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Abstract: This paper presents the Animated VISualization Tool (AVIST), an exploration-oriented
data visualization tool that enables rapidly exploring and filtering large time series multidimensional
datasets. AVIST highlights interactive data exploration by revealing fine data details. This is achieved
through the use of animation and cross-filtering interactions. To support interactive exploration
of big data, AVIST features a GPU (Graphics Processing Unit)-centric design. Two key aspects are
emphasized on the GPU-centric design: (1) both data management and computation are implemented
on the GPU to leverage its parallel computing capability and fast memory bandwidth; (2) a GPU-based
directed acyclic graph is proposed to characterize data transformations triggered by users’ demands.
Moreover, we implement AVIST based on the Model-View-Controller (MVC) architecture. In the
implementation, we consider two aspects: (1) user interaction is highlighted to slice big data into
small data; and (2) data transformation is based on parallel computing. Two case studies demonstrate
how AVIST can help analysts identify abnormal behaviors and infer new hypotheses by exploring big
datasets. Finally, we summarize lessons learned about GPU-based solutions in interactive information
visualization with big data.

Keywords: big data; interactive data exploration and discovery; multidimensional dataset; GPU

1. Introduction

As data sizes increase, interactive visual analysis becomes a key for gaining usable insights from
massive data. To support sensemaking of big data, three aspects are emphasized in exploratory visual
analysis. First, flexible data filtering (e.g., cross-filtering [1,2]) can empower analysts to “prune” large
datasets to gain buried relationships. Second, fine data details should be provided on demand, so that
analysts can capture certain subtle abnormal activities. Last, exploratory data analysis is usually
an interactive and iterative process. Thus, big data exploration needs high performance computing
to provide real-time frame rate performance. For example, when cyber security analysts attempt
to identify attacks from millions of records in network traffic logs, they have to filter data records
iteratively to finally narrow down to suspicious records.

However, there are many challenges to interactive analysis of big data. When data become
bigger, they cannot be loaded into memory or the computation speed is not sufficient for real-time
performance. In order to feed more data into memory, Tableau [3] introduces Tableau Data Engine
(TDE) [4]. The TDE highlights a specialized column-oriented data format, which supports a high
data compression ratio (considering repeating values in the columns) and provides high level data
aggregation information. To achieve fast visual querying of big data, imMens (a system designed
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to support interactive visual exploration of large data sets) [5] utilizes GPU resources to speed up
performance. It aggregates data into data tiles using the data cube technique [6] and uses WebGL for
data processing and rendering to improve performance. However, the data cube technique suffers from
the data scalability problem, where data grow exponentially with the dimensionality. In summary,
both Tableau and imMens provide the capability to explore high level aggregated information of
big data.

Different from these, our paper aims to flexibly investigate fine-grained data details, such as
identifying buried data relationships by complex filtering. Additionally, we propose a new data
processing pipeline integrated with GPUs to achieve this goal. As a proof of concept, we implement
an Animated VISualization Tool (AVIST), which can analyze millions of multi-dimensional data
records per second on an off-the-shelf desktop computer. We emphasize “animation” in the context of
time series multidimensional datasets to help identify temporal data patterns. In summary, our key
contributions are as follows:

(1) We propose a GPU-centric design to support interactive visual exploration of large datasets,
which emphasizes the use of GPU for data management and computation.

(2) We design a data dependency graph to characterize GPU based data transformations,
which supports data aggregation and visualization on demand.

(3) We implement AVIST following our GPU-centric design as a proof-of-concept. AVIST features
animation and cross-filtering interactions to slice big data into small data and GPU parallel
computing to transform raw data into visual primitives.

(4) We present two usage scenarios to demonstrate that AVIST can help analysts identify abnormal
behaviors and infer new hypotheses by visual exploration of big datasets.

(5) We discuss lessons learned about the application of GPU methods to address performance
challenges in interactive, visual exploration of big data.

2. Related Work

Our survey includes four aspects about visual exploration of big data: (1) which kind of data
should be visualized and what are their characteristics; (2) how does one store and manage big data;
(3) how does one compute big data and achieve fast performance; and (4) how does one explore and
interact with big data.

2.1. Exploration of Multidimensional Datasets

Large multidimensional datasets are ubiquitous. Many are behavioral data generated by people
or machines, and they have a natural temporal ordering (streaming data) [7,8]. For example,
network logs and financial transactions are large datasets, and they are generated by order in time.
When faced with such multidimensional datasets, analysts may not know what they are looking for;
they may know something is interesting only after they find it. In this setting, analysts have no idea
how to formulate their queries. Thus, interactive exploration of large time series and multidimensional
datasets is a key ingredient for knowledge discovery [9].

The interactive exploration system for knowledge discovery is a novel requirement in the era of
“big data”. The data exploration becomes a first challenge for sensemaking of large multidimensional
datasets. In this paper, we focus on this problem and provide a solution for interactively exploring
such datasets.

2.2. Big Data Management

Big data management methods vary based on the dataset size. If a dataset can be loaded into
computer memory, the in-memory database technique should be investigated. When a dataset is larger
than computer memory capacity, data prefetching and out-of-core techniques are considered [10].
If a dataset is bigger than computer disk capacity, then distributed file systems (e.g., Hadoop
Distributed File System [11]) should be considered.
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In this paper, our target is visual exploration of big data on an off-the-shelf desktop computer.
Additionally, we consider the scenario for which the dataset size is less than computer memory.
Previous research (e.g., imMens [5]) used one million or more data items as a threshold for the
definition of big data. Therefore, we follow this definition and give an upper bound in our paper:
the capacity of computer memory.

There are two ways to manage multidimensional (tabular) datasets: row-oriented and
column-oriented formats. Abadi et al. [12] discuss the differences between them and point out that the
column format can apply some compression techniques, which significantly reduce the data size and
improve query performance. For example, Tableau’s TDE is designed as a column-oriented format for
managing big data. However, the row-oriented format is better for analyzing small transactions to
“find a needle in a haystack” and is designed for an in-memory database system.

Data modeling, sampling, aggregation and indexing [5] are also used to handle big data.
These methods reduce big data into smaller data. For example, Lins et al. [13] propose a new data
structure called nanocube to aggregate large spatiotemporal datasets for fast querying and visualization.
However, due to this, data explorations are constrained by its data structure, and it cannot directly
provide flexibility and low level data details (Nanocube does not allow one to query down to any
individual record). Our work emphasizes visual exploration of data fine-grained details by complex
filtering and highlighting. We manage large multidimensional datasets in a row-oriented manner and
utilize parallel computing to support visual exploration of big data on demand.

2.3. GPU Acceleration

Compared with the CPU, the Graphics Processing Unit (GPU) has the two following unique
features for handing big data.

(1) More cores and fine levels of parallelism: The GPU has a many-core architecture, which may
include thousands of cores. This feature makes the GPU specialized at compute-intensive,
highly parallel computation.

(2) Higher memory bandwidth: The GPU can access data at a higher speed (usually more than
100 GB/s) or more data in a fixed time period than the CPU does.

The GPU is popular in scientific computation and visualization [14]. However, several factors have
hampered its use for general-purpose computation in information visualization and visual analysis
fields. Primarily, traditional algorithms in those fields are sequential, and they are not designed
based on the GPU parallel architecture. However, the development of GPU libraries, such as Thrust
(a parallel algorithm library) [15] and cuBLAS (GPU-accelerated basic linear algebra subprograms) [16],
helps translate traditional algorithms on the GPU. Another concern is the slow data transfer
from CPU to GPU memory and limited GPU memory capacity. However, transfer speeds have
improved significantly thanks to PCI (Peripheral Component Interconnect) bus improvement, and now,
the GPU memory capacity is quite good. All of these GPU developments make it a possible solution
for handling big data to support exploratory data analysis [17].

GPU processing has deep roots in graphics and visualization, and it is good at handling millions
of pixels. Researchers have proposed different methods for large data visualization based on the GPU
architecture. McDonnel et al. [18] present a model to refine the traditional information visualization
pipeline based on the GPU shaders. Their model emphasizes the image-space operations, addresses
the mismatch between the data primitives (trees, graphs, etc.) and graphics hardware. MapD
(a GPU database technology company) [19] gives a commercial product targeting large data analysis by
leveraging GPU resources. The key idea of MapD is that SQL queries are compiled to native GPU code
via the LLVM compiler framework (a compiler infrastructure project, which involves a collection of
modular and reusable compiler and toolchain technologies) [20] to run queries in parallel. Compared
with these existing work, we give a new way to utilize GPU resources to support exploratory visual
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analysis of large multidimensional datasets. Specifically, we propose AVIST, which is implemented
based on a GPU-centric design to explore large time series and multidimensional datasets.

2.4. Big Data Exploration

Querying and filtering are fundamental interaction techniques for data exploration. Polaris [21]
features a visual querying language that integrates analysis and visualization of multidimensional
datasets. Analysts can construct sophisticated visualizations by simple drag-and-drop operations.
However, Polaris is incapable of managing big data. Tableau, the successor of Polaris, makes progress
on big data visualization, but lacks flexible visual filtering to investigate fine data details.

Animation is one type of time multiplexing technique [22] to visualize large data. Moreover, it can
effectively reveal temporal patterns by significantly improving graphical perceptions [23]. Our work
highlights animation-based interactions for slicing big data into small data. Cross-filtering [1] is
a method that supports flexibly drilling-down into fine-grained relationships in multidimensional
datasets. Hence, we combine animation and cross-filtering interactions to achieve fast, flexible and
detailed data exploration.

3. The GPU-Centric Design

3.1. Design Principles

Our design follows two important principles: (1) leveraging the GPU parallel architecture to
improve performance; (2) affording flexible visual querying and filtering to support exploring fine
level data details. Based on these, we carefully consider the data management and computation on
the GPU:

• Data management: We store raw data in the GPU memory. In addition, all derived data are stored
in the GPU memory to take advantage of its high memory bandwidth.

• Data computation: We highlight cross-filtering for slicing data from different attributes
(e.g., animation for the time domain). To support such data aggregation and visualization on
demand, a data dependency graph is proposed to characterize data transformations on the GPU.

3.2. Design

Our GPU-centric design has two key aspects: (1) raw data are stored on the GPU; and (2) data
processing is on the GPU.

We emphasize that raw data are important for exploratory visual analysis, since they can
potentially help analysts analyze each data record without any information loss (finding a needle in a
haystack). The raw data are stored in the GPU memory, which enables: (1) fast data accessing based
on its high bandwidth; and (2) avoiding data transfers between the CPU and GPU. Besides the raw
data, derived data are also stored in the GPU memory (visual primitives are stored in GPU vertex
buffer objects).

We also highlight that data aggregation and visualization are based on the GPU parallel
computation. The benefits include: (1) parallel data processing based on the GPU fine level parallelism;
and (2) data aggregation and visualization on demand, rather than precomputation.

Figure 1 shows the GPU-centric design. User interactions are generated on the CPU side, then they
are transferred to the GPU, which triggers the GPU processing and rendering. The GPU processing is
also separated into two parts: (1) general data aggregation and filtering; and (2) computation of visual
primitives for each data view. In all, the GPU-centric design emphasizes that both data management
and computation are handled by the GPU to gain performance.
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Figure 1. The GPU-centric design: user interactions are transferred from CPU to GPU. Data storage
and computation are on the GPU.

3.3. Data Management

As mentioned earlier, the GPU memory capacity is one limit in our solution. To feed more data
into the GPU memory, we apply a lossless compression technique to preprocess datasets.

Consider a multi-dimensional dataset, which includes different types of data. First, we identify
each data type and separate them into time data, quantitative data and categorical-ordinal data. Second,
we apply different compression methods considering different data types. For the categorical-ordinal
data, we count all possible values and map each value into a unique ID, this key-value map is stored in
main memory as metadata. For time and quantitative data, we calculate its minimum and maximum
values as metadata.

On the GPU side, we organize raw data in the row-oriented format, where all data records are
ordered based on their time value (we emphasize data temporal and spatial locality for fast data
retrieving). We store data binary code instead of its ASCII code to save memory space. Thus, the time
data occupies eight bytes, and the quantitative data needs four bytes. We map categorical-ordinal
data into IDs based on their metadata. The memory requirement varies based on the possible values
(one byte is required if the number of IDs is less than 256; two bytes are considered if its number
is less than 65,536; other cases use four bytes). Table 1 summarizes the compression methods for
preprocessing datasets.

Table 1. Data preprocessing.

Data Type GPU Memory Binary Format Main Memory Metadata

Time
time_t
8 bytes

minimum value
maximum value

Quantitative
Int or Float

4 bytes
minimum value
maximum value

Categorical-Ordinal 1∼4 bytes
Dictionary

(IDs and data values)

Compared with the row-oriented format, column-oriented data organization has better
performance on some analytical workloads. However, we use the row-oriented format instead of
column-oriented format considering four factors: (1) exploratory analysis requires more fine-grained
record details than high level aggregations, and we want to guide analysts to each data record based on
their querying and filtering, rather than show them high level aggregations. (2) The column-oriented
format primarily works on columns, which are treated individually. Thus, queries for each column
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work efficiently, while cross-column queries need to retrieve multiple columns and to assemble that
data in a complex way. The computation may be time consuming. (3) Row-oriented data have a spatial
locality based on their IDs. If the data have timestamps, temporal and spatial locality can be combined
together for fast data retrieval. (4) The computation of row-oriented data can be easily parallelized by
leveraging GPU fine parallelism to improve performance.

3.4. Data Computation

We propose a data dependency graph to characterize data transformations on the GPU. Figure 2
shows the detailed data flow design, which is a directed acyclic graph. In the figure, rectangles
represent data, while ovals are parallel computations. The graph is separated into three parts as below.

Figure 2. The data dependency graph: rectangles represent data, and ovals are parallel computations.
Data filters are generated on the CPU and transferred to the GPU. Data processing and rendering are
done on the GPU.

• Data filtering: Data filters (e.g., time window, filters and highlights) are generated by user
interactions on the CPU side, then they are passed to the GPU side. The data flow is described as
follows: (1) the time window is applied to slice raw data into data snapshots; (2) filters are applied
to data snapshots by removing data records for which the user is uninterested; (3) highlighted
filters emphasize important data items from the filtered data list.

• Data processing: This step transforms filtered data into visual primitives. Additionally, data
transformation methods depend on each data view. We summarize data processing into two
stages in each data view: (1) data aggregation, which generates geometry data (e.g., binning data
for a histogram view) from filtered dataset; and (2) data computation, which transforms geometry
data into visual primitives (e.g., the bar height for a histogram view).

• Data rendering: All generated visual primitives are stored in the GPU vertex buffer objects.
We use GLSL (the OpenGL Shading Language) to generate the ultimate visual results, then render
the visual primitives on the screen (e.g., splitting one vertex into four for rendering rectangles
using the geometry shader, filling colors in triangles using the fragment shader).

The data dependency graph has several advantages. (1) It follows the cross-filtering
design pattern [2], where the cross-filtering and coordinated multiple views are coupled together;
(2) All data processing and visual rendering can be easily parallelized, and data aggregation is on
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the fly; (3) Incremental computation can be applied to exploit temporal and spatial locality. When
users play animations, frame-to-frame coherence can be exploited. In such cases, only incremental
data should be considered. Moreover, user interactions are incremental and interactive, so previous
queried results can be used by the next query; (4) The data dependency graph is flexible and extensible.
More data filters and data views can be easily extended.

4. AVIST

We implemented AVIST based on the GPU-centric design. AVIST is written in C++.
Its computation codes are based on CUDA 7.5, and visualization codes are based on OpenGL 4.5 and
GLSL 4.5. The interface is coded with wxWidgets on the CPU side. We use the Thrust library [15] to
accelerate sorting, scanning and reduction operations.

We describe our implementation from four aspects: (1) system architecture, which follows
the Model-View-Controller (MVC) pattern [24] and separates the AVIST system into three parts:
data transformations (model), data views and data filters (controller); (2) data transformation,
which features the GPU parallel computation to achieve fast performance; (3) coordinated multiple
views, which provide different visual aspects of multidimensional datasets; (4) user interactions,
which emphasize animation and cross-filtering for slicing big data into small data.

4.1. MVC Architecture

Figure 3 shows the system architecture. Users interact with one data view, then the controller
updates filters, which then triggers the data models. After all data models have been updated, the
controller notifies all data views to refresh visual primitives.

Model
(Data)

Raw	Data
Filtered	Data
Histogram	Data
Time-series	Data
Parallel	Coordinate	Plots	Data
Virtual	Globe	Data

Controller
(Filters)

Time Window
Highlight
Exclusive
Inclusive

Views
Histogram
Time-series
Parallel	Coordinate	Plots
Virtual	Globe

User Actions Update

Update Notify

Figure 3. The Model-View-Controller (MVC) architecture in Animated VISualization Tool (AVIST).
Users interact with data views to change data filters for updating data models. The controller updates
the data views after it obtains the data model’s notification.

The MVC architecture has three benefits. (1) The system separates filters, data and views,
which gives AVIST flexibility to extend more filters, data transformations and data views in the future;
(2) The model is implemented on the GPU, which highlights the GPU-centric design;
(3) The coordinated multiple views can be easily applied. User interactions of one data view can
update filters, which trigger data transformations and refresh other data views.

4.2. Data Transformation

AVIST highlights the parallel data transformation, which follows our data dependency graph
design. The data transformations are separated into three stages: data filtering, processing
and rendering.
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4.2.1. Data Filtering

This stage describes data transformation from raw data into filtered data, as shown in Figure 4.
First, a time window slices raw data into data snapshots, then data filters are applied to data snapshots
to remove uninteresting records or highlight important ones. Because raw data are organized in time
order, so data snapshots can be easily sliced (we use binary search for identifying the start and end
records from raw data based on a given time window setting, rather than checking each data record in
parallel). The sliced data records in data snapshots are checked by data filters in parallel, and then,
they are reduced to a filtered dataset.

Time Att
1

Att
2

Att
3

Att
4

Att
5

2013-04-02-09:50AM 2 7 3 8 5

2013-04-02-09:55AM 9 1 6 7 4

2013-04-02-10:10AM 9 7 6 8 1

2013-04-02-11:50AM 6 1 4 7 3

2013-04-02-12:30PM 2 7 5 8 4

2013-04-02-03:20AM 9 7 9 8 1

2013-04-02-03:23AM 2 7 3 8 4

2013-04-02-07:42AM 6 1 2 7 3

Exclusive	filter

Att
1

Att
2

Att
3

Att
4

Att
5

9 1 6 7 4

9 7 6 8 1

2 7 5 8 4

9 7 9 8 1

2 7 3 8 4
Time

Window

Raw Data Filtered Data

Figure 4. Data transformations from raw data to a filtered dataset.

4.2.2. Data Processing

Data processing is view dependent. We consider the implementation of four data views: histogram
view, time series view, parallel coordinate plots and virtual global view (more details about them can
be found in Section 4.3).

Att
1

Att
2

Att
3

Att
4

Att
5

9 1 6 7 4

9 7 6 8 1

2 7 5 8 4

9 7 9 8 1

2 7 3 8 4

Value Fre

9 3

2 2

Pos High

0.45 0.6

0.1 0.4

Data Range(1-20)

Pre-max Frequency 5

Histogram
Geometry Rendering

… 8 5 0 0 …

Time-series
Geometry Rendering

… 0.8 0.5 0 0 …

Pre-max value 10

Filtered Data

Figure 5. Data transformations from filtered data into visual primitives.

Figure 5 demonstrates the data transformation of histogram and time series views. Based on the
user-selected column in the histogram view, AVIST retrieves the corresponding data, aggregates and
then visualizes them. The steps are as follows:

1. Sort one data column to get unique values and their frequency.
2. Get the X position of each unique value based on the data range (Xpos is the position column of

the rendering table in the histogram box in Figure 5). This value is calculated as:

Xpos = (ColumnValue − Columnminimum) /rangecolumn
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3. Get the Y position of each unique value based on previous maximum frequency, and then, update
this value for the next computation (Ypos is the height column of the rendering table in the
histogram box in Figure 5). They are calculated as:

Ypos = ColumnFreq/ValuePreMaxFreq, ValuePreMaxFreq = Max
(
ValuePreMaxFreq, ColumnFreq

)
The previous maximum frequency is the maximum of all previous frequency values in histogram

geometry data. If users create a new histogram view by choosing a different column, a new previous
maximum frequency value of that column is calculated.

Data transformation of the time series view is straightforward. The GPU counts the number
of data records in a filtered dataset and transforms this to a height value (based on the previous
maximum value).

Data transformations of Parallel Coordinate Plots (PCPs) are more complex than other views.
Figure 6 shows the data transformations. First, the GPU generates a compact list based on chosen axes.
Then, the data flow is separated into two parts, including the vertices and edges generations.

The steps for vertex generation are described as follows:

1. Sort each column individually to remove duplicated values.
2. Assemble the compact columns into three arrays: vertex array, size array and offset array.
3. Generate each node position: the X-axis is based on the selected order of each column, and the

Y-axis is based on the item value and its dimension range.

Att
2

Att
3

Att
5

1 7 4

7 8 1

7 8 4

7 8 1

7 8 4

Compact List

Att
2

Att
3

Att
5

1 7 1

7 8 4

Remove duplicates in each column

2

2

2

1

7

7

8

1

4

size

vertex
Geometry

X Y

O.3 0.1

0.3 0.7

0.6 0.7

0.6 0.8

0.9 0.2

0.9 0.8

Rendering

Dimension Range
Att-2:10
Att-3:10
Att-5:5

X-range: (0-1)
Y-range: (0-1)

Column Compact

Vertex Info

1 7

7 8

7 8

7 8

7 8

7 4

8 1

8 4

8 1

8 4

17

78

78

78

78

74

81

84

81

84

Edge-IDEdges

2

3

17

78

74

81

84

size

edge
0 2

1 3

2 5

3 4

3 5

Edge-List

Edge Info

0

2

4

offset

0

2

offset
Remove duplicates in each row 1 7

7 8

7 4

8 1

8 4

Vert ID

1 0

7 1

7 2

8 3

1 4

4 5

vertex-edge

vertex-dictionary

Figure 6. Data transformations of parallel coordinate plots, which are separated into three parts:
compact list, vertex and edge generations.

The steps for generating an edge list are as follows:

1. Two neighboring columns are grouped into one array (Edge-ID array) as edges. The value in this
array is calculated as: Edge-ID = valuecolumnA × rangecolumnA + valuecolumnB

2. Sort the Edge-ID array and remove duplicates.
3. Compact multiple Edge-ID arrays into three data arrays: edge array, size array and offset array.
4. Convert the edge array into the vertex-edge array.
5. Replace each vertex value in the vertex-edge array with its order based on the vertex-dictionary

to generate Edge-List array.
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The virtual global view is a special case of parallel coordinate plots with two axes. The difference
is that the vertex position is 3D in the virtual global view, and there are extra steps to generate 3D
positions based on longitudes and latitudes. In the implementation, we use Bezier curves to link two
geolocations for revealing their relationships.

4.2.3. Data Rendering

AVIST stores visual primitives into GPU vertex buffer objects (VBOs), which offer substantial
performance gains and avoid data transfers between the CPU and GPU. However, visual primitives in
the VBOs are vertexes and edges. In order to generate rectangles, areas or other advanced shapes, we
use GLSL for post-rendering. For example, we split one vertex into four vertices to render rectangles
in the histogram view. We transform vertices into line strips to generate areas in the time series view.

4.3. Coordinated Multiple Views

Four data views are provided in AVIST, which are histogram view, time series view, parallel
coordinate plots and virtual global view. The data views work together with data filters, which enables
cross-filtering of multidimensional datasets. Data views also support direct visual filtering with
brushing interactions (e.g., an analyst first selects highlighted filters in solo mode, then he or she
brushes one bar in the histogram view to highlight corresponding data records).

• A histogram view shows the data distribution of a sliced data snapshot. Analysts can choose
different dimensions to explore aggregated information.

• A time series view shows data aggregation about certain filtered events over a period of time.
When an analyst changes data filters, the time series view clears previous visualization and
redraws everything.

• Parallel coordinate plots show data details. Analysts can select multiple data dimensions to
generate their customized parallel coordinate plots. The axes are organized based on their
selected order.

• A virtual global view shows geographical information. The Bezier curves are used to link locations
on the virtual globe for representing data relationship.

4.4. User Interactions

Figure 7 shows the control panel of AVIST, which provides animation and filtering interactions.

1 2 3 4

1. Highlight  Filters
2. Exclusive  Filters
3. Inclusive  Filters
4. Color  PickerSolo  Mode

And  Mode
Or  Mode

Figure 7. The control panel of AVIST. Three filters (highlight, exclusive and inclusive) with three
modes (solo, and, and or) are provided.
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4.4.1. Animation

The animation interactions include automatic forward playback, dragging a time window bar
and adjusting animation speed. By updating the current time and time range, the time window is
customized to slice data into snapshots, which are analyzed and visualized in correlated data views.
By combining automated animation with these correlated views, AVIST can provide temporal changes
in the datasets.

4.4.2. Filtering

Three different filters are implemented in AVIST.

• Highlight filters: making selected data items stand out from the rest with different colors.
• Exclusive filters: removing uninteresting data items.
• Inclusive filters: the exact opposite of exclusive filters, removing all data items except those

marked by an analyst.

Each data filter has three modes:

• Solo mode: allowing only one filtered item in the current filter set.
• And mode: combing several filters together as a whole and selecting data records to satisfy

all conditions.
• Or mode: selecting data records to meet at least one of all of the filter conditions.

With these three filters and their modes, analysts can generate complex nested data filters and
apply them to different data views, which can help them drill down and “find a needle in a haystack”
on demand.

4.4.3. Capacities

The animation interactions can slice big data into fine-grained subsets by narrowing down the
size of the time windows. Filtering interactions can extract relevant records for analysts by focusing
on small data subsets. The cross-filtering can be achieved by combing different filters and multiple
data views. These interactions transform large data into small data by removing uninteresting items or
highlighting important ones, which provide the flexibility of exploring large multidimensional datasets.

5. Performance

We evaluate AVIST performance on a desktop computer, running Windows 7 Enterprise, which is
equipped with an Intel i7 processor and NVIDIA GeForce GTX 680 graphics card with 4 GB memory.
We use a network traffic dataset from the first case study as our benchmark.

Figure 8 shows the performance about data filtering and transformation. It describes a linear
relationship between performance and the number of queried data records, except for the time
series data. The reason is that the aggregated information of the time series view does not require
much computation. The data processing to generate parallel coordinate data is the most time
consuming part in AVIST. To further investigate detailed GPU performance in parallel coordinate plots
(eight axes), we characterize data transformations into three stages, including: (1) compact list
generation; (2) vertex generation; and (3) edge generation. The performance is shown in Figure 9,
where the data generation of the compact list needs more time than others. The reason is the compact
list is generated by the raw data, where it removes duplicated rows. The vertices and edges generations
are based on the compact list, and their data records highly reduced by the compact list. The number
of axes also has an impact on performance. Figure 10 shows the performance of parallel coordinate
data with 2, 4 and 8 axes. We see that the time decreases with increasing axes. However, the number of
columns has a limited impact.

We have implemented a CPU version for parallel coordinate plots. The comparison between the
CPU and GPU is shown in Figure 11. We see that the GPU version is faster than the CPU version.
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The reason is that the performance is heavily based on removing duplicates. We have different
solutions to achieve this on the CPU and GPU platforms. In the CPU version, we use the map and
set containers from the C++ Standard Template Library (STL) to remove the duplicated data items.
Their implementation is based on a red-black tree [25]. Thus, the time complexity of inserting N
items into a set container to remove duplicates is O(Nlog(N)). In the GPU version, we use the sort
operation from the Thrust library to remove duplicates. Its implementation is based on the radix sort
algorithm [26]. The complexity of it is O(NK), where K is the number of bits in one element (the value
of K is 64 in our implementation).

Figure 8. The performance of AVIST. The X-axis is the number of queried data records, and the Y-axis
is the time (milliseconds). This scatter plot shows the performance of four kinds of data: filtered data,
parallel coordinate data (eight axes), histogram data and time series data.

Figure 9. The detailed performance for generating parallel coordinate data. The X-axis is the number
of queried data records, and the Y-axis is the time (milliseconds). Three steps are characterized in the
plot, including the data generations of compact list, vertices and edges.
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Figure 10. The performance for generating parallel coordinate data with different numbers of axes.
The X-axis is the number of queried data records, and the Y-axis is the performance (milliseconds).
The figure includes three cases: 2 axes, 4 axes and 8 axes.

Figure 11. The performance comparison between the CPU and GPU in parallel coordinate plots
(two axes). The X-axis is the number of queried data records, and the Y-axis is the time (milliseconds).

6. Usage Scenario

In this section, we use two usage scenarios to demonstrate how AVIST can support visual
exploration of big data and help analysts identify hidden patterns, infer and verify new hypotheses.

6.1. Network Flow Analysis

Exploratory visual analysis of network logs is critical for detecting potential cyber threats and
network intrusions. Visual Analytics Science and Technology (VAST) 2013 Mini Challenge 3 targets
the analysis of Big Marketing company networks, and it provides big network traffic logs [27].
One dataset is one week worth of network flow, which includes 46,138,310 records and 16 dimensions.

Suppose that Alice is an intelligence analyst. She is assigned to identify network threats for Big
Marketing company. At first, she compresses the dataset into binary format and loads it to AVIST.
Figure 12 shows key steps of Alice’s analytical process.
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Data exploration from overview to details: At the beginning, Alice specifies the time window
size (120 s in this example), then plays the animation. The overview of network traffic is visualized
in the time series view, shown in Subgraph 1. Alice finds an unusual behavior that the network
is crashed from 2 April 2013 9:40 a.m. to 3 April 2013 3:26 a.m. She wants to investigate the
details before the network crash, so she chooses data dimensions in the order of firstSeenSrcIp,
firstSeenSrcPort, firstSeenDestIp and firstSeenDestPort to generate parallel coordinate plots in Subgraph 2.
Then, she plays the animation again and finds that four source IPs 10.10.6.2, 10.6.6.6, 10.7.6.5, 10.7.7.10
scan the destination IP 172.30.0.4 during 2 April 2013 5:20 a.m. in Subgraph 3.

Flexible filtering to reveal hidden patterns: Subgraph 4 shows the network traffic distribution
of firstSeenDestPort. Alice realizes that most of the network records are related with port 80,
and she hypothesizes that these are normal transactions. She removes these data records with
port 80 (Subgraph 5) to investigate buried patterns. Then, she plays the animation again and
investigates port scan activity, shown in Subgraph 7. She captures this behavior by highlight filters as
shown in Subgraph 6.

1

2

4

5
6

3

7
5

6

Figure 12. A usage scenario where AVIST helps an analyst visually explore large network logs.
Seven steps are presented in this figure, and Section 6.1 gives detailed explanations.
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In this scenario, Alice iteratively plays animations and tries different filters to identify potential
network threats. She can easily constrain the time and data attributes to capture subtle and hidden
relations. For example, Alice investigates port scan activity by removing network flow traffic related
with destination port 80 in Subgraph 7. However, she cannot identify this activity from Subgraph 2 in
the first round animation.

6.2. International Trade Analysis

Making sense of international trade is important for governments and policy makers. With the
world economic growth, world trade transactions have become large and complex. In this case
study, we obtain big international trade transactions from PIERS Import/Export trading system [28],
which provides portfolio analysis for U.S. waterborne trade activity. The dataset includes
10,735,092 records and 10 dimensions about 2013 U.S. waterborne imports. Within 10 dimensions,
each data record features a U.S. port code and a foreign port code, which illustrates each trade
geospatial relationship.

Suppose that Mike is an economic analyst, and he wants to gain insights from the international
trade activities. Mike decides to explore this dataset using AVIST. Figure 13 shows Mike’s visual
analytical results.

1

2

3

5

4

Figure 13. A usage scenario where an analyst uses AVIST to visually explore big international trade
transactions. The detailed discussions are presented in Section 6.2.
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Overview exploration: Mike specifies the time window (86,400 s or one day) before playing the
animation. The time series view shows the overview of the world trades in Subgraph 1, which presents
that trade activities are clearly separated into four quarters. The second and third quarters have more
transactions than others.

Hypotheses generation and verification: Mike hypothesizes that the international trades may have
some spatial patterns. International traders prefer neighboring countries. To verify this, Mike highlights
two U.S. ports: Los Angeles (LA) and New York (NY), then he plays the animation. Subgraph 2 shows
one snapshot in virtual globe view, which indicates that LA has more trades with Pacific countries,
while NY is strongly related with Western Europe. Mike narrows down the data records and he focuses
on the trades from Shanghai (SH) to LA and NY. Then, he plays the animation to refresh the time series
view in Subgraph 3. He finds that the trades from SH to LA are roughly twice of these of SH–NY,
which supports his hypotheses.

Making sense of big data: The international trades can characterize each country’s economy.
Mike generates four filters to compare the economies of China and Vietnam. He chooses Shanghai port
and Ho Chi Minh port to represent the two countries. He emphasizes the trades related to furniture
and electronics, as shown in Subgraph 4. He is more interested in the money value rather than the
number of trades, so he clicks the value in the list box and plays the animation. Subgraph 5 is the
time series view with four highlighted line charts, which shows that the two kinds of trades are more
balanced in China, while Vietnam has more furniture exports than electronics exports.

7. Lessons Learned

In this section, we summarize lessons learned for designing and implementing AVIST. We begin
our discussion with the trade-offs of selecting different techniques for designing big data visual
analysis tools.

• Aggregated visualization vs. atomic visualization: These are two strategies to present big data
visually. Atomic visualization uses one visual element for each data record [29]. Pixel-oriented
visualization is an extreme case, where each data record is mapped to a single pixel, its color
indicating some attribute of this record [30]. However, this technique is constrained by display
resolution, which sometimes leads to the over-plotting problem [5]. Different from atomic
visualization, aggregated visualization highlights one visual primitive for multiple data records.
It allows users to see a subset of data as coarse views with interactions (e.g., zooming and
animation). In the case of limited screen pixels, aggregated visualization is more useful than
atomic visualization because it can avoid the over-plotting problem. For instance, in AVIST, after
a user clicks on a bar in the histogram view, the parallel coordinate plots highlight thousands
of lines to reveal corresponding details. Thus, in a setting of limited screen pixels, aggregated
visualization is more scalable than atomic visualization. Moreover, aggregated visualization can
help reduce the performance overhead since it does not plot all data at once.

• Pre-aggregation vs. aggregation on demand: Pre-aggregation is a strategy to achieve high level
data exploration by reducing big data into small data. imMens [5] is a pre-aggregation big
data visual querying system. It aggregates data using the data cube technique, then it allows
users to explore the aggregated data. This method is constrained by: (1) preprocessing methods;
(2) huge memory requirements (derived data may be larger than original data); and (3) lacking
flexible filtering and querying. In contrast, aggregation on demand has no such constraints,
and it emphasizes aggregated data generated on the fly. Thus, it supports flexible data filtering.
AVIST aggregates data based on users’ demands, and features the GPU-centric design to enable
online data aggregation.

• Column-oriented vs. row-oriented: These are two basic data management methods, and both
of them have pros and cons. In the “big data” era, column-based methods gain more attentions,
since a columnar database has two features. First, it has a better compression ratio by storing
similar things together, and it reduces IO (Input/Output) cost during data transferring from
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disk to memory. Second, it supports high level analytical workloads well. On the other hand,
row-based databases are better for On-Line Transaction Processing (OLTP) applications, which
support frequently reading and writing small transactions. The key advantage of the row-oriented
data format is efficiently retrieving small data to find a “needle in a haystack”. Thus, we use the
row-oriented format for querying fine data details.

• Analytically-driven vs. exploration-driven: These are two approaches for sensemaking of big
data. Analytically-driven systems focus on “known-unknowns” insight synthesis, and they
care about integrating statistics and machine learning techniques with human interactions and
visualizations. However, exploration-driven applications emphasize “unknown-unknowns”
discovery and highlight data exploration and interaction techniques. Thus, if users do not know
what they want to know from big data, exploration-oriented applications are better choices. Users
can identify some unexpected knowledge by exploring the data.

• Scaling out vs. scaling up: These are two ways to improve performance. The scaling out
techniques are general approaches to handle big data, where more computers are added
based on demand. Distributed computing technology is the key to manage many computers.
However, distributed computing is designed for long batch jobs. Nowadays, researchers in this
area concentrate on interactive analysis tasks and propose new frameworks (e.g., Spark [31]).
Even though, most of them are analytically driven, which emphasize scaling data mining
and machine learning from small data into big data, rather than exploring large datasets.
As an alternative, the scaling up techniques add more resources on a single machine to boost
performance. In this paper, we emphasize performance improvement by fully exploiting
GPU resources. Thus, we achieve visual analysis of big data in real-time performance on
an off-the-shelf computer.

Through the designing of AVIST, we have shown GPU-based data transformations.
Lessons learned from designing GPU-based visual exploration systems are summarized as follows.

• Data management on the GPU: The GPUs are compute-intensive processors. They are designed to
perform data-parallel computation, in which a single instruction works over a large block of data.
Working in blocks of data is more efficient than working with a single cell at a time. A large block
of parallel working units means high throughput computation. This kind of throughput-oriented
computation needs high memory bandwidth. Thus, the GPU favors array-based data structures.

When programming on the CPU, designers can write to any location in memory at any point in
their program. However, when programming on the GPU, designers access the GPU memory
in a much more structured manner. The GPU is a SIMD (Single-Instruction Multiple-Data)
architecture, which ensures that the computation on one data element cannot affect another.
The only values that can be used in a GPU kernel are kernel input parameters and the
GPU global memory reads. In addition, the output of a GPU kernel should be independent.
GPU kernels cannot have random writes into the GPU global memory; each thread of a GPU
kernel may perform writes to a single element in the output memory.

Considering GPU memory organization, designers need to pay special attention to the data
memory layout. Compared to the CPU, the GPU has different cache optimization. Designers need
to explicitly cache heavily-used variables in GPU shared memory to improve performance.
GPU shared memory is limited in terms of size, and inappropriate usage of GPU shared memory
may hamper the performance. The reason is that the GPU shared memory is divided into memory
banks. If two memory addresses occur in the same bank, then a bank conflict occurs [32] during
which the memory access is done serially, losing the advantages of parallel access.

Additionally, designers should take care of how to access GPU global memory efficiently.
GPU global memory features combining multiple memory accesses into as few transactions
as possible to minimize its bandwidth, which is referred to as memory coalescing.
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Thus, designers should be aware of improper GPU memory access patterns (e.g, sparse memory
access, misaligned memory access, etc.).

In AVIST, we carefully consider the GPU programming pitfalls listed above. Our data structures
are based on data arrays, and we have removed duplicated data items in those data arrays to
reduce computation overhead. We have compacted multiple small data arrays into one array to
have a better GPU memory access pattern.

Designing an efficient GPU kernel is nontrivial, especially when considering GPU memory
organization. Instead of designing complex GPU kernels, we implement data transformations
based on existing GPU libraries (e.g, Thrust). In AVIST, we use the sort operation to eliminate
duplicates and obtain unique values; we also use the reduction operation to organize data arrays.

• Data visualization on the GPU: We highlight the usage of the GPU VBOs to improve the
performance of big data visualizations. The basic visual primitives for GPU rendering are vertices
or triangles. To generate complex visual primitives (e.g., bars and areas) or obtain advanced
visual features, we use the GLSL, which transforms GPU geometric primitives into a raster image.
The GPU features its rendering pipeline with three programmable shader stages: vertex shader,
geometry shader and fragment shader. Marroquim et al. [33] provide a detailed description of
each stage. In fact, the graphics pipeline is independent across stages, which makes rendering
performance significantly improved. Thus, the GPU is a powerful weapon for rendering big data.

• Data interaction on the GPU: The data interaction in AVIST emphasizes highlighting, brushing
and filtering. The implementation of these interactions includes two stages.

(1) Keyboard and mouse events are collected on the CPU side, and they are transformed from the
windows 2D space into the image space based on the view port setting of the GPU. After that,
these events are assembled and transferred to the GPU side.

(2) The GPU parses these data and links the current visual primitives back to raw data. To achieve
this, the GPU VBOs map visual primitives back to the GPU global memory. Then, the GPU filters
each visual primitive in parallel to get the filtered ones. After that, the GPU traces back to raw
data based on the filtered ones and continues data transformations for the next frame.

In summary, designing GPU-based big data visual analysis systems requires significant GPU
knowledge, which may become too esoteric for researchers in the field of information visualization.
Information visualization researchers may need to collaborate with experts in high performance
computing and graphics to narrow the gap between big data and its insights.

8. Limitations

In this work, we exploit the powerful resources of GPUs for interactive big data visualization.
Thus, the GPU memory size and computation capacity are the key limitations.

• GPU memory: The GPU memory capacity is limited, while the volume of big data can be far
beyond its capability. We have applied a lossless compression technique in AVIST to shrink the
data size. However, this technique cannot scale to some bigger datasets.

• GPU computation: The computational capability of GPUs has reached tera-FLOPS (Floating-point
Operations Per Second), which may be ten-times faster than state-of-the-art CPUs. However,
GPUs perform well for arithmetic intense computation with regular memory access patterns.
Thus, they are incapable of some problems with unpredicted memory accesses and highly
sequential solutions (e.g., graph traversal). GPUs are specialized for certain problems and are
incapable of achieving significant performance gains for all problems.

There is much room to improve our work. We plan to have detailed performance comparisons
between our work with existing tools or systems, such as Nanocubes and MapD. We also want
to investigate unstructured or semi-structured data analysis, such as big texts analytics based
on the GPU.
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9. Conclusions

In this paper, we focus on interactive visual analysis of large multi-dimensional datasets and
contribute a GPU-centric design for visual exploration of such datasets. We emphasize the GPU parallel
resources to improve performance. To achieve this, we propose a data dependency graph design to
characterize data computations on the GPU. As a proof-of-concept, we implemented AVIST based on
the GPU-centric design. We have described its implementation details and performance analysis.

We have demonstrated how AVIST can help analysts gain insights into big data with two usage
scenarios. We have summarized the lessons learned and discussed the trade-offs of different techniques
for designing big data visual analysis systems. We also summarized the pitfalls and advantages for
implementing GPU-based systems for interactive information visualization applications.
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