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Abstract: The visual exploration of large and complex network structures remains a challenge for
many application fields. Moreover, a growing number of real-world networks is multivariate and
often interconnected with each other. Entities in a network may have relationships with elements
of other related datasets, which do not necessarily have to be networks themselves, and these
relationships may be defined by attributes that can vary greatly. In this work, we propose a
comprehensive visual analytics approach that supports researchers to specify and subsequently
explore attribute-based relationships across networks, text documents and derived secondary data.
Our approach provides an individual search functionality based on keywords and semantically
similar terms over the entire text corpus to find related network nodes. For examining these nodes in
the interconnected network views, we introduce a new interaction technique, called Hub2Go, which
facilitates the navigation by guiding the user to the information of interest. To showcase our system,
we use a large text corpus collected from research papers listed in the visualization publication
dataset that consists of 2752 documents over a period of 25 years. Here, we analyze relationships
between various heterogeneous networks, a bag-of-words index and a word similarity matrix, all
derived from the initial corpus and metadata.

Keywords: heterogeneous networks; interaction; graph drawing; multivariate datasets; NLP;
text analysis; visualization; visual analytics

1. Introduction

The combination of different heterogeneous networks and related textual data is crucial for
various application domains. Libraries, for example, are nowadays interested in analyzing (known or
hidden) relationships among various collections of books, which might be related to each other even
though they do not share the same author or topic. Based on an initial book search, analysts want to
find out what terms were used in a specific book, find related ones that might use the same or similar
terms and also visualize the direct neighborhood network of those books, which could, for instance,
consist of other books written by the same authors.

Similar text corpora may be derived from conference proceeding publications, such as the IEEE
Visualization Conference [1] proceedings, which we use as an application example and use case in this
paper. Here, a researcher could be interested in finding out more about a specific topic and therefore
wants to explore publications that use a number of specific keywords or terms. However, related
publications might use different terms, but still talk about the same idea; or those publications mention
certain terms that do not appear in the title or their keyword list. For less experienced researchers, it
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might help to alleviate the initial process of getting an overview of their new field if they would have
access to tools that are able to find these concealed connections.

Integrating different network visualizations together with related multivariate data and helping
analysts to discover relevant information, in the context of this paper by providing them with
interactive possibilities to view and explore the relations between networks and large text corpora,
is still an open challenge and has not yet been sufficiently addressed to the best of our knowledge.
This approach is also important for other application domains such as biology, where the correlation of
large metabolic pathways, protein-protein-interaction networks or regulatory networks is an important
issue and the interconnections between various networks are not always obvious. Different networks
come with numerous multivariate attributes (e.g., coming from experimental data), and exploring just
one network and its related multivariate data is already a challenge in itself. This has been addressed
by various techniques and tools; see the state-of-the-art survey of Kerren et al. [2]. Another survey for
the visual analysis of graphs and open challenges in this area is provided by von Landesberger et al. [3].
In a collection of datasets (see the illustration in Figure 1), an attribute in one network might be related
to other attributes in various other networks, even though they might not have the same identifier or
name. To make interesting assessments about the data, analysts need to search for specific keywords,
terms, authors or other metadata across different networks that might or might not be related.
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Figure 1. Different networks and datasets can be interconnected with each other, but these connections
may not be immediately apparent. How can users visualize and explore them interactively?

If they also have text corpora available in addition to the network data, it can be interesting to
see the relationships between documents that result from analyzing the text corpora. Such relations
could be derived from the usage of specific terms in the documents, from a list of papers written by a
specific author or be based on texts written at the same institution. It could also be worth investigating
whether authors who use similar terms throughout their publications have a connection to each other.
Examples of such a connection could be co-authoring a paper, performing research in the same field
or having the same affiliation. Maybe the authors never really worked together, but one author was
citing another author’s work and was influenced by the choice of words in the original document.
In this article, we address these challenges and analysis tasks. Our main contributions in the field of
heterogeneous network exploration in the context of visual text analytics are:
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• we present a scalable system that gives analysts the possibility to interactively specify and
explore mappings across interconnected heterogeneous networks with thousands of nodes and
related data derived from text corpora;

• we provide a way to perform a search based on main keywords and semantically similar terms
over the entire text corpus to find related nodes, which represent, for instance, papers, authors or
affiliations;

• we introduce the technique “Hub2Go”, which enables users to quickly add and examine these
nodes in the interconnected networks views; and

• we give the option to directly compare the usage of specific terms across a selection of nodes.

The remainder of this article is organized as follows. In the next section, we discuss related work
in network visualization and document analysis. The compilation of our example data is described
thoroughly in Section 3. We discuss our visualization together with a method for exploring mappings
between different networks and datasets in Sections 4 and 5. Then, we showcase our approach with
a use case in Section 6 followed by a discussion on limitations and performance aspects in Section 7.
We conclude this article in Section 8.

2. Related Work

The visualization of links across related networks has so far mostly been addressed for biological
pathways. Due to the sheer size of these networks, biologists usually create a number of smaller subsets
that are then analyzed using different techniques. Caleydo [4], for instance, shows networks side by
side in a 2.5D environment. Entourage [5] uses a focus+context approach to explore relationships
in biological pathways. While analysts explore a pathway and focus on specific nodes, parts of
related pathways are shown in additional views as contextual subsets. Our application uses dynamic
network views similar to this idea; based on a focus node and configured attribute matching settings
between networks and additional datasets, our system allows one to explore nodes and their direct
neighborhood in related network views. Exploring the connections in just one larger network is
often already a challenging task: navigating across links to adjacent nodes is difficult if the nodes
are far away from each other and not in the current view. This usually requires much panning and
also zooming of the graph view and puts a lot of cognitive load on the user. To tackle this problem,
May et al. [6] proposed signposts to provide cues about off-screen regions in a graph visualization.
Henry et al. [7] combine traditional node-link diagrams with adjacency matrices for a compact view
on a network. The links between the matrix representations can be considered as connections between
subnetworks within one large network. Another approach from Moscovich et al. [8] introduced (1) link
sliding to automatically move the camera across links to adjacent nodes and (2) bring and go, which
moves adjacent nodes into the current view, close to the selected node. Our Hub2Go technique uses a
similar approach, but supports automatic camera movements in multiple network views to ease the
navigation from and to nodes across interconnected networks and relations to other data. There are
also tools to assist users in creating and exploring networks from raw tabular data, such as Orion [9]
or Ploceus [10]. These tools use single node-link and matrix views to visualize the generated networks.
Our approach differs from these techniques because we expect already existing network data, visualize
related networks in multiple node-link views and give options to dynamically define and visualize
links between those views.

Tools for the visual analysis of documents and literature publications are related to our use case
application. A general overview of text visualization techniques is available in the interactive TextVis
Browser [11]. Furthermore, Federico et al. [12] provide a broad survey about various techniques
and open challenges for analyzing the scientific literature. More specifically, Görg et al. [13] use
Jigsaw for the exploration and sensemaking of document collections. They use a list view to show
the relationships among co-authors, keywords and other attributes, together with a clustered view of
related papers. Shen et al. [14] use an interactive table together with multiple stacked network planes in
a 2D or 3D view to visualize interconnections between various paper, author and publication networks.
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PivotSlice [15] uses a more general approach to visualize relationships in datasets. It supports dynamic
queries on attributes and divides datasets into facets and connected views on the data. Phrase
Nets [16] offers techniques to depict relationships in a text and map it into a network-based overview.
Refinery [17] shows combined heterogeneous networks with subgraphs generated from user queries
in one network view. Chen et al. [18] analyze the metadata of document collections and visualize
identified topics together with co-authors in a single network visualization to show collaborations
over time. Instead of only using titles, abstracts, keywords and other metadata as the previous tools,
our system also supports exploring the complete text corpus of a document collection, which gives
analysts the possibility to find documents based on terms that might otherwise not be visible. There
are various other systems that use the complete text corpora of document collections. For instance,
TextPioneer [19] uses on automatic topic extraction to build a hierarchical overview of interesting
topics across multiple text corpora, whereas our approach focuses more on the exploration of specific
terms of a document corpus. CiteRivers [20] aims at visualizing citation patterns of scientific document
collections over time, but does not feature the exploration of author collaborations as we do in our
network visualizations.

3. Data Sources and Preprocessing

Our visualization runs in a web browser and uses a client/server-based architecture, which is
based on our Online Graph Exploration System (OnGraX) [21,22]. Generally, OnGraX can be used to
specify and explore mappings across any networks and related quantitative data. For our use case
employed throughout this article, we focus on analyzing the complete text corpus, which we derived
from all papers in the IEEE VIS conference proceedings with the help of the visualization publication
dataset [23]. We created three networks from the initial data, which help us to explore relations within
the data. Nodes in the first network (2752 nodes and 10,021 edges) represent all papers from 1990–2015,
and edges represent paper citations. Node shapes in the resulting network visualization encode the
VIS conferences: rectangles for the Visual Analytics Science and Technology (VAST) conference, circles
for the Information Visualization (InfoVis) conference, triangles for the Scientific Visualization (SciVis)
conference and diamonds for older Vis papers. Nodes in the second network (4890 nodes and 14,023
edges) represent all authors and co-authors from the dataset. Edges are added between authors if
they wrote a paper together at least once. Nodes in the third network (1539 nodes and 5773 edges)
represent all author affiliations, and edges are added if authors from different affiliations published a
paper together. As we did not prune the initial VIS dataset, the co-authorship and affiliation networks
may contain duplicates with slightly different wording.

Moreover, we did a pdf-to-text conversion for all papers in the IEEE VIS conference proceedings
and used the resulting text corpus to create a word occurrence index (a so-called bag-of-words
(BoW) index) and a word importance index (a so-called term frequency–inverse document frequency
(TF-IDF) index) to find the most frequent and most important terms. The resulting indices contain
12,346 words/terms each and can also be used to uncover the main representative words/terms in a
specific paper or to find terms that were used by a specific author or even in an affiliation. The indices
contain single words, as well as bigrams, which are discussed in Section 3.1. Additionally, we use a
word similarity matrix to find and analyze the relationships between terms that are used in the same
context between various papers.

Figure 2 shows the structure and attributes of the networks and datasets in detail. The resulting
list and matrix datasets are stored as plain, space-delimited text files on the server. At runtime, the
server loads and keeps a copy of all required datasets in memory to provide faster query times for
mapping requests during the exploration of the networks.

Note that the difference between the BoW and TF-IDF indices is that the former only quantifies
the frequency of occurrence of terms in the data (i.e., has a term occurred or not?), whereas the latter
tries to qualify the importance of occurrences (i.e., is a term important or not?). Having identified the
main keywords in a paper (or author/affiliation) of interest, it is also possible to find other papers
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(authors/affiliations) that have used the same terms. As an example, we may be interested in a specific
paper about “sentiment analysis”. By using the BoW index, we can find all other papers that have
mentioned this term, and we can subsequently analyze the co-authorship networks of this group of
papers (see Section 5 for details on this process). If we use the TF-IDF index instead, we find other
papers for which the term is a useful index term (i.e., for which it is important). Finally, the word
similarity matrix enables us to find other terms that have been used near-synonymously (or, more
generally, in the same way) as some keyword. Searching for the term “sentiment analysis” again,
we can use the word similarity matrix to find other terms that might be of interest to us; perhaps
terms such as “opinion mining” and “topic detection”, which could then be included in the current
analysis. In the following, we provide details on how we produced the BoW, TF-IDF indices and word
similarity matrices.

Networks

Matrix Datasets

Papers

Co-Authorship

Affiliation

Bag-of-Words

TF-IDF

Distributional Similarity

Figure 2. Overview of our dataset: all networks, node attributes and edge types were taken from the
visualization publication dataset, with additional textual data derived from all papers in the IEEE
Visualization Conference proceedings.

3.1. Text Preprocessing

After the pdf-to-text conversion, we removed the punctuation from the resulting text and also
lower-cased and tokenized it. We even identified salient bigrams in the data, such as the term
“traffic_flows” from our use case in Section 6, using a variant of mutual information that is commonly
used for bigram detection in natural language processing:

p(a, b) =
fa,b − δ

fa fb
(1)

where fa,b is the co-occurrence frequency of a and b, fa and fb are the individual frequencies of a
and b and δ is a discounting factor that counteracts the tendency of mutual information to promote
infrequent items, which we set to δ = 5. The resulting mutual information scores are sorted, and only
the highest-scoring bigrams are included in the data. The threshold for the mutual information scores
is a trade-off between precision and recall: a lower threshold leads to more, but less precise bigrams,
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while a higher threshold leads to fewer, but more precise bigrams. We opt for a more conservative
threshold in this paper.

3.2. Bag-of-Words

Bag-of-words (BoW) is a standard text representation formalism in natural language processing
(NLP), which represents text simply as a bag containing frequency counts of the words that occur in
the text. Formally, the BoW representation of a text is a vector:

~w = [t1, . . . , tn] (2)

whose dimensionality n is the size of the vocabulary (i.e., each word in the vocabulary is represented
by one separate dimension) and ti is some weight that quantifies the importance of the word in the
text. There are many ways to quantify the importance of a word in a document; the arguably most
common term weighting scheme is TF-IDF, which in its simplest form is defined as:

TF-IDFi,j = TFi,j · log
N

DFi
(3)

where TFi,j is the frequency of word i in document j, DFi is the number of documents word i occurs in
and N is the total number of documents in the data. It should be noted that there are many variations,
refinements and alternatives to using TF-IDF to extract useful terms as indicated by Chuang et al. [24],
for example. However, we opt for the standard TF-IDF measure in this work, since it is simple to
compute and produces useful results. Using BoW representations enables us to find all documents
that contain a certain term (i.e., all documents for which the value of the dimension representing the
term in question is not zero). The TF-IDF representation also enables us to list the most useful index
terms for a document (i.e., the terms with highest TF-IDF weights for that particular document).

3.3. Word Similarity

In order to produce the word similarity matrix, we use distributional semantics, which is
the practice of using information about the co-occurrence patterns of terms in order to quantify
semantic similarity. In a standard distributional semantic model (DSM), each word is represented by a
distributional vector, ~w f = [w1, . . . , wm], where wi is a function of the co-occurrence count between the
focus word w f and each context word wi that has occurred within a window of k tokens around the
focus word [25]. Words that have co-occurred with the same other words (i.e., that are interchangeable
in context) get similar distributional vectors, which means we can use the resulting model to quantify
semantic similarity between terms.

There are many variations of DSMs, ranging from simple count-based methods to the
currently more popular, and more complex, models based on factorization techniques or neural
networks [26–28]. We opt for an approach based on an incremental random projection of a count-based
model, called random indexing (RI) [29], which accumulates distributional vectors ~v(a) by summing
sparse random index vectors~r(b) that act as fingerprints for the context items:

~v(a)← ~v(ai) +
c

∑
j=−c,j 6=0

w(x(i+j))π j~r(x(i+j)) (4)

where c is the extension of the context window, w(b) is some weight function that quantifies the
importance of context term b and π j is a permutation that rotates the random index vectors according
to the position j of the context items within the context windows, thus enabling the model to take word
order into account [30]. We use 2000-dimensional vectors, c = 2, and the weight function suggested
in Sahlgren et al. [31]. There are several reasons why we use RI instead of one of the currently more
popular DSM models. One is the ability of RI to encode word order, which is not possible to do using,
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e.g., the word2vec library or the GloVe model. Another reason is the scalability and efficiency of RI,
which makes it suitable for collections with large amounts of data. It should also be mentioned that
the most current DSMs perform similarly, given that parameters have been optimized for the specific
data and task at hand.

In order to produce the word similarity matrix, we compute pairwise similarities between
all words with frequency ≥ 50 in the data using cosine similarity. We utilize a comparatively
high frequency cut-off for the word similarity matrix, since low-frequent words have insufficient
distributional statistics to produce reliable distributional vectors.

4. Specifying Attribute Mappings

Before exploring the interconnections and relations between networks and additional datasets,
analysts have to specify which attributes they want to compare throughout the complete data
collection. Instead of having to do this programmatically, our application enables analysts to create
and subsequently explore arbitrary mappings between all graphs and additional datasets (e.g., lists or
matrices) on the fly by using a small bipartite graph visualization as shown in Figure 3. Nodes either
represent a graph or a dataset that was imported into the application. The node colors are selected
by the tool from a color list created with ColorBrewer [32]. They are also used as background colors
for the hubs during the exploration of a mapping to indicate the target dataset (see Figure 4h). Every
dialog with a view on a graph or dataset has a small colored rectangle in the top right corner to indicate
its mapped color. Users can add unidirectional and bidirectional mappings by dragging the mouse
from a source to a target node. The application will ask which attribute from the source should be
mapped against the target.

b

a

c

d

Figure 3. The dialog to configure the mapping between graphs and datasets. This figure shows four
configured mappings between three networks and the BoW index.

As performance can be an issue if a large number of graphs and datasets with many entries are
loaded, users can add and remove graphs and datasets (that are already imported into the system)
to the matcher on the fly. Depending on a priori knowledge, mappings can be defined from and to
specific attributes or be more general, to iterate over all possible attributes of a target graph or dataset.
For the data from our use case, all matches across the datasets are calculated and visualized in less
than a second, but to provide better scalability for bigger datasets with a large number of entities and
additional attributes, specific mappings could be helpful to reduce the required time to iterate over all
possible matches.
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b d

e

f

g

h

a

c

Figure 4. An analysis session in progress. Here, a mapping between a paper citation network (a), a co-authorship network (b) and an affiliation network (c) is explored.
The bag-of-words chart (d) shows all terms for the currently-selected paper in the paper network, and the chart at (e) shows terms used in a similar context as the
word “sentiment” throughout the complete text corpus of the IEEE conference proceedings. The attribute comparer (f) visualizes the occurrence of six terms over a
selection of papers. The dialog at (g) contains the complete list of nodes for the active network that the user is currently exploring; in this case, the paper network. The
three colored rectangles at (h) realize our interactive Hub2Go, which currently indicates matches from the paper “Opinion Flow”, which is selected in the paper
network, to three other networks or datasets. The small rectangles at the top right of the three network views and the bag-of-words chart (marked with red arrows)
represent the colors used for the Hub2Go instances (h) to indicate matches across networks and datasets.
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An actual mapping is performed dynamically, i.e., if a user clicks on a node in one of the network
views or an entry in one of the additional bar charts. In Figure 3, the analyst declared four mappings
between three graphs and the BoW index. The first mapping (see Figure 3a) from the BoW index to
the papers network is used if a user clicks on a node in the respective network view. The application
will then iterate through the BoW index, locate the row with the matching paper ID and fetch all terms
used in that paper to show their BoW values in the BoW chart. As this mapping is bidirectional, the
mapping will also be performed if a term is clicked in the BoW chart. In this case, the application will
fetch all papers that use this specific term. The next two mappings (see Figure 3b,c) from the paper
publications network to the co-authorship and affiliation networks are used to find related authors and
affiliations for a clicked paper. The application will map the paper to all authors in the co-authorship
network and affiliations that have the paper ID in their list of papers. The last mapping (see Figure 3d)
maps an author’s name from the co-authorship network to the affiliation network, thereby enabling the
user to find all affiliations a specific author wrote papers for and also to find all authors of a specific
affiliation. Currently, our application only discovers matches between attributes with identical values.
For instance, the last mapping (see Figure 3d) only finds completely identical strings between the
configured attributes of the co-authorship and affiliation network. To be able to support fuzzy matching,
we plan to extend the mapping feature in a future version. String similarities and configurable range
values for numerical attributes could be used to find and display similar results.

In our example, the latter three attribute mappings (see Figure 3b–d) are defined to specific
attributes in the source and target nodes, as the exact attributes, interconnections and relations are
already known for these datasets. Alternatively, if the attributes of a newly-imported graph are
unknown, it is possible to specify an attribute mapping that tries to find identical attribute values by
iterating over all entities and their attributes of a mapped graph or dataset. The mapping in Figure 3a,
for instance, implies the paper network without declaring a specific target attribute. In this case,
the application will try to match all possible attributes of the target to the specified source attribute.
If an attribute can be mapped depends on the type of the source attribute (e.g., nominal or ordinal).
The application will only try to map between attributes of the same type.

5. Visualization Approach

Depending on the use case, it is not always possible to merge several heterogeneous networks into
one view. For instance, some metabolic networks from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database [33] have a precomputed layout, which is preferred by biologists, but the
networks are still connected with each other. In this case, it would be beneficial to have multiple
views on the networks and provide a means to navigate the relationships, similar to the approach
facilitated by Entourage [5]. In another scenario, multiple networks could be merged into one single
network view. The Apolo system [34] uses this technique to make sense of large network data using
machine learning and user interaction to find nodes that might be of interest to the user. Our goal was
to design a flexible system that can be used for different application areas. We also wanted to be able
to visualize additional related multivariate data across the networks. It is possible to show attributes
of target nodes directly in a graph visualization, for instance as information wedges at the borders of
the visualization [35], but the number of attributes that can be visualized with this technique is limited
and not applicable for all possible use cases. Consequently, we decided to use multiple coordinated
views together with brushing and linking techniques [36] for our tool.

5.1. Visual Design

Graphs are visualized as interactive node-link views (see Figure 4a), whereas list-based datasets,
such as the bag-of-words index, are shown as horizontal bar charts (see Figure 4d,e) due to space
efficiency. The distributional similarity dialog (see Figure 4e) displays the most similar terms of a
selected word in the related BoW chart. The attribute comparer (see Figure 4f) helps to compare
quantitative attributes, such as the BoW values for instance, among a selection of nodes that can be
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added from any network view by performing a right-click on a node. It also supports sorting of nodes
based on a selected attribute. The concrete processing depends on the network type in our case: if a
node is added from the affiliation or the co-authorship network, the accumulated value from all papers
for that affiliation or author is visualized, whereas a node from the paper network shows the actual
BoW or TF-IDF value for that paper directly. If a node in one of the network views or an entry in the
charts is hovered with the mouse, all related nodes or entries in all other views are highlighted, which
helps to interactively explore the relationships between the datasets.

Node-link visualizations of networks with many thousands of nodes and edges are usually quite
cluttered and difficult to explore without further filtering or clustering. To circumvent this issue, we
facilitate a bottom-up approach to explore the datasets: when the application is started, all network
views are empty, and the BoW/TF-IDF charts show all terms over the complete dataset. Nodes from
networks are added into or removed from the views on demand, either by directly searching for a
specific node in the node list (see Figure 4g), finding nodes by keywords from the BoW chart or by
requesting connected matches from a node in another node-link view. If a network does not already
have precomputed node positions, the network views use a force-directed layout from the yFiles
library [37]. The layout is calculated whenever new nodes are added to the view and tries to minimize
the position changes of already existing nodes in order to preserve the mental map. If necessary, users
can adjust the layout settings and select different layout algorithms such as circular or hierarchical
graph layouts.

5.2. Hub2Go

In order to perform a bottom-up exploration across interconnected heterogeneous networks and
related data views, it is essential to quickly find nodes of interest. Users should also have the option to
seamlessly add nodes into a related target network and swiftly go to their location to explore their
local neighborhood. Moreover, it should be possible to remove nodes from a search result, if it did not
yield interesting information. Depending on the use case, it is also not always feasible to directly show
all interconnections to a target node if the node has a high number of interconnections.

To provide a flexible solution for these problems, we introduce the Hub2Go technique. Whenever
a search is requested by clicking on a node in a network view or by selecting a term in the BoW or
TF-IDF charts, the system represents the search results as Hub2Go instances at the border of the initial
network view or chart (see Figure 4h). The hubs show the connections to other datasets: in the context
of Figure 4, the user clicked on the paper “Opinion Flow” (marked in red) in the paper network
(see Figure 4a) and initialized a search for connected entities in other networks or datasets based on
the configured mappings. Three Hub2Go instances show the result: five nodes in the co-authorship
network, 1598 terms in the BoW chart and one node in the affiliation network.

To create the concrete network views given in Figure 4, we started by searching for the term
“sentiment” in the BoW chart (see Figure 5a). By clicking on the resulting term, the system matches the
term over all configured networks and visualizes the result as three Hub2Go instances (see Figure 5b).
In this case, the hubs show 34 papers, 166 authors and 21 affiliations that mention this term at least
once. Hovering over the blue hub, which is related to the paper network, shows a list of all 34 found
papers. Left-clicking the hub adds all nodes from the search result to the target network (see Figure 5c);
or removes them, if they are already in the view. Alternatively, users could browse through the list
and manually add or remove nodes of interest by left-clicking them. Going back to Figure 4, we also
added all matching nodes to the other node-link views using our Hub2Go technique. Additionally,
users can perform a right-click on a hub or a node in a hub-list to add all or specific nodes to the
attribute comparer. In this case, we added all 34 papers to the attribute comparer (see Figure 4f) by
right-clicking on the blue Hub2Go instance, and to analyze the occurrence of related terms among
these papers, we also added “sentiment”, “credibility”, “topic”, “opinion”, “position” and “content”
to the attribute comparer by right-clicking them in the distributional similarity dialog, which currently
shows the most similar terms for the term “sentiment”.
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a

b

c

Figure 5. Usage of the Hub2Go instances: The user searched for the term “sentiment” in the BoW chart (a) and clicked on it. The resulting matches across the networks
are shown as three Hub2Go instances at the border of the dialog (b). Hovering the blue hub shows a scrollable list with all related papers. Clicking the hub adds all
papers to the paper network view (c).



Informatics 2017, 4, 11 12 of 20

In Figure 4, the user is currently hovering the orange hub, associated with the co-authorship
network, with the mouse cursor, which brings up a list with all found authors for the selected paper
and also highlights all connected nodes in the other views. Hovering the mouse over a specific item in
the hub-list automatically centers the connected target node in the relevant view, enabling the analyst
to swiftly explore its local neighborhood. To indicate whether nodes of a search result are already in
the view, circles in this list appear green if they are already added to the network view or red if they
have not been added to the view. When clicking on a node in a hub list, the neighborhood of this node
can optionally also be added to the network view (based on a user setting). This is helpful to quickly
find related nodes in the dataset, for instance citations from or to other papers or authors who also
wrote other papers together with the initial author of a paper.

6. Use Case

Our analysis goal for the use case described in the following is to discover relationships between
papers that cannot be spotted by an analysis of pure metadata, such as the data provided by the
visualization publication dataset [23]. For instance, we may want to discover thematic outliers in
the paper collection of a specific author and analyze if there are similarities between those outliers
and other papers written by the author (or by others). The three network views could also be of
variable interest to different users. Students or researchers usually want to explore research results
and are interested in the relations between existing papers and authors, whereas libraries or funding
organizations might also be interested in co-authorship and the related affiliations to explore the results
of an interdisciplinary project.

Let us assume for this use case that a student previously read an interesting paper about
“traffic flows” and that the student remembers one of the authors of this paper: “Jarke J. van Wijk”.
The student wants to find out more about the author and might also have a few questions related to
the paper and wants to use our system to answer them:

Q1, author question: Which words/terms does van Wijk use in his papers? Answering this question
would provide the student a first impression about van Wijk’s most important research areas.

Q2, author question: Does he usually focus on the same terms throughout his papers or does he
address various different topics, which would indicate a broad research interest?

Q3, paper question: Are there other papers related to the term “traffic_flows” that might be of interest
to the student?

Q4, paper question: Considering the term “traffic_flows”: are other terms in other papers used in a
similar context, which would make those papers also interesting to the student?

Analysis Step 1:

Aiming to answer Q1, the student first adds the TF-IDF chart to this analysis (see Figure 6g)
to get the most important words among selected papers. He/she then activates the co-authorship
network view and searches for van Wijk’s name in the search dialog (see Figure 6a) and adds van
Wijk’s corresponding author node together with all other nodes of authors who collaborated with him
to the egocentric network view (see Figure 6b). After clicking on van Wijk’s node in this view, the
system shows four Hub2Go instances (see Figure 6c), which indicate 38 related papers in the paper
network (blue), 8 nodes in the affiliation network (terra cotta) and 7245 terms in the BoW (violet) and
TF-IDF charts (jade green). The two charts already give the student an overview of all terms used in
van Wijk’s papers, thereby answering Q1. Left-clicking on the blue hub adds all papers to the paper
network view, and the student also puts all of van Wijk’s affiliations into the affiliation network view
(note that in this case, some of the affiliations are actually duplicates with slightly different wording in
the visualization publication dataset).
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Figure 6. After searching for the author “Jarke J. van Wijk” in the node dialog (a), adding his corresponding node and all of his co-authors to the co-authorship
network (b) and performing a matching over all graphs and datasets (c), the system also allows the exploration of all of van Wijk’s papers (e), affiliations (f) and the
terms he used throughout his papers with the help of the TF-IDF(g) and BoW (h) charts. The attribute comparer (d) shows TF-IDF values of van Wijk’s papers for
eight chosen terms, which are marked in green in the TF-IDF chart. Currently, the paper “Visualization, Selection, and Analysis of Traffic Flows” has been selected in
the VisPapers and Attribute Comparer views.
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The student could now further explore which terms are used in a specific paper by clicking on
its node in the paper network. The student could also explore which of his own (or his co-authors’)
papers van Wijk cites in the VIS publication dataset. For doing so, we use a pop-up menu that appears
while an interesting node (i.e., a specific paper) is hovered with the mouse in order to add all nodes
that are adjacent to the hovered node into the network view. This way, the student is able to easily
identify papers that cite or are cited by one of van Wijk’s papers. By using the pop-up menu, he/she
could also directly open the IEEE-Xplore link, which is saved in the URL attribute of each node, to
take a closer look at the actual papers.

Hovering over a node in the VisPapers view also highlights connected nodes in the other networks,
enabling the student to see the authors and affiliations of specific papers. Furthermore, the student
could also investigate the co-authorship network and hover over a node to highlight all papers that an
author wrote together with van Wijk.

Analysis Step 2:

To answer Q2, the student investigates the TF-IDF chart, which shows the terms for all of van
Wijk’s papers, as long as his node is selected in the co-authorship network. The student adds eight of
van Wijk’s most used/important terms “traffic_flows”, “masks”, “clustering”, “nodes”, “decision_tree”,
“cluster”, “network” and “particles” to the attribute comparer (see Figure 7) and right clicks the blue
hub in the co-authorship view to also add van Wijk’s papers to the comparer. The student notices that
the terms “clustering”, “nodes”, “cluster”, “network” and “particles” are used quite evenly throughout
van Wijk’s paper collection. However, the other three terms are interesting outliers: “traffic_flows”,
“masks” and “decision_tree” are each uniquely used in three different papers. In this case, the student
discovers from the chosen terms that van Wijk addresses similar topics in most of his papers (in the
case of the terms that are used evenly), but the three outliers could also indicate a broader research
interest. The student could now further investigate and use the paper network view to open the links
to the papers, and he/she could also use the TF-IDF chart to get an overview of the other terms that
were used in those papers.

Analysis Step 3:

The student now decides to address Q3 and to find more papers about the term “traffic_flows”.
Figure 7 already revealed that van Wijk only has one single paper that mentions this term, and
searching for the term in the titles of all papers via the node list of the paper network also only reveals
van Wijk’s paper. The addition of the BoW and TF-IDF indices makes it possible to search for terms
in the data, rather than being limited to searching for keywords in the titles of papers. Therefore, the
student can now find all papers that mention some specific term, regardless of whether it is in the
title of the paper or not. To see if there are other papers in the dataset that use this term, the student
clicks on “traffic_flows” in the TF-IDF chart and gets three Hub2Go instances linking to 12 papers, 42
authors and 9 affiliations (see Figure 8). After clearing the attribute comparer from the previous search
queries, the student adds all 12 papers to the paper network and the attribute comparer using the blue
hub. Van Wijk’s paper has by far the highest frequency of the term, but the student could now also
open the other papers to see if they are relevant for his research.
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Figure 7. Distribution of eight selected terms in van Wijk’s papers. The terms “traffic_flows”, “masks” and “decision_tree” (marked by red ellipsoids) are each
uniquely used in different papers.
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Figure 8. The network view shows all papers mentioning the term “traffic_flows”. The attribute
comparer shows the distribution of that term among the papers.

Analysis Step 4:

The student can now utilize the TF-IDF (or BoW) values together with the distributional
similarities to further investigate these 12 papers and find additional work that might be thematically
related to traffic flows, thereby addressing Q4. The student selects van Wijk’s paper in the paper
network to get the TF-IDF values for that paper and adds the next three terms with the highest values
(“aircraft”, “traffic”, “trajectories”) to the comparer. A well-known issue with keyword search is
vocabulary variation (sometimes referred to as the synonymy problem), which means that several
different terms can be used to refer to the same thing. In the case of “traffic_flows”, there could be
other terms that are also used by researchers to refer to this type of visualization. The student therefore
consults the distributional similarities view (see Figure 9), which shows the most similar terms, and
identifies four interesting ones “trajectories”, “features”, “regions” and “patterns”, which might be
relevant for investigation besides the term “traffic_flows”. The first term from the distributional
similarities “trajectories” was already in the TF-IDF chart, which encourages the student to further
investigate the papers mentioning this term.

Right-clicking on the term “trajectories” in the attribute comparer orders the papers in the chart
based on the TF-IDF values for this term. The student finds five new papers that mention this term
(see Figure 9(1–5) at the bottom in the attribute comparer dialog). They could be of interest, and the
student decides to add them into the paper network view that still contains all of van Wijk’s papers.
Right-clicking the papers in the attribute comparer adds them to the paper network view: four of
these papers (1–4) are actually connected to each other, and one of van Wijk’s papers (see Figure 9(6);
“Composite Density Maps for Multivariate Trajectories”) is part of this group, as it cites two papers
with the term “trajectories”. Since it does not mention the term “traffic_flows”, it was not added
to the attribute comparer in the initial search. To investigate the occurrence of the already selected
terms in this paper, the student also adds it to the attribute comparer by right clicking on it in the
paper network. The student finds out that the paper also uses the terms “trajectories”, “features” and
“patterns”, which suggests that he/she might also take a closer look at this paper.
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Figure 9. The TF-IDF chart now shows all values for the same focus paper ((7); currently selected in the
paper network view) as in Figure 6. Adding all papers mentioning the term “traffic_flows” together
with six related terms from the TF-IDF chart and the distributional similarities to the attribute comparer
reveals five potentially interesting papers (1–5), which we added to van Wijk’s initial paper network
view. Four of these papers are connected due to citations, and one of van Wijk’s papers (6) is also part
of the resulting group.

Note that the distributional similarities encode the similarity of usage in the data rather than some
generic (or “objective”) notion of semantic similarity. This means that we will find terms that have
been used in the same way in this view. Such similarities may sometimes be somewhat surprising and
perhaps even counter-intuitive (in this case the terms “subset” and “subsets” are not related to the
initial search term), but are a direct effect of word usage in the data at hand.

7. Discussion

The employment of multiple coordinated views has the advantage that we can explore various
interconnected networks at once. This is of course limited to the available screen space. On a 2K
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desktop resolution, three to four networks in addition to the BoW and distributional similarity charts
are a realistic usage scenario (Figures 4 and 6 were taken at a 1900 × 1080 resolution), whereas a 4K
resolution offers even more space for additional network views. A higher resolution is essential for
bigger document collections, for instance, if users plan to explore the interconnections between various
different conference proceedings and would have three or four paper citation networks and not just a
single one, as we did in our use case.

Analyzing a bigger text corpus should have a big impact on the performance of the system and
the interaction between the views, as all word indices and similarities are calculated beforehand
and loaded into the main memory on the OnGraX server. Exploring a larger number of different
networks also scales well for realistic use cases. Our mapping system on the server uses multiple
parallel threads and can iterate through up to 16 datasets or networks at the same time to find matches.
As such, only the highest number of nodes (n) and the number of mapped attributes (m) in a graph
have an impact on the performance, and a matching usually runs in O(nm) time. Additionally, all
networks are rendered on the client computer’s GPU by using WebGL [38]. This approach is faster
than using the more common SVG-based node-link visualization approaches, and our system provides
good scalability for up to 10,000 nodes and edges (depending on the hardware specifications of the
client). As we use a bottom up approach and only load nodes into the views on demand, the number
of nodes that have to be visualized at once is usually quite small and as such also scales well with
bigger networks.

While users can quickly specify new attribute mappings between imported graphs and datasets,
this process usually requires some a priori knowledge about the structure and attributes of the data.
OnGraX currently only visualizes attributes of a graph or dataset during the creation of a new mapping
in the mapping dialog. Our plan is to improve this view to give users more intuitive access to
this information.

8. Conclusions

In this work, we presented a system to explore the structure and relations between heterogeneous
interconnected networks and additional metadata. The inclusion of large textual information, in the
form of both a BoW/TF-IDF index and a word similarity matrix, together with the possibility to
map these data across different networks, constitutes a novel contribution in visual text analytics and
allows us to extensively explore relations between related papers, authors or affiliations based on
selected keywords. Being able to search for terms and semantically similar used words and visualize
their usage throughout the complete text corpus can reveal relations between thematically-related
documents, which would otherwise not be apparent if an analyst could only search through the
titles and keywords of a document collection. Our Hub2Go technique assists users to quickly add
(or remove) interconnected nodes in interactive network views and charts and assists in navigating to
the locations of these nodes to explore their local network structure. Our system has been developed
in close collaboration with NLP experts, and the next step is to assess the usability of our system by
performing a user study with a larger document collection. We also plan to make the OnGraX system
publicly available in the near future. Due to copyright reasons, we cannot make the whole full text
dataset accessible, but the extracted BoW and TF-IDF files, as well as the word similarity matrix are
available at the provided URL in the Supplementary Materials.

Supplementary Materials: The following are available online at http://bit.ly/2qS79rw Video S1: Intro Video,
Video S2: Use Case, File S3: BoW, TF-IDF and word similarity files for the VIS publication dataset.
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