what we deemed
to be the most crucial model parameters. The set of optimized parameters included the
following: the backbone architecture, the parameters of the Keypoint Extractor (the thresh-
old, the minimum distance between keypoints, and the value of pooling). The optimized
value was the mean Average Precision (mAP), which we also used as a quality metric.
Traditionally, predictions of object detection models are presented as BBoxes, whereas our
model predictions are presented as Keypoints. To determine TP, FP, and FN, we used
the Minkowski distance with degree two (which is the Euclidean distance). As a thresh-
old distance, we used the value of the average radius of the nuclei (15.26 pixels for a
512 × 512 image size) obtained in EndoNuke [22]. The optimization step consists of train-
ing the model over 100 epochs with the current set parameters described above, choosing
the best epoch based on the quality metric on a validation dataset and saving the results.
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A total of 100 epochs were chosen because our models were mainly trained to plateau in
40–50 epochs, but a surplus was allowed for architectures that needed more epochs.

After performing a grid search and choosing the optimal architecture of the detec-
tion model, such parameters as schedulers, optimizers, and augmentations were selected
separately from each other.

From the list of loss functions—Huber loss, MSE, and Gaussian Focal loss (similar to a
common Focal loss [27] function but for a continuous distribution)—we chose the Huber
loss function because it performed effectively in our previous tasks:

Lhuber =

{
1
2 (y− ŷ)2 i f |(y− ŷ)| < δ

δ((y− ŷ)− 1
2 δ) otherwise

(2)

where

y = true label;
ŷ = predicted label;
δ = the threshold where the Huber loss function transitions from quadratic to linear.

2.5. Pre-Training

To improve the generalization ability of our CNN model, we employed self-supervised
learning techniques. Pre-training refers to the process of training a model on a larger
dataset before fine-tuning it on a more specific dataset. A schematic representation of
the pre-training pipeline is depicted in Figure S1 in the Supplementary Materials. We
utilized unlabeled tiles and employed the SimCLR method [28] to enhance the model’s
generalization ability without the need for additional labeled tiles.

SimCLR works by maximizing the level of agreement between differently augmented
versions of the same image using a contrastive loss function. The augmentations include
random cropping, resizing, color distortion, and Gaussian blur. Figure 3 provides a detailed
description of the model’s training process using SimCLR.

Figure 3. Pre−training process with SimCLR [28]. Here, t ∈ τ and t′ ∈ τ are two augmentations taken
from the same family of augmentations. f (·) is a base encoding network and g(·) is a projection head
that maps a hidden representation to another space, where contrastive loss is applied. X is the initial
image, Xi and Xj are the augmented images, hi and hj are the hidden representations of corresponding
augmented images, and zi and zj are the outputs of the decoding network. The optimization task
here is to maximize the agreement between zj and zi.

The unlabeled part of the PathLab dataset slides was filtered to exclude empty tiles
by comparing the mean and standard deviation of choosing tiles with the corresponding
threshold values. Cutting slides into tiles works the same way as in the labeled part.
The resulting dataset contains 877,286 unlabeled tiles. We decided to test a model with
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an architecture that performed best in a grid search. A ResNet50 encoder with random
initialized weights was pre-trained on an unlabeled dataset with the SimCLR method for
80 epochs.

To derive more conclusive insights, the predictions of the baseline model were sub-
tracted from those of the pre-trained model. We employed bootstrapping, a statistical
resampling method involving random sampling with replacement, to resample the re-
sulting distribution. A total of 10,000 resamples were taken, and confidence intervals
were calculated at a 95% confidence level. The bootstrapping procedure was repeated
10,000 times to obtain objective results.

2.6. H-Score Module

To calculate the H-score, we should add up the weighted counts of no, weak, moderate,
and strong stained nuclei in the stroma and epithelium:

H-score = 0× none + 1× weak + 2×moderate + 3× strong (3)

The EndoNet determines the degree of staining of each nucleus predicted by the
detection model. It takes some area around the predicted keypoint (a square slightly
smaller than the average radius of the core calculated in EndoNuke) averaged over each of
the three channels. As a result, a vector of length 3 was obtained for each keypoint.

There are two types of nuclei on the tiles: unstained and stained. Unstained cells are
blue cells that should not be counted. Stained cells are brown and have three degrees of
staining: weak, moderate, and strong. The task of determining the degree of staining was
divided into two subtasks: the separation of unstained from stained nuclei and the further
classification of stained nuclei.

The first task is to separate the blue and brown nuclei on slides. As we can see
in Figure 4, blue and brown nuclei are pretty well separated, even in the RGB-space.
The distribution shown in the picture is based on the annotation by pathologists. The HSV-
space is more useful in this case because the blue and brown colors are far from each other
on Hue axis, as shown in Figure 5. Thus, it is easy to separate most of them (except nuclei
with very weak staining). Because the two distributions are distinctly separated, there are
multiple approaches to determining the threshold value. One common method involves
calculating it as the average between the two peaks of the distributions. This is achieved
by first smoothing out the distributions, which can be carried out through techniques like
kernel density estimation or others, and then identifying the maximum point. Alternatively,
one can employ an iterative approach, exploring various threshold values within a specific
range to pinpoint the most appropriate one for the dataset. This is the method we used to
establish the threshold in our analysis.

Figure 4. Distributions of pixels of (a) the whole tile; (b) blue and brown nuclei, stained in their
colors; (c) blue and brown nuclei, where red are brown nuclei and blue are blue nuclei.
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Figure 5. Distribution of blue and brown nuclei in Hue channel.

The second task is to classify stained brown nuclei into three classes: weak, moderate,
and strong. However, there are no solid thresholds for these classes, and classification is
a very subjective process. Thus, we annotated 40 tiles by 2 pathologists for 8 classes: no,
weak, moderate, and strong stained nuclei for the stroma and epithelium. The pathologists
annotated tiles independently from each other.

The distribution of pixels into three classes, marked by histopathologists, is presented
in Figure 6. The distributions of weak and strong nuclei are easily distinguishable, but the
moderate ones intersect a lot with others. With this distribution, it is possible to separate
nuclei into three classes by using two thresholds. To determine the value of these thresholds,
we iterated over a set of possible parameters and calculated the deviation between two
H-scores: the H-score based on annotations made by pathologists and the H-score based
on model predictions and the current set of thresholds. For instance, we obtained values 60
and 105 for the thresholds for the distribution in Figure 6.

Figure 6. Distribution of brown nuclei in Value channel.



Informatics 2023, 10, 90 9 of 15

Using an algorithm for selecting parameters, one can create a profile with thresholds
for each pathologist. For this, one first needs to calibrate the model. For this purpose,
several different regions of interest are selected and annotated. The model selects thresholds
for annotated regions of interest. The thresholds received are saved for each doctor and can
be used again.

2.7. Statistical Testing

Statistical testing was performed for the analysis of the obtained H-score values. To do
this, the Holm–Sidak test was used for multiple comparisons. We considered a significance
level of 0.05. Calculations for our statistical analysis were carried out in the Prism 7.0
software (GraphPad, Boston, MA, USA) program.

3. Results
3.1. Pre-Training Results

A model with the SimCLR pre-trained weights and a model with ImageNet pre-
trained weights were compared against each other on a test dataset using the mAP metric.
The metric was calculated for each batch in order to obtain a set of results instead of one
number. The results are shown in Table 1. Table 1 also presents the confidence intervals
for the mean difference in metrics between the pre-trained and baseline models. These
intervals were calculated to estimate the range in which the true mean difference in metrics
(Stroma AP, Epithelium AP, and mAP) would fall with a 95% confidence level. The potential
for performance improvement is indicated by the upper bounds of the confidence intervals,
especially for the Epithelium AP and mAP metrics. This suggests that the pre-training
approach has merit and may offer advantages in specific scenarios.

Table 1. Resulting metrics for the SimCLR pre-trained model and the ImageNET-based model,
computed on the test dataset and with confidence interval bounds for mean differences in models.

SimCLR
Pre-Trained

ImageNET Confidence
Interval—
Lower Bound

Confidence
Interval—
Upper Bound

Stroma AP 0.8577 0.8544 −0.00666 0.01840
Epithelium AP 0.7576 0.7256 0.00461 0.07010
mAP 0.8077 0.7900 −0.00024 0.04115

3.2. Training

After finishing a grid search, we obtained “the best” model using a UnetPlusPlus with
a ResNet50 backbone because it achieved the highest score. Moreover, during all iterations,
we used image augmentations such as rotations, flips, Gaussian noise, HSV shift, and others.
The training was conducted on a combined dataset and the results are presented in Table 2.
The results for other trained models are presented in Supplementary Materials in Table S1.
The performance metrics for the EndoNuke dataset and the Combined dataset exhibit
minor variations only at the third decimal place. Nevertheless, it is crucial to underscore
that the PathLab dataset, while an indispensable constituent of the combined test dataset,
represents a relatively small fraction. Due to this proportionality, its influence on the
final overall results remains limited, underscoring the assertion that its contribution to the
conclusive outcomes is notably small.

Table 2. Results computed on test samples.

EndoNuke PathLab Combined

Stroma AP 0.85 0.83 0.85
Epithelium AP 0.69 0.84 0.69
mAP 0.77 0.84 0.77
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3.3. H-Score

We annotated seven whole-slide images (Progesterone and Estrogen tiles) with five
tiles per slide. The fourth slide was mutual for both pathologists to measure the level
of agreement between them. Then, we calculated the thresholds for dividing colors of
nuclei in the following way: we used three slides as a training dataset to find the optimal
thresholds for the fourth, and we did so for each slide. For instance, to calculate thresholds
for the third slide, we used the first, second, and fourth slides in the training process.
The results are presented in Table 3.

Table 3. Calculated thresholds of “Value” dimension in HSV space for each slide for both annotators.
“Left” means threshold which divides strong and moderate staining and “Right” means threshold
which divides moderate and weak staining, as in Figure 6. The fourth slide is mutual for calculating
the agreement level.

Annonator Slide Left Right

1st

1 80 120
2 80 125
3 80 120
4 80 125

2nd

4 80 135
5 80 120
6 75 130
7 80 130

After calculating the thresholds, we measured the H-score for each slide using these
thresholds. Our neural network provides keypoint annotations, i.e., the coordinates of
centers and classes (stroma or epithelium) of nuclei. To classify stained nuclei into three
classes—strong, moderate, and weak—we transformed the RGB image into HSV, took pixels
in a small area around keypoints (with the mean radius of a nucleus being 2.98 µm [22]),
calculated the mean value of the “Value” channel, and compared it with the thresholds.
Moreover, we compared our model with the QuPath. The results presented in Table 4
are for stroma and epithelium. No significant differences were found during statistical
analysis at a significance level of 0.05. Also, a calculation for the absolute error for the
predicted H-score values was conducted. The absolute error was calculated as the modulus
of the difference between the predicted H-score value and the “Manual” value. The results
are shown in Figure 7. Significant differences were found between the values of “Model
big” and “QuPath” for the epithelium at a significance level of 0.05. We can explain this
significant difference found by the fact that “Model big” on the epithelium shows good
and solid results and slightly deviates from the manual annotation, and “QuPath”, on the
contrary, shows poor results.

Despite the presence of discrepancies in the calculation of the H-score between experts
and the model, such discrepancies do not lead to discrepancies in the interpretation of the
expression class (weak, moderate, or strong). The results of the QuPath’s work are close to
the results of our model; however, the “Model big” shows better results. Moreover, QuPath
cannot separate cells into stromal and epithelial; this had to be performed manually. It also
required considerable effort to select thresholds, find cells, and so on. Our model addresses
all these shortcomings.

Many laboratories could differ from each other by even greater values. To compute the
H-score, one can use the model without pre-calculating the thresholds by doctors. Instead,
one can utilize the standard values calculated using the PathLab dataset. However, given
the potential significant variations in slides, due to factors like diverse reagents, distinct
equipment, varied staining techniques, and numerous other variables, it is advisable to
establish specific thresholds for each novel laboratory.
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Table 4. Calculated H-score in stroma and epithelium for each slide for both annotators. The model
scores for each slide are calculated based on thresholds from Table 3. The “Man.” H-score is based on
the keypoint annotations of pathologists, the “Model small” H-score is based on annotations provided
by our model on the same tiles, the “Model big” H-score is based on annotations provided by our
model (but on the large amount of tiles from the same slides), and the “QP” H-score is calculated in
the QuPath program.

Annotator Slide
Stroma Epithelium

Man. Model
Small

Model
Big QP Man. Model

Small
Model
Big QP

1st

1 137 120 122 205 164 145 161 203
2 149 165 164 219 180 182 181 193
3 138 128 116 138 144 144 128 112
4 183 178 179 201 137 159 141 161

2nd

4 187 181 184 201 150 167 159 176
5 131 109 114 100 150 142 138 169
6 198 165 158 164 57 88 65 9
7 180 168 188 182 202 198 219 278

Figure 7. Absolute error for “Model small”, “Model big”, and “QuPath”. Significant differences were
found between “Model big” and “QuPath” for epithelium. Circles are outliers in the distributions,
and ∗ indicates significant statistical difference among the distributions.

Furthermore, an additional comparison was conducted to assess the H-score results
by pathologists and the model. The H-score assessment by pathologists was performed in a
“working conditions” setting, wherein cells were not marked in selected regions of interest
and Formula (3) for counting was not used. Instead, pathologists relied on their internal
intuition and approximate estimation of H-score. The results are illustrated in Figure S2 in
the Supplementary Materials. The model utilized the average threshold values provided in
Table 3 to evaluate the H-score.
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4. Discussion

Immunohistochemical (IHC) analysis plays a crucial role in assessing protein biomarker
expression in tissue samples, especially in oncology diagnostics. By visualizing the presence
and distribution of specific proteins in tissues, IHC analysis provides valuable insights into
disease diagnosis, prognosis, and treatment selection. However, traditional IHC analysis
has limitations that can impact its reliability and reproducibility. These limitations in-
clude subjectivity in interpretation, a limited grading scale for scoring, and time-consuming
manual evaluation, which can lead to inter-observer variability and inconsistency in results.

To overcome these challenges, computer-aided analysis, including automated H-score,
has emerged as a promising alternative to standardize and streamline the IHC analysis
process. The utilization of computer-aided analysis has the potential to greatly enhance the
efficiency and accuracy of IHC analysis in clinical practice, leading to more reliable and
reproducible results in many fields of diagnostics.

In this paper, we propose EndoNet, a CNN-based model designed to automatically
calculate H-scores on histological slides. EndoNet can accurately and objectively analyze
IHC-stained slides, reducing subjectivity and significantly speeding up the evaluation
process. It achieved high results, such as a 0.77 Mean Average Precision on a test dataset.
Furthermore, the model can be customized to suit the preferences of a specific specialist
or an entire laboratory, enabling the replication of their preferred style of calculating the
H-score. Moreover, we provide weights and code for models in the paper’s repository [29].

In recent years, the application of neural networks in the analysis of histological im-
ages has emerged as a promising approach for automated and efficient image analysis in
various medical and scientific domains. Currently, several other models used for analyzing
IHC slides are being developed. Hao Sun et el. [30] developed a CAD approach based on a
CNN and attention mechanisms. They used 10-fold cross-validation on 3300 hematoxylin
and eosin (H&E) image patches from 500 endometrial specimens, outperforming 3 human
experts and 5 CNN-based classifiers in terms of overall classification performance. Amal
Lahiani et al. [31] presented a deep learning method to automatically segment digitized
slide images with multiple stainings into compartments of tumor, healthy tissue, necrosis,
and background. Their method utilizes a full CNN that incorporates a color deconvolution
segment that is trained end-to-end. This color deconvolution segment aids in accelerating
the network’s convergence and enables it to effectively handle staining variability within
the dataset. Also, they used 77 whole-slide images of colorectal carcinoma metastases in
liver tissue from biopsy slides stained with H&E (blue, pink) and 8 additional IHC slides.
Harshita Sharma et al. [32] analyzed H&E whole-slide images of gastric carcinoma with
the help of deep learning methods in digital histopathology. Their proposed convolutional
neural network architecture reports a classification accuracy of 0.6990 for cancer classifica-
tion and 0.8144 for necrosis detection. A technique for automatic immune cell counting
on digitally scanned images of IHC-stained slides was presented by Ting Chen et al. [33].
The method employs a sparse color unmixing approach to segregate the IHC image into
distinct color channels that correspond to different cell structures. The algorithm’s per-
formance was evaluated on a clinical dataset that comprised a substantial number of
IHC slides.

Despite the studies being most closely aligned with our task, they are trained on
data from a distinct domain, encompassing different tissue types and coloring methods.
Furthermore, these studies lack a crucial H-score evaluation module that is of significance
to our research. In addition, our model is unique in its task of assessing endometrium
receptivity. Furthermore, our model offers the flexibility of individual customization for
pathologists or the entire laboratory, rendering it a versatile tool in addressing specific
requirements.

The H-score method for assessing the presence and distribution of proteins in tissue
samples has some limitations, as it is time-consuming and lacks accuracy and precision. We
propose a solution to these issues by developing a computer-aided method called EndoNet,
which uses neural networks to automatically calculate the H-score on histological slides.
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EndoNet consists of two main parts: a detection model that predicts the keypoints of
the centers of nuclei, and an H-score module that calculates the value of the H-score using
mean pixel values of predicted keypoints. The model was trained and validated on a set of
annotated tiles and achieved high scores on a test dataset. Additionally, the model can be
customized for specific specialists or laboratories to reproduce the manner of calculating
the H-score.

The development of EndoNet can have significant benefits for pathologists, as it could
improve the accuracy and efficiency of H-score calculations, which are important for the
diagnosis and treatment of many diseases. However, EndoNet has some limitations.

The first is that the detection model proves to be less accurate on tiles from other
labs. To mitigate this constraint and increase the generalizing ability of the model, several
techniques can be explored, such as expanding the training dataset with slides from other
labs or using special augmentation.

In addition, there are some works in this field that provide methods for nuclei with
different staining on histology slides [1,34] (usually blue nuclei from brown). Many of
them use specific transformations on the RBG space of input images. The most common
transformation is a transformation into HSV space, where Red, Blue, and Green channels
transform into Hue, Saturation, and Value. We also use this transformation. We carried
out some experiments involving “HSV shift” augmentation aimed at increasing the metric
value of a model trained on tiles from one lab and tested on tiles from another lab. Notably,
these experiments yielded a significant improvement in the quality of the results. We
maintain that further research on augmentations that are even more effective could lead to
further enhancements in the quality of the model.

The second limitation pertains to the disparity between the real data and the data
present in the dataset. To evaluate the H-score, a specialist is required to manually an-
notate and assess the color of each nucleus in the selected areas of interest. This is a
time-consuming and monotonous task, particularly when evaluating numerous slides.
Consequently, pathologists infrequently utilize this method to evaluate H-score. Instead
of counting the number of weak, moderate, and strong nuclei, pathologists estimate the
ratio of stained nuclei. This H-score assessment method is commonly employed in practice
because of the large volume of samples that need to be processed each day. As a result,
such results often vary from those obtained with an accurate assessment of stained nuclei.
As depicted in Figure S2, the results differ significantly, and pathologists using this method
often overestimate the H-score value. However, pathologists and the model reproduce
similar H-score line shapes.

It is our belief that, upon addressing all the limitations, the model will be capable
of demonstrating even more impressive outcomes. Nonetheless, EndoNet has already
exhibited promising results and is endowed with significant potential. As a possible
future direction for EndoNet, we envision its integration into the QuPath program and its
deployment in laboratory testing.

5. Conclusions

Currently, endometrium evaluation in patients experiencing miscarriages, infertility,
and unsuccessful IVF attempts is a dramatically important issue in reproduction. The en-
dometrial receptivity assessment with immunohistochemistry (estrogen and progesterone
receptor expression and their proportion) is one of the best available tools for this pur-
pose. At the same time, the manual method of ER and PgR expression evaluation with
H-score calculation is inconvenient and time-consuming because the endometrium is a
heterogeneous multicomponent tissue that requires many fields of assessment to obtain
a standardized and representative result. The development of an automated system for
the evaluation of endometrial receptivity with H-score calculation not only speeds up the
determination of this parameter but also compensates for errors resulting from different
approaches to immunostaining (different antibody clones, staining protocols, dilution,
and manual staining), as well as to reduce the scatter of data resulting from different
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pathologists’ calculation biases. EndoNet is a universally applicable and suitable algorithm
for implementation in any pathology department.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/informatics10040090/s1, Figure S1: General pipeline of pre-
training process; Table S1: Results computed on test sample for all trained models; Figure S2:
H-scores by pathologists and EndoNet model for 6 slides in (a) stroma and (b) epithelium; Figure S3:
Schematic view of (a) U-Net and (b) UNet++ architecture; Figure S4: Schematic view of LinkNET
architecture; Figure S5: Schematic view of FPNet architecture.
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