
Citation: de Araújo Costa, A.P.;

Terra, A.V.; de Souza Rocha Junior,

C.; de Araújo Costa, I.P.; Moreira,

M.Â.L.; dos Santos, M.; Gomes,

C.F.S.; da Silva, A.S. Optimization of

Obstructive Sleep Apnea

Management: Novel Decision

Support via Unsupervised Machine

Learning. Informatics 2024, 11, 22.

https://doi.org/10.3390/

informatics11020022

Academic Editors: Daniel

Riera Terrén, Angel A. Juan,

Majsa Ammuriova and

Laura Calvet

Received: 22 February 2024

Revised: 2 April 2024

Accepted: 12 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  informatics

Article

Optimization of Obstructive Sleep Apnea Management:
Novel Decision Support via Unsupervised Machine Learning
Arthur Pinheiro de Araújo Costa 1,* , Adilson Vilarinho Terra 2, Claudio de Souza Rocha Junior 2,
Igor Pinheiro de Araújo Costa 2 , Miguel Ângelo Lellis Moreira 2, Marcos dos Santos 1 ,
Carlos Francisco Simões Gomes 2 and Antonio Sergio da Silva 2

1 Systems and Computing, Military Institute of Engineering (IME), Rio de Janeiro 22290‑270, RJ, Brazil;
marcosdossantos@ime.eb.br

2 Operational Research, Fluminense Federal University (UFF), Niterói 24210‑346, RJ, Brazil;
adilsonvilarinho@id.uff.br (A.V.T.); claudiodesouzarochajunior@gmail.com (C.d.S.R.J.);
costa_igor@id.uff.br (I.P.d.A.C.); miguellellis@hotmail.com (M.Â.L.M.); carlos_gomes@id.uff.br (C.F.S.G.);
tao281168@gmail.com (A.S.d.S.)

* Correspondence: arthurcosta.araujo@ime.eb.br

Abstract: This study addresses Obstructive Sleep Apnea (OSA), which impacts around 936 million
adults globally. The research introduces a novel decision support method named Communalities
on Ranking and Objective Weights Method (CROWM), which employs principal component analy‑
sis (PCA), unsupervised Machine Learning technique, and Multicriteria Decision Analysis (MCDA)
to calculate performance criteria weights of Continuous Positive Airway Pressure (CPAP—key in
managing OSA) and to evaluate these devices. Uniquely, the CROWM incorporates non‑beneficial
criteria in PCA and employs communalities to accurately represent the performance evaluation of al‑
ternatives within each resulting principal factor, allowing for a more accurate and robust analysis of
alternatives and variables. This article aims to employ CROWM to evaluate CPAP for effectiveness
in combating OSA, considering six performance criteria: resources, warranty, noise, weight, cost,
and maintenance. Validated by established tests and sensitivity analysis against traditional meth‑
ods, CROWM proves its consistency, efficiency, and superiority in decision‑making support. This
method is poised to influence assertive decision‑making significantly, aiding healthcare profession‑
als, researchers, and patients in selecting optimal CPAP solutions, thereby advancing patient care in
an interdisciplinary research context.

Keywords: OSA; CPAP; CROWM; MCDA; Machine Learning; PCA

1. Introduction
According to the scientific journal The Lancet [1] and Yasir et al. [2], there are about

936 million adults between the ages of 30 and 69 who suffer from obstructive sleep apnea
(OSA) in the world. Given this scenario, effective diagnostic and treatment strategies are
needed to minimize negative impacts on health, maximizing cost‑effectiveness. Accord‑
ing to Mcevoy et al. [3], OSA is associated with an increased risk of cardiovascular events,
which can cause patient death if treatment is not adequate. In addition, OSA is charac‑
terized by recurrent episodes of partial and complete airway obstruction during sleep [4]
and usually presents with excessive daytime sleepiness, loud snoring, observed episodes
of respiratory arrest during sleep, morning headaches, and sudden mood swings. As a
form of treatment, Continuous Positive Airway Pressure (CPAP) is essential for OSA [5],
providing an unobstructed airway, reducing apnea episodes, and significantly improv‑
ing sleep quality. However, the appropriate selection of CPAP devices is crucial to max‑
imizing clinical benefits and treatment adherence, highlighting the need for analytical
and objective decision methods in evaluating these devices, aiming to improve clinical
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outcomes and maximize patients’ quality of life while considering economic constraints
within health management.

This study introduces the Communalities on Ranking and Objective Weights Method
(CROWM) to evaluate CPAP devices. It allows a technical analysis of these devices based
on their characteristics, allowing the physician or patient to decide based on data. By pin‑
pointing the most effective and technically suitable devices, CROWM streamlines health‑
care resources and reduces the costs of treating OSAwithout sacrificing the quality of care.
This method guarantees the selection of devices that provide the best value for investment,
aligning treatment choices with the goals of economic sustainability within the healthcare
framework. Therefore, our study delivers crucial insights for strategic decision‑making,
ensuring a balance between the clinical and financial considerations in managing OSA
patient care.

Production Engineering, crucial in supporting strategic decision‑making, is signifi‑
cant in managing complex operations, including healthcare. Operations Research (OR), a
field of Production Engineering, is a vital discipline that encompasses a variety of mathe‑
matical methods and advanced analytical techniques to address large‑scale and complex
operational challenges [6]. This study evaluates nine types of CPAP devices using the
CROWM, an OR decision support tool integrated with the unsupervised Machine Learn‑
ing (ML) technique of principal component analysis (PCA). CROWM analyzed the de‑
vices based on six specific performance criteria: resources, warranty, noise, weight, cost,
and maintenance.

It is essential to highlight that although this state‑of‑the‑art method can identify the
most technically appropriate CPAP according to these criteria, the final selection of the
proper device for each patient should be guided by the physician’s clinical evaluation,
considering the patient’s needs. Thus, this study recognizes the importance of medical ex‑
pertise in the decision‑making process, complementing it with analytical data for a more
informed choice.

In the healthcare setting, decisions are inherently intricate and imply trade‑offs be‑
tween multiple, often conflicting, objectives; applying methodologically structured and
explicitly delineated approaches to deal with Multicriteria Decision Analysis (MCDA) is
vital to improving the quality of the decision‑making process [7]. These methodologies ad‑
dress the complexity inherent in health decisions and provide a systematic and reasonable
framework to improve efficiency and effectiveness in formulating informed choices.

In developing this study, the CROWM introduces novel methodologies to advance
the evaluation of CPAP devices for OSA management. Unique to CROWM are several in‑
novations: the incorporation of communalities in factor analysis to more accurately assess
the performance of alternatives; the consideration of non‑beneficial criteria within PCA
to delineate devices’ strengths and weaknesses clearly; the automation of weight genera‑
tion through the MEthod based on the Removal Effects of Criteria (MEREC) [8] and factor
loadings [9], promoting an objective, data‑driven evaluation process; and the incorpora‑
tion of PCA validation tests, such as the Bartlett and Kaiser tests, ensuring the analytical
rigor and reliability of the evaluation. These methodological advances significantly en‑
hance the MCDA andML landscape, providing a robust and comprehensive decision sup‑
port system for selecting CPAP devices. By addressing gaps in the existing literature and
offering a methodologically sound and objective approach, CROWM stands out as a pi‑
oneering tool designed to optimize patient care through informed, data‑backed medical
device selection.

The relevance of this article lies in introducing an innovative and integrated approach
to the evaluation of medical devices, with a specific focus on CPAPs, used in the treatment
of sleep‑disordered breathing. The strategic blending of ML represents an evolution in
the field, offering a comprehensive solution to address the challenges inherent in complex
decision‑making, especially in the healthcare setting. Therefore, this article aims to evaluate
CPAP devices, aiming at effectiveness in the fight against OSA, emphasizing innovation and
analytical accuracy, standing out in the current panorama of medical device evaluation.
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2. Literature Review
This chapter provides a comprehensive overview of the methodological approaches

to OR, MCDA, and PCA in health, highlighting their significant applications and contri‑
butions. The meticulous review of the literature reveals the versatility and effectiveness of
these techniques in various health contexts but also points to a notable gap in the specific
evaluation of medical devices, such as CPAPs, in treating sleep‑disordered breathing.

2.1. OR, PCA, and MCDA in Healthcare
OR is distinguished by its application in mathematical, statistical, and computational

techniques. It focuses on practical challenges to enhance decision‑making across diverse
domains [10] and facilitates communication betweenmedical professionals and health sys‑
tem managers [11].

The imperative of developing decision support systems for resource planning and
sizing is widely recognized [12].

Studies on OR in health are diverse. They include literature reviews exploring OR
in surgical planning [13]; its role as an optimizing instrument in health [14]; and specific
contributions to health systems coordination during disasters [15]. Notably, there is an em‑
phasis on proposing optimalmeasures to integrate OR into health systems, aiming at more
efficient collaboration [16] and identifying care based on the community‑based approach
to OR [17]. This broad approach highlights the comprehensive relevance of OR, from the
surgical scope to systemic management, evidencing its integral role in optimizing and co‑
ordinating the medical field.

MCDA, as an extension of OR, transcends disciplines like social sciences, medicine,
and engineering. It is a comprehensive method for determining optimal solutions in com‑
plex situations [18]. MCDA methods offer valuable techniques for structuring and under‑
standing problems in intricate environments [19], making it easier to define preferences be‑
tween frequently conflicting alternatives. These methods are crucial for solving selection,
classification, and portfolio‑related issues and enable organizations to structure decision‑
making at operational and strategic levels.

MCDA methods are widely employed in the performance evaluation of alternatives,
structuring complex problemswithmultiple criteria, some ofwhichmay be conflicting [20].
Thesemethodsmake it possible to structure the decision‑making process, considering tech‑
nical, socioeconomic, and environmental aspects at operational and strategic levels [21].
PCA, as explained by Fávero and Belfiore [22], also evaluates the performance of alterna‑
tives. Concerning the generation of criteria weights, which is essential in this process, it
can either apply the Decision‑Maker’s (DM) preferences and priorities, which is a subjec‑
tive process, or evolve to the use of mathematical models or ML algorithms for a more
precise and objective allocation of weights, increasing the consistency and reliability of the
decision‑making process [23].

In addition, studies involving MCDA in healthcare are varied. Notable ones include
sustainable supplier selection in the medical industry [24]; strategic analysis of the quality
of electronic services in the health sector [25]; guidance for professionals and researchers
in the practical application of MCDA methods in decision‑making [7]; evaluation of orga‑
nizational performance indicators in the health area, with emphasis on adaptability [26];
innovative medical device selection process [27]; and assessment of a supply chain in the
context of a blood bank system [28].

Prominent studies on MCDA in healthcare include emergency medical facility loca‑
tion analysis [29]; determining the most appropriate location for medical waste disposal
centers [30]; development of an evaluationmodel for health services, focusing on hospitals
that provide inpatient services [31]; prioritization of factors that impact the performance
of clinical laboratories [32]; and choosing a hospital aid ship to combat the COVID‑19
pandemic [33].

In PCA applications for evaluating OSA, significant studies include efficacy evalua‑
tion based on a simplified Chinese Pediatric Sleep Questionnaire (PSQ) [34]; assessment of
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OSA risk in laryngectomy patients using PCA [35]; and identification by PCA of depres‑
sive symptom factors that influence the effectiveness of CPAP in the treatment of OSA [36].
Unlike what was presented in the work in this paragraph, the PCA can also be used to gen‑
erate rankings, as can be seen below: employment of the PCA to establish a ranking order
for U.S. Army Pilots [37]; hybrid approach that combined the Analytic Hierarchy Process
(AHP) method and the PCA for weapon system selection [9]; and evaluation of third‑party
logistics companies through the PCA [38].

The literature review underscores the broad application of decision support methods
in healthcare. However, a gap is observed in the focused evaluation of medical devices
like CPAPs. According to The Lancet [1], it is imperative to develop effective treatment
strategies to minimize adverse health impacts while seeking to optimize the cost–benefit
ratio. No dedicated studies on CPAP evaluation for healthcare decision‑making are found
in this context. This gap, critical in the academic landscape, becomes particularly relevant
in the context of device selection for treating sleep‑disordered breathing. The absence of
such investigations highlights a need for in‑depth research using these methods to eval‑
uate medical devices, thus promoting advances in informed and personalized healthcare
decision‑making and optimizing patient therapeutic outcomes.

2.2. Novelty and Contributions of the Study
Given the complexity of variables (criteria) in evaluating medical devices such as

CPAPmachines for treatingOSA, this studydevelops a newmulticriteria frameworknamed
CROWM. Recognizing that traditional approaches may not fully capture the multifunc‑
tionality and critical variables in CPAP selection, this study aims to bridge the gap in med‑
ical device evaluation. The literature review confirms that the approach introduced is in‑
novative, contributing to the current literature in sleep medicine, OR, ML, and healthcare
decision‑making. The contributions of this paper are:
• To develop an objective weighting method within CROWM to extract the relative im‑

portance of evaluation criteria for CPAPs.
• To introduce the PCA technique in CROWM for ranking purposes in MCDA prob‑

lems, enhancing accuracy and objectivity in medical device selection.
• To provide information and enable efficacy comparisons among different CPAPmod‑

els, assisting healthcare professionals in choosing the most suitable device.
• To construct a support system to evaluateCPAPdevice performance, consideringmul‑

tiple criteria aligning with clinical guidelines and patient expectations.
Thus, this study not only presents an innovative method evaluation but also provides

a robust and reliable tool for healthcare professionals andDMs in the field of sleepmedicine.

3. Methodology
According to the taxonomic structure outlined by Creswell and Creswell [39], the

present research adopts a predominantly quantitative approach, amalgamating case study
elements and mathematical modeling [40]. This section aims to clarify the essence of the
problem that will be investigated in the present study, based on the proposition of a new
decision support method to evaluate health services, specifically CPAPs.

By incorporating PCA enriched with multicriteria enhancements, this study contributes
to the academic landscape by broadening the scope of application of principal component
analysis and enhancing analytical capacity when considering multiple decision criteria. In
the global panorama, introducing this decision support method stands out as a contribu‑
tion, providing a methodology for evaluation while having intrinsic competence to sim‑
plify multidimensional data, identify correlations between variables, and generate rank‑
ings, allowing it to establish a solid basis in the decision‑making process.

Case Study: Evaluation of CPAP Models
This research used the Soft SystemsMethodology (SSM) problem‑structuringmethod.

SSM is a well‑establishedmethod in the literature, developed and improved by Checkland
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andHaynes [41]. It is explored in various research fields, fundamental to structuring prob‑
lems and facilitating their understanding.

Employing SSM, this study comprehensively addresses the challenges and manage‑
ment of OSA. It begins by recognizing the individual burden of OSA, spotlighting the
clinical necessity for effective interventions due to its detrimental health implications. The
journey from acknowledging the issue of seeking actionable solutions encapsulates the re‑
flection on accessible treatment modalities. Emphasis is placed on the decision to opt for a
CPAPdevice as amedically endorsed treatment avenue, representing an active step toward
lessening the condition [5]. The narrative advances by detailing the methodological adop‑
tion of a cutting‑edge decision support system to facilitate the CPAP selection process. This
approach ensures choices are informed and grounded in robust data analysis. The successful
application of this methodology heralds a suite of positive outcomes—enhanced sleep qual‑
ity, minimized cardiovascular risks, and overall health betterment—reinforcing the value
of a systematic and data‑driven selection process. This structured progression from prob‑
lem identification to solution implementation and subsequent realization of health ben‑
efits furnishes a comprehension of the strategic and methodological considerations that
form the backbone of this study. It underscores the significance of informed decisions
in healthcare and the positive repercussions of such methodologically sound choices on
patient care.

In addition, Figure 1 presents a CATWOE analysis, a framework for analyzing prob‑
lems in systems and processes, which helped identify and structure the key elements that
make up the situation discussed. It is a tool usedmainly in SSM. It aims to address complex
and unstructured organizational problems from a comprehensive systemic view, identify‑
ing the stakeholders, the necessary transformation processes, the challenges, and the con‑
straints present.
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Complementing the proposed methodology, a literature review was conducted to
evaluate nine CPAP models based on six operational and logistical criteria. This practical
analysis serves as a case study exemplifying the application of the CROWMmethodology.

4. The CROWMMethod
In recent years, the terminology and application of MCDA methods have expanded,

drawing attention to developing an ever‑expanding range of ordering methods such as
CROWM [43]. This proposed method employs a quantitative approach to ordering alter‑
natives according to the criteria analyzed.
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This study employs the CROWM method to evaluate CPAP devices, due to its abil‑
ity to integrate PCA and MCDA, providing a holistic and objective approach to evaluat‑
ing complex medical devices. According to the following presentation, CROWM arose
from gaps in the literature regarding decision support approaches that employed PCA
and MCDA. This chapter outlines the journey toward the development of CROWM, high‑
lighting fundamental studies that collectively inspired its creation, according to Table 1.

Table 1. Related works.

Method Objective
Weights Techniques Communality

Assessment
Advantages and
Disadvantages

PCA
Tests

Non‑
Beneficial
Criteria in

PCA

Alternative
Evaluation

CROWM X PCA and
MEREC X Removes DM

evaluation/Bias‑free. X X X

PCA‑AHP
[44] PCA and AHP

Considers the evaluation
of the DM/Enables bias in

the process.
X X

PCA‑AHP‑
MFA
[45]

PCA and AHP
Considers the evaluation
of the DM/Enables bias in

the process.
X X

AHP‑PCA‑GP
[9]

PCA, AHP,
and Goal

Programming
(GP)

Considers the evaluation
of the DM/Enables bias in

the process.
X

AHP‑PCA
[38] PCA and AHP

Considers the evaluation
of the DM/Enables bias in

the process.
X

ELICIT
[46]

PCA and
Monte Carlo

Considers the evaluation
of the DM/Enables bias in

the process.

Group
AHP‑PCA

[47]
PCA and AHP

Considers the evaluation
of the DM/Enables bias in

the process.
X

KPCA‑TOPSIS
[48] X PCA and

TOPSIS
Removes DM

evaluation/Bias‑free. X

PCA—VIKOR,
ANP,

DEMATEL
[49]

PCA and
VIKOR

Considers the evaluation
of the DM/Enables bias in

the process.
X X

P‑SPCA,
P‑PFA and
P‑SRD
[50]

X
PCA and

PROMETHEE‑
GAIA

Removes DM
evaluation/Bias‑free. X X

ORME
[51]

PCA,
ELECTRE III,

and IV

Considers the evaluation
of the DM/Enables bias in

the process.
X

WIRI
[52] X PCA, CRITIC

and TOPSIS
Removes DM

evaluation/Bias‑free. X

TAOV
[53] PCA

Considers the evaluation
of the DM/Enables bias in

the process.
X
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Table 1. Cont.

Method Objective
Weights Techniques Communality

Assessment
Advantages and
Disadvantages

PCA
Tests

Non‑
Beneficial
Criteria in

PCA

Alternative
Evaluation

PCA‑TOPSIS
[54] X PCA and

TOPSIS
Removes DM

evaluation/Bias‑free. X

SMART‑PCA
[55] PCA

Considers the evaluation
of the DM/Enables bias in

the process.
X

AHP‑PCA and
Communali‑

ties
[56]

PCA and AHP
Considers the evaluation
of the DM/Enables bias in

the process.
X

PCA‑
PROMETHEE

[57]
X PCA and

PROMETHEE
Removes DM

evaluation/Bias‑free. X X

Source: authors.

Table 1 analyzes the relatedworks that have been studied to generateCROWMaccord‑
ing to the following characteristics: calculation ofweights (objective or not); techniques em‑
ployed; use of communalities in performance evaluation; advantages and disadvantages;
presence or absence of PCA validation tests; consideration of non‑beneficial criteria in the
PCA; and, finally, whether they can generate performance evaluation of the alternatives.
Regarding the generation of criteria weights, the analysis of methods that combine PCA
and MCDA can be divided into approaches based on the DM’s assessment and those that
use objective weights, like KPCA‑TOPSIS [48], PCA‑TOPSIS [54], PCA‑PROMETHEE [57],
WIRI [52] and P‑SPCA, P‑PFA, and P‑SRD [50]. This distinction is crucial, as objective
methods focus exclusively on the data, free from subjective influences, which is necessary
to ensure an unbiased and evidence‑based analysis. In this sense, the CROWM method
is distinguished by its rigorously objective approach, not depending on the evaluation of
the DM to calculate the weights of the criteria. Table 1 shows that, when validating PCA
results, the necessary tests in more than half of the approaches, following Bartlett [58] and
Kaiser [59], were not identified. These tests ensure the validity and accuracy of results
derived from PCA, which are crucial elements for analytical integrity in quantitative re‑
search [60]. Other relevant aspects were the absence of studies that applied the communal‑
ities (representing how much a criterion is present in each principal component of PCA)
in the evaluation of the performance of the alternatives, and the non‑consideration of non‑
beneficial criteria (the higher, the worse for alternative evaluation) in the PCA. These two
approaches are innovative features of CROWM, according to Table 1. It is also notewor‑
thy that only two methods do not evaluate the performance of alternatives: ELICIT [46]
and AHP‑PCA and Communalities [56], while the disadvantages and advantages column
explored, in amacroway, the ability of themethods tomeasure the opinion of the decision‑
maker in the evaluation. In addition, Table 1 also shows the approaches, mostlyMCDA, that
are close to the methods created, according to what is present in the technique’s column.

In summary, to explore the gaps found in the literature and the opportunities for
improvement, the merits of the proposed methodology are delineated as follows:

Automation in weight generation: the method focuses on efficiency by automating
weight generation, thereby minimizing the cognitive load on DMs. This automation re‑
moves subjective elements, ensuring weights assigned to criteria are determined through
an objective, data‑driven approach, leading to more reliable and replicable outcomes for
well‑justified decisions;

Application of tests for PCA validation: CROWM incorporates the Kaiser and Bartlett
tests, which are fundamental to validating PCA results. This integration ensures greater
consistency and robustness in interpreting data from this unsupervised ML technique.
The application of these tests, particularly the Bartlett test, as highlighted by Fávero and
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Belfiore [60], is crucial to verify the adequacy of PCA, reinforcing the reliability and accu‑
racy of the CROWMmethod;

Incorporation of communalities in factor analysis: the CROWMmethod utilizes com‑
munalities to represent shared variance between variables in extracted factors, an approach
not yet explored. This technique contributes to more accurate and complete assessments,
enhancing the precision of analysis and offering a new perspective for future research in
performance evaluation;

Integration of non‑beneficial criteria into PCA: CROWM enhances PCA’s methodol‑
ogy by integrating non‑beneficial criteria, effectively delineating the advantages and dis‑
advantages of each alternative. This enhancement ensures larger values, indicating less
favorable outcomes are aptly recognized and weighted, aligning PCA more closely with
intricate decision‑making criteria for a comprehensive evaluation.

These points highlight the comprehensive and innovative aspects of the CROWM
methodology, demonstrating its effectiveness in refiningperformance evaluationanddecision‑
making processes. The following subsections explain some terms of factor analysis.

4.1. Weights of Criteria
The CROWM calculates the importance of the CPAP’s performance criteria by the

PCA factor loadings [9] and the MEREC method [8], performing the CPAP’s weights of
criteria by considering the combination of these two values [43].

4.1.1. The MEREC Method
MEREC, initially proposed byKeshavarz‑Ghorabaee et al. [8], uses the removal effects

of each criterion on the aggregate performance of alternatives to calculate the weights. A
specific computational process is employed based on the initial data or the decisionmatrix.
As a most relevant advantage, MEREC calculates the criteria weights without the need for
the evaluation or opinion of the DM, requiring only the data from the decision matrix.
Thus, MEREC is formed by six stages [8]:
1. Establishment of the decision matrix, expressing the score of each alternative about

each criterion analyzed;
2. Determination of the normalized decision matrix. The elements of the normalized

matrix are denoted by nx
ij. Below, the first line denotes the set of beneficial criteria,

and the second line represents the set of non‑beneficial criteria;

nx
ij =


min

k
xkj

xij
, f or bene f icial criteria

xij
max

k
xkj

, non − bene f icial criteria
(1)

3. Determination of the overall performance of alternatives [Si]:

Si = ln
(

1 +
(

1
m∑j

∣∣∣ln(nx
ij

)∣∣∣))
(2)

4. Performance of alternatives by removing each criterion [S′
ij]:

S′
ij = ln

(
1 +

(
1
m∑k,k ̸=j

∣∣∣ln(nx
ij

)∣∣∣))
(3)

5. Calculation of the removal effect of each criterion, through the result of the difference
of the modulus sum between the Equations (2) and (3) [Ej]:

Ej = ∑ i

∣∣∣S′
ij − Si

∣∣∣ (4)
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6. Calculation of the weight of the criteria [ω′
j]:

ω′
j =

Ej

ΣkEk
(5)

4.1.2. Weight by Factor Loadings
Factor loadings represent each criterion’s importance in forming a PC. For example,

αij is the factor loading of ith PC, referring to the jth criterion. As a complementary form
of the equation, the shared variance of the ith PC, wi, is used [9]. The improvement imple‑
mented by the CROWMmethod is that only principal components (PCs) with eigenvalues
greater than one will be considered, respecting the Kaiser criterion [59]:
1. Calculation of the importance of jth criterion by factor loadings [φj]:

φj =
k

∑
i=1

|α ij

∣∣∣wi, where k is the number of PCs with eigenvalues greater than one (6)

2. Calculating weights by factor loadings [ω′′
j]:

ω′′
j =

φj

∑m
j=1 φj

,where m is the number of criteria (7)

4.1.3. Calculation of Criteria Weights
From the weights derived of (5) and (7), it is possible to calculate the weights of

CROWM (ωj):

ωj =
ω′

j + ω′′
j

2
(8)

4.2. Evaluation of Alternatives
To calculate the score for each CPAP, CROWM will follow the step‑by‑step instruc‑

tions below [60]:

1. Establishment of a database containing a total of n CPAPs and k evaluation criteria
(or variables);

For each CPAP I (where I range from 1 to n), it is necessary to record the values cor‑
responding to the k metric criteria X. To extract factors from these k criteria, defining the
matrix of correlations ρ is imperative. This matrix, called Equation (9), encompasses the
values of Pearson’s linear correlations between each pair of variables, presenting itself as
a visual representation of their relationships [60].

2. Determination of the correlation matrix ρ:

ρ =


1 ρ12 . . . ρ1k
ρ21 1 . . . ρ2k
...

...
. . .

...
ρk1 ρk2 . . . 1

 (9)

The matrix of correlations ρ exhibits a symmetry concerning its principal diagonal,
in which the values are uniformly equal to 1. As an example, the coefficient ρ12 denotes
Pearson’s correlation between the variables X1 and X2, calculated based on Equation (10):

ρ12 =

n
∑
i=1

(
X1i − X1

)
.
(
X2i − X2

)
√

n
∑
i=1

(
X1i − X1

)2.

√
n
∑
i=1

(
X2i − X2

)2
(10)
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where X1 and X2 correspond, respectively, to themeans of the evaluation criteria X1 and X2.

3. Elaboration of the Bartlett sphericity test:

The Bartlett test is conducted as specified in [58], comparing Pearson’s correlation
matrix with an identity matrix to assess the statistical significance of their discrepancies. If
the differences are not statistically significant, factor extraction may be unsuitable for the
data. As Fávero and Belfiore [60] note, non‑significant Pearson correlations suggest that
the data or methodology may be reevaluated. The null H0 and alternative H1 hypotheses
of the Bartlett sphericity test are defined according to Equations (11) and (12):

H0 : ρ =


1 ρ12 . . . ρ1k
ρ21 1 . . . ρ2k
...

...
. . .

...
ρk1 ρk2 . . . 1

 = I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (11)

H1 : ρ =


1 ρ12 . . . ρ1k
ρ21 1 . . . ρ2k
...

...
. . .

...
ρk1 ρk2 . . . 1

 ̸= I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (12)

The statistic corresponding to this test is a χ2, represented by Equation (13):

χ2
Bartlett = −

⌈
(n− 1)−

(
2.k+ 5

6

)⌉
· ln|D| (13)

With k·(k−1)
2 degrees of freedom, where n is the sample size, k corresponds to the

number of variables, and D is the determinant of the matrix of correlations ρ [22].

4. Determination of eigenvalues and their respective shared variances:

The matrix of correlations k × k, Equation (9), shows k eigenvalues λ2 (λ21 ≥ λ22 ≥ ...
≥ λ2k), obtained through Equation (14):

det
(
λ2 · I− ρ

)
= 0, com λ2

1 + λ2
2 + · · ·+ λ2

k = k (14)

It is the identity matrix, also with dimensions k × k. Expression 14 can be rewritten
as follows, according to (14a), resulting in the eigenvalues Λ2 contained in (14b):

λ2 − 1 −ρ12 . . . −ρ1k
−ρ21 λ2 − 1 . . . −ρ2k
...

...
. . .

...
−ρk1 −ρk2 . . . λ2 − 1

 = 0 (14a)

Λ2 =


λ2

1 0 . . . 0
0 λ2

2 . . . 0
...

...
. . .

...
0 0 . . . λ2

k

 (14b)

5. Determination of eigenvectors:

Onemust solve the equations systems to define the eigenvectors of the matrix ρ based
on the eigenvalues (15) for each eigenvalue λ2 (λ21 ≥ λ22 ≥ ... ≥ λ2k):
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λ2
k − 1 −ρ12 . . . −ρ1k
−ρ21 λ2

k − 1 . . . −ρ2k
...

...
. . .

...
−ρk1 −ρk2 . . . λ2

k − 1

.


v1k
v2k
...

vkk

 =


0
0
...
0

 →



(
λ2
k − 1

)
.v1k − ρ12.v2k . . . − ρ1k.vkk = 0

−ρ21.v1k +
(
λ2

2 − 1
)

.v2k . . . − ρ2k.vkk = 0
...

−ρk1.v1k − ρk2.v2k . . . +
(
λ2
k − 1

)
.vkk = 0

(15)

6. Determination of factor scores:

The formulation for the vectors of the factor scores referring to the kth factor can be
represented by Equation (16):

Sk =


S1k
S2k
...

Skk

 =



v1k√
λ2
k

v2k√
λ2
k

...
vkk√
λ2
k


(16)

7. Determination of factors:

As the respective eigenvalues standardize the factorial scores of each factor, the factors
of the set of equations presented in expression (17) should be obtained bymultiplying each
factorial score by the corresponding original variable, standardized using the procedure
Z‑scores:

F1i = s11 · X1i + s21.X2i + · · ·+ sk1 · Xki
F2i = s12 · X1i + s22 · X2i + · · ·+ sk2 · Xki

...
Fki = s1k · X1i + s2k · X2i + · · ·+ skk · Xki

(17)

It should be noted that the extracted factors will be established based on the values
of the non‑beneficial criteria, which will be multiplied by −1. This operation is carried
out to appropriately consider the effects of these criteria within the analytical context. The
calculation of the kth factor can be represented by Equation (18).

Fki =
v1k√
λ2
k

.ZX1i +
v2k√
λ2
k

.ZX2i + · · ·+ vkk√
λ2
k

.ZXki (18)

It should be noted that ZXi represents the value standardized by the Z‑scores of each
criterion X for a specific CPAP, denoted as i.

8. Determination of factor loadings and communalities:

Factor loadings shall be calculated using Equation (6) and as proposed by [9,60].
Conversely, a criterion’s communality is calculated as the sum of its factor loadings’

squared values, indicating its contribution in each PC with eigenvalues over one. This
relationship is defined in Equation (19):

α2
ij = communality Cij,with i referring to the ith PC and j referring to the jth criteria (19)

9. Performance evaluation:

Finally, it is possible to establish a performance rating between the CPAPs. Notably,
the adopted formulation derives from the proposition outlined by Fávero and Belfiore [60],
incorporating specific improvements, including the values of the communalities, the weight
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derived from Equation (8), and the non‑beneficial criteria. It is reiterated that the Kaiser [60]
criterion was used, and only PCs with eigenvalues greater than one were considered.

Pn = ∑kmax
i=1 ∑m

j=1 FinCjiωj (20)

On Equation (20), Pn represents the score (performance evaluation) of the nth CPAP;
kmax represents the maximum number of PCs with an eigenvalue greater than one; Fin
represents the factor referring to the ith PC and nth CPAP; Cji represents the communality
of the ith PC and jth criteria; and ωj the weight of the jth criteria according to Equation (8).

To facilitate the understanding of the CROWMmethod, Figure 2 is proposed, which
outlines the analysis of a dataset with alternatives and criteria, which the PCA will pro‑
cess through analysis and validation by the Bartlett and Kaiser tests. Next, it is on to the
formation of the criteria weights, which is done automatically (there is no consideration of
the evaluation of the DM) byMEREC and the factor loadings. In the next step, the weights
generated areweighted by the communalities to identify each criterion’s presence correctly
and precisely in the respective PCs. Finally, the performance of the CPAPs is evaluated,
which explains the consideration of the weights generated by the communalities within
each factor with an eigenvalue greater than one.
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4.3. Hypothesis and Limitations
Thehypotheses underscore the innovative andpotential contributions of theCROWM

model to data analysis in complex decision‑making scenarios. The proposed approach is
promising, highlighting its effectiveness and efficiencywith a novel conceptual framework.
This framework offers an integrated methodology for evaluating alternatives and criteria,
enhancing the analytical capabilities in decision‑making processes. The emphasis on gen‑
erating criteria weights, performance evaluation of alternatives based on communalities,
incorporation of non‑beneficial criteria through PCA, and the validation of PCA results
via established tests suggests a rigorous and methodologically robust approach. It under‑
scores the value of CROWM as a powerful and versatile analytical tool.

Furthermore, themodel is posited to integratemethods from existing approaches and
introduce new analyses not yet explored in the literature. This represents a significant
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advancement in the research area, providing new insights and tools for decision‑making.
This comprehensive approach aims to enrich decision‑making processes by offering a com‑
plete analysis of outcomes, leveraging the strengths of various methods to create innova‑
tive analyses, and facilitating more informed decision‑making in healthcare and beyond.

As a limitation, the CROWMmethod adopts an objective approach to data evaluation,
excluding subjective decision‑maker intervention. While this ensures an impartial analysis
strictly based ondata, it is recognized that such an approach limits the ability to incorporate
qualitative evaluations directly into the decision‑making process. Furthermore, given its
mathematical complexity and the integration of sophisticated MCDA and ML techniques,
it benefits from specialized software support to optimize accessibility and enhance the user
experience. This requirement underscores themethod’s sophistication and deep analytical
capability, turning mathematical complexity into a strategic advantage for detailed analy‑
ses. Another limitation pertains to the method’s dependence on data correlation, a funda‑
mental characteristic of PCA, which requires rigorous verification, such as the Bartlett test,
to confirm the suitability of the analysis. These limitations are acknowledged and present
opportunities for future research to refine the methodology and expand its applicability.

5. Results and Analysis
This studyuses a bifurcatedmethodology to assess CPAPdevices. Initially, it involves

deriving criteria weights and establishing the ranking order for the CPAPs.
A meticulous literature review was carried out to acquire data pertinent to CPAP de‑

vices, enriched by the information contained in the manuals of these devices and through
consultations with ten health professionals with extensive experience in treating OSA. No‑
tably, the primary purpose of the data collected is to facilitate a meticulous comparative
evaluation of CPAPdevices, constituting a fundamental pillar to guide decisions regarding
its recommendation. This analysis, however, does not replace the essential individualized
clinical evaluation, considering the singularities of each patient, and respects the diagnos‑
tic understanding of the specialist for selecting the evaluation criteria for CPAP devices;
a comprehensive and relevant set of factors that reflect both the effectiveness and usabil‑
ity of the devices was considered, ensuring a thorough evaluation that addresses both the
technical characteristics and the practical considerations of the devices.

Thus, the evaluation criteria are listed below, with their respective definitions:
• Resources: scale from 1 to 7, which represents the number of resources available for

each CPAP;
• Warranty (months): warranty period offered for each CPAP, expressed in months;
• Noise (decibels—db): the level of noise produced by CPAP, measured in decibels;
• Cost (real): the monetary cost associated with each CPAP, expressed in real (approxi‑

mately 5 BRL is equivalent to 1 USD);
• Weight (g): CPAP weight, measured in grams;
• Maintenance: rating from 1 to 7, representing each CPAP’s ease of maintenance.

The values for the resources and maintenance criteria were obtained from evaluating
ten physicians who specialized in CPAPs, as cited above.

Table 2 shows the decision matrix, which consists of nine alternatives and six crite‑
ria. The CPAPs, for better explanation and development of the step‑by‑step methodology
presented, will be named CPs, ranging from 1 to 9. A programming code in R was used
to elaborate the results and to consider the non‑beneficial criteria values in the PCA; the
CROWM enters this data in the code in R multiplied by −1:
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Table 2. Decision Matrix.

CPAPs\Criterion Resources Warranty Noise Cost Weight Maintenance

CP1 S10 AutoSet 5 24 −26 −5200 −1248 5.3

CP2 AirSense 10 Elite 3 24 −26 −3500 −1248 3.6

CP3 CPAP XT‑I 3 12 −30 −3800 −1800 4

CP4 AirMini AutoSet 7 24 −30 −7000 −300 7

CP5 SleepStyle 6 24 −28 −6000 −1700 6

CP6 VPAP Aircurve 10 VAauto 6 24 −28 −6600 −1300 6.4

CP7 SleepLive 3 3 −32 −3673 −1500 3.7

CP8 Dreamstation 4 3 −26 −4123 −1300 4

CP9 Ecostar 2 24 −29 −2400 −800 2
Source: authors.

5.1. Determination of Criteria Weights by CROWM
The values of the non‑beneficial criteriawere enteredwith a negative value to correctly

weigh the criteria that, the higher, are the worse for a respective CPAP, such as cost, noise,
and weight. Before the presentation of the data obtained, it is essential to evidence the
consistency of the analysis performed. In this context, the observations outlined in Table 2
were submitted to a Bartlett sphericity test, a crucial step for validating the analysis. The
results of the Bartlett test [58], calculated based on Equations (11)–(13) and performedwith
a significance level of 5% and 15 degrees of freedom, indicated that the Pearson correlation
matrix differs significantly from the identity matrix of the same dimension. The p‑value
(2.42 × 10−5) presents a value below the significance level of 5%, culminating in rejecting
the null hypothesis. Therefore, there is a statistically significant correlation between the
observed variables. Thus, Table 2 can proceed with PCA.

The heatmap analysis (Figure 3) indicates that CPAP devices with more features tend
to be more expensive, showing a direct correlation (0.988) between cost and resources.
Furthermore, costlier and more advanced devices are correlated with maintenance (0.994),
likely due to their complexity and superior quality, suggesting enhanced maintenance jus‑
tifies the higher investment. Weight and warranty display a negative correlation (−0.385),
hinting that lighter CPAPs may come with more extended warranties, possibly highlight‑
ing strategies to enhance confidence in durability. Meanwhile, noise negatively correlates
with warranty (−0.302), implying quieter devices are perceived as higher quality, warrant‑
ing better warranty terms.

In the proposed framework’s foundational stage, each criterion’s priority weighting is
ascertained by integrating factor loadings and the MEREC approach. The computation of cri‑
teria weights leverages Equations (1)–(8), with the initial phase employing Equations (1)–(5)
for MEREC outcomes, supplemented by factor loadings under Equations (6) and (7). Fur‑
ther, the CROWM methodology amalgamates these techniques, utilizing Equation (8) to
calculate the weights for CPAP performance criteria.

Table 3 shows the criteria weights calculated byMEREC and factor loadings, resulting
in the CROWM weights. Notably, the warranty criterion obtained the highest value with
a score of 0.268, indicating its importance in selecting CPAP devices. The maintenance
criterion, with a weight of 0.197, is also significant, reflecting its relevance in evaluating the
devices’ performance. On the other hand, noise, with a value of 0.07, assumes a position
of lesser importance relative to the different criteria.
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Table 3. Criteria weights.

Weights

Criteria MEREC Factor Loadings CROWM

Resources 0.168 0.196 0.182

Warranty 0.383 0.153 0.268

Noise 0.030 0.110 0.070

Cost 0.119 0.199 0.159

Weight 0.108 0.140 0.124

Maintenance 0.193 0.201 0.197
Source: authors.

5.2. Performance Evaluation by CROWM
After obtaining the criteria weights, each CPAP’s scores are calculated, with their sub‑

sequent ranking, and Equations (14)–(20) are used.
Table 4 delineates the eigenvalues and shared variance of the principal components

derived from PCA, foundational to the CROWM methodology. The first principal com‑
ponent (PC1) possesses the highest eigenvalue of 3.281, explaining 54.7% of the variance
alone, while the first three components together account for a substantial 91.8% of the total
variance. This significant cumulative variance illustrates the effectiveness of PCA in cap‑
turing the essence of the data, thereby confirming the robustness of the CROWMmethod
in evaluating CPAP device performance based on a comprehensive dataset. Upon calculat‑
ing eigenvalues by Equation (14), the Kaiser criterion [60] is applied to selectively identify
factors with eigenvalues surpassing one, resulting in the first three factors (PC1, PC2, and
PC3) achieving respective values of 3.281, 1.2, and 1.02. Consequently, only these factors
were incorporated into subsequent PCA phases.
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Table 4. Eigenvalues and their variances.

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalues 3.281 1.208 1.020 0.475 0.013 0.004

Shared variance 0.547 0.201 0.17 0.079 0.002 0.001

Cumulative shared variance 54.70% 74.80% 91.80% 99.70% 99.90% 100.00%
Source: authors.

Thus, only the factors’ values remain to apply the performance evaluation equations,
as represented in Table 4, and these are calculated by Equations (15)–(18).

Table 5 presents the factor scores for PC1, PC2, and PC3. These scores represent the
relative contribution of each CPAP device to the components identified after the Kaiser
test. They also reflect the multidimensional characteristics of the evaluated devices and
the defined criteria for this study. This approach to dimensionality reduction preserves
essential information, enabling detailed and comparative analyses of CPAP devices within
the context of the CROWMmethodology.

Table 5. Factors.

CPAPs PC1 PC2 PC3

CP1 0.479 0.776 −0.724
CP2 −0.493 1.348 −0.449
CP3 −0.800 −0.919 −0.333
CP4 1.622 −0.168 1.719

CP5 0.776 −0.365 −0.987
CP6 1.060 −0.186 −0.395
CP7 −1.008 −1.690 0.671

CP8 −0.525 −0.090 −0.869
CP9 −1.113 1.294 1.368

Source: authors.

Then, Table 6 calculates the factor loadings and communalities based on Equations (6)
and (19), respectively.

Table 6. Factor loadings and communalities of criteria.

Factor Loadings Communalities

Criteria PC1 PC2 PC3 PC1 PC2 PC3

Resources 0.978 −0.156 −0.069 0.956 0.024 0.005

Warranty 0.558 0.646 0.109 0.311 0.417 0.012

Noise 0.143 0.690 −0.643 0.020 0.476 0.413

Cost −0.970 0.223 0.075 0.942 0.050 0.006

Weight 0.370 0.419 0.756 0.137 0.175 0.572

Maintenance 0.957 −0.256 −0.114 0.915 0.065 0.013
Source: authors.

Table 6 showcases the factor loadings and communalities across PC1, PC2, and PC3,
illustrating the influence and representation of each criterion in the identified components.
Resources and maintenance exhibit high loadings in PC1, indicating their significant con‑
tribution to this component. Conversely, noise shows a distinct pattern with a strong neg‑
ative loading in PC3, suggesting a differentiating factor in device assessment; cost is nega‑
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tively loaded in PC1, highlighting its inverse relationship with the primary component of
variance. When considered across all three PCs, the communalities for resources, mainte‑
nance, and cost cumulatively exceed 90%, emphasizing the considerable shared variance of
these criteria and their critical role in the CROWMmethodology’s comprehensive analysis.
This highlights the essential nature of these criteria in the PCA performed, underscoring
their significance in the holistic assessment of CPAP devices facilitated by CROWM.

The loading plot analysis (graphical depiction illustrating each variable’s influence on
the principal components in PCA—Figure 4) for PCs 1 and 2, which account for approxi‑
mately 75%of the shared variance, unveils significant relationships among the variables ex‑
amined. Along the PC1 axis, resources, maintenance, and cost align positively, suggesting
a concurrent variation indicative of CPAP devices with superior quality and an extensive
set of features. Intriguingly, warranty is oppositely situated, implying an inverse variation
with resources and cost. This might point to a compensatory mechanism in devices with
fewer features or lower costs through extended warranties.
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On the PC2 axis, weight is prominently negative, underscoring specific functional fac‑
tors such as portability and ease of handling, distinct from conventional criteria of cost and
features that primarily focus on operational efficacy. Thus, the emphasis on weight sug‑
gests its independent significance in user preferences and satisfaction. Noise stands alone
in the upper quadrant, indicating a less defined association or a distinct pattern of varia‑
tion compared to quality and cost criteria typically related to resources and maintenance.
The distribution of these variables in a two‑dimensional space provides an intuitive under‑
standing of the underlying dimensions shaping the evaluation of CPAP devices. It is im‑
portant to note that the analysis of the loading plots (Figure 4) and heatmap (Figure 3) was
conductedwithout the inversion of non‑beneficial criteria, a specific approach reserved for
the application of the CROWMmethod in performance evaluation [60].

Finally, the score of each CPAP is generated by Equation (20), and it is possible to
rank the devices by CROWM. In this sense, to establish a sensitivity analysis of the results,
three methods renowned in the literature were used: the PCA, using the weighted rank‑
sum criterion method [60]; the Combined Compromise Solution (CoCoSo) method [61]
with the weights generated by CROWM (Table 3); and the Gaussian AHP [62].

According to Table 7, the sensitivity analysis highlights the remarkable stability and
consistency of the CROWM method compared to the other rankings. The preservation
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(mainly) of the original positions evidences the intrinsic robustness of the proposedmethod
in the evaluation and classification ofmedical devices. Regarding the ranking generated by
the PCA, no changes were observed. In contrast, only one changewas recordedwhen com‑
pared to the CoCoSo method, and for the Gaussian AHP, some positions were swapped,
but the first and last CPAP were the same in both methods.

Table 7. Comparison of proposed method ranking and variations.

Ranking CROWM PCA CoCoSo Gaussian AHP

1º CP4 1.134 CP4 1.145 CP4 2.722 CP4 0.208

2º CP6 0.564 CP6 0.475 CP1 2.704 CP9 0.119

3º CP1 0.362 CP1 0.295 CP6 2.679 CP6 0.115

4º CP5 0.294 CP5 0.183 CP5 2.61 CP1 0.112

5º CP2 −0.087 CP2 −0.074 CP2 2.51 CP5 0.109

6º CP9 −0.278 CP9 −0.115 CP9 2.009 CP2 0.105

7º CP8 −0.428 CP8 −0.453 CP8 1.837 CP3 0.080

8º CP3 −0.696 CP3 −0.679 CP3 1.778 CP8 0.079

9º CP7 −0.863 CP7 −0.778 CP7 1.316 CP7 0.072
Source: authors.

The inherent robustness of the CROWM method, as highlighted in the sensitivity
analysis, derives from its integrated approach that effectively combines PCA and MCDA
techniques. This fusion provides a holistic and objective assessment, essential in highly
complex contexts. Such integration ensures a comprehensive criteria analysis, reflecting a
deeper understanding of the dataset. Still, automation in generating weights significantly
reduces subjective influences, leading to more balanced and unbiased assessments. In ad‑
dition, the rigorous application of statistical tests, such as the Kaiser and Bartlett criteria,
increases analytical accuracy, ensuring that only significant components are covered. Ad‑
ditionally, the incorporation of communalities in the factor analysis and the innovative in‑
clusion of monotonous cost criteria enrich the method, providing a more detailed view of
the shared variation between the variables and ensuring the proper evaluation of all relevant
factors, including those with potentially negative impacts on a given CPAP performance.

Table 7 presents a comparative ranking of CPAP devices based on the results obtained
by the CROWM method alongside three alternative analytical methods: PCA, CoCoSo,
and Gaussian AHP.Moreover, Table 7 highlights the effectiveness of the CROWMmethod
in evaluating CPAPdevices, singling out the CP4 as the top‑performing devicewith a score
of 1.134, underscoring its exceptional performance across nearly all criteria being assessed.
This analysis not only underlines the superiority of CP4 in terms of efficacy and versatil‑
ity but also emphasizes the robust methodology of CROWM in providing consistent and
comparable results with other analytical methods. The consistency of CP4 in maintaining
the lead position across differentmethodologies bolsters its recommendation as a standout
option for patients, demonstrating the practical applicability and precision of the CROWM
method in selecting CPAP devices.

The CP1, despite its lower price point, demonstrates a commendable balance across
various criteria, earning it the third rank. This finding highlights its cost‑effectiveness,
suggesting that, upon medical recommendation, the CP1 could be a reasonable choice for
patients seeking quality treatment aligned with economic considerations. Moving beyond
mere cost analysis, employing the CP1 in OSA treatment introduces significant financial
considerations for healthcare. While the CP4 leads in performance metrics, the CP1 dis‑
tinguishes itself through its optimal cost‑effectiveness balance. Utilizing the CROWM
method, this analysis advocates for the CP1 as a model of efficient resource allocation in
healthcare, particularly in managing complex conditions like OSA within economically
constrained environments.
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In the study, Spearman’s correlation analysis [63] compares the rankings generated
by the CROWMmethod with the established PCA, CoCoSo, and Gaussian AHP methods.
Spearman’s correlation, a nonparametric statistical test used to measure the strength and
direction of association between two rankings, revealed the following results: between
CROWM and PCA, a value of 1000; between CROWM and CoCoSo, 0.983; and between
CROWM and Gaussian AHP, 0.817.

Corroborating these results, Figure 5 shows the variations in the positions of the CPs
according to the evaluation methods, denoting stability of the analyses between the pro‑
posed method and the PCA and CoCoSo, but with slight variations concerning the Gaus‑
sian AHP. Notably, CP4 was the first in the three rankings, while CP7 was last in all meth‑
ods. According to Mukaka’s [64] explanation, a solid positive correlation is evidenced by
Spearman’s correlation values greater than 0.9, while values between 0.7 and 0.9 suggest
a high correlation, reinforcing the validity of the CROWM as a reliable method and in line
with established approaches. These high correlation values indicate a strong agreement
between the rankings generated by CROWM and the other methods and suggest the con‑
sistency and robustness of the method.
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5.3. Advantages and Disadvantages of the CROWMMethod
As a drawback, the CROWMmethod does not allow for the inclusion of the DM opin‑

ion in the evaluation process, making the analysis dependent on the evaluated data, result‑
ing in the criteria weights in Table 3. This can limit the method’s flexibility in situations
where the DM’s intuition or experience could be valuable. Another point to consider is the
complexity of the technique, which requires computational support for its implementation.
Moreover, for CROWM to yield consistent and reliable results, the dataset must exhibit a
correlation among its data, typically analyzed at a significance level of 5% by the Bartlett
test [58]. After applying the Bartlett test, the p‑value (2.42 × 10−5) presents a value below
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the significance level of 5%; if this had not happened, the correlation between the variables
would not have been justified, and the CROWMmight not have presented robust results.

A vital advantage of the CROWMmethod lies in its robust data analytics capabilities,
notably through the application of PCA validation tests, which are often overlooked in
the literature. A unique characteristic of this method is its use of communalities to accu‑
rately represent the shared variance between variables in extracted factors. This approach
enables a precise representation of specific criteria within the PCs, facilitating a correct
scoring of each alternative by considering this weighting in each PC. Another advantage
is integrating non‑beneficial criteria into PCA, allowing for a more comprehensive under‑
standing of each alternative’s advantages and disadvantages, and providing a reliable eval‑
uation by correctly positioning their characteristics within the decision‑making process.
Furthermore, leveraging the inherent features of PCA, CROWM benefits from this ML
technique’s efficiency and ability to generate objective rankings. This is achieved by sim‑
plifying data complexity through dimensionality reduction, which retains only essential
information. Unlike some traditional decision support and multicriteria methods, PCA
minimizes ambiguities and subjectivities by automatically weighting variables based on
their shared variance. This methodological approach results in precise rankings grounded
on robust statistical criteria, dynamically adapting to the data and faithfully reflecting the
performance of alternatives.

These advantages are explained by the consistent results, which were validated by
renowned methods in the literature, as shown in Table 7, Figure 5, and by Spearman’s
coefficient [63,64].

6. Conclusions
Fulfilling its objective, this research presented a methodology for evaluating CPAP

devices in healthcare, particularly in managing sleep quality. By employing the CROWM
method, the study highlights its capacity to provide personalized CPAP therapies that op‑
timize the treatment of respiratory disorders and improve patients’ quality of life, while
minimizing associated risks.

The findings of this study underscore the AirMini AutoSet, CP4, as the frontrunner
with a score of 1.134, highlighting its superiority across evaluated criteria. The CP1, S10
AutoSet, despite its lower price point, demonstrates a commendable balance across various
criteria, earning it the third rank. This underscores its cost‑effectiveness, suggesting it is
a viable option for quality treatment aligned with economic considerations. Conversely,
the SleepLive device, CP7, ranks at the bottom with a score of −0.863, indicating areas for
improvement. These results elucidate the distinct performance spectrum of CPAP devices,
guiding optimal selection based on comprehensive evaluations.

Sensitivity analysis revealed the remarkable stability and consistency of the CROWM
method, especially when compared to other methodologies like CoCoSo and Gaussian
AHP, with high Spearman correlation values, 0.983 and 0.817, respectively. This robust‑
ness and consistency are critical in analyzing complex variables and confirm the value of
this innovative method for informed decision‑making in the selection of medical devices.

The study also provides practical guidance for both healthcare professionals and CPAP
manufacturers. It underscores the importance of balancing efficacy, convenience, and tech‑
nical features in treating sleep apnea. Healthcare professionals are advised to familiarize
themselves with the evaluation criteria for more informed decision‑making. Concurrently,
CPAP manufacturers are urged to prioritize a balance between technical quality, cost, us‑
ability, and maintenance, aiming to develop affordable and easy‑to‑use devices.

Finally, the potential extension of the CROWMmethod to other applications in health
and society is highlighted, serving as a reference for high‑impact decisions across various
contexts. This method is expected to contribute to assertive decision‑making, assisting
healthcare professionals, researchers, and patients in the practical and reasonable choice
of these essential devices. The goal is to provide a valuable tool that positively impacts
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the quality of medical care offered to patients with specific needs, reinforcing this study’s
position as an essential milestone in healthcare.

Future research should explore the development of decision support methodologies
that integrate the subjective opinions of DMs, especially in evaluating medical devices like
CPAPs. This approach could incorporate expert opinions, patient preferences, and clinical
insights to enhance decision‑making. Such methodologies could utilize advanced tech‑
niques like fuzzy logic, AHP, or ML algorithms to process and synthesize these subjective
inputs. This integration would add a human‑centric dimension to the decision‑making
process and increase the accuracy and relevance of the evaluations. Such research would
represent a step forward in personalized medicine, ensuring that the selection of medical
devices aligns more closely with individual patient needs and preferences, as well as the
expertise of healthcare professionals.
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