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Abstract: Wireless networks play a pivotal role in various domains, including industrial automation,
autonomous vehicles, robotics, and mobile sensor networks. This research investigates the critical
issue of packet loss in modern wireless networks and aims to identify the conditions within a
network’s environment that lead to such losses. We propose a packet status prediction model for
data packets that travel through a wireless network based on the IEEE 802.15.4 standard and are
exposed to five different types of interference in a controlled experimentation environment. The
proposed model focuses on the packetization process and its impact on network robustness. This
study explores the challenges posed by packet loss, particularly in the context of interference, and
puts forth the hypothesis that specific environmental conditions are linked to packet loss occurrences.
The contribution of this work lies in advancing our understanding of the conditions leading to
packet loss in wireless networks. Data are retrieved with a single CC2531 USB Dongle Packet Sniffer,
whose pieces of information on packets become the features of each packet from which the classifier
model will gather the training data with the aim of predicting whether a packet will unsuccessfully
arrive at its destination. We found that interference causes more packet loss than that caused by
various devices using a WiFi communication protocol simultaneously. In addition, we found that
the most important predictors are network strength and packet size; low network strength tends
to lead to more packet loss, especially for larger packets. This study contributes to the ongoing
efforts to predict and mitigate packet loss, emphasizing the need for adaptive models in dynamic
wireless environments.

Keywords: packet loss; packet sniffer data; binary classification interference; wireless communications

1. Introduction

Currently, wireless networks have evolved to become an integral part of our daily lives,
finding applications across diverse domains such as industrial automation, autonomous
vehicles, remote surgery, robotics, mobile sensor networks, and internet-based applica-
tions [1]. These networks facilitate seamless communication by connecting two or more
nodes, enabling the exchange of information without the need for physical links or con-
nector cables. Nowadays, wireless networks are used in industrial automation, vehicles,
remote surgery, robots, mobile sensor networks, and internet-based applications. A wireless
network is then a connection of two or more nodes where information is sent or received
(or both) without the use of any physical link (i.e., connector cables) between them.

A packet is a small segment of a larger message. Data sent over a network are divided
into packets, which are later recombined by the destination node into the originally sent
file [2]. Theoretically, it could be possible to send data over a network without chopping
them down into small packets of information. However, such an approach becomes
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impractical when more than two nodes are involved in the network: whenever any long
line of bits is passed over two nodes (one sender and one receiver), the other nodes
need to wait for this communication to finish so they can make use of said channel [3].
In other words, packet division of data makes a network able to exchange billions of files
simultaneously instead of just a few. It also means that it is possible for packets to take
multiple paths through the network and reach the same destination, as long as all of them
arrive successfully at their destination.

In order to determine the traveling process of the packets, we need to consider the
network’s topology, which tells us the way that nodes are physically (and logically) placed
and the connection rules of the network; each topology solves different connection prob-
lems, and because of that, it needs different communication rules. Two different roles are
usually present in these communications, that is, the sender and the receiver, and network
nodes can play one or both of them, once again depending on the network’s topology.

IEEE 802.15.4 serves as a crucial standard delineating the physical layer and medium
access control for low-rate wireless personal area networks (LR-WPANs) [4]. This stan-
dard plays a foundational role in shaping the ZigBee specification, aiming to provide a
comprehensive solution for networks by constructing upper-level protocol stack layers not
covered by the standard. The primary objective of IEEE 802.15.4 is to define basic network
layers catering to a specific type of wireless personal area network (WPAN), facilitating
communication among ubiquitous, cost-effective, and low-speed devices. Emphasizing eco-
nomical communication with nearby nodes and minimal to no infrastructure, the standard
prioritizes energy efficiency. In its fundamental form, it envisions a communication range of
10 m with a transfer rate of 250 kbps. Multiple physical layers are defined to accommodate
varying requirements, initially introducing alternative rates of 20 and 40 kbps, and the
current version incorporates an additional rate of 100 kbps. Lower rates can be achieved,
further reducing energy consumption. Notably, the key feature of 802.15.4 within WPANs
is the attainment of exceptionally low manufacturing costs through technological simplicity
without sacrificing generality or adaptability.

The application of AI for packet interference detection and collision analysis in small-
scale wireless networks holds significant importance in optimizing network performance
and reliability. In the realm of modern wireless communication, where small-scale net-
works are prevalent, the accurate identification of interference and potential collisions is
paramount for maintaining seamless and efficient data transmission [5]. This AI-driven
analysis contributes by providing a sophisticated and automated means to discern interfer-
ence patterns, predict potential collisions, and enhance the overall robustness of wireless
networks. By leveraging AI techniques, this study not only addresses the challenges posed
by packet interference but also represents a progressive step towards developing intelligent
solutions for improving the reliability and performance of small-scale wireless communi-
cation systems. The management of information as independent pieces that travel in any
order involves multiple problems when in practice: packets may collide between nodes
or get lost in the process of arriving at their destination, and this is called packet loss.
Intermittent data packet losses and network-induced time delay are known to be two of
the main causes for the performance deterioration or even instability of any controlled
networked system.

1.1. Hypothesis

Due to the nature of shared communication paths in wireless networks, as described
above, the study of packet loss has garnered considerable research interest. With the
purpose of further investigating this problem and aiming to provide new insights into the
conditions under which packet loss occurs, the hypothesis of this study is as follows:

There exists a condition or set of conditions in a network environment that, when
present, lead to packet loss.
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In the following sections, a description of the methodology and experimentation
applied to a testing network environment will be presented, along with the prediction
model for the Packet Status (OK or ERROR) that was trained using the collected data.

1.2. Contribution

This work emphasizes the critical role of packetization in modern wireless networks,
highlights the challenges posed by packet loss, particularly in the context of interference,
and introduces the central hypothesis driving this research—that specific conditions within
a network’s environment are linked to packet loss occurrences. The subsequent sections
delve into the methodology, experimentation, and data analysis that form the foundation
of this study, aiming to advance our understanding of the conditions leading to packet loss
in wireless networks.

The contribution of this work lies in highlighting the critical role of packetization
in modern wireless networks and emphasizing the challenges posed by packet loss, es-
pecially in the context of interference. This study aims to provide new insights into the
conditions under which packet loss occurs. It also delves into the methodology, experi-
mentation, and data analysis that form the foundation of the research, contributing to our
understanding of the conditions leading to packet loss in wireless networks.

The tests included are as follows:

• Control Test 1: Baseline test with no interference.
• Control Test 2: Another instance of the baseline test.
• Double Network Test: Involving interference from another nearby network.
• Radio Frequencies Test: Involving interference from common-use machines producing

radio frequencies.
• No Restriction Test: Involving interference from people using personal devices

without restrictions.
• Wind Test: Involving interference from fans blowing air across the space.
• Wireless Test: Involving interference from devices using WiFi protocol.

2. Related Work

In recent years, the proliferation of electronic and electrical devices has introduced new chal-
lenges in maintaining the reliability of wireless networks based on the IEEE 802.15.4 standard.
Packet loss can be particularly problematic in scenarios involving interference from neigh-
boring networks [6], as such interference can disrupt the seamless flow of data packets.
Identifying the specific conditions or sets of conditions within a network’s environment that
lead to packet loss is a critical research endeavor. Packet loss, a critical performance met-
ric, becomes increasingly unpredictable as the interference from colocated devices grows.
Researchers have been actively investigating methods to predict and mitigate packet loss
under such dynamic conditions. Notably, Mindo et al. presented an innovative approach
using machine learning techniques to predict packet loss in the presence of electronic
devices in their work titled “Machine Learning-Based Prediction of Packet Loss in IEEE
802.15.4 Networks with Device Interference” [7]. Their study leveraged historical network
data and achieved promising results in predicting packet loss probabilities, contributing to
the understanding of how electronic devices impact network reliability.

Another significant work focuses on modeling the behavior of wireless networks with
IEEE 802.15.4 devices in the presence of electrical interference. In their work, Sun et al.
explored the impact of electrical noise on packet loss in “Characterizing the Effects of
Electrical Noise on IEEE 802.15.4 Wireless Networks” [8]. They conducted comprehensive
experiments to measure the effect of various electrical devices on packet loss rates. Their
findings highlighted the need for accurate models to predict packet loss, especially in sce-
narios where sensitive applications, such as healthcare monitoring or industrial automation,
rely on wireless communication.

Machine learning and statistical approaches have become prominent in developing
predictive models for packet loss in IEEE 802.15.4 wireless networks. Ayeesha et al. in-
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troduced a predictive model based on a long short-term memory (LSTM) neural network
in their research paper “LSTM-Based Packet Loss Prediction for IEEE 802.15.4 Wireless
Sensor Networks in Electrical Environments” [9]. This LSTM-based model demonstrated
remarkable accuracy in forecasting packet loss in the presence of electrical interference.
Their work exemplifies the growing interest in harnessing deep learning techniques to
tackle the packet loss prediction challenge in complex wireless environments. As wireless
networks based on the IEEE 802.15.4 standard continue to evolve, researchers are also
exploring the potential of reinforcement learning (RL) algorithms in addressing packet
loss issues. Recent work by Gonzalez et al. in “Reinforcement Learning-Based Packet Loss
Mitigation in IEEE 802.15.4 Networks with Device Interference” [10] introduced an RL
framework to adaptively optimize network parameters to minimize packet loss. Their
study demonstrated the adaptability of RL in dynamically managing network resources
and mitigating the impact of colocated electronic and electrical devices on packet loss.
Furthermore, as wireless networks based on the IEEE 802.15.4 standard continue to ad-
vance, researchers are exploring diverse approaches to address the challenge of packet
loss. In addition to LSTM-based models, recent work by Raza et al. [11] delved into the
application of reinforcement learning algorithms for mitigating packet loss in IEEE 802.15.4
networks with device interference. Their study introduces an RL framework designed to
adaptively optimize network parameters, showcasing the potential of RL in dynamically
managing resources to minimize the impact of colocated electronic and electrical devices on
packet loss. This research expands the repertoire of strategies available for enhancing the
reliability of wireless networks in the face of evolving technologies and network conditions.

The effective operation of wireless networks is grounded in a fundamental principle:
packetization. In contemporary networks, information is segmented into smaller units
known as packets, which are transmitted individually throughout the network. This
strategy improves network scalability by enabling the simultaneous exchange of multiple
files [12]. Moreover, it introduces the intriguing possibility of packets taking multiple paths
through the network to reach their destination, thereby enhancing network robustness.
As Wagner et al. pointed out in their seminal work, this packet division strategy enables
billions of files to be transmitted simultaneously, a feat that would be practically impossible
with a nonpacketized approach [13].

Notably, recent work by Bennis et al. [14] delves into the impact of interference
from neighboring networks on packet loss rates. Their findings provide valuable insights
into mitigating packet loss in crowded wireless environments. Moreover, Shah et al.
delved into the impact of interference from neighboring networks on packet loss rates [15].
Their findings provide valuable insights into mitigating packet loss in crowded wireless
environments. Furthermore, Freschi et al. made significant contributions to understanding
the impact of interference from neighboring networks on packet loss rates [16]. Their recent
work sheds light on innovative strategies for mitigating packet loss in densely populated
wireless environments, offering additional perspectives. These studies contribute to a more
comprehensive understanding of the challenges and potential solutions associated with
packet loss in crowded wireless scenarios.

Packetization enhances network scalability as it allows multiple files to be exchanged
concurrently [17]. Moreover, it introduces the intriguing possibility of packets taking
multiple paths through the network to reach their destination, thereby enhancing network
robustness. As Tuker et al. pointed out in their seminal work, this packet division strategy
enables billions of files to be transmitted simultaneously, a feat that would be practically
impossible with a nonpacketized approach [18].

Table 1 provides an overview of recent research efforts related to the prediction
of packet loss in various experiment environments. As discussed earlier, packet loss
is a critical issue in networked systems that can lead to performance deterioration and
instability. The table lists different references to research papers, each focusing on specific
experiment environments, such as wireless sensor networks, IoT devices, 5G networks,
smart grids, edge computing, and mobile ad hoc networks. These studies employ diverse
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techniques for packet loss detection, including machine learning, statistical analysis, deep
learning, time series analysis, probabilistic models, and network simulation. However, it
is important to note that each model has its limitations, which are also highlighted in the
table. These limitations may include being specific to certain sensor types, assuming stable
network conditions, having high computational complexity, requiring precise timestamp
synchronization, having limited historical data availability, or not being suitable for real-
time prediction. This table serves as a valuable reference for researchers and practitioners
working to address packet loss issues in different networked environments by offering
insights into the current state of research and the associated challenges and limitations.
The occurrence of packet loss stands as a pivotal concern in networked systems, capable of
instigating performance degradation and system instability [19]. The compilation includes
diverse references to research papers, each centering on specific experimental contexts
such as wireless sensor networks, IoT devices, 5G networks, smart grids, edge computing,
and mobile ad hoc networks. These investigations employ a spectrum of techniques for
packet loss detection, encompassing machine learning, statistical analysis, deep learning,
time series analysis, probabilistic models, and network simulation [20–22].

Table 1. Current literature on packet loss prediction models.

Reference Experiment
Environment

Detection Loss
Technique Model Limitations

[23] Wireless sensor network Machine learning Limited to specific sensor
types.

[24] IoT devices Statistical analysis Assumes stable network
conditions.

[25] 5G network Deep learning High computational
complexity.

[26] Smart grids Time series analysis
Requires precise
timestamp
synchronization.

[27] Edge computing Probabilistic models Limited historical data
availability.

[28] Mobile ad hoc network Network simulation Not suitable for real-time
prediction.

3. Materials and Methods

The experimentation involved various controlled-environment tests, each representing
different interference scenarios, including a baseline test with no interference, interference
from neighboring networks, radio-frequency interference, unrestricted device usage, wind
interference, and wireless interference. This study captured and analyzed packet data,
considering factors such as frame type, length, RSSI, and time.

To determine the dominant machine learning algorithm, the research applied several
classification algorithms, including naive Bayes, SVM, neural network, logistic regression,
random forest, gradient boosting, and decision tree. The models were trained and evaluated
based on precision, recall, F1 score, and confusion matrices, with a focus on predicting
packet loss (error class) in the presence of WiFi interference.

The results indicate that the gradient boosting and random forest models achieved
the best performance, with precision rates of 97% and 96%, respectively. However, due to
the dataset’s imbalance, additional metrics such as F1 score and recall for the error class
were considered. The confusion matrices provided insights into the models’ tendencies to
predict both correct and incorrect outcomes.

The network installation was completed using Texas Instruments’ Evaluation Boards
of models LAUNCHXL-CC1352R1 and LP-CC2652RB as nodes of the network, as observed
in Figure 1. Both models are evaluation boards that support wireless connections with
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protocols based on the IEEE 802.15.4 standard and a built-in temperature sensor [29].
The network had two types of nodes, the collector and sensor node, applying the simplest
form of master–worker architecture vastly used in controlled network systems nowadays,
which implements a star network topology (allowing a unique collector to whom multiple
sensors are linked). The collector node was a CC26x Evaluation Board (1), and the sensor
nodes were a mixture of CC26x and CC13x Evaluation Boards (8).

Figure 1. Models LAUNCHXL-CC1352R1 and LP-CC2652RB.

The nodes implemented a star network topology, as observed in Figure 2, since all
sensor nodes were in charge of periodically sending the environment temperature in
degrees Celsius. The collector node was then responsible for managing the orchestration
of the sensor nodes’ requests and monitoring the number of orphan nodes that may be
disconnected from the network.

Figure 2. Star network topology with LAUNCHXL-CC1352R1 and LP-CC2652RB.

In order to capture packet data across the network, a sniffer board was used. This study
employed a Texas Instruments’ CC2531 USB Dongle, which is based on the IEEE 802.15.4
wireless standard [30].

3.1. Experimentation

The nodes of the network were placed in a closed environment consisting of a 10 m × 30 m
rectangular closed room. The experimentation involved 7 controlled-environment tests, each
consisting of variations in environmental conditions and the presence or absence of inter-
ference, with an individual duration of one hour. This means that the following tests were
each performed over a 60 min time period, during which the network nodes and sniffer
board worked simultaneously to send temperature data to the collector and capture the
packet information sent, respectively. The tests are as follows:
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• Control Test 1: This is the control or baseline network data for the experiments. In this
test there were no interference or barrier conditions at all to stress the network so that
it represented the ideal conditions of the system.

• Control Test 2: this is another instance of the previous test type, captured right after to
later be averaged with the first control test and form a single Control Test.

• Double Network Test: this involved another star network nearby the analyzed one,
becoming a test for IEEE 802.15.4 network interference.

• Radio Frequencies Test: this involved five common-use machines that produce radio
frequencies of different kinds inside a household: a microwave, an air fryer, a blender,
a toaster, and a sandwich maker were working at the same time and place that the
network in question was operating in.

• No Restriction Test: this involved four people navigating the room and making
use of their personal devices (cellphone, laptop) without restrictions, with the pur-
pose being that this test would represent the network and interference traffic in an
average household.

• Wind Test: this involved two fans blowing air across the space where the collector
node was installed at a speed of 20 km/h.

• Wireless Test: this involved different machines that used specifically WiFi network
protocol, which were 1 SmartTV, 3 smartphones, 1 game console, and 2 personal
computers, all downloading content from the internet in the same room and at the
same time the network was operating.

While each of the tests was being performed, the sniffer board captured, in real time,
the information of traveling packets during traffic. Once each individual test was finished,
the captured data were stored in a file format named packet sniffer data (PSD). The PSD
files were processed and translated into a single tabular file from which the prediction
model gathered its training data.

3.2. Measured Data Description

The wireless protocol IEEE 802.15.4 standard suggests [31–33] that every packet con-
tains its Frame Control Type inside the packet’s payload byte block. This frame type takes
eight different values [34] in the captured data for the present study: 1_OCT_HEADER
(1 Octet MAC Header for Low Latency) [34], CSL_WAKEUP, CSL_SECURE_ACK, and
RFID_BLINK, all of which are coded to fit in 3 bits inside the payload byte block [32,35]
as mentioned. The frame type is crucial since it refers to the type of command that sent a
packet [34], which in turn specifies if the sender is either the collector/master (Beacon) or
one of the sensor nodes.

There is a section of the packet’s bytes consisting of two bytes called Status Bytes
destined to store either 0 (ERROR) or 1 (OK) [32]. For all packets captured, this number
becomes the class of the packet in the present study: OK (1), when a packet was captured
as it is meant to be received, and ERROR (0), when a packet is captured after a collision or
fragmentation that causes the loss of a packet in the network. Thus, given the classification
of every packet captured, a supervised prediction model can be trained. Table 2 shows the
dataset features description.

However, first, we assessed describing how the signals happen throughout time,
and thus a time series plot of the packets per frame type lets the reader visualize the
experiment’s trends. For that, a time series using the packet number of every captured
packet and the packet’s frame type was used. The average number of packets through time
per frame control field (FCF) type is shown in Figure 3.



Informatics 2024, 11, 7 8 of 14

Table 2. Description of Dataset.

Variable Description Values

TIME(MS) Packet time in the network 0 to 16751.18238 milliseconds
LENGTH Length of the package 1 to 109 bytes
RSSI Network signal strength −199 to 53 decibels

Status bytes Package reception status 0 Error (1.95)%
1 OK (98.05)%

DATA Data frames 0 not a DATA frame type (79.01%)
1 DATA frame type (20.99%)

CMD Command frames 0 not a CMD frame type (71.28%)
1 CMD frame type (28.72%)

ACK Acknowledgment frames 0 not an ACK frame type (50.91%)
1 ACK frame type (49.09%)

BCN Beacon frames 0 not a BCN frame type (99.17%)
1 BCN frame type (0.83%)

1_OCT_HEADER Frames with a one-octet header 0 not a 1_OCT_HEADER frame type (99.79%)
1 1_OCT_HEADER frame type (0.21%)

CSL_WAKEUP Wake-up frames for the Listen Unit (CSL) 0 not a CSL_WAKEUP frame type (99.97%)
1 CSL_WAKEUP frame type (0.03%)

CSL_SECURE_ACK Secure acknowledgment frames for the Listen Unit (CSL) 0 not a CSL_SECURE_ACK frame type (99.95%)
1 CSL_SECURE_ACK frame type (0.05%)

RFID_BLINK Radio-Frequency Identification (RFID) frames 0 not an RFID_BLINK frame type (99.93%)
1 RFID_BLINK frame type (0.07%)

CONTROL CONTROL frame test type 0 not a CONTROL frame test type (81.79%)
1 CONTROL frame test type (18.21%)

DOUBLE NETWORK DOUBLE NETWORK frame test type 0 not a DOUBLE NETWORK frame test type (79.97%)
1 DOUBLE NETWORK frame test type (−299.51%)

ELECTRO Radio-frequency frame test type 0 not a Radio-frequencies frame test type (82.24%)
1 Radio-frequencies frame test type (17.76%)

NORMAL No restriction frame test type 0 not a No restriction frame test type (84.06%)
1 No restriction frame test type (15.94%)

WIND WIND frame test type 0 not a WIND frame test type (85.34%)
1 WIND frame test type (14.66%)

WIRELESS WIRELESS frame test type 0 not a WIRELESS frame test type (86.60%)
1 WIRELESS frame test type (13.40%)

Figure 3. Average number of packets’ arrival (y axis) through time (x axis) per frame type, and its
corresponding parametric distribution fitting.

3.3. Measured Data Analysis

In Figure 3, a parametric distribution fitting is presented, showcasing the tendency of
the tests performed: interarrival events are the best example of an event that occurs with
periodicity following an exponential distribution, and such a distribution was used for
modeling DATA, CMD, and ACK packet arrival behavior, as those packets are continuously
present in the network. BCN frame type packets, representing the Beacon or collector node,
only appear at the beginning of the network pipeline, and thus, their arrival periodicity
follows a Poisson distribution. The exact analytical functions are expressed below for
DATA, CMD, ACK, and BCN frames, respectively.

fdata(x) = 1 − e−
1

120 x (1)

fcmd(x) = 1 − e−
1

75 x (2)
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fack(x) = 1 − e−
1

150 x (3)

fbcn(x) =
1.15x

x!
e−1.15 (4)

The remaining frame types, namely, 1_OCT_HEADER, CSL_WAKEUP, CSL_SECURE_
ACK, and RFID_BLINK, were not included in this description since they were barely present
in the experiments to have a mathematically defined behavior.

To decide which model to use for the classifier, all columns for each captured packet
had to be analyzed individually. Most of the columns in the dataset of all captured packets
are binary data (except for RSSI, Time, and Packet Number), explained by the fact that
the packet sniffer data (PSD) format stores data in bytes [32], and therefore, most fields
in the dataset are binary or Boolean representatives. Thus, the only continuous fields in
the dataset are the LENGTH, RSSI, and TIME(MS) columns. Consequently, a box plot
was created for each continuous field, but before doing so, the fields were grouped by
TEST_TYPE (interference type) to produce Figure 4.

Figure 4. Box plot of the continuous fields in every captured packet per test type.

From Figure 4, we can conclude that WiFi interference generated the largest fluctua-
tions in all three fields. This is reflected by a larger difference in the range of the box and
the outliers concerning the ranges of the other experiments across the three fields. WiFi
interference was also the test type that showed the largest absolute linear correlation to
the target field (−0.134) out of all types of interference in this study. The linear correlation
between the type of interference with respect to the target field, which is the Packet Status,
is shown in Table 3. From the correlation values, there is a tendency when there is the
use of WiFi access devices, which is present in the Home Activities and WiFi tests: the
correlation with respect to the Packet Status value appears negative in the presence of WiFi
interference, suggesting a weak negative association.

Table 3. Linear correlation between interference and packet status.

Test Control 802.15.4 RFs Home
Activities Wind WiFi

Corr. 0.053 0.023 0.043 −0.027 0.027 −0.134

4. Results and Discussion

We created a predictive model with the aim of explaining the situations that cause
packet loss in the WiFi interference scenario. We chose the WiFi interference data because,
according to the previous section, it is the type of interference with a major correlation with
the target field (packet status) and consequently a major predictive tendency. In that way,
we took LENGTH, RSSI, TIME (MS), and frame type as predictors and the status byte (OK
or error) as the target variable. For the frame type, we only took the DATA, CMD, ACK,
and BCN frames. It is important to note that the not-included frame type 1_OCT_HEADER
stands for 1 Octal Header Low Latency [34], and it has a linear correlation (0.44) to the
target class, but it is a trivial result since low latency packets are sent when the conditions of
the network force a low response from the devices, and, therefore, packet loss is expected.

Using the data mining Orange software, we connected seven classification algorithms
(naive Bayes, SVM, neural network, logistic regression, random forest, gradient boosting,
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and tree) to compare their performance for the packet loss prediction task. Furthermore, we
split the dataset into training (80%) and test (20%). Figure 5 shows the visual programming
of the prediction algorithms in the Orange software. The best results were obtained
by gradient boosting and random forest with a precision of 91% and 81%, respectively.
However, since the dataset is unbalanced, with many more packets that reached their
destination than lost packets, it is important to look at the F1 and recall in the Table 4
metrics for the error class and the confusion matrices of each model. F1 and recall are
metrics with sensitivity to minority classes, balancing precision with completeness. On the
other hand, the advantage of computing the confusion matrix is the fact that we evaluate
the model’s tendency to predict mistakenly and use that evaluation in combination with
the evaluation of the model’s tendency to predict correctly, with the objective of computing
the AUC metric, which represents how the binary classification by the model tends to give
correct answers for both classes. Table 5 shows the confusion matrix computed for the
gradient boosting model, and Table 6 shows the confusion matrix for the random forest.

Table 4. Model metrics.

Model F1 Precision Recall

Gradient boosting 72 91 59
Random forest 67 81 57

Figure 5. Visual programming of the prediction algorithms in Orange software.
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Table 5. Confusion matrix for gradient boosting classifier.

Predicted

Real ↓ 1 0

1 TP = 823 FN = 3

0 FP = 22 TN = 32

Table 6. Confusion matrix for random forest classifier.

Predicted

Real ↓ 1 0

1 TP = 819 FN = 7

0 FP = 23 TN = 31

The total number of packets with class 1 (OK) and 0 (error) was 4142 and 259, respec-
tively. The confusion matrices provided for the test split (880 records) show a high TPR
(true positive rate) and almost a midvalued FPR (false positive rate), which is the desired
behavior for a failure-related model: false positives are more dangerous to studies that
rely on packet status than false negatives. It is possible to see that the F1 and recall of both
models are above 50%. This is confirmed in the confusion matrix as the models correctly
predicted 60% of the error class, very good metrics for a class that is present only in 6.1% of
the data.

Finally, we observed the random forest trees formed in the training process looking
for patterns. We calculated the correlation of the predictors with the target variable with
six different coefficients (info gain, gain ratio, Gini, chi-squared, relief, and FCBF) using the
rank Orange widget. Additionally, we calculated and interpreted the important features
for the gradient boosting and random forests models with the feature importance Orange
widget. In the decision trees created by the random forest algorithm, as well as in the
correlation coefficients and the important features of the gradient boosting model, the most
important variable for predicting packet loss is RSSI, followed by LENGTH. Furthermore,
in decision trees formed by the random forest model, it can be observed that packet loss
decisions are oriented toward when the network is perceived as weak and the length
of the packets is large. This can mean that the use of different devices using the same
WiFi network tends to cause interference between them and in some occasions weakens
the network.

On the other hand, the time it takes for a packet to be perceived as lost or received,
and the type of ACK frame, despite not being among the variables with the highest
correlation with the target variable, are important variables for the prediction of gradient
boosting and random forest models. It seems logical to think that the longer it takes for a
packet to be perceived as received or lost, the more likely it is that no node will receive the
packet. Similarly, the type of ACK frame has the highest presence in the network; it could
be that the preparation interval for communication between devices is the period of loss of
this type of frame.

5. Conclusions and Future Work

This research presents a packet status prediction model for data packets in wireless
networks based on the IEEE 802.15.4 standard, considering various types of interference in
a controlled environment. This study’s hypothesis, which suggests that specific conditions
in a network’s environment can lead to packet loss, is validated through experimentation.
Notably, interference from WiFi devices shows a weak negative association with packet
status, indicating that WiFi interference may contribute to packet loss.

The application of this work lies in improving the reliability of wireless networks,
especially in environments with potential interference sources like WiFi devices. By under-
standing the conditions that lead to packet loss, network administrators can take proactive
measures to minimize disruptions and optimize network performance. Additionally,
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the methodology and experimentation described in this study provide a framework for
future research in the field of wireless network reliability and packet loss prediction.

The analysis of packets lost in different types of interferences suggests that there exists,
in fact, a relevant relationship between the combination of fields of a sniffed packet and the
prediction of its status, as stated in the hypothesis.

As a side note, among all the interference tests performed, WiFi interference appeared
to induce the most significant fluctuations in data, resulting in a higher number of outliers,
as illustrated in Figure 4. This observation aligns with the interference type that exhibits
the highest linear correlation with the class out of all interferences to which the network
was exposed.

When analyzing the patterns that lead to packet loss in a WiFi interference environ-
ment, we observe that the network is occasionally perceived as weak, and this is when
large packets are lost.

In future work, our objective is to identify the types and quantities of devices causing
WiFi interference, and consequently, packet loss. Additionally, we intend to develop
predictive models by employing balancing techniques and predicting rare events to enhance
the precision metrics presented in this study.
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